1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef MOZILLA_GFX_RECT_ABSOLUTE_H_
#define MOZILLA_GFX_RECT_ABSOLUTE_H_
#include <algorithm>
#include <cstdint>
#include "mozilla/Attributes.h"
#include "Point.h"
#include "Rect.h"
#include "Types.h"
namespace mozilla {
template <typename>
struct IsPixel;
namespace gfx {
/**
* A RectAbsolute is similar to a Rect (see BaseRect.h), but represented as
* (x1, y1, x2, y2) instead of (x, y, width, height).
*
* Unless otherwise indicated, methods on this class correspond
* to methods on BaseRect.
*
* The API is currently very bare-bones; it may be extended as needed.
*
* Do not use this class directly. Subclass it, pass that subclass as the
* Sub parameter, and only use that subclass.
*/
template <class T, class Sub, class Point, class Rect>
struct BaseRectAbsolute {
protected:
T left, top, right, bottom;
public:
BaseRectAbsolute() : left(0), top(0), right(0), bottom(0) {}
BaseRectAbsolute(T aLeft, T aTop, T aRight, T aBottom)
: left(aLeft), top(aTop), right(aRight), bottom(aBottom) {}
MOZ_ALWAYS_INLINE T X() const { return left; }
MOZ_ALWAYS_INLINE T Y() const { return top; }
MOZ_ALWAYS_INLINE T Width() const { return right - left; }
MOZ_ALWAYS_INLINE T Height() const { return bottom - top; }
MOZ_ALWAYS_INLINE T XMost() const { return right; }
MOZ_ALWAYS_INLINE T YMost() const { return bottom; }
MOZ_ALWAYS_INLINE const T& Left() const { return left; }
MOZ_ALWAYS_INLINE const T& Right() const { return right; }
MOZ_ALWAYS_INLINE const T& Top() const { return top; }
MOZ_ALWAYS_INLINE const T& Bottom() const { return bottom; }
MOZ_ALWAYS_INLINE T& Left() { return left; }
MOZ_ALWAYS_INLINE T& Right() { return right; }
MOZ_ALWAYS_INLINE T& Top() { return top; }
MOZ_ALWAYS_INLINE T& Bottom() { return bottom; }
T Area() const { return Width() * Height(); }
void Inflate(T aD) { Inflate(aD, aD); }
void Inflate(T aDx, T aDy) {
left -= aDx;
top -= aDy;
right += aDx;
bottom += aDy;
}
MOZ_ALWAYS_INLINE void SetBox(T aLeft, T aTop, T aRight, T aBottom) {
left = aLeft;
top = aTop;
right = aRight;
bottom = aBottom;
}
void SetLeftEdge(T aLeft) { left = aLeft; }
void SetRightEdge(T aRight) { right = aRight; }
void SetTopEdge(T aTop) { top = aTop; }
void SetBottomEdge(T aBottom) { bottom = aBottom; }
static Sub FromRect(const Rect& aRect) {
if (aRect.Overflows()) {
return Sub();
}
return Sub(aRect.x, aRect.y, aRect.XMost(), aRect.YMost());
}
[[nodiscard]] Sub Intersect(const Sub& aOther) const {
Sub result;
result.left = std::max<T>(left, aOther.left);
result.top = std::max<T>(top, aOther.top);
result.right = std::min<T>(right, aOther.right);
result.bottom = std::min<T>(bottom, aOther.bottom);
if (result.right < result.left || result.bottom < result.top) {
result.SizeTo(0, 0);
}
return result;
}
bool IsEmpty() const { return right <= left || bottom <= top; }
bool IsEqualEdges(const Sub& aOther) const {
return left == aOther.left && top == aOther.top && right == aOther.right &&
bottom == aOther.bottom;
}
bool IsEqualInterior(const Sub& aRect) const {
return IsEqualEdges(aRect) || (IsEmpty() && aRect.IsEmpty());
}
MOZ_ALWAYS_INLINE void MoveBy(T aDx, T aDy) {
left += aDx;
right += aDx;
top += aDy;
bottom += aDy;
}
MOZ_ALWAYS_INLINE void MoveBy(const Point& aPoint) {
left += aPoint.x;
right += aPoint.x;
top += aPoint.y;
bottom += aPoint.y;
}
MOZ_ALWAYS_INLINE void SizeTo(T aWidth, T aHeight) {
right = left + aWidth;
bottom = top + aHeight;
}
bool Contains(const Sub& aRect) const {
return aRect.IsEmpty() || (left <= aRect.left && aRect.right <= right &&
top <= aRect.top && aRect.bottom <= bottom);
}
bool Contains(T aX, T aY) const {
return (left <= aX && aX < right && top <= aY && aY < bottom);
}
bool Intersects(const Sub& aRect) const {
return !IsEmpty() && !aRect.IsEmpty() && left < aRect.right &&
aRect.left < right && top < aRect.bottom && aRect.top < bottom;
}
void SetEmpty() { left = right = top = bottom = 0; }
// Returns the smallest rectangle that contains both the area of both
// this and aRect. Thus, empty input rectangles are ignored.
// Note: if both rectangles are empty, returns aRect.
// WARNING! This is not safe against overflow, prefer using SafeUnion instead
// when dealing with int-based rects.
[[nodiscard]] Sub Union(const Sub& aRect) const {
if (IsEmpty()) {
return aRect;
} else if (aRect.IsEmpty()) {
return *static_cast<const Sub*>(this);
} else {
return UnionEdges(aRect);
}
}
// Returns the smallest rectangle that contains both the points (including
// edges) of both aRect1 and aRect2.
// Thus, empty input rectangles are allowed to affect the result.
// WARNING! This is not safe against overflow, prefer using SafeUnionEdges
// instead when dealing with int-based rects.
[[nodiscard]] Sub UnionEdges(const Sub& aRect) const {
Sub result;
result.left = std::min(left, aRect.left);
result.top = std::min(top, aRect.top);
result.right = std::max(XMost(), aRect.XMost());
result.bottom = std::max(YMost(), aRect.YMost());
return result;
}
// Scale 'this' by aScale without doing any rounding.
void Scale(T aScale) { Scale(aScale, aScale); }
// Scale 'this' by aXScale and aYScale, without doing any rounding.
void Scale(T aXScale, T aYScale) {
right = XMost() * aXScale;
bottom = YMost() * aYScale;
left = left * aXScale;
top = top * aYScale;
}
// Scale 'this' by aScale, converting coordinates to integers so that the
// result is the smallest integer-coordinate rectangle containing the
// unrounded result. Note: this can turn an empty rectangle into a non-empty
// rectangle
void ScaleRoundOut(double aScale) { ScaleRoundOut(aScale, aScale); }
// Scale 'this' by aXScale and aYScale, converting coordinates to integers so
// that the result is the smallest integer-coordinate rectangle containing the
// unrounded result.
// Note: this can turn an empty rectangle into a non-empty rectangle
void ScaleRoundOut(double aXScale, double aYScale) {
right = static_cast<T>(ceil(double(XMost()) * aXScale));
bottom = static_cast<T>(ceil(double(YMost()) * aYScale));
left = static_cast<T>(floor(double(left) * aXScale));
top = static_cast<T>(floor(double(top) * aYScale));
}
// Scale 'this' by aScale, converting coordinates to integers so that the
// result is the largest integer-coordinate rectangle contained by the
// unrounded result.
void ScaleRoundIn(double aScale) { ScaleRoundIn(aScale, aScale); }
// Scale 'this' by aXScale and aYScale, converting coordinates to integers so
// that the result is the largest integer-coordinate rectangle contained by
// the unrounded result.
void ScaleRoundIn(double aXScale, double aYScale) {
right = static_cast<T>(floor(double(XMost()) * aXScale));
bottom = static_cast<T>(floor(double(YMost()) * aYScale));
left = static_cast<T>(ceil(double(left) * aXScale));
top = static_cast<T>(ceil(double(top) * aYScale));
}
// Scale 'this' by 1/aScale, converting coordinates to integers so that the
// result is the smallest integer-coordinate rectangle containing the
// unrounded result. Note: this can turn an empty rectangle into a non-empty
// rectangle
void ScaleInverseRoundOut(double aScale) {
ScaleInverseRoundOut(aScale, aScale);
}
// Scale 'this' by 1/aXScale and 1/aYScale, converting coordinates to integers
// so that the result is the smallest integer-coordinate rectangle containing
// the unrounded result. Note: this can turn an empty rectangle into a
// non-empty rectangle
void ScaleInverseRoundOut(double aXScale, double aYScale) {
right = static_cast<T>(ceil(double(XMost()) / aXScale));
bottom = static_cast<T>(ceil(double(YMost()) / aYScale));
left = static_cast<T>(floor(double(left) / aXScale));
top = static_cast<T>(floor(double(top) / aYScale));
}
// Scale 'this' by 1/aScale, converting coordinates to integers so that the
// result is the largest integer-coordinate rectangle contained by the
// unrounded result.
void ScaleInverseRoundIn(double aScale) {
ScaleInverseRoundIn(aScale, aScale);
}
// Scale 'this' by 1/aXScale and 1/aYScale, converting coordinates to integers
// so that the result is the largest integer-coordinate rectangle contained by
// the unrounded result.
void ScaleInverseRoundIn(double aXScale, double aYScale) {
right = static_cast<T>(floor(double(XMost()) / aXScale));
bottom = static_cast<T>(floor(double(YMost()) / aYScale));
left = static_cast<T>(ceil(double(left) / aXScale));
top = static_cast<T>(ceil(double(top) / aYScale));
}
/**
* Translate this rectangle to be inside aRect. If it doesn't fit inside
* aRect then the dimensions that don't fit will be shrunk so that they
* do fit. The resulting rect is returned.
*/
[[nodiscard]] Sub MoveInsideAndClamp(const Sub& aRect) const {
T newLeft = std::max(aRect.left, left);
T newTop = std::max(aRect.top, top);
T width = std::min(aRect.Width(), Width());
T height = std::min(aRect.Height(), Height());
Sub rect(newLeft, newTop, newLeft + width, newTop + height);
newLeft = std::min(rect.right, aRect.right) - width;
newTop = std::min(rect.bottom, aRect.bottom) - height;
rect.MoveBy(newLeft - rect.left, newTop - rect.top);
return rect;
}
friend std::ostream& operator<<(
std::ostream& stream,
const BaseRectAbsolute<T, Sub, Point, Rect>& aRect) {
return stream << "(l=" << aRect.left << ", t=" << aRect.top
<< ", r=" << aRect.right << ", b=" << aRect.bottom << ')';
}
};
template <class Units>
struct IntRectAbsoluteTyped
: public BaseRectAbsolute<int32_t, IntRectAbsoluteTyped<Units>,
IntPointTyped<Units>, IntRectTyped<Units>>,
public Units {
static_assert(IsPixel<Units>::value,
"'units' must be a coordinate system tag");
typedef BaseRectAbsolute<int32_t, IntRectAbsoluteTyped<Units>,
IntPointTyped<Units>, IntRectTyped<Units>>
Super;
typedef IntParam<int32_t> ToInt;
IntRectAbsoluteTyped() : Super() {}
IntRectAbsoluteTyped(ToInt aLeft, ToInt aTop, ToInt aRight, ToInt aBottom)
: Super(aLeft.value, aTop.value, aRight.value, aBottom.value) {}
};
template <class Units>
struct RectAbsoluteTyped
: public BaseRectAbsolute<Float, RectAbsoluteTyped<Units>,
PointTyped<Units>, RectTyped<Units>>,
public Units {
static_assert(IsPixel<Units>::value,
"'units' must be a coordinate system tag");
typedef BaseRectAbsolute<Float, RectAbsoluteTyped<Units>, PointTyped<Units>,
RectTyped<Units>>
Super;
RectAbsoluteTyped() : Super() {}
RectAbsoluteTyped(Float aLeft, Float aTop, Float aRight, Float aBottom)
: Super(aLeft, aTop, aRight, aBottom) {}
};
typedef IntRectAbsoluteTyped<UnknownUnits> IntRectAbsolute;
} // namespace gfx
} // namespace mozilla
#endif /* MOZILLA_GFX_RECT_ABSOLUTE_H_ */
|