// Copyright 2018 Developers of the Rand project. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. #[cfg(feature="serde1")] use serde::{Serialize, Deserialize}; use rand_core::impls::fill_bytes_via_next; use rand_core::le::read_u64_into; use rand_core::{SeedableRng, RngCore, Error}; /// A xoshiro256++ random number generator. /// /// The xoshiro256++ algorithm is not suitable for cryptographic purposes, but /// is very fast and has excellent statistical properties. /// /// The algorithm used here is translated from [the `xoshiro256plusplus.c` /// reference source code](http://xoshiro.di.unimi.it/xoshiro256plusplus.c) by /// David Blackman and Sebastiano Vigna. #[derive(Debug, Clone, PartialEq, Eq)] #[cfg_attr(feature="serde1", derive(Serialize, Deserialize))] pub struct Xoshiro256PlusPlus { s: [u64; 4], } impl SeedableRng for Xoshiro256PlusPlus { type Seed = [u8; 32]; /// Create a new `Xoshiro256PlusPlus`. If `seed` is entirely 0, it will be /// mapped to a different seed. #[inline] fn from_seed(seed: [u8; 32]) -> Xoshiro256PlusPlus { if seed.iter().all(|&x| x == 0) { return Self::seed_from_u64(0); } let mut state = [0; 4]; read_u64_into(&seed, &mut state); Xoshiro256PlusPlus { s: state } } /// Create a new `Xoshiro256PlusPlus` from a `u64` seed. /// /// This uses the SplitMix64 generator internally. fn seed_from_u64(mut state: u64) -> Self { const PHI: u64 = 0x9e3779b97f4a7c15; let mut seed = Self::Seed::default(); for chunk in seed.as_mut().chunks_mut(8) { state = state.wrapping_add(PHI); let mut z = state; z = (z ^ (z >> 30)).wrapping_mul(0xbf58476d1ce4e5b9); z = (z ^ (z >> 27)).wrapping_mul(0x94d049bb133111eb); z = z ^ (z >> 31); chunk.copy_from_slice(&z.to_le_bytes()); } Self::from_seed(seed) } } impl RngCore for Xoshiro256PlusPlus { #[inline] fn next_u32(&mut self) -> u32 { // The lowest bits have some linear dependencies, so we use the // upper bits instead. (self.next_u64() >> 32) as u32 } #[inline] fn next_u64(&mut self) -> u64 { let result_plusplus = self.s[0] .wrapping_add(self.s[3]) .rotate_left(23) .wrapping_add(self.s[0]); let t = self.s[1] << 17; self.s[2] ^= self.s[0]; self.s[3] ^= self.s[1]; self.s[1] ^= self.s[2]; self.s[0] ^= self.s[3]; self.s[2] ^= t; self.s[3] = self.s[3].rotate_left(45); result_plusplus } #[inline] fn fill_bytes(&mut self, dest: &mut [u8]) { fill_bytes_via_next(self, dest); } #[inline] fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { self.fill_bytes(dest); Ok(()) } } #[cfg(test)] mod tests { use super::*; #[test] fn reference() { let mut rng = Xoshiro256PlusPlus::from_seed( [1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0]); // These values were produced with the reference implementation: // http://xoshiro.di.unimi.it/xoshiro256plusplus.c let expected = [ 41943041, 58720359, 3588806011781223, 3591011842654386, 9228616714210784205, 9973669472204895162, 14011001112246962877, 12406186145184390807, 15849039046786891736, 10450023813501588000, ]; for &e in &expected { assert_eq!(rng.next_u64(), e); } } }