1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "jit/mips32/Lowering-mips32.h"
#include "jit/Lowering.h"
#include "jit/mips32/Assembler-mips32.h"
#include "jit/MIR.h"
#include "jit/shared/Lowering-shared-inl.h"
using namespace js;
using namespace js::jit;
LBoxAllocation LIRGeneratorMIPS::useBoxFixed(MDefinition* mir, Register reg1,
Register reg2, bool useAtStart) {
MOZ_ASSERT(mir->type() == MIRType::Value);
MOZ_ASSERT(reg1 != reg2);
ensureDefined(mir);
return LBoxAllocation(LUse(reg1, mir->virtualRegister(), useAtStart),
LUse(reg2, VirtualRegisterOfPayload(mir), useAtStart));
}
void LIRGenerator::visitBox(MBox* box) {
MDefinition* inner = box->getOperand(0);
// If the box wrapped a double, it needs a new register.
if (IsFloatingPointType(inner->type())) {
defineBox(new (alloc()) LBoxFloatingPoint(
useRegisterAtStart(inner), tempCopy(inner, 0), inner->type()),
box);
return;
}
if (box->canEmitAtUses()) {
emitAtUses(box);
return;
}
if (inner->isConstant()) {
defineBox(new (alloc()) LValue(inner->toConstant()->toJSValue()), box);
return;
}
LBox* lir = new (alloc()) LBox(use(inner), inner->type());
// Otherwise, we should not define a new register for the payload portion
// of the output, so bypass defineBox().
uint32_t vreg = getVirtualRegister();
// Note that because we're using BogusTemp(), we do not change the type of
// the definition. We also do not define the first output as "TYPE",
// because it has no corresponding payload at (vreg + 1). Also note that
// although we copy the input's original type for the payload half of the
// definition, this is only for clarity. BogusTemp() definitions are
// ignored.
lir->setDef(0, LDefinition(vreg, LDefinition::GENERAL));
lir->setDef(1, LDefinition::BogusTemp());
box->setVirtualRegister(vreg);
add(lir);
}
void LIRGenerator::visitUnbox(MUnbox* unbox) {
MDefinition* inner = unbox->getOperand(0);
// An unbox on mips reads in a type tag (either in memory or a register) and
// a payload. Unlike most instructions consuming a box, we ask for the type
// second, so that the result can re-use the first input.
MOZ_ASSERT(inner->type() == MIRType::Value);
ensureDefined(inner);
if (IsFloatingPointType(unbox->type())) {
LUnboxFloatingPoint* lir =
new (alloc()) LUnboxFloatingPoint(useBox(inner), unbox->type());
if (unbox->fallible()) {
assignSnapshot(lir, unbox->bailoutKind());
}
define(lir, unbox);
return;
}
// Swap the order we use the box pieces so we can re-use the payload
// register.
LUnbox* lir = new (alloc()) LUnbox;
lir->setOperand(0, usePayloadInRegisterAtStart(inner));
lir->setOperand(1, useType(inner, LUse::REGISTER));
if (unbox->fallible()) {
assignSnapshot(lir, unbox->bailoutKind());
}
// Types and payloads form two separate intervals. If the type becomes dead
// before the payload, it could be used as a Value without the type being
// recoverable. Unbox's purpose is to eagerly kill the definition of a type
// tag, so keeping both alive (for the purpose of gcmaps) is unappealing.
// Instead, we create a new virtual register.
defineReuseInput(lir, unbox, 0);
}
void LIRGenerator::visitReturnImpl(MDefinition* opd, bool isGenerator) {
MOZ_ASSERT(opd->type() == MIRType::Value);
LReturn* ins = new (alloc()) LReturn(isGenerator);
ins->setOperand(0, LUse(JSReturnReg_Type));
ins->setOperand(1, LUse(JSReturnReg_Data));
fillBoxUses(ins, 0, opd);
add(ins);
}
void LIRGeneratorMIPS::lowerUntypedPhiInput(MPhi* phi, uint32_t inputPosition,
LBlock* block, size_t lirIndex) {
MDefinition* operand = phi->getOperand(inputPosition);
LPhi* type = block->getPhi(lirIndex + VREG_TYPE_OFFSET);
LPhi* payload = block->getPhi(lirIndex + VREG_DATA_OFFSET);
type->setOperand(
inputPosition,
LUse(operand->virtualRegister() + VREG_TYPE_OFFSET, LUse::ANY));
payload->setOperand(inputPosition,
LUse(VirtualRegisterOfPayload(operand), LUse::ANY));
}
void LIRGeneratorMIPS::defineInt64Phi(MPhi* phi, size_t lirIndex) {
LPhi* low = current->getPhi(lirIndex + INT64LOW_INDEX);
LPhi* high = current->getPhi(lirIndex + INT64HIGH_INDEX);
uint32_t lowVreg = getVirtualRegister();
phi->setVirtualRegister(lowVreg);
uint32_t highVreg = getVirtualRegister();
MOZ_ASSERT(lowVreg + INT64HIGH_INDEX == highVreg + INT64LOW_INDEX);
low->setDef(0, LDefinition(lowVreg, LDefinition::INT32));
high->setDef(0, LDefinition(highVreg, LDefinition::INT32));
annotate(high);
annotate(low);
}
void LIRGeneratorMIPS::lowerInt64PhiInput(MPhi* phi, uint32_t inputPosition,
LBlock* block, size_t lirIndex) {
MDefinition* operand = phi->getOperand(inputPosition);
LPhi* low = block->getPhi(lirIndex + INT64LOW_INDEX);
LPhi* high = block->getPhi(lirIndex + INT64HIGH_INDEX);
low->setOperand(inputPosition,
LUse(operand->virtualRegister() + INT64LOW_INDEX, LUse::ANY));
high->setOperand(
inputPosition,
LUse(operand->virtualRegister() + INT64HIGH_INDEX, LUse::ANY));
}
void LIRGeneratorMIPS::lowerTruncateDToInt32(MTruncateToInt32* ins) {
MDefinition* opd = ins->input();
MOZ_ASSERT(opd->type() == MIRType::Double);
define(new (alloc())
LTruncateDToInt32(useRegister(opd), LDefinition::BogusTemp()),
ins);
}
void LIRGeneratorMIPS::lowerTruncateFToInt32(MTruncateToInt32* ins) {
MDefinition* opd = ins->input();
MOZ_ASSERT(opd->type() == MIRType::Float32);
define(new (alloc())
LTruncateFToInt32(useRegister(opd), LDefinition::BogusTemp()),
ins);
}
void LIRGeneratorMIPS::lowerDivI64(MDiv* div) {
if (div->isUnsigned()) {
lowerUDivI64(div);
return;
}
LDivOrModI64* lir = new (alloc()) LDivOrModI64(
useInt64RegisterAtStart(div->lhs()), useInt64RegisterAtStart(div->rhs()));
defineReturn(lir, div);
}
void LIRGeneratorMIPS::lowerWasmBuiltinDivI64(MWasmBuiltinDivI64* div) {
MOZ_CRASH("We don't use runtime div for this architecture");
}
void LIRGeneratorMIPS::lowerModI64(MMod* mod) {
if (mod->isUnsigned()) {
lowerUModI64(mod);
return;
}
LDivOrModI64* lir = new (alloc()) LDivOrModI64(
useInt64RegisterAtStart(mod->lhs()), useInt64RegisterAtStart(mod->rhs()));
defineReturn(lir, mod);
}
void LIRGeneratorMIPS::lowerWasmBuiltinModI64(MWasmBuiltinModI64* mod) {
MOZ_CRASH("We don't use runtime mod for this architecture");
}
void LIRGeneratorMIPS::lowerUDivI64(MDiv* div) {
LUDivOrModI64* lir = new (alloc()) LUDivOrModI64(
useInt64RegisterAtStart(div->lhs()), useInt64RegisterAtStart(div->rhs()));
defineReturn(lir, div);
}
void LIRGeneratorMIPS::lowerUModI64(MMod* mod) {
LUDivOrModI64* lir = new (alloc()) LUDivOrModI64(
useInt64RegisterAtStart(mod->lhs()), useInt64RegisterAtStart(mod->rhs()));
defineReturn(lir, mod);
}
void LIRGeneratorMIPS::lowerBigIntDiv(MBigIntDiv* ins) {
auto* lir = new (alloc()) LBigIntDiv(useRegister(ins->lhs()),
useRegister(ins->rhs()), temp(), temp());
define(lir, ins);
assignSafepoint(lir, ins);
}
void LIRGeneratorMIPS::lowerBigIntMod(MBigIntMod* ins) {
auto* lir = new (alloc()) LBigIntMod(useRegister(ins->lhs()),
useRegister(ins->rhs()), temp(), temp());
define(lir, ins);
assignSafepoint(lir, ins);
}
void LIRGenerator::visitWasmTruncateToInt64(MWasmTruncateToInt64* ins) {
MDefinition* opd = ins->input();
MOZ_ASSERT(opd->type() == MIRType::Double || opd->type() == MIRType::Float32);
defineReturn(new (alloc()) LWasmTruncateToInt64(useRegisterAtStart(opd)),
ins);
}
void LIRGeneratorMIPS::lowerWasmBuiltinTruncateToInt64(
MWasmBuiltinTruncateToInt64* ins) {
MOZ_CRASH("We don't use it for this architecture");
}
void LIRGenerator::visitInt64ToFloatingPoint(MInt64ToFloatingPoint* ins) {
MDefinition* opd = ins->input();
MOZ_ASSERT(opd->type() == MIRType::Int64);
MOZ_ASSERT(IsFloatingPointType(ins->type()));
defineReturn(
new (alloc()) LInt64ToFloatingPoint(useInt64RegisterAtStart(opd)), ins);
}
void LIRGeneratorMIPS::lowerBuiltinInt64ToFloatingPoint(
MBuiltinInt64ToFloatingPoint* ins) {
MOZ_CRASH("We don't use it for this architecture");
}
|