summaryrefslogtreecommitdiffstats
path: root/gfx/2d/Coord.h
blob: 643cf4969ae7e9a22e4b52cc56590854c232ecdb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef MOZILLA_GFX_COORD_H_
#define MOZILLA_GFX_COORD_H_

#include "mozilla/Attributes.h"
#include "mozilla/FloatingPoint.h"
#include "Types.h"
#include "BaseCoord.h"

#include <cmath>
#include <type_traits>

namespace mozilla {

template <typename>
struct IsPixel;

namespace gfx {

// Should only be used to define generic typedefs like Coord, Point, etc.
struct UnknownUnits {};

template <class Units, class Rep = int32_t>
struct IntCoordTyped;
template <class Units, class F = Float>
struct CoordTyped;

// CommonType<Coord, Primitive> is a metafunction that returns the type of the
// result of an arithmetic operation on the underlying type of a strongly-typed
// coordinate type 'Coord', and a primitive type 'Primitive'. C++ rules for
// arithmetic conversions are designed to avoid losing information - for
// example, the result of adding an int and a float is a float - and we want
// the same behaviour when mixing our coordinate types with primitive types.
// We get C++ to compute the desired result type using 'decltype'.

template <class Coord, class Primitive>
struct CommonType;

template <class Units, class Rep, class Primitive>
struct CommonType<IntCoordTyped<Units, Rep>, Primitive> {
  using type = decltype(Rep() + Primitive());
};

template <class Units, class F, class Primitive>
struct CommonType<CoordTyped<Units, F>, Primitive> {
  using type = decltype(F() + Primitive());
};

// This is a base class that provides mixed-type operator overloads between
// a strongly-typed Coord and a Primitive value. It is needed to avoid
// ambiguities at mixed-type call sites, because Coord classes are implicitly
// convertible to their underlying value type. As we transition more of our code
// to strongly-typed classes, we may be able to remove some or all of these
// overloads.

template <bool B, class Coord, class Primitive>
struct CoordOperatorsHelper {
  // Using SFINAE (Substitution Failure Is Not An Error) to suppress redundant
  // operators
};

template <class Coord, class Primitive>
struct CoordOperatorsHelper<true, Coord, Primitive> {
  friend bool operator==(Coord aA, Primitive aB) { return aA.value == aB; }
  friend bool operator==(Primitive aA, Coord aB) { return aA == aB.value; }
  friend bool operator!=(Coord aA, Primitive aB) { return aA.value != aB; }
  friend bool operator!=(Primitive aA, Coord aB) { return aA != aB.value; }

  using result_type = typename CommonType<Coord, Primitive>::type;

  friend result_type operator+(Coord aA, Primitive aB) { return aA.value + aB; }
  friend result_type operator+(Primitive aA, Coord aB) { return aA + aB.value; }
  friend result_type operator-(Coord aA, Primitive aB) { return aA.value - aB; }
  friend result_type operator-(Primitive aA, Coord aB) { return aA - aB.value; }
  friend result_type operator*(Coord aCoord, Primitive aScale) {
    return aCoord.value * aScale;
  }
  friend result_type operator*(Primitive aScale, Coord aCoord) {
    return aScale * aCoord.value;
  }
  friend result_type operator/(Coord aCoord, Primitive aScale) {
    return aCoord.value / aScale;
  }
  // 'scale / coord' is intentionally omitted because it doesn't make sense.
};

template <class Units, class Rep>
struct MOZ_EMPTY_BASES IntCoordTyped
    : public BaseCoord<Rep, IntCoordTyped<Units, Rep>>,
      public CoordOperatorsHelper<true, IntCoordTyped<Units, Rep>, float>,
      public CoordOperatorsHelper<true, IntCoordTyped<Units, Rep>, double> {
  static_assert(IsPixel<Units>::value,
                "'Units' must be a coordinate system tag");

  using Super = BaseCoord<Rep, IntCoordTyped<Units, Rep>>;

  constexpr IntCoordTyped() : Super() {
    static_assert(sizeof(IntCoordTyped) == sizeof(Rep),
                  "Would be unfortunate otherwise!");
  }
  constexpr MOZ_IMPLICIT IntCoordTyped(Rep aValue) : Super(aValue) {
    static_assert(sizeof(IntCoordTyped) == sizeof(Rep),
                  "Would be unfortunate otherwise!");
  }
};

template <class Units, class F>
struct MOZ_EMPTY_BASES CoordTyped
    : public BaseCoord<F, CoordTyped<Units, F>>,
      public CoordOperatorsHelper<!std::is_same_v<F, int32_t>,
                                  CoordTyped<Units, F>, int32_t>,
      public CoordOperatorsHelper<!std::is_same_v<F, uint32_t>,
                                  CoordTyped<Units, F>, uint32_t>,
      public CoordOperatorsHelper<!std::is_same_v<F, double>,
                                  CoordTyped<Units, F>, double>,
      public CoordOperatorsHelper<!std::is_same_v<F, float>,
                                  CoordTyped<Units, F>, float> {
  static_assert(IsPixel<Units>::value,
                "'Units' must be a coordinate system tag");

  using Super = BaseCoord<F, CoordTyped<Units, F>>;

  constexpr CoordTyped() : Super() {
    static_assert(sizeof(CoordTyped) == sizeof(F),
                  "Would be unfortunate otherwise!");
  }
  constexpr MOZ_IMPLICIT CoordTyped(F aValue) : Super(aValue) {
    static_assert(sizeof(CoordTyped) == sizeof(F),
                  "Would be unfortunate otherwise!");
  }
  explicit constexpr CoordTyped(const IntCoordTyped<Units>& aCoord)
      : Super(F(aCoord.value)) {
    static_assert(sizeof(CoordTyped) == sizeof(F),
                  "Would be unfortunate otherwise!");
  }

  void Round() { this->value = floor(this->value + 0.5); }
  void Truncate() { this->value = int32_t(this->value); }

  IntCoordTyped<Units> Rounded() const {
    return IntCoordTyped<Units>(int32_t(floor(this->value + 0.5)));
  }
  IntCoordTyped<Units> Truncated() const {
    return IntCoordTyped<Units>(int32_t(this->value));
  }
};

typedef CoordTyped<UnknownUnits> Coord;

}  // namespace gfx

template <class Units, class F>
static MOZ_ALWAYS_INLINE bool FuzzyEqualsAdditive(
    gfx::CoordTyped<Units, F> aValue1, gfx::CoordTyped<Units, F> aValue2,
    gfx::CoordTyped<Units, F> aEpsilon =
        detail::FuzzyEqualsEpsilon<F>::value()) {
  return FuzzyEqualsAdditive(aValue1.value, aValue2.value, aEpsilon.value);
}

template <class Units, class F>
static MOZ_ALWAYS_INLINE bool FuzzyEqualsMultiplicative(
    gfx::CoordTyped<Units, F> aValue1, gfx::CoordTyped<Units, F> aValue2,
    gfx::CoordTyped<Units, F> aEpsilon =
        detail::FuzzyEqualsEpsilon<F>::value()) {
  return FuzzyEqualsMultiplicative(aValue1.value, aValue2.value,
                                   aEpsilon.value);
}

}  // namespace mozilla

#endif /* MOZILLA_GFX_COORD_H_ */