1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
|
// qcms
// Copyright (C) 2009 Mozilla Foundation
// Copyright (C) 1998-2007 Marti Maria
//
// Permission is hereby granted, free of charge, to any person obtaining
// a copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#[derive(Copy, Clone, Debug, Default)]
pub struct Matrix {
pub m: [[f32; 3]; 3], // Three rows of three elems.
}
#[derive(Copy, Clone)]
pub struct Vector {
pub v: [f32; 3],
}
impl Matrix {
pub fn eval(&self, v: Vector) -> Vector {
let mut result: Vector = Vector { v: [0.; 3] };
result.v[0] = self.m[0][0] * v.v[0] + self.m[0][1] * v.v[1] + self.m[0][2] * v.v[2];
result.v[1] = self.m[1][0] * v.v[0] + self.m[1][1] * v.v[1] + self.m[1][2] * v.v[2];
result.v[2] = self.m[2][0] * v.v[0] + self.m[2][1] * v.v[1] + self.m[2][2] * v.v[2];
result
}
pub fn row(&self, r: usize) -> [f32; 3] {
self.m[r]
}
//probably reuse this computation in matrix_invert
pub fn det(&self) -> f32 {
let det: f32 = self.m[0][0] * self.m[1][1] * self.m[2][2]
+ self.m[0][1] * self.m[1][2] * self.m[2][0]
+ self.m[0][2] * self.m[1][0] * self.m[2][1]
- self.m[0][0] * self.m[1][2] * self.m[2][1]
- self.m[0][1] * self.m[1][0] * self.m[2][2]
- self.m[0][2] * self.m[1][1] * self.m[2][0];
det
}
/* from pixman and cairo and Mathematics for Game Programmers */
/* lcms uses gauss-jordan elimination with partial pivoting which is
* less efficient and not as numerically stable. See Mathematics for
* Game Programmers. */
pub fn invert(&self) -> Option<Matrix> {
let mut dest_mat: Matrix = Matrix { m: [[0.; 3]; 3] };
let mut i: i32;
const a: [i32; 3] = [2, 2, 1];
const b: [i32; 3] = [1, 0, 0];
/* inv (A) = 1/det (A) * adj (A) */
let mut det: f32 = self.det();
if det == 0. {
return None;
}
det = 1. / det;
let mut j: i32 = 0;
while j < 3 {
i = 0;
while i < 3 {
let ai: i32 = a[i as usize];
let aj: i32 = a[j as usize];
let bi: i32 = b[i as usize];
let bj: i32 = b[j as usize];
let mut p: f64 = (self.m[ai as usize][aj as usize]
* self.m[bi as usize][bj as usize]
- self.m[ai as usize][bj as usize] * self.m[bi as usize][aj as usize])
as f64;
if ((i + j) & 1) != 0 {
p = -p
}
dest_mat.m[j as usize][i as usize] = (det as f64 * p) as f32;
i += 1
}
j += 1
}
Some(dest_mat)
}
pub fn identity() -> Matrix {
let mut i: Matrix = Matrix { m: [[0.; 3]; 3] };
i.m[0][0] = 1.;
i.m[0][1] = 0.;
i.m[0][2] = 0.;
i.m[1][0] = 0.;
i.m[1][1] = 1.;
i.m[1][2] = 0.;
i.m[2][0] = 0.;
i.m[2][1] = 0.;
i.m[2][2] = 1.;
i
}
pub fn invalid() -> Option<Matrix> {
None
}
/* from pixman */
/* MAT3per... */
pub fn multiply(a: Matrix, b: Matrix) -> Matrix {
let mut result: Matrix = Matrix { m: [[0.; 3]; 3] };
let mut dx: i32;
let mut o: i32;
let mut dy: i32 = 0;
while dy < 3 {
dx = 0;
while dx < 3 {
let mut v: f64 = 0f64;
o = 0;
while o < 3 {
v += (a.m[dy as usize][o as usize] * b.m[o as usize][dx as usize]) as f64;
o += 1
}
result.m[dy as usize][dx as usize] = v as f32;
dx += 1
}
dy += 1
}
result
}
}
|