1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
|
// Copyright 2013 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Performance.now is used in latency benchmarks, the fallback is Date.now.
var performance = performance || {};
performance.now = (function() {
return performance.now ||
performance.mozNow ||
performance.msNow ||
performance.oNow ||
performance.webkitNow ||
Date.now;
})();
// Simple framework for running the benchmark suites and
// computing a score based on the timing measurements.
// A benchmark has a name (string) and a function that will be run to
// do the performance measurement. The optional setup and tearDown
// arguments are functions that will be invoked before and after
// running the benchmark, but the running time of these functions will
// not be accounted for in the benchmark score.
function Benchmark(name, doWarmup, doDeterministic, deterministicIterations,
run, setup, tearDown, rmsResult, minIterations) {
this.name = name;
this.doWarmup = doWarmup;
this.doDeterministic = doDeterministic;
this.deterministicIterations = deterministicIterations;
this.run = run;
this.Setup = setup ? setup : function() { };
this.TearDown = tearDown ? tearDown : function() { };
this.rmsResult = rmsResult ? rmsResult : null;
this.minIterations = minIterations ? minIterations : 32;
}
// Benchmark results hold the benchmark and the measured time used to
// run the benchmark. The benchmark score is computed later once a
// full benchmark suite has run to completion. If latency is set to 0
// then there is no latency score for this benchmark.
function BenchmarkResult(benchmark, time, latency) {
this.benchmark = benchmark;
this.time = time;
this.latency = latency;
}
// Automatically convert results to numbers. Used by the geometric
// mean computation.
BenchmarkResult.prototype.valueOf = function() {
return this.time;
}
// Suites of benchmarks consist of a name and the set of benchmarks in
// addition to the reference timing that the final score will be based
// on. This way, all scores are relative to a reference run and higher
// scores implies better performance.
function BenchmarkSuite(name, reference, benchmarks) {
this.name = name;
this.reference = reference;
this.benchmarks = benchmarks;
BenchmarkSuite.suites.push(this);
}
// Keep track of all declared benchmark suites.
BenchmarkSuite.suites = [];
// Scores are not comparable across versions. Bump the version if
// you're making changes that will affect that scores, e.g. if you add
// a new benchmark or change an existing one.
BenchmarkSuite.version = '9';
// Defines global benchsuite running mode that overrides benchmark suite
// behavior. Intended to be set by the benchmark driver. Undefined
// values here allow a benchmark to define behaviour itself.
BenchmarkSuite.config = {
doWarmup: undefined,
doDeterministic: undefined
};
// Override the alert function to throw an exception instead.
alert = function(s) {
throw "Alert called with argument: " + s;
};
// To make the benchmark results predictable, we replace Math.random
// with a 100% deterministic alternative.
BenchmarkSuite.ResetRNG = function() {
Math.random = (function() {
var seed = 49734321;
return function() {
// Robert Jenkins' 32 bit integer hash function.
seed = ((seed + 0x7ed55d16) + (seed << 12)) & 0xffffffff;
seed = ((seed ^ 0xc761c23c) ^ (seed >>> 19)) & 0xffffffff;
seed = ((seed + 0x165667b1) + (seed << 5)) & 0xffffffff;
seed = ((seed + 0xd3a2646c) ^ (seed << 9)) & 0xffffffff;
seed = ((seed + 0xfd7046c5) + (seed << 3)) & 0xffffffff;
seed = ((seed ^ 0xb55a4f09) ^ (seed >>> 16)) & 0xffffffff;
return (seed & 0xfffffff) / 0x10000000;
};
})();
}
// Runs all registered benchmark suites and optionally yields between
// each individual benchmark to avoid running for too long in the
// context of browsers. Once done, the final score is reported to the
// runner.
BenchmarkSuite.RunSuites = function(runner, skipBenchmarks) {
skipBenchmarks = typeof skipBenchmarks === 'undefined' ? [] : skipBenchmarks;
var continuation = null;
var suites = BenchmarkSuite.suites;
var length = suites.length;
BenchmarkSuite.scores = [];
var index = 0;
function RunStep() {
while (continuation || index < length) {
if (continuation) {
continuation = continuation();
} else {
var suite = suites[index++];
if (runner.NotifyStart) runner.NotifyStart(suite.name);
if (skipBenchmarks.indexOf(suite.name) > -1) {
suite.NotifySkipped(runner);
} else {
continuation = suite.RunStep(runner);
}
}
if (continuation && typeof window != 'undefined' && window.setTimeout) {
window.setTimeout(RunStep, 25);
return;
}
}
// show final result
if (runner.NotifyScore) {
var score = BenchmarkSuite.GeometricMean(BenchmarkSuite.scores);
var formatted = BenchmarkSuite.FormatScore(100 * score);
runner.NotifyScore(formatted);
}
}
RunStep();
}
// Counts the total number of registered benchmarks. Useful for
// showing progress as a percentage.
BenchmarkSuite.CountBenchmarks = function() {
var result = 0;
var suites = BenchmarkSuite.suites;
for (var i = 0; i < suites.length; i++) {
result += suites[i].benchmarks.length;
}
return result;
}
// Computes the geometric mean of a set of numbers.
BenchmarkSuite.GeometricMean = function(numbers) {
var log = 0;
for (var i = 0; i < numbers.length; i++) {
log += Math.log(numbers[i]);
}
return Math.pow(Math.E, log / numbers.length);
}
// Computes the geometric mean of a set of throughput time measurements.
BenchmarkSuite.GeometricMeanTime = function(measurements) {
var log = 0;
for (var i = 0; i < measurements.length; i++) {
log += Math.log(measurements[i].time);
}
return Math.pow(Math.E, log / measurements.length);
}
// Computes the geometric mean of a set of rms measurements.
BenchmarkSuite.GeometricMeanLatency = function(measurements) {
var log = 0;
var hasLatencyResult = false;
for (var i = 0; i < measurements.length; i++) {
if (measurements[i].latency != 0) {
log += Math.log(measurements[i].latency);
hasLatencyResult = true;
}
}
if (hasLatencyResult) {
return Math.pow(Math.E, log / measurements.length);
} else {
return 0;
}
}
// Converts a score value to a string with at least three significant
// digits.
BenchmarkSuite.FormatScore = function(value) {
if (value > 100) {
return value.toFixed(0);
} else {
return value.toPrecision(3);
}
}
// Notifies the runner that we're done running a single benchmark in
// the benchmark suite. This can be useful to report progress.
BenchmarkSuite.prototype.NotifyStep = function(result) {
this.results.push(result);
if (this.runner.NotifyStep) this.runner.NotifyStep(result.benchmark.name);
}
// Notifies the runner that we're done with running a suite and that
// we have a result which can be reported to the user if needed.
BenchmarkSuite.prototype.NotifyResult = function() {
var mean = BenchmarkSuite.GeometricMeanTime(this.results);
var score = this.reference[0] / mean;
BenchmarkSuite.scores.push(score);
if (this.runner.NotifyResult) {
var formatted = BenchmarkSuite.FormatScore(100 * score);
this.runner.NotifyResult(this.name, formatted);
}
if (this.reference.length == 2) {
var meanLatency = BenchmarkSuite.GeometricMeanLatency(this.results);
if (meanLatency != 0) {
var scoreLatency = this.reference[1] / meanLatency;
BenchmarkSuite.scores.push(scoreLatency);
if (this.runner.NotifyResult) {
var formattedLatency = BenchmarkSuite.FormatScore(100 * scoreLatency)
this.runner.NotifyResult(this.name + "Latency", formattedLatency);
}
}
}
}
BenchmarkSuite.prototype.NotifySkipped = function(runner) {
BenchmarkSuite.scores.push(1); // push default reference score.
if (runner.NotifyResult) {
runner.NotifyResult(this.name, "Skipped");
}
}
// Notifies the runner that running a benchmark resulted in an error.
BenchmarkSuite.prototype.NotifyError = function(error) {
if (this.runner.NotifyError) {
this.runner.NotifyError(this.name, error);
}
if (this.runner.NotifyStep) {
this.runner.NotifyStep(this.name);
}
}
// Runs a single benchmark for at least a second and computes the
// average time it takes to run a single iteration.
BenchmarkSuite.prototype.RunSingleBenchmark = function(benchmark, data) {
var config = BenchmarkSuite.config;
var doWarmup = config.doWarmup !== undefined
? config.doWarmup
: benchmark.doWarmup;
var doDeterministic = config.doDeterministic !== undefined
? config.doDeterministic
: benchmark.doDeterministic;
function Measure(data) {
var elapsed = 0;
var start = new Date();
// Run either for 1 second or for the number of iterations specified
// by minIterations, depending on the config flag doDeterministic.
for (var i = 0; (doDeterministic ?
i<benchmark.deterministicIterations : elapsed < 1000); i++) {
benchmark.run();
elapsed = new Date() - start;
}
if (data != null) {
data.runs += i;
data.elapsed += elapsed;
}
}
// Sets up data in order to skip or not the warmup phase.
if (!doWarmup && data == null) {
data = { runs: 0, elapsed: 0 };
}
if (data == null) {
Measure(null);
return { runs: 0, elapsed: 0 };
} else {
Measure(data);
// If we've run too few iterations, we continue for another second.
if (data.runs < benchmark.minIterations) return data;
var usec = (data.elapsed * 1000) / data.runs;
var rms = (benchmark.rmsResult != null) ? benchmark.rmsResult() : 0;
this.NotifyStep(new BenchmarkResult(benchmark, usec, rms));
return null;
}
}
// This function starts running a suite, but stops between each
// individual benchmark in the suite and returns a continuation
// function which can be invoked to run the next benchmark. Once the
// last benchmark has been executed, null is returned.
BenchmarkSuite.prototype.RunStep = function(runner) {
BenchmarkSuite.ResetRNG();
this.results = [];
this.runner = runner;
var length = this.benchmarks.length;
var index = 0;
var suite = this;
var data;
// Run the setup, the actual benchmark, and the tear down in three
// separate steps to allow the framework to yield between any of the
// steps.
function RunNextSetup() {
if (index < length) {
try {
suite.benchmarks[index].Setup();
} catch (e) {
suite.NotifyError(e);
return null;
}
return RunNextBenchmark;
}
suite.NotifyResult();
return null;
}
function RunNextBenchmark() {
try {
data = suite.RunSingleBenchmark(suite.benchmarks[index], data);
} catch (e) {
suite.NotifyError(e);
return null;
}
// If data is null, we're done with this benchmark.
return (data == null) ? RunNextTearDown : RunNextBenchmark();
}
function RunNextTearDown() {
try {
suite.benchmarks[index++].TearDown();
} catch (e) {
suite.NotifyError(e);
return null;
}
return RunNextSetup;
}
// Start out running the setup.
return RunNextSetup();
}
|