//! Unix handling of child processes. //! //! Right now the only "fancy" thing about this is how we implement the //! `Future` implementation on `Child` to get the exit status. Unix offers //! no way to register a child with epoll, and the only real way to get a //! notification when a process exits is the SIGCHLD signal. //! //! Signal handling in general is *super* hairy and complicated, and it's even //! more complicated here with the fact that signals are coalesced, so we may //! not get a SIGCHLD-per-child. //! //! Our best approximation here is to check *all spawned processes* for all //! SIGCHLD signals received. To do that we create a `Signal`, implemented in //! the `tokio-net` crate, which is a stream over signals being received. //! //! Later when we poll the process's exit status we simply check to see if a //! SIGCHLD has happened since we last checked, and while that returns "yes" we //! keep trying. //! //! Note that this means that this isn't really scalable, but then again //! processes in general aren't scalable (e.g. millions) so it shouldn't be that //! bad in theory... pub(crate) mod driver; pub(crate) mod orphan; use orphan::{OrphanQueue, OrphanQueueImpl, Wait}; mod reap; use reap::Reaper; use crate::io::PollEvented; use crate::process::kill::Kill; use crate::process::SpawnedChild; use crate::signal::unix::driver::Handle as SignalHandle; use crate::signal::unix::{signal, Signal, SignalKind}; use mio::event::Source; use mio::unix::SourceFd; use once_cell::sync::Lazy; use std::fmt; use std::fs::File; use std::future::Future; use std::io; use std::os::unix::io::{AsRawFd, FromRawFd, IntoRawFd, RawFd}; use std::pin::Pin; use std::process::{Child as StdChild, ExitStatus, Stdio}; use std::task::Context; use std::task::Poll; impl Wait for StdChild { fn id(&self) -> u32 { self.id() } fn try_wait(&mut self) -> io::Result> { self.try_wait() } } impl Kill for StdChild { fn kill(&mut self) -> io::Result<()> { self.kill() } } static ORPHAN_QUEUE: Lazy> = Lazy::new(OrphanQueueImpl::new); pub(crate) struct GlobalOrphanQueue; impl fmt::Debug for GlobalOrphanQueue { fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { ORPHAN_QUEUE.fmt(fmt) } } impl GlobalOrphanQueue { fn reap_orphans(handle: &SignalHandle) { ORPHAN_QUEUE.reap_orphans(handle) } } impl OrphanQueue for GlobalOrphanQueue { fn push_orphan(&self, orphan: StdChild) { ORPHAN_QUEUE.push_orphan(orphan) } } #[must_use = "futures do nothing unless polled"] pub(crate) struct Child { inner: Reaper, } impl fmt::Debug for Child { fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { fmt.debug_struct("Child") .field("pid", &self.inner.id()) .finish() } } pub(crate) fn spawn_child(cmd: &mut std::process::Command) -> io::Result { let mut child = cmd.spawn()?; let stdin = child.stdin.take().map(stdio).transpose()?; let stdout = child.stdout.take().map(stdio).transpose()?; let stderr = child.stderr.take().map(stdio).transpose()?; let signal = signal(SignalKind::child())?; Ok(SpawnedChild { child: Child { inner: Reaper::new(child, GlobalOrphanQueue, signal), }, stdin, stdout, stderr, }) } impl Child { pub(crate) fn id(&self) -> u32 { self.inner.id() } pub(crate) fn try_wait(&mut self) -> io::Result> { self.inner.inner_mut().try_wait() } } impl Kill for Child { fn kill(&mut self) -> io::Result<()> { self.inner.kill() } } impl Future for Child { type Output = io::Result; fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll { Pin::new(&mut self.inner).poll(cx) } } #[derive(Debug)] pub(crate) struct Pipe { // Actually a pipe and not a File. However, we are reusing `File` to get // close on drop. This is a similar trick as `mio`. fd: File, } impl From for Pipe { fn from(fd: T) -> Self { let fd = unsafe { File::from_raw_fd(fd.into_raw_fd()) }; Self { fd } } } impl<'a> io::Read for &'a Pipe { fn read(&mut self, bytes: &mut [u8]) -> io::Result { (&self.fd).read(bytes) } } impl<'a> io::Write for &'a Pipe { fn write(&mut self, bytes: &[u8]) -> io::Result { (&self.fd).write(bytes) } fn flush(&mut self) -> io::Result<()> { (&self.fd).flush() } } impl AsRawFd for Pipe { fn as_raw_fd(&self) -> RawFd { self.fd.as_raw_fd() } } pub(crate) fn convert_to_stdio(io: PollEvented) -> io::Result { let mut fd = io.into_inner()?.fd; // Ensure that the fd to be inherited is set to *blocking* mode, as this // is the default that virtually all programs expect to have. Those // programs that know how to work with nonblocking stdio will know how to // change it to nonblocking mode. set_nonblocking(&mut fd, false)?; Ok(Stdio::from(fd)) } impl Source for Pipe { fn register( &mut self, registry: &mio::Registry, token: mio::Token, interest: mio::Interest, ) -> io::Result<()> { SourceFd(&self.as_raw_fd()).register(registry, token, interest) } fn reregister( &mut self, registry: &mio::Registry, token: mio::Token, interest: mio::Interest, ) -> io::Result<()> { SourceFd(&self.as_raw_fd()).reregister(registry, token, interest) } fn deregister(&mut self, registry: &mio::Registry) -> io::Result<()> { SourceFd(&self.as_raw_fd()).deregister(registry) } } pub(crate) type ChildStdio = PollEvented; fn set_nonblocking(fd: &mut T, nonblocking: bool) -> io::Result<()> { unsafe { let fd = fd.as_raw_fd(); let previous = libc::fcntl(fd, libc::F_GETFL); if previous == -1 { return Err(io::Error::last_os_error()); } let new = if nonblocking { previous | libc::O_NONBLOCK } else { previous & !libc::O_NONBLOCK }; let r = libc::fcntl(fd, libc::F_SETFL, new); if r == -1 { return Err(io::Error::last_os_error()); } } Ok(()) } pub(super) fn stdio(io: T) -> io::Result> where T: IntoRawFd, { // Set the fd to nonblocking before we pass it to the event loop let mut pipe = Pipe::from(io); set_nonblocking(&mut pipe, true)?; PollEvented::new(pipe) }