1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "jit/ValueNumbering.h"
#include "jit/IonAnalysis.h"
#include "jit/JitSpewer.h"
#include "jit/MIRGenerator.h"
#include "jit/MIRGraph.h"
using namespace js;
using namespace js::jit;
/*
* [SMDOC] IonMonkey Value Numbering
*
* Some notes on the main algorithm here:
* - The SSA identifier id() is the value number. We do replaceAllUsesWith as
* we go, so there's always at most one visible value with a given number.
*
* - Consequently, the GVN algorithm is effectively pessimistic. This means it
* is not as powerful as an optimistic GVN would be, but it is simpler and
* faster.
*
* - We iterate in RPO, so that when visiting a block, we've already optimized
* and hashed all values in dominating blocks. With occasional exceptions,
* this allows us to do everything in a single pass.
*
* - When we do use multiple passes, we just re-run the algorithm on the whole
* graph instead of doing sparse propagation. This is a tradeoff to keep the
* algorithm simpler and lighter on inputs that don't have a lot of
* interesting unreachable blocks or degenerate loop induction variables, at
* the expense of being slower on inputs that do. The loop for this always
* terminates, because it only iterates when code is or will be removed, so
* eventually it must stop iterating.
*
* - Values are not immediately removed from the hash set when they go out of
* scope. Instead, we check for dominance after a lookup. If the dominance
* check fails, the value is removed.
*/
HashNumber ValueNumberer::VisibleValues::ValueHasher::hash(Lookup ins) {
return ins->valueHash();
}
// Test whether two MDefinitions are congruent.
bool ValueNumberer::VisibleValues::ValueHasher::match(Key k, Lookup l) {
// If one of the instructions depends on a store, and the other instruction
// does not depend on the same store, the instructions are not congruent.
if (k->dependency() != l->dependency()) {
return false;
}
bool congruent =
k->congruentTo(l); // Ask the values themselves what they think.
#ifdef JS_JITSPEW
if (congruent != l->congruentTo(k)) {
JitSpew(
JitSpew_GVN,
" congruentTo relation is not symmetric between %s%u and %s%u!!",
k->opName(), k->id(), l->opName(), l->id());
}
#endif
return congruent;
}
void ValueNumberer::VisibleValues::ValueHasher::rekey(Key& k, Key newKey) {
k = newKey;
}
ValueNumberer::VisibleValues::VisibleValues(TempAllocator& alloc)
: set_(alloc) {}
// Look up the first entry for |def|.
ValueNumberer::VisibleValues::Ptr ValueNumberer::VisibleValues::findLeader(
const MDefinition* def) const {
return set_.lookup(def);
}
// Look up the first entry for |def|.
ValueNumberer::VisibleValues::AddPtr
ValueNumberer::VisibleValues::findLeaderForAdd(MDefinition* def) {
return set_.lookupForAdd(def);
}
// Insert a value into the set.
bool ValueNumberer::VisibleValues::add(AddPtr p, MDefinition* def) {
return set_.add(p, def);
}
// Insert a value onto the set overwriting any existing entry.
void ValueNumberer::VisibleValues::overwrite(AddPtr p, MDefinition* def) {
set_.replaceKey(p, def);
}
// |def| will be discarded, so remove it from any sets.
void ValueNumberer::VisibleValues::forget(const MDefinition* def) {
Ptr p = set_.lookup(def);
if (p && *p == def) {
set_.remove(p);
}
}
// Clear all state.
void ValueNumberer::VisibleValues::clear() { set_.clear(); }
#ifdef DEBUG
// Test whether |def| is in the set.
bool ValueNumberer::VisibleValues::has(const MDefinition* def) const {
Ptr p = set_.lookup(def);
return p && *p == def;
}
#endif
// Call MDefinition::justReplaceAllUsesWith, and add some GVN-specific asserts.
static void ReplaceAllUsesWith(MDefinition* from, MDefinition* to) {
MOZ_ASSERT(from != to, "GVN shouldn't try to replace a value with itself");
MOZ_ASSERT(from->type() == to->type(), "Def replacement has different type");
MOZ_ASSERT(!to->isDiscarded(),
"GVN replaces an instruction by a removed instruction");
// We don't need the extra setting of ImplicitlyUsed flags that the regular
// replaceAllUsesWith does because we do it ourselves.
from->justReplaceAllUsesWith(to);
}
// Test whether |succ| is a successor of |block|.
static bool HasSuccessor(const MControlInstruction* block,
const MBasicBlock* succ) {
for (size_t i = 0, e = block->numSuccessors(); i != e; ++i) {
if (block->getSuccessor(i) == succ) {
return true;
}
}
return false;
}
// Given a block which has had predecessors removed but is still reachable, test
// whether the block's new dominator will be closer than its old one and whether
// it will expose potential optimization opportunities.
static MBasicBlock* ComputeNewDominator(MBasicBlock* block, MBasicBlock* old) {
MBasicBlock* now = block->getPredecessor(0);
for (size_t i = 1, e = block->numPredecessors(); i < e; ++i) {
MBasicBlock* pred = block->getPredecessor(i);
// Note that dominators haven't been recomputed yet, so we have to check
// whether now dominates pred, not block.
while (!now->dominates(pred)) {
MBasicBlock* next = now->immediateDominator();
if (next == old) {
return old;
}
if (next == now) {
MOZ_ASSERT(block == old,
"Non-self-dominating block became self-dominating");
return block;
}
now = next;
}
}
MOZ_ASSERT(old != block || old != now,
"Missed self-dominating block staying self-dominating");
return now;
}
// Test for any defs which look potentially interesting to GVN.
static bool BlockHasInterestingDefs(MBasicBlock* block) {
return !block->phisEmpty() || *block->begin() != block->lastIns();
}
// Walk up the dominator tree from |block| to the root and test for any defs
// which look potentially interesting to GVN.
static bool ScanDominatorsForDefs(MBasicBlock* block) {
for (MBasicBlock* i = block;;) {
if (BlockHasInterestingDefs(block)) {
return true;
}
MBasicBlock* immediateDominator = i->immediateDominator();
if (immediateDominator == i) {
break;
}
i = immediateDominator;
}
return false;
}
// Walk up the dominator tree from |now| to |old| and test for any defs which
// look potentially interesting to GVN.
static bool ScanDominatorsForDefs(MBasicBlock* now, MBasicBlock* old) {
MOZ_ASSERT(old->dominates(now),
"Refined dominator not dominated by old dominator");
for (MBasicBlock* i = now; i != old; i = i->immediateDominator()) {
if (BlockHasInterestingDefs(i)) {
return true;
}
}
return false;
}
// Given a block which has had predecessors removed but is still reachable, test
// whether the block's new dominator will be closer than its old one and whether
// it will expose potential optimization opportunities.
static bool IsDominatorRefined(MBasicBlock* block) {
MBasicBlock* old = block->immediateDominator();
MBasicBlock* now = ComputeNewDominator(block, old);
// If this block is just a goto and it doesn't dominate its destination,
// removing its predecessors won't refine the dominators of anything
// interesting.
MControlInstruction* control = block->lastIns();
if (*block->begin() == control && block->phisEmpty() && control->isGoto() &&
!block->dominates(control->toGoto()->target())) {
return false;
}
// We've computed block's new dominator. Test whether there are any
// newly-dominating definitions which look interesting.
if (block == old) {
return block != now && ScanDominatorsForDefs(now);
}
MOZ_ASSERT(block != now, "Non-self-dominating block became self-dominating");
return ScanDominatorsForDefs(now, old);
}
// |def| has just had one of its users release it. If it's now dead, enqueue it
// for discarding, otherwise just make note of it.
bool ValueNumberer::handleUseReleased(MDefinition* def,
ImplicitUseOption implicitUseOption) {
if (IsDiscardable(def)) {
values_.forget(def);
if (!deadDefs_.append(def)) {
return false;
}
} else {
if (implicitUseOption == SetImplicitUse) {
def->setImplicitlyUsedUnchecked();
}
}
return true;
}
// Discard |def| and anything in its use-def subtree which is no longer needed.
bool ValueNumberer::discardDefsRecursively(MDefinition* def,
AllowEffectful allowEffectful) {
MOZ_ASSERT(deadDefs_.empty(), "deadDefs_ not cleared");
return discardDef(def, allowEffectful) && processDeadDefs();
}
// Assuming |resume| is unreachable, release its operands.
// It might be nice to integrate this code with prepareForDiscard, however GVN
// needs it to call handleUseReleased so that it can observe when a definition
// becomes unused, so it isn't trivial to do.
bool ValueNumberer::releaseResumePointOperands(MResumePoint* resume) {
for (size_t i = 0, e = resume->numOperands(); i < e; ++i) {
if (!resume->hasOperand(i)) {
continue;
}
MDefinition* op = resume->getOperand(i);
resume->releaseOperand(i);
// We set the ImplicitlyUsed flag when removing resume point operands,
// because even though we may think we're certain that a particular
// branch might not be taken, the type information might be incomplete.
if (!handleUseReleased(op, SetImplicitUse)) {
return false;
}
}
return true;
}
// Assuming |phi| is dead, release and remove its operands. If an operand
// becomes dead, push it to the discard worklist.
bool ValueNumberer::releaseAndRemovePhiOperands(MPhi* phi) {
// MPhi saves operands in a vector so we iterate in reverse.
for (int o = phi->numOperands() - 1; o >= 0; --o) {
MDefinition* op = phi->getOperand(o);
phi->removeOperand(o);
if (!handleUseReleased(op, DontSetImplicitUse)) {
return false;
}
}
return true;
}
// Assuming |def| is dead, release its operands. If an operand becomes dead,
// push it to the discard worklist.
bool ValueNumberer::releaseOperands(MDefinition* def) {
for (size_t o = 0, e = def->numOperands(); o < e; ++o) {
MDefinition* op = def->getOperand(o);
def->releaseOperand(o);
if (!handleUseReleased(op, DontSetImplicitUse)) {
return false;
}
}
return true;
}
// Discard |def| and mine its operands for any subsequently dead defs.
bool ValueNumberer::discardDef(MDefinition* def,
AllowEffectful allowEffectful) {
#ifdef JS_JITSPEW
JitSpew(JitSpew_GVN, " Discarding %s %s%u",
def->block()->isMarked() ? "unreachable" : "dead", def->opName(),
def->id());
#endif
#ifdef DEBUG
MOZ_ASSERT(def != nextDef_, "Invalidating the MDefinition iterator");
if (def->block()->isMarked()) {
MOZ_ASSERT(!def->hasUses(), "Discarding def that still has uses");
} else {
MOZ_ASSERT(allowEffectful == AllowEffectful::Yes
? IsDiscardableAllowEffectful(def)
: IsDiscardable(def),
"Discarding non-discardable definition");
MOZ_ASSERT(!values_.has(def), "Discarding a definition still in the set");
}
#endif
MBasicBlock* block = def->block();
if (def->isPhi()) {
MPhi* phi = def->toPhi();
if (!releaseAndRemovePhiOperands(phi)) {
return false;
}
block->discardPhi(phi);
} else {
MInstruction* ins = def->toInstruction();
if (MResumePoint* resume = ins->resumePoint()) {
if (!releaseResumePointOperands(resume)) {
return false;
}
}
if (!releaseOperands(ins)) {
return false;
}
block->discardIgnoreOperands(ins);
}
// If that was the last definition in the block, it can be safely removed
// from the graph.
if (block->phisEmpty() && block->begin() == block->end()) {
MOZ_ASSERT(block->isMarked(),
"Reachable block lacks at least a control instruction");
// As a special case, don't remove a block which is a dominator tree
// root so that we don't invalidate the iterator in visitGraph. We'll
// check for this and remove it later.
if (block->immediateDominator() != block) {
JitSpew(JitSpew_GVN, " Block block%u is now empty; discarding",
block->id());
graph_.removeBlock(block);
blocksRemoved_ = true;
} else {
JitSpew(JitSpew_GVN,
" Dominator root block%u is now empty; will discard later",
block->id());
}
}
return true;
}
// Recursively discard all the defs on the deadDefs_ worklist.
bool ValueNumberer::processDeadDefs() {
MDefinition* nextDef = nextDef_;
while (!deadDefs_.empty()) {
MDefinition* def = deadDefs_.popCopy();
// Don't invalidate the MDefinition iterator. This is what we're going
// to visit next, so we won't miss anything.
if (def == nextDef) {
continue;
}
if (!discardDef(def)) {
return false;
}
}
return true;
}
// Test whether |block|, which is a loop header, has any predecessors other than
// |loopPred|, the loop predecessor, which it doesn't dominate.
static bool hasNonDominatingPredecessor(MBasicBlock* block,
MBasicBlock* loopPred) {
MOZ_ASSERT(block->isLoopHeader());
MOZ_ASSERT(block->loopPredecessor() == loopPred);
for (uint32_t i = 0, e = block->numPredecessors(); i < e; ++i) {
MBasicBlock* pred = block->getPredecessor(i);
if (pred != loopPred && !block->dominates(pred)) {
return true;
}
}
return false;
}
// A loop is about to be made reachable only through an OSR entry into one of
// its nested loops. Fix everything up.
bool ValueNumberer::fixupOSROnlyLoop(MBasicBlock* block) {
// Create an empty and unreachable(!) block which jumps to |block|. This
// allows |block| to remain marked as a loop header, so we don't have to
// worry about moving a different block into place as the new loop header,
// which is hard, especially if the OSR is into a nested loop. Doing all
// that would produce slightly more optimal code, but this is so
// extraordinarily rare that it isn't worth the complexity.
MBasicBlock* fake = MBasicBlock::NewFakeLoopPredecessor(graph_, block);
if (!fake) {
return false;
}
fake->setImmediateDominator(fake);
fake->addNumDominated(1);
fake->setDomIndex(fake->id());
JitSpew(JitSpew_GVN, " Created fake block%u", fake->id());
hasOSRFixups_ = true;
return true;
}
// Remove the CFG edge between |pred| and |block|, after releasing the phi
// operands on that edge and discarding any definitions consequently made dead.
bool ValueNumberer::removePredecessorAndDoDCE(MBasicBlock* block,
MBasicBlock* pred,
size_t predIndex) {
MOZ_ASSERT(
!block->isMarked(),
"Block marked unreachable should have predecessors removed already");
// Before removing the predecessor edge, scan the phi operands for that edge
// for dead code before they get removed.
MOZ_ASSERT(nextDef_ == nullptr);
for (MPhiIterator iter(block->phisBegin()), end(block->phisEnd());
iter != end;) {
MPhi* phi = *iter++;
MOZ_ASSERT(!values_.has(phi),
"Visited phi in block having predecessor removed");
MOZ_ASSERT(!phi->isGuard());
MDefinition* op = phi->getOperand(predIndex);
phi->removeOperand(predIndex);
nextDef_ = iter != end ? *iter : nullptr;
if (!handleUseReleased(op, DontSetImplicitUse) || !processDeadDefs()) {
return false;
}
// If |nextDef_| became dead while we had it pinned, advance the
// iterator and discard it now.
while (nextDef_ && !nextDef_->hasUses() &&
!nextDef_->isGuardRangeBailouts()) {
phi = nextDef_->toPhi();
iter++;
nextDef_ = iter != end ? *iter : nullptr;
if (!discardDefsRecursively(phi)) {
return false;
}
}
}
nextDef_ = nullptr;
block->removePredecessorWithoutPhiOperands(pred, predIndex);
return true;
}
// Remove the CFG edge between |pred| and |block|, and if this makes |block|
// unreachable, mark it so, and remove the rest of its incoming edges too. And
// discard any instructions made dead by the entailed release of any phi
// operands.
bool ValueNumberer::removePredecessorAndCleanUp(MBasicBlock* block,
MBasicBlock* pred) {
MOZ_ASSERT(!block->isMarked(),
"Removing predecessor on block already marked unreachable");
// We'll be removing a predecessor, so anything we know about phis in this
// block will be wrong.
for (MPhiIterator iter(block->phisBegin()), end(block->phisEnd());
iter != end; ++iter) {
values_.forget(*iter);
}
// If this is a loop header, test whether it will become an unreachable
// loop, or whether it needs special OSR-related fixups.
bool isUnreachableLoop = false;
if (block->isLoopHeader()) {
if (block->loopPredecessor() == pred) {
if (MOZ_UNLIKELY(hasNonDominatingPredecessor(block, pred))) {
JitSpew(JitSpew_GVN,
" "
"Loop with header block%u is now only reachable through an "
"OSR entry into the middle of the loop!!",
block->id());
} else {
// Deleting the entry into the loop makes the loop unreachable.
isUnreachableLoop = true;
JitSpew(JitSpew_GVN,
" "
"Loop with header block%u is no longer reachable",
block->id());
}
#ifdef JS_JITSPEW
} else if (block->hasUniqueBackedge() && block->backedge() == pred) {
JitSpew(JitSpew_GVN, " Loop with header block%u is no longer a loop",
block->id());
#endif
}
}
// Actually remove the CFG edge.
if (!removePredecessorAndDoDCE(block, pred,
block->getPredecessorIndex(pred))) {
return false;
}
// We've now edited the CFG; check to see if |block| became unreachable.
if (block->numPredecessors() == 0 || isUnreachableLoop) {
JitSpew(JitSpew_GVN, " Disconnecting block%u", block->id());
// Remove |block| from its dominator parent's subtree. This is the only
// immediately-dominated-block information we need to update, because
// everything dominated by this block is about to be swept away.
MBasicBlock* parent = block->immediateDominator();
if (parent != block) {
parent->removeImmediatelyDominatedBlock(block);
}
// Completely disconnect it from the CFG. We do this now rather than
// just doing it later when we arrive there in visitUnreachableBlock
// so that we don't leave a partially broken loop sitting around. This
// also lets visitUnreachableBlock assert that numPredecessors() == 0,
// which is a nice invariant.
if (block->isLoopHeader()) {
block->clearLoopHeader();
}
for (size_t i = 0, e = block->numPredecessors(); i < e; ++i) {
if (!removePredecessorAndDoDCE(block, block->getPredecessor(i), i)) {
return false;
}
}
// Clear out the resume point operands, as they can hold things that
// don't appear to dominate them live.
if (MResumePoint* resume = block->entryResumePoint()) {
if (!releaseResumePointOperands(resume) || !processDeadDefs()) {
return false;
}
if (MResumePoint* outer = block->outerResumePoint()) {
if (!releaseResumePointOperands(outer) || !processDeadDefs()) {
return false;
}
}
MOZ_ASSERT(nextDef_ == nullptr);
for (MInstructionIterator iter(block->begin()), end(block->end());
iter != end;) {
MInstruction* ins = *iter++;
nextDef_ = iter != end ? *iter : nullptr;
if (MResumePoint* resume = ins->resumePoint()) {
if (!releaseResumePointOperands(resume) || !processDeadDefs()) {
return false;
}
}
}
nextDef_ = nullptr;
} else {
#ifdef DEBUG
MOZ_ASSERT(block->outerResumePoint() == nullptr,
"Outer resume point in block without an entry resume point");
for (MInstructionIterator iter(block->begin()), end(block->end());
iter != end; ++iter) {
MOZ_ASSERT(iter->resumePoint() == nullptr,
"Instruction with resume point in block without entry "
"resume point");
}
#endif
}
// Use the mark to note that we've already removed all its predecessors,
// and we know it's unreachable.
block->mark();
}
return true;
}
// Return a simplified form of |def|, if we can.
MDefinition* ValueNumberer::simplified(MDefinition* def) const {
return def->foldsTo(graph_.alloc());
}
// If an equivalent and dominating value already exists in the set, return it.
// Otherwise insert |def| into the set and return it.
MDefinition* ValueNumberer::leader(MDefinition* def) {
// If the value isn't suitable for eliminating, don't bother hashing it. The
// convention is that congruentTo returns false for node kinds that wish to
// opt out of redundance elimination.
// TODO: It'd be nice to clean up that convention (bug 1031406).
if (!def->isEffectful() && def->congruentTo(def)) {
// Look for a match.
VisibleValues::AddPtr p = values_.findLeaderForAdd(def);
if (p) {
MDefinition* rep = *p;
if (!rep->isDiscarded() && rep->block()->dominates(def->block())) {
// We found a dominating congruent value.
return rep;
}
// The congruent value doesn't dominate. It never will again in this
// dominator tree, so overwrite it.
values_.overwrite(p, def);
} else {
// No match. Add a new entry.
if (!values_.add(p, def)) {
return nullptr;
}
}
#ifdef JS_JITSPEW
JitSpew(JitSpew_GVN, " Recording %s%u", def->opName(), def->id());
#endif
}
return def;
}
// Test whether |phi| is dominated by a congruent phi.
bool ValueNumberer::hasLeader(const MPhi* phi,
const MBasicBlock* phiBlock) const {
if (VisibleValues::Ptr p = values_.findLeader(phi)) {
const MDefinition* rep = *p;
return rep != phi && rep->block()->dominates(phiBlock);
}
return false;
}
// Test whether there are any phis in |header| which are newly optimizable, as a
// result of optimizations done inside the loop. This is not a sparse approach,
// but restarting is rare enough in practice. Termination is ensured by
// discarding the phi triggering the iteration.
bool ValueNumberer::loopHasOptimizablePhi(MBasicBlock* header) const {
// If the header is unreachable, don't bother re-optimizing it.
if (header->isMarked()) {
return false;
}
// Rescan the phis for any that can be simplified, since they may be reading
// values from backedges.
for (MPhiIterator iter(header->phisBegin()), end(header->phisEnd());
iter != end; ++iter) {
MPhi* phi = *iter;
MOZ_ASSERT_IF(!phi->hasUses(), !DeadIfUnused(phi));
if (phi->operandIfRedundant() || hasLeader(phi, header)) {
return true; // Phi can be simplified.
}
}
return false;
}
// Visit |def|.
bool ValueNumberer::visitDefinition(MDefinition* def) {
// Nop does not fit in any of the previous optimization, as its only purpose
// is to reduce the register pressure by keeping additional resume
// point. Still, there is no need consecutive list of MNop instructions, and
// this will slow down every other iteration on the Graph.
if (def->isNop()) {
MNop* nop = def->toNop();
MBasicBlock* block = nop->block();
// We look backward to know if we can remove the previous Nop, we do not
// look forward as we would not benefit from the folding made by GVN.
MInstructionReverseIterator iter = ++block->rbegin(nop);
// This nop is at the beginning of the basic block, just replace the
// resume point of the basic block by the one from the resume point.
if (iter == block->rend()) {
JitSpew(JitSpew_GVN, " Removing Nop%u", nop->id());
nop->moveResumePointAsEntry();
block->discard(nop);
return true;
}
// The previous instruction is also a Nop, no need to keep it anymore.
MInstruction* prev = *iter;
if (prev->isNop()) {
JitSpew(JitSpew_GVN, " Removing Nop%u", prev->id());
block->discard(prev);
return true;
}
// The Nop is introduced to capture the result and make sure the operands
// are not live anymore when there are no further uses. Though when
// all operands are still needed the Nop doesn't decrease the liveness
// and can get removed.
MResumePoint* rp = nop->resumePoint();
if (rp && rp->numOperands() > 0 &&
rp->getOperand(rp->numOperands() - 1) == prev &&
!nop->block()->lastIns()->isThrow() &&
!prev->isAssertRecoveredOnBailout()) {
size_t numOperandsLive = 0;
for (size_t j = 0; j < prev->numOperands(); j++) {
for (size_t i = 0; i < rp->numOperands(); i++) {
if (prev->getOperand(j) == rp->getOperand(i)) {
numOperandsLive++;
break;
}
}
}
if (numOperandsLive == prev->numOperands()) {
JitSpew(JitSpew_GVN, " Removing Nop%u", nop->id());
block->discard(nop);
}
}
return true;
}
// Skip optimizations on instructions which are recovered on bailout, to
// avoid mixing instructions which are recovered on bailouts with
// instructions which are not.
if (def->isRecoveredOnBailout()) {
return true;
}
// If this instruction has a dependency() into an unreachable block, we'll
// need to update AliasAnalysis.
MDefinition* dep = def->dependency();
if (dep != nullptr && (dep->isDiscarded() || dep->block()->isDead())) {
JitSpew(JitSpew_GVN, " AliasAnalysis invalidated");
if (updateAliasAnalysis_ && !dependenciesBroken_) {
// TODO: Recomputing alias-analysis could theoretically expose more
// GVN opportunities.
JitSpew(JitSpew_GVN, " Will recompute!");
dependenciesBroken_ = true;
}
// Temporarily clear its dependency, to protect foldsTo, which may
// wish to use the dependency to do store-to-load forwarding.
def->setDependency(def->toInstruction());
} else {
dep = nullptr;
}
// Look for a simplified form of |def|.
MDefinition* sim = simplified(def);
if (sim != def) {
if (sim == nullptr) {
return false;
}
bool isNewInstruction = sim->block() == nullptr;
// If |sim| doesn't belong to a block, insert it next to |def|.
if (isNewInstruction) {
// A new |sim| node mustn't be effectful when |def| wasn't effectful.
MOZ_ASSERT((def->isEffectful() && sim->isEffectful()) ||
!sim->isEffectful());
// If both instructions are effectful, |sim| must have stolen the resume
// point of |def| when it's a new instruction.
MOZ_ASSERT_IF(def->isEffectful() && sim->isEffectful(),
!def->toInstruction()->resumePoint() &&
sim->toInstruction()->resumePoint());
def->block()->insertAfter(def->toInstruction(), sim->toInstruction());
}
#ifdef JS_JITSPEW
JitSpew(JitSpew_GVN, " Folded %s%u to %s%u", def->opName(), def->id(),
sim->opName(), sim->id());
#endif
MOZ_ASSERT(!sim->isDiscarded());
ReplaceAllUsesWith(def, sim);
// The node's foldsTo said |def| can be replaced by |rep|. If |def| is a
// guard, then either |rep| is also a guard, or a guard isn't actually
// needed, so we can clear |def|'s guard flag and let it be discarded.
def->setNotGuardUnchecked();
if (def->isGuardRangeBailouts()) {
sim->setGuardRangeBailoutsUnchecked();
}
if (sim->bailoutKind() == BailoutKind::Unknown) {
sim->setBailoutKind(def->bailoutKind());
}
// Discard |def| if it's now unused. Similar to guards, we allow to replace
// effectful instructions when the node's foldsTo method said |def| can be
// replaced.
if (DeadIfUnusedAllowEffectful(def)) {
if (!discardDefsRecursively(def, AllowEffectful::Yes)) {
return false;
}
// If that ended up discarding |sim|, then we're done here.
if (sim->isDiscarded()) {
return true;
}
}
if (!rerun_ && def->isPhi() && !sim->isPhi()) {
rerun_ = true;
JitSpew(JitSpew_GVN,
" Replacing phi%u may have enabled cascading optimisations; "
"will re-run",
def->id());
}
// Otherwise, procede to optimize with |sim| in place of |def|.
def = sim;
// If the simplified instruction was already part of the graph, then we
// probably already visited and optimized this instruction.
if (!isNewInstruction) {
return true;
}
}
// Now that foldsTo is done, re-enable the original dependency. Even though
// it may be pointing into a discarded block, it's still valid for the
// purposes of detecting congruent loads.
if (dep != nullptr) {
def->setDependency(dep);
}
// Look for a dominating def which makes |def| redundant.
MDefinition* rep = leader(def);
if (rep != def) {
if (rep == nullptr) {
return false;
}
if (rep->isPhi()) {
MOZ_ASSERT(def->isPhi());
rep->toPhi()->updateForReplacement(def->toPhi());
}
#ifdef JS_JITSPEW
JitSpew(JitSpew_GVN, " Replacing %s%u with %s%u", def->opName(),
def->id(), rep->opName(), rep->id());
#endif
ReplaceAllUsesWith(def, rep);
// The node's congruentTo said |def| is congruent to |rep|, and it's
// dominated by |rep|. If |def| is a guard, it's covered by |rep|,
// so we can clear |def|'s guard flag and let it be discarded.
def->setNotGuardUnchecked();
if (DeadIfUnused(def)) {
// discardDef should not add anything to the deadDefs, as the
// redundant operation should have the same input operands.
mozilla::DebugOnly<bool> r = discardDef(def);
MOZ_ASSERT(
r,
"discardDef shouldn't have tried to add anything to the worklist, "
"so it shouldn't have failed");
MOZ_ASSERT(deadDefs_.empty(),
"discardDef shouldn't have added anything to the worklist");
}
}
return true;
}
// Visit the control instruction at the end of |block|.
bool ValueNumberer::visitControlInstruction(MBasicBlock* block) {
// Look for a simplified form of the control instruction.
MControlInstruction* control = block->lastIns();
MDefinition* rep = simplified(control);
if (rep == control) {
return true;
}
if (rep == nullptr) {
return false;
}
MControlInstruction* newControl = rep->toControlInstruction();
MOZ_ASSERT(!newControl->block(),
"Control instruction replacement shouldn't already be in a block");
#ifdef JS_JITSPEW
JitSpew(JitSpew_GVN, " Folded control instruction %s%u to %s%u",
control->opName(), control->id(), newControl->opName(),
graph_.getNumInstructionIds());
#endif
// If the simplification removes any CFG edges, update the CFG and remove
// any blocks that become dead.
size_t oldNumSuccs = control->numSuccessors();
size_t newNumSuccs = newControl->numSuccessors();
if (newNumSuccs != oldNumSuccs) {
MOZ_ASSERT(newNumSuccs < oldNumSuccs,
"New control instruction has too many successors");
for (size_t i = 0; i != oldNumSuccs; ++i) {
MBasicBlock* succ = control->getSuccessor(i);
if (HasSuccessor(newControl, succ)) {
continue;
}
if (succ->isMarked()) {
continue;
}
if (!removePredecessorAndCleanUp(succ, block)) {
return false;
}
if (succ->isMarked()) {
continue;
}
if (!rerun_) {
if (!remainingBlocks_.append(succ)) {
return false;
}
}
}
}
if (!releaseOperands(control)) {
return false;
}
block->discardIgnoreOperands(control);
block->end(newControl);
if (block->entryResumePoint() && newNumSuccs != oldNumSuccs) {
block->flagOperandsOfPrunedBranches(newControl);
}
return processDeadDefs();
}
// |block| is unreachable. Mine it for opportunities to delete more dead
// code, and then discard it.
bool ValueNumberer::visitUnreachableBlock(MBasicBlock* block) {
JitSpew(JitSpew_GVN, " Visiting unreachable block%u%s%s%s", block->id(),
block->isLoopHeader() ? " (loop header)" : "",
block->isSplitEdge() ? " (split edge)" : "",
block->immediateDominator() == block ? " (dominator root)" : "");
MOZ_ASSERT(block->isMarked(),
"Visiting unmarked (and therefore reachable?) block");
MOZ_ASSERT(block->numPredecessors() == 0,
"Block marked unreachable still has predecessors");
MOZ_ASSERT(block != graph_.entryBlock(), "Removing normal entry block");
MOZ_ASSERT(block != graph_.osrBlock(), "Removing OSR entry block");
MOZ_ASSERT(deadDefs_.empty(), "deadDefs_ not cleared");
// Disconnect all outgoing CFG edges.
for (size_t i = 0, e = block->numSuccessors(); i < e; ++i) {
MBasicBlock* succ = block->getSuccessor(i);
if (succ->isDead() || succ->isMarked()) {
continue;
}
if (!removePredecessorAndCleanUp(succ, block)) {
return false;
}
if (succ->isMarked()) {
continue;
}
// |succ| is still reachable. Make a note of it so that we can scan
// it for interesting dominator tree changes later.
if (!rerun_) {
if (!remainingBlocks_.append(succ)) {
return false;
}
}
}
// Discard any instructions with no uses. The remaining instructions will be
// discarded when their last use is discarded.
MOZ_ASSERT(nextDef_ == nullptr);
for (MDefinitionIterator iter(block); iter;) {
MDefinition* def = *iter++;
if (def->hasUses()) {
continue;
}
nextDef_ = iter ? *iter : nullptr;
if (!discardDefsRecursively(def)) {
return false;
}
}
nextDef_ = nullptr;
MControlInstruction* control = block->lastIns();
return discardDefsRecursively(control);
}
// Visit all the phis and instructions |block|.
bool ValueNumberer::visitBlock(MBasicBlock* block) {
MOZ_ASSERT(!block->isMarked(), "Blocks marked unreachable during GVN");
MOZ_ASSERT(!block->isDead(), "Block to visit is already dead");
JitSpew(JitSpew_GVN, " Visiting block%u", block->id());
// Visit the definitions in the block top-down.
MOZ_ASSERT(nextDef_ == nullptr);
for (MDefinitionIterator iter(block); iter;) {
if (!graph_.alloc().ensureBallast()) {
return false;
}
MDefinition* def = *iter++;
// Remember where our iterator is so that we don't invalidate it.
nextDef_ = iter ? *iter : nullptr;
// If the definition is dead, discard it.
if (IsDiscardable(def)) {
if (!discardDefsRecursively(def)) {
return false;
}
continue;
}
if (!visitDefinition(def)) {
return false;
}
}
nextDef_ = nullptr;
if (!graph_.alloc().ensureBallast()) {
return false;
}
return visitControlInstruction(block);
}
// Visit all the blocks dominated by dominatorRoot.
bool ValueNumberer::visitDominatorTree(MBasicBlock* dominatorRoot) {
JitSpew(JitSpew_GVN,
" Visiting dominator tree (with %" PRIu64
" blocks) rooted at block%u%s",
uint64_t(dominatorRoot->numDominated()), dominatorRoot->id(),
dominatorRoot == graph_.entryBlock() ? " (normal entry block)"
: dominatorRoot == graph_.osrBlock() ? " (OSR entry block)"
: dominatorRoot->numPredecessors() == 0
? " (odd unreachable block)"
: " (merge point from normal entry and OSR entry)");
MOZ_ASSERT(dominatorRoot->immediateDominator() == dominatorRoot,
"root is not a dominator tree root");
// Visit all blocks dominated by dominatorRoot, in RPO. This has the nice
// property that we'll always visit a block before any block it dominates,
// so we can make a single pass through the list and see every full
// redundance.
size_t numVisited = 0;
size_t numDiscarded = 0;
for (ReversePostorderIterator iter(graph_.rpoBegin(dominatorRoot));;) {
MOZ_ASSERT(iter != graph_.rpoEnd(), "Inconsistent dominator information");
MBasicBlock* block = *iter++;
// We're only visiting blocks in dominatorRoot's tree right now.
if (!dominatorRoot->dominates(block)) {
continue;
}
// If this is a loop backedge, remember the header, as we may not be able
// to find it after we simplify the block.
MBasicBlock* header =
block->isLoopBackedge() ? block->loopHeaderOfBackedge() : nullptr;
if (block->isMarked()) {
// This block has become unreachable; handle it specially.
if (!visitUnreachableBlock(block)) {
return false;
}
++numDiscarded;
} else {
// Visit the block!
if (!visitBlock(block)) {
return false;
}
++numVisited;
}
// If the block is/was a loop backedge, check to see if the block that
// is/was its header has optimizable phis, which would want a re-run.
if (!rerun_ && header && loopHasOptimizablePhi(header)) {
JitSpew(JitSpew_GVN,
" Loop phi in block%u can now be optimized; will re-run GVN!",
header->id());
rerun_ = true;
remainingBlocks_.clear();
}
MOZ_ASSERT(numVisited <= dominatorRoot->numDominated() - numDiscarded,
"Visited blocks too many times");
if (numVisited >= dominatorRoot->numDominated() - numDiscarded) {
break;
}
}
totalNumVisited_ += numVisited;
values_.clear();
return true;
}
// Visit all the blocks in the graph.
bool ValueNumberer::visitGraph() {
// Due to OSR blocks, the set of blocks dominated by a blocks may not be
// contiguous in the RPO. Do a separate traversal for each dominator tree
// root. There's always the main entry, and sometimes there's an OSR entry,
// and then there are the roots formed where the OSR paths merge with the
// main entry paths.
for (ReversePostorderIterator iter(graph_.rpoBegin());;) {
MOZ_ASSERT(iter != graph_.rpoEnd(), "Inconsistent dominator information");
MBasicBlock* block = *iter;
if (block->immediateDominator() == block) {
if (!visitDominatorTree(block)) {
return false;
}
// Normally unreachable blocks would be removed by now, but if this
// block is a dominator tree root, it has been special-cased and left
// in place in order to avoid invalidating our iterator. Now that
// we've finished the tree, increment the iterator, and then if it's
// marked for removal, remove it.
++iter;
if (block->isMarked()) {
JitSpew(JitSpew_GVN, " Discarding dominator root block%u",
block->id());
MOZ_ASSERT(
block->begin() == block->end(),
"Unreachable dominator tree root has instructions after tree walk");
MOZ_ASSERT(block->phisEmpty(),
"Unreachable dominator tree root has phis after tree walk");
graph_.removeBlock(block);
blocksRemoved_ = true;
}
MOZ_ASSERT(totalNumVisited_ <= graph_.numBlocks(),
"Visited blocks too many times");
if (totalNumVisited_ >= graph_.numBlocks()) {
break;
}
} else {
// This block a dominator tree root. Proceed to the next one.
++iter;
}
}
totalNumVisited_ = 0;
return true;
}
bool ValueNumberer::insertOSRFixups() {
ReversePostorderIterator end(graph_.end());
for (ReversePostorderIterator iter(graph_.begin()); iter != end;) {
MBasicBlock* block = *iter++;
// Only add fixup block above for loops which can be reached from OSR.
if (!block->isLoopHeader()) {
continue;
}
// If the loop header is not self-dominated, then this loop does not
// have to deal with a second entry point, so there is no need to add a
// second entry point with a fixup block.
if (block->immediateDominator() != block) {
continue;
}
if (!fixupOSROnlyLoop(block)) {
return false;
}
}
return true;
}
// OSR fixups serve the purpose of representing the non-OSR entry into a loop
// when the only real entry is an OSR entry into the middle. However, if the
// entry into the middle is subsequently folded away, the loop may actually
// have become unreachable. Mark-and-sweep all blocks to remove all such code.
bool ValueNumberer::cleanupOSRFixups() {
// Mark.
Vector<MBasicBlock*, 0, JitAllocPolicy> worklist(graph_.alloc());
unsigned numMarked = 2;
graph_.entryBlock()->mark();
graph_.osrBlock()->mark();
if (!worklist.append(graph_.entryBlock()) ||
!worklist.append(graph_.osrBlock())) {
return false;
}
while (!worklist.empty()) {
MBasicBlock* block = worklist.popCopy();
for (size_t i = 0, e = block->numSuccessors(); i != e; ++i) {
MBasicBlock* succ = block->getSuccessor(i);
if (!succ->isMarked()) {
++numMarked;
succ->mark();
if (!worklist.append(succ)) {
return false;
}
} else if (succ->isLoopHeader() && succ->loopPredecessor() == block &&
succ->numPredecessors() == 3) {
// Unmark fixup blocks if the loop predecessor is marked after
// the loop header.
succ->getPredecessor(1)->unmarkUnchecked();
}
}
// OSR fixup blocks are needed if and only if the loop header is
// reachable from its backedge (via the OSR block) and not from its
// original loop predecessor.
//
// Thus OSR fixup blocks are removed if the loop header is not
// reachable, or if the loop header is reachable from both its backedge
// and its original loop predecessor.
if (block->isLoopHeader()) {
MBasicBlock* maybeFixupBlock = nullptr;
if (block->numPredecessors() == 2) {
maybeFixupBlock = block->getPredecessor(0);
} else {
MOZ_ASSERT(block->numPredecessors() == 3);
if (!block->loopPredecessor()->isMarked()) {
maybeFixupBlock = block->getPredecessor(1);
}
}
if (maybeFixupBlock && !maybeFixupBlock->isMarked() &&
maybeFixupBlock->numPredecessors() == 0) {
MOZ_ASSERT(maybeFixupBlock->numSuccessors() == 1,
"OSR fixup block should have exactly one successor");
MOZ_ASSERT(maybeFixupBlock != graph_.entryBlock(),
"OSR fixup block shouldn't be the entry block");
MOZ_ASSERT(maybeFixupBlock != graph_.osrBlock(),
"OSR fixup block shouldn't be the OSR entry block");
maybeFixupBlock->mark();
}
}
}
// And sweep.
return RemoveUnmarkedBlocks(mir_, graph_, numMarked);
}
ValueNumberer::ValueNumberer(MIRGenerator* mir, MIRGraph& graph)
: mir_(mir),
graph_(graph),
// Initialize the value set. It's tempting to pass in a length that is a
// function of graph_.getNumInstructionIds(). But if we start out with a
// large capacity, it will be far larger than the actual element count for
// most of the pass, so when we remove elements, it would often think it
// needs to compact itself. Empirically, just letting the HashTable grow
// as needed on its own seems to work pretty well.
values_(graph.alloc()),
deadDefs_(graph.alloc()),
remainingBlocks_(graph.alloc()),
nextDef_(nullptr),
totalNumVisited_(0),
rerun_(false),
blocksRemoved_(false),
updateAliasAnalysis_(false),
dependenciesBroken_(false),
hasOSRFixups_(false) {}
bool ValueNumberer::run(UpdateAliasAnalysisFlag updateAliasAnalysis) {
updateAliasAnalysis_ = updateAliasAnalysis == UpdateAliasAnalysis;
JitSpew(JitSpew_GVN, "Running GVN on graph (with %" PRIu64 " blocks)",
uint64_t(graph_.numBlocks()));
// Adding fixup blocks only make sense iff we have a second entry point into
// the graph which cannot be reached any more from the entry point.
if (graph_.osrBlock()) {
if (!insertOSRFixups()) {
return false;
}
}
// Top level non-sparse iteration loop. If an iteration performs a
// significant change, such as discarding a block which changes the
// dominator tree and may enable more optimization, this loop takes another
// iteration.
int runs = 0;
for (;;) {
if (!visitGraph()) {
return false;
}
// Test whether any block which was not removed but which had at least
// one predecessor removed will have a new dominator parent.
while (!remainingBlocks_.empty()) {
MBasicBlock* block = remainingBlocks_.popCopy();
if (!block->isDead() && IsDominatorRefined(block)) {
JitSpew(JitSpew_GVN,
" Dominator for block%u can now be refined; will re-run GVN!",
block->id());
rerun_ = true;
remainingBlocks_.clear();
break;
}
}
if (blocksRemoved_) {
if (!AccountForCFGChanges(mir_, graph_, dependenciesBroken_,
/* underValueNumberer = */ true)) {
return false;
}
blocksRemoved_ = false;
dependenciesBroken_ = false;
}
if (mir_->shouldCancel("GVN (outer loop)")) {
return false;
}
// If no further opportunities have been discovered, we're done.
if (!rerun_) {
break;
}
rerun_ = false;
// Enforce an arbitrary iteration limit. This is rarely reached, and
// isn't even strictly necessary, as the algorithm is guaranteed to
// terminate on its own in a finite amount of time (since every time we
// re-run we discard the construct which triggered the re-run), but it
// does help avoid slow compile times on pathological code.
++runs;
if (runs == 6) {
JitSpew(JitSpew_GVN, "Re-run cutoff of %d reached. Terminating GVN!",
runs);
break;
}
JitSpew(JitSpew_GVN,
"Re-running GVN on graph (run %d, now with %" PRIu64 " blocks)",
runs, uint64_t(graph_.numBlocks()));
}
if (MOZ_UNLIKELY(hasOSRFixups_)) {
if (!cleanupOSRFixups()) {
return false;
}
hasOSRFixups_ = false;
}
return true;
}
|