use crate::future::poll_fn; use crate::io::{AsyncRead, AsyncWrite, Interest, PollEvented, ReadBuf, Ready}; use crate::net::unix::split::{split, ReadHalf, WriteHalf}; use crate::net::unix::split_owned::{split_owned, OwnedReadHalf, OwnedWriteHalf}; use crate::net::unix::ucred::{self, UCred}; use crate::net::unix::SocketAddr; use std::convert::TryFrom; use std::fmt; use std::io::{self, Read, Write}; use std::net::Shutdown; use std::os::unix::io::{AsRawFd, FromRawFd, IntoRawFd, RawFd}; use std::os::unix::net; use std::path::Path; use std::pin::Pin; use std::task::{Context, Poll}; cfg_io_util! { use bytes::BufMut; } cfg_net_unix! { /// A structure representing a connected Unix socket. /// /// This socket can be connected directly with `UnixStream::connect` or accepted /// from a listener with `UnixListener::incoming`. Additionally, a pair of /// anonymous Unix sockets can be created with `UnixStream::pair`. /// /// To shut down the stream in the write direction, you can call the /// [`shutdown()`] method. This will cause the other peer to receive a read of /// length 0, indicating that no more data will be sent. This only closes /// the stream in one direction. /// /// [`shutdown()`]: fn@crate::io::AsyncWriteExt::shutdown pub struct UnixStream { io: PollEvented, } } impl UnixStream { /// Connects to the socket named by `path`. /// /// This function will create a new Unix socket and connect to the path /// specified, associating the returned stream with the default event loop's /// handle. pub async fn connect

(path: P) -> io::Result where P: AsRef, { let stream = mio::net::UnixStream::connect(path)?; let stream = UnixStream::new(stream)?; poll_fn(|cx| stream.io.registration().poll_write_ready(cx)).await?; if let Some(e) = stream.io.take_error()? { return Err(e); } Ok(stream) } /// Waits for any of the requested ready states. /// /// This function is usually paired with `try_read()` or `try_write()`. It /// can be used to concurrently read / write to the same socket on a single /// task without splitting the socket. /// /// # Cancel safety /// /// This method is cancel safe. Once a readiness event occurs, the method /// will continue to return immediately until the readiness event is /// consumed by an attempt to read or write that fails with `WouldBlock` or /// `Poll::Pending`. /// /// # Examples /// /// Concurrently read and write to the stream on the same task without /// splitting. /// /// ```no_run /// use tokio::io::Interest; /// use tokio::net::UnixStream; /// use std::error::Error; /// use std::io; /// /// #[tokio::main] /// async fn main() -> Result<(), Box> { /// let dir = tempfile::tempdir().unwrap(); /// let bind_path = dir.path().join("bind_path"); /// let stream = UnixStream::connect(bind_path).await?; /// /// loop { /// let ready = stream.ready(Interest::READABLE | Interest::WRITABLE).await?; /// /// if ready.is_readable() { /// let mut data = vec![0; 1024]; /// // Try to read data, this may still fail with `WouldBlock` /// // if the readiness event is a false positive. /// match stream.try_read(&mut data) { /// Ok(n) => { /// println!("read {} bytes", n); /// } /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => { /// continue; /// } /// Err(e) => { /// return Err(e.into()); /// } /// } /// /// } /// /// if ready.is_writable() { /// // Try to write data, this may still fail with `WouldBlock` /// // if the readiness event is a false positive. /// match stream.try_write(b"hello world") { /// Ok(n) => { /// println!("write {} bytes", n); /// } /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => { /// continue; /// } /// Err(e) => { /// return Err(e.into()); /// } /// } /// } /// } /// } /// ``` pub async fn ready(&self, interest: Interest) -> io::Result { let event = self.io.registration().readiness(interest).await?; Ok(event.ready) } /// Waits for the socket to become readable. /// /// This function is equivalent to `ready(Interest::READABLE)` and is usually /// paired with `try_read()`. /// /// # Cancel safety /// /// This method is cancel safe. Once a readiness event occurs, the method /// will continue to return immediately until the readiness event is /// consumed by an attempt to read that fails with `WouldBlock` or /// `Poll::Pending`. /// /// # Examples /// /// ```no_run /// use tokio::net::UnixStream; /// use std::error::Error; /// use std::io; /// /// #[tokio::main] /// async fn main() -> Result<(), Box> { /// // Connect to a peer /// let dir = tempfile::tempdir().unwrap(); /// let bind_path = dir.path().join("bind_path"); /// let stream = UnixStream::connect(bind_path).await?; /// /// let mut msg = vec![0; 1024]; /// /// loop { /// // Wait for the socket to be readable /// stream.readable().await?; /// /// // Try to read data, this may still fail with `WouldBlock` /// // if the readiness event is a false positive. /// match stream.try_read(&mut msg) { /// Ok(n) => { /// msg.truncate(n); /// break; /// } /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => { /// continue; /// } /// Err(e) => { /// return Err(e.into()); /// } /// } /// } /// /// println!("GOT = {:?}", msg); /// Ok(()) /// } /// ``` pub async fn readable(&self) -> io::Result<()> { self.ready(Interest::READABLE).await?; Ok(()) } /// Polls for read readiness. /// /// If the unix stream is not currently ready for reading, this method will /// store a clone of the `Waker` from the provided `Context`. When the unix /// stream becomes ready for reading, `Waker::wake` will be called on the /// waker. /// /// Note that on multiple calls to `poll_read_ready` or `poll_read`, only /// the `Waker` from the `Context` passed to the most recent call is /// scheduled to receive a wakeup. (However, `poll_write_ready` retains a /// second, independent waker.) /// /// This function is intended for cases where creating and pinning a future /// via [`readable`] is not feasible. Where possible, using [`readable`] is /// preferred, as this supports polling from multiple tasks at once. /// /// # Return value /// /// The function returns: /// /// * `Poll::Pending` if the unix stream is not ready for reading. /// * `Poll::Ready(Ok(()))` if the unix stream is ready for reading. /// * `Poll::Ready(Err(e))` if an error is encountered. /// /// # Errors /// /// This function may encounter any standard I/O error except `WouldBlock`. /// /// [`readable`]: method@Self::readable pub fn poll_read_ready(&self, cx: &mut Context<'_>) -> Poll> { self.io.registration().poll_read_ready(cx).map_ok(|_| ()) } /// Try to read data from the stream into the provided buffer, returning how /// many bytes were read. /// /// Receives any pending data from the socket but does not wait for new data /// to arrive. On success, returns the number of bytes read. Because /// `try_read()` is non-blocking, the buffer does not have to be stored by /// the async task and can exist entirely on the stack. /// /// Usually, [`readable()`] or [`ready()`] is used with this function. /// /// [`readable()`]: UnixStream::readable() /// [`ready()`]: UnixStream::ready() /// /// # Return /// /// If data is successfully read, `Ok(n)` is returned, where `n` is the /// number of bytes read. `Ok(0)` indicates the stream's read half is closed /// and will no longer yield data. If the stream is not ready to read data /// `Err(io::ErrorKind::WouldBlock)` is returned. /// /// # Examples /// /// ```no_run /// use tokio::net::UnixStream; /// use std::error::Error; /// use std::io; /// /// #[tokio::main] /// async fn main() -> Result<(), Box> { /// // Connect to a peer /// let dir = tempfile::tempdir().unwrap(); /// let bind_path = dir.path().join("bind_path"); /// let stream = UnixStream::connect(bind_path).await?; /// /// loop { /// // Wait for the socket to be readable /// stream.readable().await?; /// /// // Creating the buffer **after** the `await` prevents it from /// // being stored in the async task. /// let mut buf = [0; 4096]; /// /// // Try to read data, this may still fail with `WouldBlock` /// // if the readiness event is a false positive. /// match stream.try_read(&mut buf) { /// Ok(0) => break, /// Ok(n) => { /// println!("read {} bytes", n); /// } /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => { /// continue; /// } /// Err(e) => { /// return Err(e.into()); /// } /// } /// } /// /// Ok(()) /// } /// ``` pub fn try_read(&self, buf: &mut [u8]) -> io::Result { self.io .registration() .try_io(Interest::READABLE, || (&*self.io).read(buf)) } /// Tries to read data from the stream into the provided buffers, returning /// how many bytes were read. /// /// Data is copied to fill each buffer in order, with the final buffer /// written to possibly being only partially filled. This method behaves /// equivalently to a single call to [`try_read()`] with concatenated /// buffers. /// /// Receives any pending data from the socket but does not wait for new data /// to arrive. On success, returns the number of bytes read. Because /// `try_read_vectored()` is non-blocking, the buffer does not have to be /// stored by the async task and can exist entirely on the stack. /// /// Usually, [`readable()`] or [`ready()`] is used with this function. /// /// [`try_read()`]: UnixStream::try_read() /// [`readable()`]: UnixStream::readable() /// [`ready()`]: UnixStream::ready() /// /// # Return /// /// If data is successfully read, `Ok(n)` is returned, where `n` is the /// number of bytes read. `Ok(0)` indicates the stream's read half is closed /// and will no longer yield data. If the stream is not ready to read data /// `Err(io::ErrorKind::WouldBlock)` is returned. /// /// # Examples /// /// ```no_run /// use tokio::net::UnixStream; /// use std::error::Error; /// use std::io::{self, IoSliceMut}; /// /// #[tokio::main] /// async fn main() -> Result<(), Box> { /// // Connect to a peer /// let dir = tempfile::tempdir().unwrap(); /// let bind_path = dir.path().join("bind_path"); /// let stream = UnixStream::connect(bind_path).await?; /// /// loop { /// // Wait for the socket to be readable /// stream.readable().await?; /// /// // Creating the buffer **after** the `await` prevents it from /// // being stored in the async task. /// let mut buf_a = [0; 512]; /// let mut buf_b = [0; 1024]; /// let mut bufs = [ /// IoSliceMut::new(&mut buf_a), /// IoSliceMut::new(&mut buf_b), /// ]; /// /// // Try to read data, this may still fail with `WouldBlock` /// // if the readiness event is a false positive. /// match stream.try_read_vectored(&mut bufs) { /// Ok(0) => break, /// Ok(n) => { /// println!("read {} bytes", n); /// } /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => { /// continue; /// } /// Err(e) => { /// return Err(e.into()); /// } /// } /// } /// /// Ok(()) /// } /// ``` pub fn try_read_vectored(&self, bufs: &mut [io::IoSliceMut<'_>]) -> io::Result { self.io .registration() .try_io(Interest::READABLE, || (&*self.io).read_vectored(bufs)) } cfg_io_util! { /// Tries to read data from the stream into the provided buffer, advancing the /// buffer's internal cursor, returning how many bytes were read. /// /// Receives any pending data from the socket but does not wait for new data /// to arrive. On success, returns the number of bytes read. Because /// `try_read_buf()` is non-blocking, the buffer does not have to be stored by /// the async task and can exist entirely on the stack. /// /// Usually, [`readable()`] or [`ready()`] is used with this function. /// /// [`readable()`]: UnixStream::readable() /// [`ready()`]: UnixStream::ready() /// /// # Return /// /// If data is successfully read, `Ok(n)` is returned, where `n` is the /// number of bytes read. `Ok(0)` indicates the stream's read half is closed /// and will no longer yield data. If the stream is not ready to read data /// `Err(io::ErrorKind::WouldBlock)` is returned. /// /// # Examples /// /// ```no_run /// use tokio::net::UnixStream; /// use std::error::Error; /// use std::io; /// /// #[tokio::main] /// async fn main() -> Result<(), Box> { /// // Connect to a peer /// let dir = tempfile::tempdir().unwrap(); /// let bind_path = dir.path().join("bind_path"); /// let stream = UnixStream::connect(bind_path).await?; /// /// loop { /// // Wait for the socket to be readable /// stream.readable().await?; /// /// let mut buf = Vec::with_capacity(4096); /// /// // Try to read data, this may still fail with `WouldBlock` /// // if the readiness event is a false positive. /// match stream.try_read_buf(&mut buf) { /// Ok(0) => break, /// Ok(n) => { /// println!("read {} bytes", n); /// } /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => { /// continue; /// } /// Err(e) => { /// return Err(e.into()); /// } /// } /// } /// /// Ok(()) /// } /// ``` pub fn try_read_buf(&self, buf: &mut B) -> io::Result { self.io.registration().try_io(Interest::READABLE, || { use std::io::Read; let dst = buf.chunk_mut(); let dst = unsafe { &mut *(dst as *mut _ as *mut [std::mem::MaybeUninit] as *mut [u8]) }; // Safety: We trust `UnixStream::read` to have filled up `n` bytes in the // buffer. let n = (&*self.io).read(dst)?; unsafe { buf.advance_mut(n); } Ok(n) }) } } /// Waits for the socket to become writable. /// /// This function is equivalent to `ready(Interest::WRITABLE)` and is usually /// paired with `try_write()`. /// /// # Cancel safety /// /// This method is cancel safe. Once a readiness event occurs, the method /// will continue to return immediately until the readiness event is /// consumed by an attempt to write that fails with `WouldBlock` or /// `Poll::Pending`. /// /// # Examples /// /// ```no_run /// use tokio::net::UnixStream; /// use std::error::Error; /// use std::io; /// /// #[tokio::main] /// async fn main() -> Result<(), Box> { /// // Connect to a peer /// let dir = tempfile::tempdir().unwrap(); /// let bind_path = dir.path().join("bind_path"); /// let stream = UnixStream::connect(bind_path).await?; /// /// loop { /// // Wait for the socket to be writable /// stream.writable().await?; /// /// // Try to write data, this may still fail with `WouldBlock` /// // if the readiness event is a false positive. /// match stream.try_write(b"hello world") { /// Ok(n) => { /// break; /// } /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => { /// continue; /// } /// Err(e) => { /// return Err(e.into()); /// } /// } /// } /// /// Ok(()) /// } /// ``` pub async fn writable(&self) -> io::Result<()> { self.ready(Interest::WRITABLE).await?; Ok(()) } /// Polls for write readiness. /// /// If the unix stream is not currently ready for writing, this method will /// store a clone of the `Waker` from the provided `Context`. When the unix /// stream becomes ready for writing, `Waker::wake` will be called on the /// waker. /// /// Note that on multiple calls to `poll_write_ready` or `poll_write`, only /// the `Waker` from the `Context` passed to the most recent call is /// scheduled to receive a wakeup. (However, `poll_read_ready` retains a /// second, independent waker.) /// /// This function is intended for cases where creating and pinning a future /// via [`writable`] is not feasible. Where possible, using [`writable`] is /// preferred, as this supports polling from multiple tasks at once. /// /// # Return value /// /// The function returns: /// /// * `Poll::Pending` if the unix stream is not ready for writing. /// * `Poll::Ready(Ok(()))` if the unix stream is ready for writing. /// * `Poll::Ready(Err(e))` if an error is encountered. /// /// # Errors /// /// This function may encounter any standard I/O error except `WouldBlock`. /// /// [`writable`]: method@Self::writable pub fn poll_write_ready(&self, cx: &mut Context<'_>) -> Poll> { self.io.registration().poll_write_ready(cx).map_ok(|_| ()) } /// Tries to write a buffer to the stream, returning how many bytes were /// written. /// /// The function will attempt to write the entire contents of `buf`, but /// only part of the buffer may be written. /// /// This function is usually paired with `writable()`. /// /// # Return /// /// If data is successfully written, `Ok(n)` is returned, where `n` is the /// number of bytes written. If the stream is not ready to write data, /// `Err(io::ErrorKind::WouldBlock)` is returned. /// /// # Examples /// /// ```no_run /// use tokio::net::UnixStream; /// use std::error::Error; /// use std::io; /// /// #[tokio::main] /// async fn main() -> Result<(), Box> { /// // Connect to a peer /// let dir = tempfile::tempdir().unwrap(); /// let bind_path = dir.path().join("bind_path"); /// let stream = UnixStream::connect(bind_path).await?; /// /// loop { /// // Wait for the socket to be writable /// stream.writable().await?; /// /// // Try to write data, this may still fail with `WouldBlock` /// // if the readiness event is a false positive. /// match stream.try_write(b"hello world") { /// Ok(n) => { /// break; /// } /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => { /// continue; /// } /// Err(e) => { /// return Err(e.into()); /// } /// } /// } /// /// Ok(()) /// } /// ``` pub fn try_write(&self, buf: &[u8]) -> io::Result { self.io .registration() .try_io(Interest::WRITABLE, || (&*self.io).write(buf)) } /// Tries to write several buffers to the stream, returning how many bytes /// were written. /// /// Data is written from each buffer in order, with the final buffer read /// from possible being only partially consumed. This method behaves /// equivalently to a single call to [`try_write()`] with concatenated /// buffers. /// /// This function is usually paired with `writable()`. /// /// [`try_write()`]: UnixStream::try_write() /// /// # Return /// /// If data is successfully written, `Ok(n)` is returned, where `n` is the /// number of bytes written. If the stream is not ready to write data, /// `Err(io::ErrorKind::WouldBlock)` is returned. /// /// # Examples /// /// ```no_run /// use tokio::net::UnixStream; /// use std::error::Error; /// use std::io; /// /// #[tokio::main] /// async fn main() -> Result<(), Box> { /// // Connect to a peer /// let dir = tempfile::tempdir().unwrap(); /// let bind_path = dir.path().join("bind_path"); /// let stream = UnixStream::connect(bind_path).await?; /// /// let bufs = [io::IoSlice::new(b"hello "), io::IoSlice::new(b"world")]; /// /// loop { /// // Wait for the socket to be writable /// stream.writable().await?; /// /// // Try to write data, this may still fail with `WouldBlock` /// // if the readiness event is a false positive. /// match stream.try_write_vectored(&bufs) { /// Ok(n) => { /// break; /// } /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => { /// continue; /// } /// Err(e) => { /// return Err(e.into()); /// } /// } /// } /// /// Ok(()) /// } /// ``` pub fn try_write_vectored(&self, buf: &[io::IoSlice<'_>]) -> io::Result { self.io .registration() .try_io(Interest::WRITABLE, || (&*self.io).write_vectored(buf)) } /// Tries to read or write from the socket using a user-provided IO operation. /// /// If the socket is ready, the provided closure is called. The closure /// should attempt to perform IO operation from the socket by manually /// calling the appropriate syscall. If the operation fails because the /// socket is not actually ready, then the closure should return a /// `WouldBlock` error and the readiness flag is cleared. The return value /// of the closure is then returned by `try_io`. /// /// If the socket is not ready, then the closure is not called /// and a `WouldBlock` error is returned. /// /// The closure should only return a `WouldBlock` error if it has performed /// an IO operation on the socket that failed due to the socket not being /// ready. Returning a `WouldBlock` error in any other situation will /// incorrectly clear the readiness flag, which can cause the socket to /// behave incorrectly. /// /// The closure should not perform the IO operation using any of the methods /// defined on the Tokio `UnixStream` type, as this will mess with the /// readiness flag and can cause the socket to behave incorrectly. /// /// Usually, [`readable()`], [`writable()`] or [`ready()`] is used with this function. /// /// [`readable()`]: UnixStream::readable() /// [`writable()`]: UnixStream::writable() /// [`ready()`]: UnixStream::ready() pub fn try_io( &self, interest: Interest, f: impl FnOnce() -> io::Result, ) -> io::Result { self.io.registration().try_io(interest, f) } /// Creates new `UnixStream` from a `std::os::unix::net::UnixStream`. /// /// This function is intended to be used to wrap a UnixStream from the /// standard library in the Tokio equivalent. The conversion assumes /// nothing about the underlying stream; it is left up to the user to set /// it in non-blocking mode. /// /// # Panics /// /// This function panics if thread-local runtime is not set. /// /// The runtime is usually set implicitly when this function is called /// from a future driven by a tokio runtime, otherwise runtime can be set /// explicitly with [`Runtime::enter`](crate::runtime::Runtime::enter) function. pub fn from_std(stream: net::UnixStream) -> io::Result { let stream = mio::net::UnixStream::from_std(stream); let io = PollEvented::new(stream)?; Ok(UnixStream { io }) } /// Turns a [`tokio::net::UnixStream`] into a [`std::os::unix::net::UnixStream`]. /// /// The returned [`std::os::unix::net::UnixStream`] will have nonblocking /// mode set as `true`. Use [`set_nonblocking`] to change the blocking /// mode if needed. /// /// # Examples /// /// ``` /// use std::error::Error; /// use std::io::Read; /// use tokio::net::UnixListener; /// # use tokio::net::UnixStream; /// # use tokio::io::AsyncWriteExt; /// /// #[tokio::main] /// async fn main() -> Result<(), Box> { /// let dir = tempfile::tempdir().unwrap(); /// let bind_path = dir.path().join("bind_path"); /// /// let mut data = [0u8; 12]; /// let listener = UnixListener::bind(&bind_path)?; /// # let handle = tokio::spawn(async { /// # let mut stream = UnixStream::connect(bind_path).await.unwrap(); /// # stream.write(b"Hello world!").await.unwrap(); /// # }); /// let (tokio_unix_stream, _) = listener.accept().await?; /// let mut std_unix_stream = tokio_unix_stream.into_std()?; /// # handle.await.expect("The task being joined has panicked"); /// std_unix_stream.set_nonblocking(false)?; /// std_unix_stream.read_exact(&mut data)?; /// # assert_eq!(b"Hello world!", &data); /// Ok(()) /// } /// ``` /// [`tokio::net::UnixStream`]: UnixStream /// [`std::os::unix::net::UnixStream`]: std::os::unix::net::UnixStream /// [`set_nonblocking`]: fn@std::os::unix::net::UnixStream::set_nonblocking pub fn into_std(self) -> io::Result { self.io .into_inner() .map(|io| io.into_raw_fd()) .map(|raw_fd| unsafe { std::os::unix::net::UnixStream::from_raw_fd(raw_fd) }) } /// Creates an unnamed pair of connected sockets. /// /// This function will create a pair of interconnected Unix sockets for /// communicating back and forth between one another. Each socket will /// be associated with the default event loop's handle. pub fn pair() -> io::Result<(UnixStream, UnixStream)> { let (a, b) = mio::net::UnixStream::pair()?; let a = UnixStream::new(a)?; let b = UnixStream::new(b)?; Ok((a, b)) } pub(crate) fn new(stream: mio::net::UnixStream) -> io::Result { let io = PollEvented::new(stream)?; Ok(UnixStream { io }) } /// Returns the socket address of the local half of this connection. /// /// # Examples /// /// ```no_run /// use tokio::net::UnixStream; /// /// # async fn dox() -> Result<(), Box> { /// let dir = tempfile::tempdir().unwrap(); /// let bind_path = dir.path().join("bind_path"); /// let stream = UnixStream::connect(bind_path).await?; /// /// println!("{:?}", stream.local_addr()?); /// # Ok(()) /// # } /// ``` pub fn local_addr(&self) -> io::Result { self.io.local_addr().map(SocketAddr) } /// Returns the socket address of the remote half of this connection. /// /// # Examples /// /// ```no_run /// use tokio::net::UnixStream; /// /// # async fn dox() -> Result<(), Box> { /// let dir = tempfile::tempdir().unwrap(); /// let bind_path = dir.path().join("bind_path"); /// let stream = UnixStream::connect(bind_path).await?; /// /// println!("{:?}", stream.peer_addr()?); /// # Ok(()) /// # } /// ``` pub fn peer_addr(&self) -> io::Result { self.io.peer_addr().map(SocketAddr) } /// Returns effective credentials of the process which called `connect` or `pair`. pub fn peer_cred(&self) -> io::Result { ucred::get_peer_cred(self) } /// Returns the value of the `SO_ERROR` option. pub fn take_error(&self) -> io::Result> { self.io.take_error() } /// Shuts down the read, write, or both halves of this connection. /// /// This function will cause all pending and future I/O calls on the /// specified portions to immediately return with an appropriate value /// (see the documentation of `Shutdown`). pub(super) fn shutdown_std(&self, how: Shutdown) -> io::Result<()> { self.io.shutdown(how) } // These lifetime markers also appear in the generated documentation, and make // it more clear that this is a *borrowed* split. #[allow(clippy::needless_lifetimes)] /// Splits a `UnixStream` into a read half and a write half, which can be used /// to read and write the stream concurrently. /// /// This method is more efficient than [`into_split`], but the halves cannot be /// moved into independently spawned tasks. /// /// [`into_split`]: Self::into_split() pub fn split<'a>(&'a mut self) -> (ReadHalf<'a>, WriteHalf<'a>) { split(self) } /// Splits a `UnixStream` into a read half and a write half, which can be used /// to read and write the stream concurrently. /// /// Unlike [`split`], the owned halves can be moved to separate tasks, however /// this comes at the cost of a heap allocation. /// /// **Note:** Dropping the write half will shut down the write half of the /// stream. This is equivalent to calling [`shutdown()`] on the `UnixStream`. /// /// [`split`]: Self::split() /// [`shutdown()`]: fn@crate::io::AsyncWriteExt::shutdown pub fn into_split(self) -> (OwnedReadHalf, OwnedWriteHalf) { split_owned(self) } } impl TryFrom for UnixStream { type Error = io::Error; /// Consumes stream, returning the tokio I/O object. /// /// This is equivalent to /// [`UnixStream::from_std(stream)`](UnixStream::from_std). fn try_from(stream: net::UnixStream) -> io::Result { Self::from_std(stream) } } impl AsyncRead for UnixStream { fn poll_read( self: Pin<&mut Self>, cx: &mut Context<'_>, buf: &mut ReadBuf<'_>, ) -> Poll> { self.poll_read_priv(cx, buf) } } impl AsyncWrite for UnixStream { fn poll_write( self: Pin<&mut Self>, cx: &mut Context<'_>, buf: &[u8], ) -> Poll> { self.poll_write_priv(cx, buf) } fn poll_write_vectored( self: Pin<&mut Self>, cx: &mut Context<'_>, bufs: &[io::IoSlice<'_>], ) -> Poll> { self.poll_write_vectored_priv(cx, bufs) } fn is_write_vectored(&self) -> bool { true } fn poll_flush(self: Pin<&mut Self>, _: &mut Context<'_>) -> Poll> { Poll::Ready(Ok(())) } fn poll_shutdown(self: Pin<&mut Self>, _: &mut Context<'_>) -> Poll> { self.shutdown_std(std::net::Shutdown::Write)?; Poll::Ready(Ok(())) } } impl UnixStream { // == Poll IO functions that takes `&self` == // // To read or write without mutable access to the `UnixStream`, combine the // `poll_read_ready` or `poll_write_ready` methods with the `try_read` or // `try_write` methods. pub(crate) fn poll_read_priv( &self, cx: &mut Context<'_>, buf: &mut ReadBuf<'_>, ) -> Poll> { // Safety: `UnixStream::read` correctly handles reads into uninitialized memory unsafe { self.io.poll_read(cx, buf) } } pub(crate) fn poll_write_priv( &self, cx: &mut Context<'_>, buf: &[u8], ) -> Poll> { self.io.poll_write(cx, buf) } pub(super) fn poll_write_vectored_priv( &self, cx: &mut Context<'_>, bufs: &[io::IoSlice<'_>], ) -> Poll> { self.io.poll_write_vectored(cx, bufs) } } impl fmt::Debug for UnixStream { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { self.io.fmt(f) } } impl AsRawFd for UnixStream { fn as_raw_fd(&self) -> RawFd { self.io.as_raw_fd() } }