1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "Swizzle.h"
#include <emmintrin.h>
namespace mozilla::gfx {
// Load 1-3 pixels into a 4 pixel vector.
static MOZ_ALWAYS_INLINE __m128i LoadRemainder_SSE2(const uint8_t* aSrc,
size_t aLength) {
__m128i px;
if (aLength >= 2) {
// Load first 2 pixels
px = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(aSrc));
// Load third pixel
if (aLength >= 3) {
px = _mm_unpacklo_epi64(
px,
_mm_cvtsi32_si128(*reinterpret_cast<const uint32_t*>(aSrc + 2 * 4)));
}
} else {
// Load single pixel
px = _mm_cvtsi32_si128(*reinterpret_cast<const uint32_t*>(aSrc));
}
return px;
}
// Store 1-3 pixels from a vector into memory without overwriting.
static MOZ_ALWAYS_INLINE void StoreRemainder_SSE2(uint8_t* aDst, size_t aLength,
const __m128i& aSrc) {
if (aLength >= 2) {
// Store first 2 pixels
_mm_storel_epi64(reinterpret_cast<__m128i*>(aDst), aSrc);
// Store third pixel
if (aLength >= 3) {
*reinterpret_cast<uint32_t*>(aDst + 2 * 4) =
_mm_cvtsi128_si32(_mm_srli_si128(aSrc, 2 * 4));
}
} else {
// Store single pixel
*reinterpret_cast<uint32_t*>(aDst) = _mm_cvtsi128_si32(aSrc);
}
}
// Premultiply vector of 4 pixels using splayed math.
template <bool aSwapRB, bool aOpaqueAlpha>
static MOZ_ALWAYS_INLINE __m128i PremultiplyVector_SSE2(const __m128i& aSrc) {
// Isolate R and B with mask.
const __m128i mask = _mm_set1_epi32(0x00FF00FF);
__m128i rb = _mm_and_si128(mask, aSrc);
// Swap R and B if necessary.
if (aSwapRB) {
rb = _mm_shufflelo_epi16(rb, _MM_SHUFFLE(2, 3, 0, 1));
rb = _mm_shufflehi_epi16(rb, _MM_SHUFFLE(2, 3, 0, 1));
}
// Isolate G and A by shifting down to bottom of word.
__m128i ga = _mm_srli_epi16(aSrc, 8);
// Duplicate alphas to get vector of A1 A1 A2 A2 A3 A3 A4 A4
__m128i alphas = _mm_shufflelo_epi16(ga, _MM_SHUFFLE(3, 3, 1, 1));
alphas = _mm_shufflehi_epi16(alphas, _MM_SHUFFLE(3, 3, 1, 1));
// rb = rb*a + 255; rb += rb >> 8;
rb = _mm_add_epi16(_mm_mullo_epi16(rb, alphas), mask);
rb = _mm_add_epi16(rb, _mm_srli_epi16(rb, 8));
// If format is not opaque, force A to 255 so that A*alpha/255 = alpha
if (!aOpaqueAlpha) {
ga = _mm_or_si128(ga, _mm_set1_epi32(0x00FF0000));
}
// ga = ga*a + 255; ga += ga >> 8;
ga = _mm_add_epi16(_mm_mullo_epi16(ga, alphas), mask);
ga = _mm_add_epi16(ga, _mm_srli_epi16(ga, 8));
// If format is opaque, force output A to be 255.
if (aOpaqueAlpha) {
ga = _mm_or_si128(ga, _mm_set1_epi32(0xFF000000));
}
// Combine back to final pixel with (rb >> 8) | (ga & 0xFF00FF00)
rb = _mm_srli_epi16(rb, 8);
ga = _mm_andnot_si128(mask, ga);
return _mm_or_si128(rb, ga);
}
// Premultiply vector of aAlignedRow + aRemainder pixels.
template <bool aSwapRB, bool aOpaqueAlpha>
static MOZ_ALWAYS_INLINE void PremultiplyChunk_SSE2(const uint8_t*& aSrc,
uint8_t*& aDst,
int32_t aAlignedRow,
int32_t aRemainder) {
// Process all 4-pixel chunks as one vector.
for (const uint8_t* end = aSrc + aAlignedRow; aSrc < end;) {
__m128i px = _mm_loadu_si128(reinterpret_cast<const __m128i*>(aSrc));
px = PremultiplyVector_SSE2<aSwapRB, aOpaqueAlpha>(px);
_mm_storeu_si128(reinterpret_cast<__m128i*>(aDst), px);
aSrc += 4 * 4;
aDst += 4 * 4;
}
// Handle any 1-3 remaining pixels.
if (aRemainder) {
__m128i px = LoadRemainder_SSE2(aSrc, aRemainder);
px = PremultiplyVector_SSE2<aSwapRB, aOpaqueAlpha>(px);
StoreRemainder_SSE2(aDst, aRemainder, px);
}
}
// Premultiply vector of aLength pixels.
template <bool aSwapRB, bool aOpaqueAlpha>
void PremultiplyRow_SSE2(const uint8_t* aSrc, uint8_t* aDst, int32_t aLength) {
int32_t alignedRow = 4 * (aLength & ~3);
int32_t remainder = aLength & 3;
PremultiplyChunk_SSE2<aSwapRB, aOpaqueAlpha>(aSrc, aDst, alignedRow,
remainder);
}
template <bool aSwapRB, bool aOpaqueAlpha>
void Premultiply_SSE2(const uint8_t* aSrc, int32_t aSrcGap, uint8_t* aDst,
int32_t aDstGap, IntSize aSize) {
int32_t alignedRow = 4 * (aSize.width & ~3);
int32_t remainder = aSize.width & 3;
// Fold remainder into stride gap.
aSrcGap += 4 * remainder;
aDstGap += 4 * remainder;
for (int32_t height = aSize.height; height > 0; height--) {
PremultiplyChunk_SSE2<aSwapRB, aOpaqueAlpha>(aSrc, aDst, alignedRow,
remainder);
aSrc += aSrcGap;
aDst += aDstGap;
}
}
// Force instantiation of premultiply variants here.
template void PremultiplyRow_SSE2<false, false>(const uint8_t*, uint8_t*,
int32_t);
template void PremultiplyRow_SSE2<false, true>(const uint8_t*, uint8_t*,
int32_t);
template void PremultiplyRow_SSE2<true, false>(const uint8_t*, uint8_t*,
int32_t);
template void PremultiplyRow_SSE2<true, true>(const uint8_t*, uint8_t*,
int32_t);
template void Premultiply_SSE2<false, false>(const uint8_t*, int32_t, uint8_t*,
int32_t, IntSize);
template void Premultiply_SSE2<false, true>(const uint8_t*, int32_t, uint8_t*,
int32_t, IntSize);
template void Premultiply_SSE2<true, false>(const uint8_t*, int32_t, uint8_t*,
int32_t, IntSize);
template void Premultiply_SSE2<true, true>(const uint8_t*, int32_t, uint8_t*,
int32_t, IntSize);
// This generates a table of fixed-point reciprocals representing 1/alpha
// similar to the fallback implementation. However, the reciprocal must fit
// in 16 bits to multiply cheaply. Observe that reciprocals of smaller alphas
// require more bits than for larger alphas. We take advantage of this by
// shifting the reciprocal down by either 3 or 8 bits depending on whether
// the alpha value is less than 0x20. This is easy to then undo by multiplying
// the color component to be unpremultiplying by either 8 or 0x100,
// respectively. The 16 bit reciprocal is duplicated into both words of a
// uint32_t here to reduce unpacking overhead.
#define UNPREMULQ_SSE2(x) \
(0x10001U * (0xFF0220U / ((x) * ((x) < 0x20 ? 0x100 : 8))))
#define UNPREMULQ_SSE2_2(x) UNPREMULQ_SSE2(x), UNPREMULQ_SSE2((x) + 1)
#define UNPREMULQ_SSE2_4(x) UNPREMULQ_SSE2_2(x), UNPREMULQ_SSE2_2((x) + 2)
#define UNPREMULQ_SSE2_8(x) UNPREMULQ_SSE2_4(x), UNPREMULQ_SSE2_4((x) + 4)
#define UNPREMULQ_SSE2_16(x) UNPREMULQ_SSE2_8(x), UNPREMULQ_SSE2_8((x) + 8)
#define UNPREMULQ_SSE2_32(x) UNPREMULQ_SSE2_16(x), UNPREMULQ_SSE2_16((x) + 16)
static const uint32_t sUnpremultiplyTable_SSE2[256] = {0,
UNPREMULQ_SSE2(1),
UNPREMULQ_SSE2_2(2),
UNPREMULQ_SSE2_4(4),
UNPREMULQ_SSE2_8(8),
UNPREMULQ_SSE2_16(16),
UNPREMULQ_SSE2_32(32),
UNPREMULQ_SSE2_32(64),
UNPREMULQ_SSE2_32(96),
UNPREMULQ_SSE2_32(128),
UNPREMULQ_SSE2_32(160),
UNPREMULQ_SSE2_32(192),
UNPREMULQ_SSE2_32(224)};
// Unpremultiply a vector of 4 pixels using splayed math and a reciprocal table
// that avoids doing any actual division.
template <bool aSwapRB>
static MOZ_ALWAYS_INLINE __m128i UnpremultiplyVector_SSE2(const __m128i& aSrc) {
// Isolate R and B with mask.
__m128i rb = _mm_and_si128(aSrc, _mm_set1_epi32(0x00FF00FF));
// Swap R and B if necessary.
if (aSwapRB) {
rb = _mm_shufflelo_epi16(rb, _MM_SHUFFLE(2, 3, 0, 1));
rb = _mm_shufflehi_epi16(rb, _MM_SHUFFLE(2, 3, 0, 1));
}
// Isolate G and A by shifting down to bottom of word.
__m128i ga = _mm_srli_epi16(aSrc, 8);
// Extract the alphas for the 4 pixels from the now isolated words.
int a1 = _mm_extract_epi16(ga, 1);
int a2 = _mm_extract_epi16(ga, 3);
int a3 = _mm_extract_epi16(ga, 5);
int a4 = _mm_extract_epi16(ga, 7);
// Load the 16 bit reciprocals from the table for each alpha.
// The reciprocals are doubled in each uint32_t entry.
// Unpack them to a final vector of duplicated reciprocals of
// the form Q1 Q1 Q2 Q2 Q3 Q3 Q4 Q4.
__m128i q12 =
_mm_unpacklo_epi32(_mm_cvtsi32_si128(sUnpremultiplyTable_SSE2[a1]),
_mm_cvtsi32_si128(sUnpremultiplyTable_SSE2[a2]));
__m128i q34 =
_mm_unpacklo_epi32(_mm_cvtsi32_si128(sUnpremultiplyTable_SSE2[a3]),
_mm_cvtsi32_si128(sUnpremultiplyTable_SSE2[a4]));
__m128i q1234 = _mm_unpacklo_epi64(q12, q34);
// Check if the alphas are less than 0x20, so that we can undo
// scaling of the reciprocals as appropriate.
__m128i scale = _mm_cmplt_epi32(ga, _mm_set1_epi32(0x00200000));
// Produce scale factors by ((a < 0x20) ^ 8) & 0x108,
// such that scale is 0x100 if < 0x20, and 8 otherwise.
scale = _mm_xor_si128(scale, _mm_set1_epi16(8));
scale = _mm_and_si128(scale, _mm_set1_epi16(0x108));
// Isolate G now so that we don't accidentally unpremultiply A.
ga = _mm_and_si128(ga, _mm_set1_epi32(0x000000FF));
// Scale R, B, and G as required depending on reciprocal precision.
rb = _mm_mullo_epi16(rb, scale);
ga = _mm_mullo_epi16(ga, scale);
// Multiply R, B, and G by the reciprocal, only taking the high word
// too effectively shift right by 16.
rb = _mm_mulhi_epu16(rb, q1234);
ga = _mm_mulhi_epu16(ga, q1234);
// Combine back to final pixel with rb | (ga << 8) | (aSrc & 0xFF000000),
// which will add back on the original alpha value unchanged.
ga = _mm_slli_si128(ga, 1);
ga = _mm_or_si128(ga, _mm_and_si128(aSrc, _mm_set1_epi32(0xFF000000)));
return _mm_or_si128(rb, ga);
}
template <bool aSwapRB>
static MOZ_ALWAYS_INLINE void UnpremultiplyChunk_SSE2(const uint8_t*& aSrc,
uint8_t*& aDst,
int32_t aAlignedRow,
int32_t aRemainder) {
// Process all 4-pixel chunks as one vector.
for (const uint8_t* end = aSrc + aAlignedRow; aSrc < end;) {
__m128i px = _mm_loadu_si128(reinterpret_cast<const __m128i*>(aSrc));
px = UnpremultiplyVector_SSE2<aSwapRB>(px);
_mm_storeu_si128(reinterpret_cast<__m128i*>(aDst), px);
aSrc += 4 * 4;
aDst += 4 * 4;
}
// Handle any 1-3 remaining pixels.
if (aRemainder) {
__m128i px = LoadRemainder_SSE2(aSrc, aRemainder);
px = UnpremultiplyVector_SSE2<aSwapRB>(px);
StoreRemainder_SSE2(aDst, aRemainder, px);
}
}
template <bool aSwapRB>
void UnpremultiplyRow_SSE2(const uint8_t* aSrc, uint8_t* aDst,
int32_t aLength) {
int32_t alignedRow = 4 * (aLength & ~3);
int32_t remainder = aLength & 3;
UnpremultiplyChunk_SSE2<aSwapRB>(aSrc, aDst, alignedRow, remainder);
}
template <bool aSwapRB>
void Unpremultiply_SSE2(const uint8_t* aSrc, int32_t aSrcGap, uint8_t* aDst,
int32_t aDstGap, IntSize aSize) {
int32_t alignedRow = 4 * (aSize.width & ~3);
int32_t remainder = aSize.width & 3;
// Fold remainder into stride gap.
aSrcGap += 4 * remainder;
aDstGap += 4 * remainder;
for (int32_t height = aSize.height; height > 0; height--) {
UnpremultiplyChunk_SSE2<aSwapRB>(aSrc, aDst, alignedRow, remainder);
aSrc += aSrcGap;
aDst += aDstGap;
}
}
// Force instantiation of unpremultiply variants here.
template void UnpremultiplyRow_SSE2<false>(const uint8_t*, uint8_t*, int32_t);
template void UnpremultiplyRow_SSE2<true>(const uint8_t*, uint8_t*, int32_t);
template void Unpremultiply_SSE2<false>(const uint8_t*, int32_t, uint8_t*,
int32_t, IntSize);
template void Unpremultiply_SSE2<true>(const uint8_t*, int32_t, uint8_t*,
int32_t, IntSize);
// Swizzle a vector of 4 pixels providing swaps and opaquifying.
template <bool aSwapRB, bool aOpaqueAlpha>
static MOZ_ALWAYS_INLINE __m128i SwizzleVector_SSE2(const __m128i& aSrc) {
// Isolate R and B.
__m128i rb = _mm_and_si128(aSrc, _mm_set1_epi32(0x00FF00FF));
// Swap R and B.
rb = _mm_shufflelo_epi16(rb, _MM_SHUFFLE(2, 3, 0, 1));
rb = _mm_shufflehi_epi16(rb, _MM_SHUFFLE(2, 3, 0, 1));
// Isolate G and A.
__m128i ga = _mm_and_si128(aSrc, _mm_set1_epi32(0xFF00FF00));
// Force alpha to 255 if necessary.
if (aOpaqueAlpha) {
ga = _mm_or_si128(ga, _mm_set1_epi32(0xFF000000));
}
// Combine everything back together.
return _mm_or_si128(rb, ga);
}
#if 0
// These specializations currently do not profile faster than the generic versions,
// so disable them for now.
// Optimized implementations for when there is no R and B swap.
template<>
MOZ_ALWAYS_INLINE __m128i
SwizzleVector_SSE2<false, true>(const __m128i& aSrc)
{
// Force alpha to 255.
return _mm_or_si128(aSrc, _mm_set1_epi32(0xFF000000));
}
template<>
MOZ_ALWAYS_INLINE __m128i
SwizzleVector_SSE2<false, false>(const __m128i& aSrc)
{
return aSrc;
}
#endif
template <bool aSwapRB, bool aOpaqueAlpha>
static MOZ_ALWAYS_INLINE void SwizzleChunk_SSE2(const uint8_t*& aSrc,
uint8_t*& aDst,
int32_t aAlignedRow,
int32_t aRemainder) {
// Process all 4-pixel chunks as one vector.
for (const uint8_t* end = aSrc + aAlignedRow; aSrc < end;) {
__m128i px = _mm_loadu_si128(reinterpret_cast<const __m128i*>(aSrc));
px = SwizzleVector_SSE2<aSwapRB, aOpaqueAlpha>(px);
_mm_storeu_si128(reinterpret_cast<__m128i*>(aDst), px);
aSrc += 4 * 4;
aDst += 4 * 4;
}
// Handle any 1-3 remaining pixels.
if (aRemainder) {
__m128i px = LoadRemainder_SSE2(aSrc, aRemainder);
px = SwizzleVector_SSE2<aSwapRB, aOpaqueAlpha>(px);
StoreRemainder_SSE2(aDst, aRemainder, px);
}
}
template <bool aSwapRB, bool aOpaqueAlpha>
void SwizzleRow_SSE2(const uint8_t* aSrc, uint8_t* aDst, int32_t aLength) {
int32_t alignedRow = 4 * (aLength & ~3);
int32_t remainder = aLength & 3;
SwizzleChunk_SSE2<aSwapRB, aOpaqueAlpha>(aSrc, aDst, alignedRow, remainder);
}
template <bool aSwapRB, bool aOpaqueAlpha>
void Swizzle_SSE2(const uint8_t* aSrc, int32_t aSrcGap, uint8_t* aDst,
int32_t aDstGap, IntSize aSize) {
int32_t alignedRow = 4 * (aSize.width & ~3);
int32_t remainder = aSize.width & 3;
// Fold remainder into stride gap.
aSrcGap += 4 * remainder;
aDstGap += 4 * remainder;
for (int32_t height = aSize.height; height > 0; height--) {
SwizzleChunk_SSE2<aSwapRB, aOpaqueAlpha>(aSrc, aDst, alignedRow, remainder);
aSrc += aSrcGap;
aDst += aDstGap;
}
}
// Force instantiation of swizzle variants here.
template void SwizzleRow_SSE2<true, false>(const uint8_t*, uint8_t*, int32_t);
template void SwizzleRow_SSE2<true, true>(const uint8_t*, uint8_t*, int32_t);
template void Swizzle_SSE2<true, false>(const uint8_t*, int32_t, uint8_t*,
int32_t, IntSize);
template void Swizzle_SSE2<true, true>(const uint8_t*, int32_t, uint8_t*,
int32_t, IntSize);
} // namespace mozilla::gfx
|