summaryrefslogtreecommitdiffstats
path: root/gfx/cairo/libpixman/src/pixman-image.c
blob: db29ff5b4f2bdb4df6a59ea46495e7ba96479b87 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
/*
 * Copyright © 2000 SuSE, Inc.
 * Copyright © 2007 Red Hat, Inc.
 *
 * Permission to use, copy, modify, distribute, and sell this software and its
 * documentation for any purpose is hereby granted without fee, provided that
 * the above copyright notice appear in all copies and that both that
 * copyright notice and this permission notice appear in supporting
 * documentation, and that the name of SuSE not be used in advertising or
 * publicity pertaining to distribution of the software without specific,
 * written prior permission.  SuSE makes no representations about the
 * suitability of this software for any purpose.  It is provided "as is"
 * without express or implied warranty.
 *
 * SuSE DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL SuSE
 * BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
 * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 */

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <assert.h>

#include "pixman-private.h"

static const pixman_color_t transparent_black = { 0, 0, 0, 0 };

static void
gradient_property_changed (pixman_image_t *image)
{
    gradient_t *gradient = &image->gradient;
    int n = gradient->n_stops;
    pixman_gradient_stop_t *stops = gradient->stops;
    pixman_gradient_stop_t *begin = &(gradient->stops[-1]);
    pixman_gradient_stop_t *end = &(gradient->stops[n]);

    switch (gradient->common.repeat)
    {
    default:
    case PIXMAN_REPEAT_NONE:
	begin->x = INT32_MIN;
	begin->color = transparent_black;
	end->x = INT32_MAX;
	end->color = transparent_black;
	break;

    case PIXMAN_REPEAT_NORMAL:
	begin->x = stops[n - 1].x - pixman_fixed_1;
	begin->color = stops[n - 1].color;
	end->x = stops[0].x + pixman_fixed_1;
	end->color = stops[0].color;
	break;

    case PIXMAN_REPEAT_REFLECT:
	begin->x = - stops[0].x;
	begin->color = stops[0].color;
	end->x = pixman_int_to_fixed (2) - stops[n - 1].x;
	end->color = stops[n - 1].color;
	break;

    case PIXMAN_REPEAT_PAD:
	begin->x = INT32_MIN;
	begin->color = stops[0].color;
	end->x = INT32_MAX;
	end->color = stops[n - 1].color;
	break;
    }
}

pixman_bool_t
_pixman_init_gradient (gradient_t *                  gradient,
                       const pixman_gradient_stop_t *stops,
                       int                           n_stops)
{
    return_val_if_fail (n_stops > 0, FALSE);

    /* We allocate two extra stops, one before the beginning of the stop list,
     * and one after the end. These stops are initialized to whatever color
     * would be used for positions outside the range of the stop list.
     *
     * This saves a bit of computation in the gradient walker.
     *
     * The pointer we store in the gradient_t struct still points to the
     * first user-supplied struct, so when freeing, we will have to
     * subtract one.
     */
    gradient->stops =
	pixman_malloc_ab (n_stops + 2, sizeof (pixman_gradient_stop_t));
    if (!gradient->stops)
	return FALSE;

    gradient->stops += 1;
    memcpy (gradient->stops, stops, n_stops * sizeof (pixman_gradient_stop_t));
    gradient->n_stops = n_stops;

    gradient->common.property_changed = gradient_property_changed;

    return TRUE;
}

void
_pixman_image_init (pixman_image_t *image)
{
    image_common_t *common = &image->common;

    pixman_region32_init (&common->clip_region);

    common->alpha_count = 0;
    common->have_clip_region = FALSE;
    common->clip_sources = FALSE;
    common->transform = NULL;
    common->repeat = PIXMAN_REPEAT_NONE;
    common->filter = PIXMAN_FILTER_NEAREST;
    common->filter_params = NULL;
    common->n_filter_params = 0;
    common->alpha_map = NULL;
    common->component_alpha = FALSE;
    common->ref_count = 1;
    common->property_changed = NULL;
    common->client_clip = FALSE;
    common->destroy_func = NULL;
    common->destroy_data = NULL;
    common->dirty = TRUE;
}

pixman_bool_t
_pixman_image_fini (pixman_image_t *image)
{
    image_common_t *common = (image_common_t *)image;

    common->ref_count--;

    if (common->ref_count == 0)
    {
	if (image->common.destroy_func)
	    image->common.destroy_func (image, image->common.destroy_data);

	pixman_region32_fini (&common->clip_region);

	free (common->transform);
	free (common->filter_params);

	if (common->alpha_map)
	    pixman_image_unref ((pixman_image_t *)common->alpha_map);

	if (image->type == LINEAR ||
	    image->type == RADIAL ||
	    image->type == CONICAL)
	{
	    if (image->gradient.stops)
	    {
		/* See _pixman_init_gradient() for an explanation of the - 1 */
		free (image->gradient.stops - 1);
	    }

	    /* This will trigger if someone adds a property_changed
	     * method to the linear/radial/conical gradient overwriting
	     * the general one.
	     */
	    assert (
		image->common.property_changed == gradient_property_changed);
	}

	if (image->type == BITS && image->bits.free_me)
	    free (image->bits.free_me);

	return TRUE;
    }

    return FALSE;
}

pixman_image_t *
_pixman_image_allocate (void)
{
    pixman_image_t *image = malloc (sizeof (pixman_image_t));

    if (image)
	_pixman_image_init (image);

    return image;
}

static void
image_property_changed (pixman_image_t *image)
{
    image->common.dirty = TRUE;
}

/* Ref Counting */
PIXMAN_EXPORT pixman_image_t *
pixman_image_ref (pixman_image_t *image)
{
    image->common.ref_count++;

    return image;
}

/* returns TRUE when the image is freed */
PIXMAN_EXPORT pixman_bool_t
pixman_image_unref (pixman_image_t *image)
{
    if (_pixman_image_fini (image))
    {
	free (image);
	return TRUE;
    }

    return FALSE;
}

PIXMAN_EXPORT void
pixman_image_set_destroy_function (pixman_image_t *            image,
                                   pixman_image_destroy_func_t func,
                                   void *                      data)
{
    image->common.destroy_func = func;
    image->common.destroy_data = data;
}

PIXMAN_EXPORT void *
pixman_image_get_destroy_data (pixman_image_t *image)
{
  return image->common.destroy_data;
}

void
_pixman_image_reset_clip_region (pixman_image_t *image)
{
    image->common.have_clip_region = FALSE;
}

/* Executive Summary: This function is a no-op that only exists
 * for historical reasons.
 *
 * There used to be a bug in the X server where it would rely on
 * out-of-bounds accesses when it was asked to composite with a
 * window as the source. It would create a pixman image pointing
 * to some bogus position in memory, but then set a clip region
 * to the position where the actual bits were.
 *
 * Due to a bug in old versions of pixman, where it would not clip
 * against the image bounds when a clip region was set, this would
 * actually work. So when the pixman bug was fixed, a workaround was
 * added to allow certain out-of-bound accesses. This function disabled
 * those workarounds.
 *
 * Since 0.21.2, pixman doesn't do these workarounds anymore, so now
 * this function is a no-op.
 */
PIXMAN_EXPORT void
pixman_disable_out_of_bounds_workaround (void)
{
}

static void
compute_image_info (pixman_image_t *image)
{
    pixman_format_code_t code;
    uint32_t flags = 0;

    /* Transform */
    if (!image->common.transform)
    {
	flags |= (FAST_PATH_ID_TRANSFORM	|
		  FAST_PATH_X_UNIT_POSITIVE	|
		  FAST_PATH_Y_UNIT_ZERO		|
		  FAST_PATH_AFFINE_TRANSFORM);
    }
    else
    {
	flags |= FAST_PATH_HAS_TRANSFORM;

	if (image->common.transform->matrix[2][0] == 0			&&
	    image->common.transform->matrix[2][1] == 0			&&
	    image->common.transform->matrix[2][2] == pixman_fixed_1)
	{
	    flags |= FAST_PATH_AFFINE_TRANSFORM;

	    if (image->common.transform->matrix[0][1] == 0 &&
		image->common.transform->matrix[1][0] == 0)
	    {
		if (image->common.transform->matrix[0][0] == -pixman_fixed_1 &&
		    image->common.transform->matrix[1][1] == -pixman_fixed_1)
		{
		    flags |= FAST_PATH_ROTATE_180_TRANSFORM;
		}
		flags |= FAST_PATH_SCALE_TRANSFORM;
	    }
	    else if (image->common.transform->matrix[0][0] == 0 &&
	             image->common.transform->matrix[1][1] == 0)
	    {
		pixman_fixed_t m01 = image->common.transform->matrix[0][1];
		pixman_fixed_t m10 = image->common.transform->matrix[1][0];

		if (m01 == -pixman_fixed_1 && m10 == pixman_fixed_1)
		    flags |= FAST_PATH_ROTATE_90_TRANSFORM;
		else if (m01 == pixman_fixed_1 && m10 == -pixman_fixed_1)
		    flags |= FAST_PATH_ROTATE_270_TRANSFORM;
	    }
	}

	if (image->common.transform->matrix[0][0] > 0)
	    flags |= FAST_PATH_X_UNIT_POSITIVE;

	if (image->common.transform->matrix[1][0] == 0)
	    flags |= FAST_PATH_Y_UNIT_ZERO;
    }

    /* Filter */
    switch (image->common.filter)
    {
    case PIXMAN_FILTER_NEAREST:
    case PIXMAN_FILTER_FAST:
	flags |= (FAST_PATH_NEAREST_FILTER | FAST_PATH_NO_CONVOLUTION_FILTER);
	break;

    case PIXMAN_FILTER_BILINEAR:
    case PIXMAN_FILTER_GOOD:
    case PIXMAN_FILTER_BEST:
	flags |= (FAST_PATH_BILINEAR_FILTER | FAST_PATH_NO_CONVOLUTION_FILTER);

	/* Here we have a chance to optimize BILINEAR filter to NEAREST if
	 * they are equivalent for the currently used transformation matrix.
	 */
	if (flags & FAST_PATH_ID_TRANSFORM)
	{
	    flags |= FAST_PATH_NEAREST_FILTER;
	}
	else if (flags & FAST_PATH_AFFINE_TRANSFORM)
	{
	    /* Suppose the transform is
	     *
	     *    [ t00, t01, t02 ]
	     *    [ t10, t11, t12 ]
	     *    [   0,   0,   1 ]
	     *
	     * and the destination coordinates are (n + 0.5, m + 0.5). Then
	     * the transformed x coordinate is:
	     *
	     *     tx = t00 * (n + 0.5) + t01 * (m + 0.5) + t02
	     *        = t00 * n + t01 * m + t02 + (t00 + t01) * 0.5
	     *
	     * which implies that if t00, t01 and t02 are all integers
	     * and (t00 + t01) is odd, then tx will be an integer plus 0.5,
	     * which means a BILINEAR filter will reduce to NEAREST. The same
	     * applies in the y direction
	     */
	    pixman_fixed_t (*t)[3] = image->common.transform->matrix;

	    if ((pixman_fixed_frac (
		     t[0][0] | t[0][1] | t[0][2] |
		     t[1][0] | t[1][1] | t[1][2]) == 0)			&&
		(pixman_fixed_to_int (
		    (t[0][0] + t[0][1]) & (t[1][0] + t[1][1])) % 2) == 1)
	    {
		/* FIXME: there are some affine-test failures, showing that
		 * handling of BILINEAR and NEAREST filter is not quite
		 * equivalent when getting close to 32K for the translation
		 * components of the matrix. That's likely some bug, but for
		 * now just skip BILINEAR->NEAREST optimization in this case.
		 */
		pixman_fixed_t magic_limit = pixman_int_to_fixed (30000);
		if (image->common.transform->matrix[0][2] <= magic_limit  &&
		    image->common.transform->matrix[1][2] <= magic_limit  &&
		    image->common.transform->matrix[0][2] >= -magic_limit &&
		    image->common.transform->matrix[1][2] >= -magic_limit)
		{
		    flags |= FAST_PATH_NEAREST_FILTER;
		}
	    }
	}
	break;

    case PIXMAN_FILTER_CONVOLUTION:
	break;

    case PIXMAN_FILTER_SEPARABLE_CONVOLUTION:
	flags |= FAST_PATH_SEPARABLE_CONVOLUTION_FILTER;
	break;

    default:
	flags |= FAST_PATH_NO_CONVOLUTION_FILTER;
	break;
    }

    /* Repeat mode */
    switch (image->common.repeat)
    {
    case PIXMAN_REPEAT_NONE:
	flags |=
	    FAST_PATH_NO_REFLECT_REPEAT		|
	    FAST_PATH_NO_PAD_REPEAT		|
	    FAST_PATH_NO_NORMAL_REPEAT;
	break;

    case PIXMAN_REPEAT_REFLECT:
	flags |=
	    FAST_PATH_NO_PAD_REPEAT		|
	    FAST_PATH_NO_NONE_REPEAT		|
	    FAST_PATH_NO_NORMAL_REPEAT;
	break;

    case PIXMAN_REPEAT_PAD:
	flags |=
	    FAST_PATH_NO_REFLECT_REPEAT		|
	    FAST_PATH_NO_NONE_REPEAT		|
	    FAST_PATH_NO_NORMAL_REPEAT;
	break;

    default:
	flags |=
	    FAST_PATH_NO_REFLECT_REPEAT		|
	    FAST_PATH_NO_PAD_REPEAT		|
	    FAST_PATH_NO_NONE_REPEAT;
	break;
    }

    /* Component alpha */
    if (image->common.component_alpha)
	flags |= FAST_PATH_COMPONENT_ALPHA;
    else
	flags |= FAST_PATH_UNIFIED_ALPHA;

    flags |= (FAST_PATH_NO_ACCESSORS | FAST_PATH_NARROW_FORMAT);

    /* Type specific checks */
    switch (image->type)
    {
    case SOLID:
	code = PIXMAN_solid;

	if (image->solid.color.alpha == 0xffff)
	    flags |= FAST_PATH_IS_OPAQUE;
	break;

    case BITS:
	if (image->bits.width == 1	&&
	    image->bits.height == 1	&&
	    image->common.repeat != PIXMAN_REPEAT_NONE)
	{
	    code = PIXMAN_solid;
	}
	else
	{
	    code = image->bits.format;
	    flags |= FAST_PATH_BITS_IMAGE;
	}

	if (!PIXMAN_FORMAT_A (image->bits.format)				&&
	    PIXMAN_FORMAT_TYPE (image->bits.format) != PIXMAN_TYPE_GRAY		&&
	    PIXMAN_FORMAT_TYPE (image->bits.format) != PIXMAN_TYPE_COLOR)
	{
	    flags |= FAST_PATH_SAMPLES_OPAQUE;

	    if (image->common.repeat != PIXMAN_REPEAT_NONE)
		flags |= FAST_PATH_IS_OPAQUE;
	}

	if (image->bits.read_func || image->bits.write_func)
	    flags &= ~FAST_PATH_NO_ACCESSORS;

	if (PIXMAN_FORMAT_IS_WIDE (image->bits.format))
	    flags &= ~FAST_PATH_NARROW_FORMAT;
	break;

    case RADIAL:
	code = PIXMAN_unknown;

	/*
	 * As explained in pixman-radial-gradient.c, every point of
	 * the plane has a valid associated radius (and thus will be
	 * colored) if and only if a is negative (i.e. one of the two
	 * circles contains the other one).
	 */

        if (image->radial.a >= 0)
	    break;

	/* Fall through */

    case CONICAL:
    case LINEAR:
	code = PIXMAN_unknown;

	if (image->common.repeat != PIXMAN_REPEAT_NONE)
	{
	    int i;

	    flags |= FAST_PATH_IS_OPAQUE;
	    for (i = 0; i < image->gradient.n_stops; ++i)
	    {
		if (image->gradient.stops[i].color.alpha != 0xffff)
		{
		    flags &= ~FAST_PATH_IS_OPAQUE;
		    break;
		}
	    }
	}
	break;

    default:
	code = PIXMAN_unknown;
	break;
    }

    /* Alpha maps are only supported for BITS images, so it's always
     * safe to ignore their presense for non-BITS images
     */
    if (!image->common.alpha_map || image->type != BITS)
    {
	flags |= FAST_PATH_NO_ALPHA_MAP;
    }
    else
    {
	if (PIXMAN_FORMAT_IS_WIDE (image->common.alpha_map->format))
	    flags &= ~FAST_PATH_NARROW_FORMAT;
    }

    /* Both alpha maps and convolution filters can introduce
     * non-opaqueness in otherwise opaque images. Also
     * an image with component alpha turned on is only opaque
     * if all channels are opaque, so we simply turn it off
     * unconditionally for those images.
     */
    if (image->common.alpha_map						||
	image->common.filter == PIXMAN_FILTER_CONVOLUTION		||
        image->common.filter == PIXMAN_FILTER_SEPARABLE_CONVOLUTION     ||
	image->common.component_alpha)
    {
	flags &= ~(FAST_PATH_IS_OPAQUE | FAST_PATH_SAMPLES_OPAQUE);
    }

    image->common.flags = flags;
    image->common.extended_format_code = code;
}

void
_pixman_image_validate (pixman_image_t *image)
{
    if (image->common.dirty)
    {
	compute_image_info (image);

	/* It is important that property_changed is
	 * called *after* compute_image_info() because
	 * property_changed() can make use of the flags
	 * to set up accessors etc.
	 */
	if (image->common.property_changed)
	    image->common.property_changed (image);

	image->common.dirty = FALSE;
    }

    if (image->common.alpha_map)
	_pixman_image_validate ((pixman_image_t *)image->common.alpha_map);
}

PIXMAN_EXPORT pixman_bool_t
pixman_image_set_clip_region32 (pixman_image_t *   image,
                                pixman_region32_t *region)
{
    image_common_t *common = (image_common_t *)image;
    pixman_bool_t result;

    if (region)
    {
	if ((result = pixman_region32_copy (&common->clip_region, region)))
	    image->common.have_clip_region = TRUE;
    }
    else
    {
	_pixman_image_reset_clip_region (image);

	result = TRUE;
    }

    image_property_changed (image);

    return result;
}

PIXMAN_EXPORT pixman_bool_t
pixman_image_set_clip_region (pixman_image_t *   image,
                              pixman_region16_t *region)
{
    image_common_t *common = (image_common_t *)image;
    pixman_bool_t result;

    if (region)
    {
	if ((result = pixman_region32_copy_from_region16 (&common->clip_region, region)))
	    image->common.have_clip_region = TRUE;
    }
    else
    {
	_pixman_image_reset_clip_region (image);

	result = TRUE;
    }

    image_property_changed (image);

    return result;
}

PIXMAN_EXPORT void
pixman_image_set_has_client_clip (pixman_image_t *image,
                                  pixman_bool_t   client_clip)
{
    image->common.client_clip = client_clip;
}

PIXMAN_EXPORT pixman_bool_t
pixman_image_set_transform (pixman_image_t *          image,
                            const pixman_transform_t *transform)
{
    static const pixman_transform_t id =
    {
	{ { pixman_fixed_1, 0, 0 },
	  { 0, pixman_fixed_1, 0 },
	  { 0, 0, pixman_fixed_1 } }
    };

    image_common_t *common = (image_common_t *)image;
    pixman_bool_t result;

    if (common->transform == transform)
	return TRUE;

    if (!transform || memcmp (&id, transform, sizeof (pixman_transform_t)) == 0)
    {
	free (common->transform);
	common->transform = NULL;
	result = TRUE;

	goto out;
    }

    if (common->transform &&
	memcmp (common->transform, transform, sizeof (pixman_transform_t)) == 0)
    {
	return TRUE;
    }

    if (common->transform == NULL)
	common->transform = malloc (sizeof (pixman_transform_t));

    if (common->transform == NULL)
    {
	result = FALSE;

	goto out;
    }

    memcpy (common->transform, transform, sizeof(pixman_transform_t));

    result = TRUE;

out:
    image_property_changed (image);

    return result;
}

PIXMAN_EXPORT void
pixman_image_set_repeat (pixman_image_t *image,
                         pixman_repeat_t repeat)
{
    if (image->common.repeat == repeat)
	return;

    image->common.repeat = repeat;

    image_property_changed (image);
}

PIXMAN_EXPORT void
pixman_image_set_dither (pixman_image_t *image,
			 pixman_dither_t dither)
{
    if (image->type == BITS)
    {
	if (image->bits.dither == dither)
	    return;

	image->bits.dither = dither;

	image_property_changed (image);
    }
}

PIXMAN_EXPORT void
pixman_image_set_dither_offset (pixman_image_t *image,
				int             offset_x,
				int             offset_y)
{
    if (image->type == BITS)
    {
	if (image->bits.dither_offset_x == offset_x &&
	    image->bits.dither_offset_y == offset_y)
	{
	    return;
	}

	image->bits.dither_offset_x = offset_x;
	image->bits.dither_offset_y = offset_y;

	image_property_changed (image);
    }
}

PIXMAN_EXPORT pixman_bool_t
pixman_image_set_filter (pixman_image_t *      image,
                         pixman_filter_t       filter,
                         const pixman_fixed_t *params,
                         int                   n_params)
{
    image_common_t *common = (image_common_t *)image;
    pixman_fixed_t *new_params;

    if (params == common->filter_params && filter == common->filter)
	return TRUE;

    if (filter == PIXMAN_FILTER_SEPARABLE_CONVOLUTION)
    {
	int width = pixman_fixed_to_int (params[0]);
	int height = pixman_fixed_to_int (params[1]);
	int x_phase_bits = pixman_fixed_to_int (params[2]);
	int y_phase_bits = pixman_fixed_to_int (params[3]);
	int n_x_phases = (1 << x_phase_bits);
	int n_y_phases = (1 << y_phase_bits);

	return_val_if_fail (
	    n_params == 4 + n_x_phases * width + n_y_phases * height, FALSE);
    }
    
    new_params = NULL;
    if (params)
    {
	new_params = pixman_malloc_ab (n_params, sizeof (pixman_fixed_t));
	if (!new_params)
	    return FALSE;

	memcpy (new_params,
	        params, n_params * sizeof (pixman_fixed_t));
    }

    common->filter = filter;

    if (common->filter_params)
	free (common->filter_params);

    common->filter_params = new_params;
    common->n_filter_params = n_params;

    image_property_changed (image);
    return TRUE;
}

PIXMAN_EXPORT void
pixman_image_set_source_clipping (pixman_image_t *image,
                                  pixman_bool_t   clip_sources)
{
    if (image->common.clip_sources == clip_sources)
	return;

    image->common.clip_sources = clip_sources;

    image_property_changed (image);
}

/* Unlike all the other property setters, this function does not
 * copy the content of indexed. Doing this copying is simply
 * way, way too expensive.
 */
PIXMAN_EXPORT void
pixman_image_set_indexed (pixman_image_t *        image,
                          const pixman_indexed_t *indexed)
{
    bits_image_t *bits = (bits_image_t *)image;

    if (bits->indexed == indexed)
	return;

    bits->indexed = indexed;

    image_property_changed (image);
}

PIXMAN_EXPORT void
pixman_image_set_alpha_map (pixman_image_t *image,
                            pixman_image_t *alpha_map,
                            int16_t         x,
                            int16_t         y)
{
    image_common_t *common = (image_common_t *)image;

    return_if_fail (!alpha_map || alpha_map->type == BITS);

    if (alpha_map && common->alpha_count > 0)
    {
	/* If this image is being used as an alpha map itself,
	 * then you can't give it an alpha map of its own.
	 */
	return;
    }

    if (alpha_map && alpha_map->common.alpha_map)
    {
	/* If the image has an alpha map of its own,
	 * then it can't be used as an alpha map itself
	 */
	return;
    }

    if (common->alpha_map != (bits_image_t *)alpha_map)
    {
	if (common->alpha_map)
	{
	    common->alpha_map->common.alpha_count--;

	    pixman_image_unref ((pixman_image_t *)common->alpha_map);
	}

	if (alpha_map)
	{
	    common->alpha_map = (bits_image_t *)pixman_image_ref (alpha_map);

	    common->alpha_map->common.alpha_count++;
	}
	else
	{
	    common->alpha_map = NULL;
	}
    }

    common->alpha_origin_x = x;
    common->alpha_origin_y = y;

    image_property_changed (image);
}

PIXMAN_EXPORT void
pixman_image_set_component_alpha   (pixman_image_t *image,
                                    pixman_bool_t   component_alpha)
{
    if (image->common.component_alpha == component_alpha)
	return;

    image->common.component_alpha = component_alpha;

    image_property_changed (image);
}

PIXMAN_EXPORT pixman_bool_t
pixman_image_get_component_alpha   (pixman_image_t       *image)
{
    return image->common.component_alpha;
}

PIXMAN_EXPORT void
pixman_image_set_accessors (pixman_image_t *           image,
                            pixman_read_memory_func_t  read_func,
                            pixman_write_memory_func_t write_func)
{
    return_if_fail (image != NULL);

    if (image->type == BITS)
    {
	/* Accessors only work for <= 32 bpp. */
	if (PIXMAN_FORMAT_BPP(image->bits.format) > 32)
	    return_if_fail (!read_func && !write_func);

	image->bits.read_func = read_func;
	image->bits.write_func = write_func;

	image_property_changed (image);
    }
}

PIXMAN_EXPORT uint32_t *
pixman_image_get_data (pixman_image_t *image)
{
    if (image->type == BITS)
	return image->bits.bits;

    return NULL;
}

PIXMAN_EXPORT int
pixman_image_get_width (pixman_image_t *image)
{
    if (image->type == BITS)
	return image->bits.width;

    return 0;
}

PIXMAN_EXPORT int
pixman_image_get_height (pixman_image_t *image)
{
    if (image->type == BITS)
	return image->bits.height;

    return 0;
}

PIXMAN_EXPORT int
pixman_image_get_stride (pixman_image_t *image)
{
    if (image->type == BITS)
	return image->bits.rowstride * (int) sizeof (uint32_t);

    return 0;
}

PIXMAN_EXPORT int
pixman_image_get_depth (pixman_image_t *image)
{
    if (image->type == BITS)
	return PIXMAN_FORMAT_DEPTH (image->bits.format);

    return 0;
}

PIXMAN_EXPORT pixman_format_code_t
pixman_image_get_format (pixman_image_t *image)
{
    if (image->type == BITS)
	return image->bits.format;

    return PIXMAN_null;
}

uint32_t
_pixman_image_get_solid (pixman_implementation_t *imp,
			 pixman_image_t *         image,
                         pixman_format_code_t     format)
{
    uint32_t result;

    if (image->type == SOLID)
    {
	result = image->solid.color_32;
    }
    else if (image->type == BITS)
    {
	if (image->bits.format == PIXMAN_a8r8g8b8)
	    result = image->bits.bits[0];
	else if (image->bits.format == PIXMAN_x8r8g8b8)
	    result = image->bits.bits[0] | 0xff000000;
	else if (image->bits.format == PIXMAN_a8)
	    result = (uint32_t)(*(uint8_t *)image->bits.bits) << 24;
	else
	    goto otherwise;
    }
    else
    {
	pixman_iter_t iter;

    otherwise:
	_pixman_implementation_iter_init (
	    imp, &iter, image, 0, 0, 1, 1,
	    (uint8_t *)&result,
	    ITER_NARROW | ITER_SRC, image->common.flags);
	
	result = *iter.get_scanline (&iter, NULL);

	if (iter.fini)
	    iter.fini (&iter);
    }

    /* If necessary, convert RGB <--> BGR. */
    if (PIXMAN_FORMAT_TYPE (format) != PIXMAN_TYPE_ARGB
	&& PIXMAN_FORMAT_TYPE (format) != PIXMAN_TYPE_ARGB_SRGB)
    {
	result = (((result & 0xff000000) >>  0) |
	          ((result & 0x00ff0000) >> 16) |
	          ((result & 0x0000ff00) >>  0) |
	          ((result & 0x000000ff) << 16));
    }

    return result;
}