1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "vm/NativeObject-inl.h"
#include "mozilla/Casting.h"
#include "mozilla/CheckedInt.h"
#include "mozilla/Maybe.h"
#include <algorithm>
#include <iterator>
#include "gc/MaybeRooted.h"
#include "gc/StableCellHasher.h"
#include "js/friend/ErrorMessages.h" // js::GetErrorMessage, JSMSG_*
#include "js/friend/StackLimits.h" // js::AutoCheckRecursionLimit
#include "js/Value.h"
#include "vm/EqualityOperations.h" // js::SameValue
#include "vm/GetterSetter.h" // js::GetterSetter
#include "vm/Interpreter.h" // js::CallGetter, js::CallSetter
#include "vm/PlainObject.h" // js::PlainObject
#include "vm/TypedArrayObject.h"
#ifdef ENABLE_RECORD_TUPLE
# include "builtin/RecordObject.h"
# include "builtin/TupleObject.h"
# include "vm/RecordTupleShared.h"
#endif
#include "gc/Nursery-inl.h"
#include "vm/JSObject-inl.h"
#include "vm/Shape-inl.h"
using namespace js;
using JS::AutoCheckCannotGC;
using mozilla::CheckedInt;
using mozilla::PodCopy;
using mozilla::RoundUpPow2;
struct EmptyObjectElements {
const ObjectElements emptyElementsHeader;
// Add an extra (unused) Value to make sure an out-of-bounds index when
// masked (resulting in index 0) accesses valid memory.
const Value val;
public:
constexpr EmptyObjectElements()
: emptyElementsHeader(0, 0), val(UndefinedValue()) {}
explicit constexpr EmptyObjectElements(ObjectElements::SharedMemory shmem)
: emptyElementsHeader(0, 0, shmem), val(UndefinedValue()) {}
};
static constexpr EmptyObjectElements emptyElementsHeader;
/* Objects with no elements share one empty set of elements. */
HeapSlot* const js::emptyObjectElements = reinterpret_cast<HeapSlot*>(
uintptr_t(&emptyElementsHeader) + sizeof(ObjectElements));
static constexpr EmptyObjectElements emptyElementsHeaderShared(
ObjectElements::SharedMemory::IsShared);
/* Objects with no elements share one empty set of elements. */
HeapSlot* const js::emptyObjectElementsShared = reinterpret_cast<HeapSlot*>(
uintptr_t(&emptyElementsHeaderShared) + sizeof(ObjectElements));
struct EmptyObjectSlots : public ObjectSlots {
explicit constexpr EmptyObjectSlots(size_t dictionarySlotSpan)
: ObjectSlots(0, dictionarySlotSpan, NoUniqueIdInSharedEmptySlots) {}
};
static constexpr EmptyObjectSlots emptyObjectSlotsHeaders[17] = {
EmptyObjectSlots(0), EmptyObjectSlots(1), EmptyObjectSlots(2),
EmptyObjectSlots(3), EmptyObjectSlots(4), EmptyObjectSlots(5),
EmptyObjectSlots(6), EmptyObjectSlots(7), EmptyObjectSlots(8),
EmptyObjectSlots(9), EmptyObjectSlots(10), EmptyObjectSlots(11),
EmptyObjectSlots(12), EmptyObjectSlots(13), EmptyObjectSlots(14),
EmptyObjectSlots(15), EmptyObjectSlots(16)};
static_assert(std::size(emptyObjectSlotsHeaders) ==
NativeObject::MAX_FIXED_SLOTS + 1);
HeapSlot* const js::emptyObjectSlotsForDictionaryObject[17] = {
emptyObjectSlotsHeaders[0].slots(), emptyObjectSlotsHeaders[1].slots(),
emptyObjectSlotsHeaders[2].slots(), emptyObjectSlotsHeaders[3].slots(),
emptyObjectSlotsHeaders[4].slots(), emptyObjectSlotsHeaders[5].slots(),
emptyObjectSlotsHeaders[6].slots(), emptyObjectSlotsHeaders[7].slots(),
emptyObjectSlotsHeaders[8].slots(), emptyObjectSlotsHeaders[9].slots(),
emptyObjectSlotsHeaders[10].slots(), emptyObjectSlotsHeaders[11].slots(),
emptyObjectSlotsHeaders[12].slots(), emptyObjectSlotsHeaders[13].slots(),
emptyObjectSlotsHeaders[14].slots(), emptyObjectSlotsHeaders[15].slots(),
emptyObjectSlotsHeaders[16].slots()};
static_assert(std::size(emptyObjectSlotsForDictionaryObject) ==
NativeObject::MAX_FIXED_SLOTS + 1);
HeapSlot* const js::emptyObjectSlots = emptyObjectSlotsForDictionaryObject[0];
#ifdef DEBUG
bool NativeObject::canHaveNonEmptyElements() {
return !this->is<TypedArrayObject>();
}
#endif // DEBUG
/* static */
void ObjectElements::PrepareForPreventExtensions(JSContext* cx,
NativeObject* obj) {
if (!obj->hasEmptyElements()) {
obj->shrinkCapacityToInitializedLength(cx);
}
// shrinkCapacityToInitializedLength ensures there are no shifted elements.
MOZ_ASSERT(obj->getElementsHeader()->numShiftedElements() == 0);
}
/* static */
void ObjectElements::PreventExtensions(NativeObject* obj) {
MOZ_ASSERT(!obj->isExtensible());
MOZ_ASSERT(obj->getElementsHeader()->numShiftedElements() == 0);
MOZ_ASSERT(obj->getDenseInitializedLength() == obj->getDenseCapacity());
if (!obj->hasEmptyElements()) {
obj->getElementsHeader()->setNotExtensible();
}
}
/* static */
bool ObjectElements::FreezeOrSeal(JSContext* cx, Handle<NativeObject*> obj,
IntegrityLevel level) {
MOZ_ASSERT_IF(level == IntegrityLevel::Frozen && obj->is<ArrayObject>(),
!obj->as<ArrayObject>().lengthIsWritable());
MOZ_ASSERT(!obj->isExtensible());
MOZ_ASSERT(obj->getElementsHeader()->numShiftedElements() == 0);
if (obj->hasEmptyElements() || obj->denseElementsAreFrozen()) {
return true;
}
if (level == IntegrityLevel::Frozen) {
if (!JSObject::setFlag(cx, obj, ObjectFlag::FrozenElements)) {
return false;
}
}
if (!obj->denseElementsAreSealed()) {
obj->getElementsHeader()->seal();
}
if (level == IntegrityLevel::Frozen) {
obj->getElementsHeader()->freeze();
}
return true;
}
#ifdef DEBUG
static mozilla::Atomic<bool, mozilla::Relaxed> gShapeConsistencyChecksEnabled(
false);
/* static */
void js::NativeObject::enableShapeConsistencyChecks() {
gShapeConsistencyChecksEnabled = true;
}
void js::NativeObject::checkShapeConsistency() {
if (!gShapeConsistencyChecksEnabled) {
return;
}
MOZ_ASSERT(is<NativeObject>());
if (PropMap* map = shape()->propMap()) {
map->checkConsistency(this);
} else {
MOZ_ASSERT(shape()->propMapLength() == 0);
}
}
#endif
#ifdef DEBUG
bool js::NativeObject::slotInRange(uint32_t slot,
SentinelAllowed sentinel) const {
MOZ_ASSERT(!gc::IsForwarded(shape()));
uint32_t capacity = numFixedSlots() + numDynamicSlots();
if (sentinel == SENTINEL_ALLOWED) {
return slot <= capacity;
}
return slot < capacity;
}
bool js::NativeObject::slotIsFixed(uint32_t slot) const {
// We call numFixedSlotsMaybeForwarded() to allow reading slots of
// associated objects in trace hooks that may be called during a moving GC.
return slot < numFixedSlotsMaybeForwarded();
}
bool js::NativeObject::isNumFixedSlots(uint32_t nfixed) const {
// We call numFixedSlotsMaybeForwarded() to allow reading slots of
// associated objects in trace hooks that may be called during a moving GC.
return nfixed == numFixedSlotsMaybeForwarded();
}
uint32_t js::NativeObject::outOfLineNumDynamicSlots() const {
return numDynamicSlots();
}
#endif /* DEBUG */
mozilla::Maybe<PropertyInfo> js::NativeObject::lookup(JSContext* cx, jsid id) {
MOZ_ASSERT(is<NativeObject>());
uint32_t index;
if (PropMap* map = shape()->lookup(cx, id, &index)) {
return mozilla::Some(map->getPropertyInfo(index));
}
return mozilla::Nothing();
}
mozilla::Maybe<PropertyInfo> js::NativeObject::lookupPure(jsid id) {
MOZ_ASSERT(is<NativeObject>());
uint32_t index;
if (PropMap* map = shape()->lookupPure(id, &index)) {
return mozilla::Some(map->getPropertyInfo(index));
}
return mozilla::Nothing();
}
bool NativeObject::setUniqueId(JSContext* cx, uint64_t uid) {
MOZ_ASSERT(!hasUniqueId());
MOZ_ASSERT(!gc::HasUniqueId(this));
return setOrUpdateUniqueId(cx, uid);
}
bool NativeObject::setOrUpdateUniqueId(JSContext* cx, uint64_t uid) {
if (!hasDynamicSlots() && !allocateSlots(cx, 0)) {
return false;
}
getSlotsHeader()->setUniqueId(uid);
return true;
}
bool NativeObject::growSlots(JSContext* cx, uint32_t oldCapacity,
uint32_t newCapacity) {
MOZ_ASSERT(newCapacity > oldCapacity);
/*
* Slot capacities are determined by the span of allocated objects. Due to
* the limited number of bits to store shape slots, object growth is
* throttled well before the slot capacity can overflow.
*/
NativeObject::slotsSizeMustNotOverflow();
MOZ_ASSERT(newCapacity <= MAX_SLOTS_COUNT);
if (!hasDynamicSlots()) {
return allocateSlots(cx, newCapacity);
}
uint64_t uid = maybeUniqueId();
uint32_t newAllocated = ObjectSlots::allocCount(newCapacity);
uint32_t dictionarySpan = getSlotsHeader()->dictionarySlotSpan();
uint32_t oldAllocated = ObjectSlots::allocCount(oldCapacity);
ObjectSlots* oldHeaderSlots = ObjectSlots::fromSlots(slots_);
MOZ_ASSERT(oldHeaderSlots->capacity() == oldCapacity);
HeapSlot* allocation = ReallocateObjectBuffer<HeapSlot>(
cx, this, reinterpret_cast<HeapSlot*>(oldHeaderSlots), oldAllocated,
newAllocated);
if (!allocation) {
return false; /* Leave slots at its old size. */
}
auto* newHeaderSlots =
new (allocation) ObjectSlots(newCapacity, dictionarySpan, uid);
slots_ = newHeaderSlots->slots();
Debug_SetSlotRangeToCrashOnTouch(slots_ + oldCapacity,
newCapacity - oldCapacity);
RemoveCellMemory(this, ObjectSlots::allocSize(oldCapacity),
MemoryUse::ObjectSlots);
AddCellMemory(this, ObjectSlots::allocSize(newCapacity),
MemoryUse::ObjectSlots);
MOZ_ASSERT(hasDynamicSlots());
return true;
}
bool NativeObject::growSlotsForNewSlot(JSContext* cx, uint32_t numFixed,
uint32_t slot) {
MOZ_ASSERT(slotSpan() == slot);
MOZ_ASSERT(shape()->numFixedSlots() == numFixed);
MOZ_ASSERT(slot >= numFixed);
uint32_t newCapacity = calculateDynamicSlots(numFixed, slot + 1, getClass());
uint32_t oldCapacity = numDynamicSlots();
MOZ_ASSERT(oldCapacity < newCapacity);
return growSlots(cx, oldCapacity, newCapacity);
}
bool NativeObject::allocateInitialSlots(JSContext* cx, uint32_t capacity) {
uint32_t count = ObjectSlots::allocCount(capacity);
HeapSlot* allocation = AllocateObjectBuffer<HeapSlot>(cx, this, count);
if (!allocation) {
// The new object will be unreachable, but we still have to make it safe
// for finalization. Also we must check for it during GC compartment
// checks (see IsPartiallyInitializedObject).
initEmptyDynamicSlots();
return false;
}
auto* headerSlots = new (allocation)
ObjectSlots(capacity, 0, ObjectSlots::NoUniqueIdInDynamicSlots);
slots_ = headerSlots->slots();
Debug_SetSlotRangeToCrashOnTouch(slots_, capacity);
if (!IsInsideNursery(this)) {
AddCellMemory(this, ObjectSlots::allocSize(capacity),
MemoryUse::ObjectSlots);
}
MOZ_ASSERT(hasDynamicSlots());
return true;
}
bool NativeObject::allocateSlots(JSContext* cx, uint32_t newCapacity) {
MOZ_ASSERT(!hasUniqueId());
MOZ_ASSERT(!hasDynamicSlots());
uint32_t newAllocated = ObjectSlots::allocCount(newCapacity);
uint32_t dictionarySpan = getSlotsHeader()->dictionarySlotSpan();
HeapSlot* allocation = AllocateObjectBuffer<HeapSlot>(cx, this, newAllocated);
if (!allocation) {
return false;
}
auto* newHeaderSlots = new (allocation) ObjectSlots(
newCapacity, dictionarySpan, ObjectSlots::NoUniqueIdInDynamicSlots);
slots_ = newHeaderSlots->slots();
Debug_SetSlotRangeToCrashOnTouch(slots_, newCapacity);
AddCellMemory(this, ObjectSlots::allocSize(newCapacity),
MemoryUse::ObjectSlots);
MOZ_ASSERT(hasDynamicSlots());
return true;
}
/* static */
bool NativeObject::growSlotsPure(JSContext* cx, NativeObject* obj,
uint32_t newCapacity) {
// IC code calls this directly.
AutoUnsafeCallWithABI unsafe;
if (!obj->growSlots(cx, obj->numDynamicSlots(), newCapacity)) {
cx->recoverFromOutOfMemory();
return false;
}
return true;
}
/* static */
bool NativeObject::addDenseElementPure(JSContext* cx, NativeObject* obj) {
// IC code calls this directly.
AutoUnsafeCallWithABI unsafe;
MOZ_ASSERT(obj->getDenseInitializedLength() == obj->getDenseCapacity());
MOZ_ASSERT(obj->isExtensible());
MOZ_ASSERT(!obj->isIndexed());
MOZ_ASSERT(!obj->is<TypedArrayObject>());
MOZ_ASSERT_IF(obj->is<ArrayObject>(),
obj->as<ArrayObject>().lengthIsWritable());
// growElements will report OOM also if the number of dense elements will
// exceed MAX_DENSE_ELEMENTS_COUNT. See goodElementsAllocationAmount.
uint32_t oldCapacity = obj->getDenseCapacity();
if (MOZ_UNLIKELY(!obj->growElements(cx, oldCapacity + 1))) {
cx->recoverFromOutOfMemory();
return false;
}
MOZ_ASSERT(obj->getDenseCapacity() > oldCapacity);
MOZ_ASSERT(obj->getDenseCapacity() <= MAX_DENSE_ELEMENTS_COUNT);
return true;
}
static inline void FreeSlots(JSContext* cx, NativeObject* obj,
ObjectSlots* slots, size_t nbytes) {
// Note: this is called when shrinking slots, not from the finalizer.
MOZ_ASSERT(cx->isMainThreadContext());
if (obj->isTenured()) {
MOZ_ASSERT(!cx->nursery().isInside(slots));
js_free(slots);
} else {
cx->nursery().freeBuffer(slots, nbytes);
}
}
void NativeObject::shrinkSlots(JSContext* cx, uint32_t oldCapacity,
uint32_t newCapacity) {
MOZ_ASSERT(hasDynamicSlots());
MOZ_ASSERT(newCapacity < oldCapacity);
MOZ_ASSERT(oldCapacity == getSlotsHeader()->capacity());
ObjectSlots* oldHeaderSlots = ObjectSlots::fromSlots(slots_);
MOZ_ASSERT(oldHeaderSlots->capacity() == oldCapacity);
uint64_t uid = maybeUniqueId();
uint32_t oldAllocated = ObjectSlots::allocCount(oldCapacity);
if (newCapacity == 0 && uid == 0) {
size_t nbytes = ObjectSlots::allocSize(oldCapacity);
RemoveCellMemory(this, nbytes, MemoryUse::ObjectSlots);
FreeSlots(cx, this, oldHeaderSlots, nbytes);
// dictionarySlotSpan is initialized to the correct value by the callers.
setEmptyDynamicSlots(0);
return;
}
MOZ_ASSERT_IF(!is<ArrayObject>() && !hasUniqueId(),
newCapacity >= SLOT_CAPACITY_MIN);
uint32_t dictionarySpan = getSlotsHeader()->dictionarySlotSpan();
uint32_t newAllocated = ObjectSlots::allocCount(newCapacity);
HeapSlot* allocation = ReallocateObjectBuffer<HeapSlot>(
cx, this, reinterpret_cast<HeapSlot*>(oldHeaderSlots), oldAllocated,
newAllocated);
if (!allocation) {
// It's possible for realloc to fail when shrinking an allocation. In this
// case we continue using the original allocation but still update the
// capacity to the new requested capacity, which is smaller than the actual
// capacity.
cx->recoverFromOutOfMemory();
allocation = reinterpret_cast<HeapSlot*>(getSlotsHeader());
}
RemoveCellMemory(this, ObjectSlots::allocSize(oldCapacity),
MemoryUse::ObjectSlots);
AddCellMemory(this, ObjectSlots::allocSize(newCapacity),
MemoryUse::ObjectSlots);
auto* newHeaderSlots =
new (allocation) ObjectSlots(newCapacity, dictionarySpan, uid);
slots_ = newHeaderSlots->slots();
}
void NativeObject::initFixedElements(gc::AllocKind kind, uint32_t length) {
uint32_t capacity =
gc::GetGCKindSlots(kind) - ObjectElements::VALUES_PER_HEADER;
setFixedElements();
new (getElementsHeader()) ObjectElements(capacity, length);
getElementsHeader()->flags |= ObjectElements::FIXED;
MOZ_ASSERT(hasFixedElements());
}
bool NativeObject::willBeSparseElements(uint32_t requiredCapacity,
uint32_t newElementsHint) {
MOZ_ASSERT(is<NativeObject>());
MOZ_ASSERT(requiredCapacity > MIN_SPARSE_INDEX);
uint32_t cap = getDenseCapacity();
MOZ_ASSERT(requiredCapacity >= cap);
if (requiredCapacity > MAX_DENSE_ELEMENTS_COUNT) {
return true;
}
uint32_t minimalDenseCount = requiredCapacity / SPARSE_DENSITY_RATIO;
if (newElementsHint >= minimalDenseCount) {
return false;
}
minimalDenseCount -= newElementsHint;
if (minimalDenseCount > cap) {
return true;
}
uint32_t len = getDenseInitializedLength();
const Value* elems = getDenseElements();
for (uint32_t i = 0; i < len; i++) {
if (!elems[i].isMagic(JS_ELEMENTS_HOLE) && !--minimalDenseCount) {
return false;
}
}
return true;
}
/* static */
DenseElementResult NativeObject::maybeDensifySparseElements(
JSContext* cx, Handle<NativeObject*> obj) {
/*
* Wait until after the object goes into dictionary mode, which must happen
* when sparsely packing any array with more than MIN_SPARSE_INDEX elements
* (see PropertyTree::MAX_HEIGHT).
*/
if (!obj->inDictionaryMode()) {
return DenseElementResult::Incomplete;
}
/*
* Only measure the number of indexed properties every log(n) times when
* populating the object.
*/
uint32_t slotSpan = obj->slotSpan();
if (slotSpan != RoundUpPow2(slotSpan)) {
return DenseElementResult::Incomplete;
}
/* Watch for conditions under which an object's elements cannot be dense. */
if (!obj->isExtensible()) {
return DenseElementResult::Incomplete;
}
/*
* The indexes in the object need to be sufficiently dense before they can
* be converted to dense mode.
*/
uint32_t numDenseElements = 0;
uint32_t newInitializedLength = 0;
for (ShapePropertyIter<NoGC> iter(obj->shape()); !iter.done(); iter++) {
uint32_t index;
if (!IdIsIndex(iter->key(), &index)) {
continue;
}
if (iter->flags() != PropertyFlags::defaultDataPropFlags) {
// For simplicity, only densify the object if all indexed properties can
// be converted to dense elements.
return DenseElementResult::Incomplete;
}
MOZ_ASSERT(iter->isDataProperty());
numDenseElements++;
newInitializedLength = std::max(newInitializedLength, index + 1);
}
if (numDenseElements * SPARSE_DENSITY_RATIO < newInitializedLength) {
return DenseElementResult::Incomplete;
}
if (newInitializedLength > MAX_DENSE_ELEMENTS_COUNT) {
return DenseElementResult::Incomplete;
}
/*
* This object meets all necessary restrictions, convert all indexed
* properties into dense elements.
*/
if (newInitializedLength > obj->getDenseCapacity()) {
if (!obj->growElements(cx, newInitializedLength)) {
return DenseElementResult::Failure;
}
}
obj->ensureDenseInitializedLength(newInitializedLength, 0);
if (obj->compartment()->objectMaybeInIteration(obj)) {
// Mark the densified elements as maybe-in-iteration. See also the comment
// in GetIterator.
obj->markDenseElementsMaybeInIteration();
}
if (!NativeObject::densifySparseElements(cx, obj)) {
return DenseElementResult::Failure;
}
return DenseElementResult::Success;
}
void NativeObject::moveShiftedElements() {
MOZ_ASSERT(isExtensible());
ObjectElements* header = getElementsHeader();
uint32_t numShifted = header->numShiftedElements();
MOZ_ASSERT(numShifted > 0);
uint32_t initLength = header->initializedLength;
ObjectElements* newHeader =
static_cast<ObjectElements*>(getUnshiftedElementsHeader());
memmove(newHeader, header, sizeof(ObjectElements));
newHeader->clearShiftedElements();
newHeader->capacity += numShifted;
elements_ = newHeader->elements();
// To move the elements, temporarily update initializedLength to include
// the shifted elements.
newHeader->initializedLength += numShifted;
// Move the elements. Initialize to |undefined| to ensure pre-barriers
// don't see garbage.
for (size_t i = 0; i < numShifted; i++) {
initDenseElement(i, UndefinedValue());
}
moveDenseElements(0, numShifted, initLength);
// Restore the initialized length. We use setDenseInitializedLength to
// make sure prepareElementRangeForOverwrite is called on the shifted
// elements.
setDenseInitializedLength(initLength);
}
void NativeObject::maybeMoveShiftedElements() {
MOZ_ASSERT(isExtensible());
ObjectElements* header = getElementsHeader();
MOZ_ASSERT(header->numShiftedElements() > 0);
// Move the elements if less than a third of the allocated space is in use.
if (header->capacity < header->numAllocatedElements() / 3) {
moveShiftedElements();
}
}
bool NativeObject::tryUnshiftDenseElements(uint32_t count) {
MOZ_ASSERT(isExtensible());
MOZ_ASSERT(count > 0);
ObjectElements* header = getElementsHeader();
uint32_t numShifted = header->numShiftedElements();
if (count > numShifted) {
// We need more elements than are easily available. Try to make space
// for more elements than we need (and shift the remaining ones) so
// that unshifting more elements later will be fast.
// Don't bother reserving elements if the number of elements is small.
// Note that there's no technical reason for using this particular
// limit.
if (header->initializedLength <= 10 ||
header->hasNonwritableArrayLength() ||
MOZ_UNLIKELY(count > ObjectElements::MaxShiftedElements)) {
return false;
}
MOZ_ASSERT(header->capacity >= header->initializedLength);
uint32_t unusedCapacity = header->capacity - header->initializedLength;
// Determine toShift, the number of extra elements we want to make
// available.
uint32_t toShift = count - numShifted;
MOZ_ASSERT(toShift <= ObjectElements::MaxShiftedElements,
"count <= MaxShiftedElements so toShift <= MaxShiftedElements");
// Give up if we need to allocate more elements.
if (toShift > unusedCapacity) {
return false;
}
// Move more elements than we need, so that other unshift calls will be
// fast. We just have to make sure we don't exceed unusedCapacity.
toShift = std::min(toShift + unusedCapacity / 2, unusedCapacity);
// Ensure |numShifted + toShift| does not exceed MaxShiftedElements.
if (numShifted + toShift > ObjectElements::MaxShiftedElements) {
toShift = ObjectElements::MaxShiftedElements - numShifted;
}
MOZ_ASSERT(count <= numShifted + toShift);
MOZ_ASSERT(numShifted + toShift <= ObjectElements::MaxShiftedElements);
MOZ_ASSERT(toShift <= unusedCapacity);
// Now move/unshift the elements.
uint32_t initLen = header->initializedLength;
setDenseInitializedLength(initLen + toShift);
for (uint32_t i = 0; i < toShift; i++) {
initDenseElement(initLen + i, UndefinedValue());
}
moveDenseElements(toShift, 0, initLen);
// Shift the elements we just prepended.
shiftDenseElementsUnchecked(toShift);
// We can now fall-through to the fast path below.
header = getElementsHeader();
MOZ_ASSERT(header->numShiftedElements() == numShifted + toShift);
numShifted = header->numShiftedElements();
MOZ_ASSERT(count <= numShifted);
}
elements_ -= count;
ObjectElements* newHeader = getElementsHeader();
memmove(newHeader, header, sizeof(ObjectElements));
newHeader->unshiftShiftedElements(count);
// Initialize to |undefined| to ensure pre-barriers don't see garbage.
for (uint32_t i = 0; i < count; i++) {
initDenseElement(i, UndefinedValue());
}
return true;
}
// Given a requested capacity (in elements) and (potentially) the length of an
// array for which elements are being allocated, compute an actual allocation
// amount (in elements). (Allocation amounts include space for an
// ObjectElements instance, so a return value of |N| implies
// |N - ObjectElements::VALUES_PER_HEADER| usable elements.)
//
// The requested/actual allocation distinction is meant to:
//
// * preserve amortized O(N) time to add N elements;
// * minimize the number of unused elements beyond an array's length, and
// * provide at least ELEMENT_CAPACITY_MIN elements no matter what (so adding
// the first several elements to small arrays only needs one allocation).
//
// Note: the structure and behavior of this method follow along with
// UnboxedArrayObject::chooseCapacityIndex. Changes to the allocation strategy
// in one should generally be matched by the other.
/* static */
bool NativeObject::goodElementsAllocationAmount(JSContext* cx,
uint32_t reqCapacity,
uint32_t length,
uint32_t* goodAmount) {
if (reqCapacity > MAX_DENSE_ELEMENTS_COUNT) {
ReportOutOfMemory(cx);
return false;
}
uint32_t reqAllocated = reqCapacity + ObjectElements::VALUES_PER_HEADER;
// Handle "small" requests primarily by doubling.
const uint32_t Mebi = 1 << 20;
if (reqAllocated < Mebi) {
uint32_t amount =
mozilla::AssertedCast<uint32_t>(RoundUpPow2(reqAllocated));
// If |amount| would be 2/3 or more of the array's length, adjust
// it (up or down) to be equal to the array's length. This avoids
// allocating excess elements that aren't likely to be needed, either
// in this resizing or a subsequent one. The 2/3 factor is chosen so
// that exceptional resizings will at most triple the capacity, as
// opposed to the usual doubling.
uint32_t goodCapacity = amount - ObjectElements::VALUES_PER_HEADER;
if (length >= reqCapacity && goodCapacity > (length / 3) * 2) {
amount = length + ObjectElements::VALUES_PER_HEADER;
}
if (amount < ELEMENT_CAPACITY_MIN) {
amount = ELEMENT_CAPACITY_MIN;
}
*goodAmount = amount;
return true;
}
// The almost-doubling above wastes a lot of space for larger bucket sizes.
// For large amounts, switch to bucket sizes that obey this formula:
//
// count(n+1) = Math.ceil(count(n) * 1.125)
//
// where |count(n)| is the size of the nth bucket, measured in 2**20 slots.
// These bucket sizes still preserve amortized O(N) time to add N elements,
// just with a larger constant factor.
//
// The bucket size table below was generated with this JavaScript (and
// manual reformatting):
//
// for (let n = 1, i = 0; i < 34; i++) {
// print('0x' + (n * (1 << 20)).toString(16) + ', ');
// n = Math.ceil(n * 1.125);
// }
static constexpr uint32_t BigBuckets[] = {
0x100000, 0x200000, 0x300000, 0x400000, 0x500000, 0x600000,
0x700000, 0x800000, 0x900000, 0xb00000, 0xd00000, 0xf00000,
0x1100000, 0x1400000, 0x1700000, 0x1a00000, 0x1e00000, 0x2200000,
0x2700000, 0x2c00000, 0x3200000, 0x3900000, 0x4100000, 0x4a00000,
0x5400000, 0x5f00000, 0x6b00000, 0x7900000, 0x8900000, 0x9b00000,
0xaf00000, 0xc500000, 0xde00000, 0xfa00000};
static_assert(BigBuckets[std::size(BigBuckets) - 1] <=
MAX_DENSE_ELEMENTS_ALLOCATION);
// Pick the first bucket that'll fit |reqAllocated|.
for (uint32_t b : BigBuckets) {
if (b >= reqAllocated) {
*goodAmount = b;
return true;
}
}
// Otherwise, return the maximum bucket size.
*goodAmount = MAX_DENSE_ELEMENTS_ALLOCATION;
return true;
}
bool NativeObject::growElements(JSContext* cx, uint32_t reqCapacity) {
MOZ_ASSERT(isExtensible());
MOZ_ASSERT(canHaveNonEmptyElements());
// If there are shifted elements, consider moving them first. If we don't
// move them here, the code below will include the shifted elements in the
// resize.
uint32_t numShifted = getElementsHeader()->numShiftedElements();
if (numShifted > 0) {
// If the number of elements is small, it's cheaper to just move them as
// it may avoid a malloc/realloc. Note that there's no technical reason
// for using this particular value, but it works well in real-world use
// cases.
static const size_t MaxElementsToMoveEagerly = 20;
if (getElementsHeader()->initializedLength <= MaxElementsToMoveEagerly) {
moveShiftedElements();
} else {
maybeMoveShiftedElements();
}
if (getDenseCapacity() >= reqCapacity) {
return true;
}
// moveShiftedElements() may have changed the number of shifted elements;
// update `numShifted` accordingly.
numShifted = getElementsHeader()->numShiftedElements();
// If |reqCapacity + numShifted| overflows, we just move all shifted
// elements to avoid the problem.
CheckedInt<uint32_t> checkedReqCapacity(reqCapacity);
checkedReqCapacity += numShifted;
if (MOZ_UNLIKELY(!checkedReqCapacity.isValid())) {
moveShiftedElements();
numShifted = 0;
}
}
uint32_t oldCapacity = getDenseCapacity();
MOZ_ASSERT(oldCapacity < reqCapacity);
uint32_t newAllocated = 0;
if (is<ArrayObject>() && !as<ArrayObject>().lengthIsWritable()) {
// Preserve the |capacity <= length| invariant for arrays with
// non-writable length. See also js::ArraySetLength which initially
// enforces this requirement.
MOZ_ASSERT(reqCapacity <= as<ArrayObject>().length());
// Adding to reqCapacity must not overflow uint32_t.
MOZ_ASSERT(reqCapacity <= MAX_DENSE_ELEMENTS_COUNT);
// Then, add the header and shifted elements sizes to the new capacity
// to get the overall amount to allocate.
newAllocated = reqCapacity + numShifted + ObjectElements::VALUES_PER_HEADER;
} else {
// For arrays with writable length, and all non-Array objects, call
// `NativeObject::goodElementsAllocationAmount()` to determine the
// amount to allocate from the the requested capacity and existing length.
if (!goodElementsAllocationAmount(cx, reqCapacity + numShifted,
getElementsHeader()->length,
&newAllocated)) {
return false;
}
}
// newAllocated now contains the size of the buffer we need to allocate;
// subtract off the header and shifted elements size to get the new capacity
uint32_t newCapacity =
newAllocated - ObjectElements::VALUES_PER_HEADER - numShifted;
// If the new capacity isn't strictly greater than the old capacity, then this
// method shouldn't have been called; if the new capacity doesn't satisfy
// what was requested, then one of the calculations above must have been
// wrong.
MOZ_ASSERT(newCapacity > oldCapacity && newCapacity >= reqCapacity);
// If newCapacity exceeds MAX_DENSE_ELEMENTS_COUNT, the array should become
// sparse.
MOZ_ASSERT(newCapacity <= MAX_DENSE_ELEMENTS_COUNT);
uint32_t initlen = getDenseInitializedLength();
HeapSlot* oldHeaderSlots =
reinterpret_cast<HeapSlot*>(getUnshiftedElementsHeader());
HeapSlot* newHeaderSlots;
uint32_t oldAllocated = 0;
if (hasDynamicElements()) {
// If the object has dynamic elements, then we might be able to resize the
// buffer in-place.
// First, check that adding to oldCapacity won't overflow uint32_t
MOZ_ASSERT(oldCapacity <= MAX_DENSE_ELEMENTS_COUNT);
// Then, add the header and shifted elements sizes to get the overall size
// of the existing buffer
oldAllocated = oldCapacity + ObjectElements::VALUES_PER_HEADER + numShifted;
// Finally, try to resize the buffer.
newHeaderSlots = ReallocateObjectBuffer<HeapSlot>(
cx, this, oldHeaderSlots, oldAllocated, newAllocated);
if (!newHeaderSlots) {
return false; // If the resizing failed, then we leave elements at its
// old size.
}
} else {
// If the object has fixed elements, then we always need to allocate a new
// buffer, because if we've reached this code, then the requested capacity
// is greater than the existing inline space available within the object
newHeaderSlots = AllocateObjectBuffer<HeapSlot>(cx, this, newAllocated);
if (!newHeaderSlots) {
return false; // Leave elements at its old size.
}
// Copy the initialized elements into the new buffer,
PodCopy(newHeaderSlots, oldHeaderSlots,
ObjectElements::VALUES_PER_HEADER + initlen + numShifted);
}
// If the object already had dynamic elements, then we have to account
// for freeing the old elements buffer.
if (oldAllocated) {
RemoveCellMemory(this, oldAllocated * sizeof(HeapSlot),
MemoryUse::ObjectElements);
}
ObjectElements* newheader = reinterpret_cast<ObjectElements*>(newHeaderSlots);
// Update the elements pointer to point to the new elements buffer.
elements_ = newheader->elements() + numShifted;
// Clear the "fixed elements" flag, because if this code has been reached,
// this object now has dynamic elements.
getElementsHeader()->flags &= ~ObjectElements::FIXED;
getElementsHeader()->capacity = newCapacity;
// Poison the uninitialized portion of the new elements buffer.
Debug_SetSlotRangeToCrashOnTouch(elements_ + initlen, newCapacity - initlen);
// Account for allocating the new elements buffer.
AddCellMemory(this, newAllocated * sizeof(HeapSlot),
MemoryUse::ObjectElements);
return true;
}
void NativeObject::shrinkElements(JSContext* cx, uint32_t reqCapacity) {
MOZ_ASSERT(canHaveNonEmptyElements());
MOZ_ASSERT(reqCapacity >= getDenseInitializedLength());
if (!hasDynamicElements()) {
return;
}
// If we have shifted elements, consider moving them.
uint32_t numShifted = getElementsHeader()->numShiftedElements();
if (numShifted > 0) {
maybeMoveShiftedElements();
numShifted = getElementsHeader()->numShiftedElements();
}
uint32_t oldCapacity = getDenseCapacity();
MOZ_ASSERT(reqCapacity < oldCapacity);
uint32_t newAllocated = 0;
MOZ_ALWAYS_TRUE(goodElementsAllocationAmount(cx, reqCapacity + numShifted, 0,
&newAllocated));
MOZ_ASSERT(oldCapacity <= MAX_DENSE_ELEMENTS_COUNT);
uint32_t oldAllocated =
oldCapacity + ObjectElements::VALUES_PER_HEADER + numShifted;
if (newAllocated == oldAllocated) {
return; // Leave elements at its old size.
}
MOZ_ASSERT(newAllocated > ObjectElements::VALUES_PER_HEADER);
uint32_t newCapacity =
newAllocated - ObjectElements::VALUES_PER_HEADER - numShifted;
MOZ_ASSERT(newCapacity <= MAX_DENSE_ELEMENTS_COUNT);
HeapSlot* oldHeaderSlots =
reinterpret_cast<HeapSlot*>(getUnshiftedElementsHeader());
HeapSlot* newHeaderSlots = ReallocateObjectBuffer<HeapSlot>(
cx, this, oldHeaderSlots, oldAllocated, newAllocated);
if (!newHeaderSlots) {
cx->recoverFromOutOfMemory();
return; // Leave elements at its old size.
}
RemoveCellMemory(this, oldAllocated * sizeof(HeapSlot),
MemoryUse::ObjectElements);
ObjectElements* newheader = reinterpret_cast<ObjectElements*>(newHeaderSlots);
elements_ = newheader->elements() + numShifted;
getElementsHeader()->capacity = newCapacity;
AddCellMemory(this, newAllocated * sizeof(HeapSlot),
MemoryUse::ObjectElements);
}
void NativeObject::shrinkCapacityToInitializedLength(JSContext* cx) {
// When an array's length becomes non-writable, writes to indexes greater
// greater than or equal to the length don't change the array. We handle this
// with a check for non-writable length in most places. But in JIT code every
// check counts -- so we piggyback the check on the already-required range
// check for |index < capacity| by making capacity of arrays with non-writable
// length never exceed the length. This mechanism is also used when an object
// becomes non-extensible.
if (getElementsHeader()->numShiftedElements() > 0) {
moveShiftedElements();
}
ObjectElements* header = getElementsHeader();
uint32_t len = header->initializedLength;
MOZ_ASSERT(header->capacity >= len);
if (header->capacity == len) {
return;
}
shrinkElements(cx, len);
header = getElementsHeader();
uint32_t oldAllocated = header->numAllocatedElements();
header->capacity = len;
// The size of the memory allocation hasn't changed but we lose the actual
// capacity information. Make the associated size match the updated capacity.
if (!hasFixedElements()) {
uint32_t newAllocated = header->numAllocatedElements();
RemoveCellMemory(this, oldAllocated * sizeof(HeapSlot),
MemoryUse::ObjectElements);
AddCellMemory(this, newAllocated * sizeof(HeapSlot),
MemoryUse::ObjectElements);
}
}
/* static */
bool NativeObject::allocDictionarySlot(JSContext* cx, Handle<NativeObject*> obj,
uint32_t* slotp) {
MOZ_ASSERT(obj->inDictionaryMode());
uint32_t slotSpan = obj->slotSpan();
MOZ_ASSERT(slotSpan >= JSSLOT_FREE(obj->getClass()));
// Try to pull a free slot from the slot-number free list.
DictionaryPropMap* map = obj->dictionaryShape()->propMap();
uint32_t last = map->freeList();
if (last != SHAPE_INVALID_SLOT) {
#ifdef DEBUG
MOZ_ASSERT(last < slotSpan);
uint32_t next = obj->getSlot(last).toPrivateUint32();
MOZ_ASSERT_IF(next != SHAPE_INVALID_SLOT, next < slotSpan);
#endif
*slotp = last;
const Value& vref = obj->getSlot(last);
map->setFreeList(vref.toPrivateUint32());
obj->setSlot(last, UndefinedValue());
return true;
}
if (MOZ_UNLIKELY(slotSpan >= SHAPE_MAXIMUM_SLOT)) {
ReportOutOfMemory(cx);
return false;
}
*slotp = slotSpan;
uint32_t numFixed = obj->numFixedSlots();
if (slotSpan < numFixed) {
obj->initFixedSlot(slotSpan, UndefinedValue());
obj->setDictionaryModeSlotSpan(slotSpan + 1);
return true;
}
uint32_t dynamicSlotIndex = slotSpan - numFixed;
if (dynamicSlotIndex >= obj->numDynamicSlots()) {
if (MOZ_UNLIKELY(!obj->growSlotsForNewSlot(cx, numFixed, slotSpan))) {
return false;
}
}
obj->initDynamicSlot(numFixed, slotSpan, UndefinedValue());
obj->setDictionaryModeSlotSpan(slotSpan + 1);
return true;
}
void NativeObject::freeDictionarySlot(uint32_t slot) {
MOZ_ASSERT(inDictionaryMode());
MOZ_ASSERT(slot < slotSpan());
DictionaryPropMap* map = dictionaryShape()->propMap();
uint32_t last = map->freeList();
// Can't afford to check the whole free list, but let's check the head.
MOZ_ASSERT_IF(last != SHAPE_INVALID_SLOT, last < slotSpan() && last != slot);
// Place all freed slots other than reserved slots (bug 595230) on the
// dictionary's free list.
if (JSSLOT_FREE(getClass()) <= slot) {
MOZ_ASSERT_IF(last != SHAPE_INVALID_SLOT, last < slotSpan());
setSlot(slot, PrivateUint32Value(last));
map->setFreeList(slot);
} else {
setSlot(slot, UndefinedValue());
}
}
template <AllowGC allowGC>
bool js::NativeLookupOwnProperty(
JSContext* cx, typename MaybeRooted<NativeObject*, allowGC>::HandleType obj,
typename MaybeRooted<jsid, allowGC>::HandleType id, PropertyResult* propp) {
return NativeLookupOwnPropertyInline<allowGC>(cx, obj, id, propp);
}
template bool js::NativeLookupOwnProperty<CanGC>(JSContext* cx,
Handle<NativeObject*> obj,
HandleId id,
PropertyResult* propp);
template bool js::NativeLookupOwnProperty<NoGC>(JSContext* cx,
NativeObject* const& obj,
const jsid& id,
PropertyResult* propp);
/*** [[DefineOwnProperty]] **************************************************/
static bool CallJSAddPropertyOp(JSContext* cx, JSAddPropertyOp op,
HandleObject obj, HandleId id, HandleValue v) {
AutoCheckRecursionLimit recursion(cx);
if (!recursion.check(cx)) {
return false;
}
cx->check(obj, id, v);
return op(cx, obj, id, v);
}
static MOZ_ALWAYS_INLINE bool CallAddPropertyHook(JSContext* cx,
Handle<NativeObject*> obj,
HandleId id,
HandleValue value) {
JSAddPropertyOp addProperty = obj->getClass()->getAddProperty();
if (MOZ_UNLIKELY(addProperty)) {
MOZ_ASSERT(!cx->isHelperThreadContext());
if (!CallJSAddPropertyOp(cx, addProperty, obj, id, value)) {
NativeObject::removeProperty(cx, obj, id);
return false;
}
}
return true;
}
static MOZ_ALWAYS_INLINE bool CallAddPropertyHookDense(
JSContext* cx, Handle<NativeObject*> obj, uint32_t index,
HandleValue value) {
// Inline addProperty for array objects.
if (obj->is<ArrayObject>()) {
ArrayObject* arr = &obj->as<ArrayObject>();
uint32_t length = arr->length();
if (index >= length) {
arr->setLength(index + 1);
}
return true;
}
JSAddPropertyOp addProperty = obj->getClass()->getAddProperty();
if (MOZ_UNLIKELY(addProperty)) {
MOZ_ASSERT(!cx->isHelperThreadContext());
RootedId id(cx, PropertyKey::Int(index));
if (!CallJSAddPropertyOp(cx, addProperty, obj, id, value)) {
obj->setDenseElementHole(index);
return false;
}
}
return true;
}
/**
* Determines whether a write to the given element on |arr| should fail
* because |arr| has a non-writable length, and writing that element would
* increase the length of the array.
*/
static bool WouldDefinePastNonwritableLength(ArrayObject* arr, uint32_t index) {
return !arr->lengthIsWritable() && index >= arr->length();
}
static bool ChangeProperty(JSContext* cx, Handle<NativeObject*> obj,
HandleId id, HandleObject getter,
HandleObject setter, PropertyFlags flags,
PropertyResult* existing, uint32_t* slotOut) {
MOZ_ASSERT(existing);
Rooted<GetterSetter*> gs(cx);
// If we're redefining a getter/setter property but the getter and setter
// objects are still the same, use the existing GetterSetter.
if (existing->isNativeProperty()) {
PropertyInfo prop = existing->propertyInfo();
if (prop.isAccessorProperty()) {
GetterSetter* current = obj->getGetterSetter(prop);
if (current->getter() == getter && current->setter() == setter) {
gs = current;
}
}
}
if (!gs) {
gs = GetterSetter::create(cx, getter, setter);
if (!gs) {
return false;
}
}
if (existing->isNativeProperty()) {
if (!NativeObject::changeProperty(cx, obj, id, flags, slotOut)) {
return false;
}
} else {
if (!NativeObject::addProperty(cx, obj, id, flags, slotOut)) {
return false;
}
}
obj->setSlot(*slotOut, PrivateGCThingValue(gs));
return true;
}
static PropertyFlags ComputePropertyFlags(const PropertyDescriptor& desc) {
desc.assertComplete();
PropertyFlags flags;
flags.setFlag(PropertyFlag::Configurable, desc.configurable());
flags.setFlag(PropertyFlag::Enumerable, desc.enumerable());
if (desc.isDataDescriptor()) {
flags.setFlag(PropertyFlag::Writable, desc.writable());
} else {
MOZ_ASSERT(desc.isAccessorDescriptor());
flags.setFlag(PropertyFlag::AccessorProperty);
}
return flags;
}
// Whether we're adding a new property or changing an existing property (this
// can be either a property stored in the shape tree or a dense element).
enum class IsAddOrChange { Add, Change };
template <IsAddOrChange AddOrChange>
static MOZ_ALWAYS_INLINE bool AddOrChangeProperty(
JSContext* cx, Handle<NativeObject*> obj, HandleId id,
Handle<PropertyDescriptor> desc, PropertyResult* existing = nullptr) {
desc.assertComplete();
#ifdef DEBUG
if constexpr (AddOrChange == IsAddOrChange::Add) {
MOZ_ASSERT(existing == nullptr);
MOZ_ASSERT(!obj->containsPure(id));
} else {
static_assert(AddOrChange == IsAddOrChange::Change);
MOZ_ASSERT(existing);
MOZ_ASSERT(existing->isNativeProperty() || existing->isDenseElement());
}
#endif
// Use dense storage for indexed properties where possible: when we have an
// integer key with default property attributes and are either adding a new
// property or changing a dense element.
PropertyFlags flags = ComputePropertyFlags(desc);
if (id.isInt() && flags == PropertyFlags::defaultDataPropFlags &&
(AddOrChange == IsAddOrChange::Add || existing->isDenseElement())) {
MOZ_ASSERT(!desc.isAccessorDescriptor());
MOZ_ASSERT(!obj->is<TypedArrayObject>());
uint32_t index = id.toInt();
DenseElementResult edResult = obj->ensureDenseElements(cx, index, 1);
if (edResult == DenseElementResult::Failure) {
return false;
}
if (edResult == DenseElementResult::Success) {
obj->setDenseElement(index, desc.value());
if (!CallAddPropertyHookDense(cx, obj, index, desc.value())) {
return false;
}
return true;
}
}
uint32_t slot;
if constexpr (AddOrChange == IsAddOrChange::Add) {
if (desc.isAccessorDescriptor()) {
Rooted<GetterSetter*> gs(
cx, GetterSetter::create(cx, desc.getter(), desc.setter()));
if (!gs) {
return false;
}
if (!NativeObject::addProperty(cx, obj, id, flags, &slot)) {
return false;
}
obj->initSlot(slot, PrivateGCThingValue(gs));
} else {
if (!NativeObject::addProperty(cx, obj, id, flags, &slot)) {
return false;
}
obj->initSlot(slot, desc.value());
}
} else {
if (desc.isAccessorDescriptor()) {
if (!ChangeProperty(cx, obj, id, desc.getter(), desc.setter(), flags,
existing, &slot)) {
return false;
}
} else {
if (existing->isNativeProperty()) {
if (!NativeObject::changeProperty(cx, obj, id, flags, &slot)) {
return false;
}
} else {
if (!NativeObject::addProperty(cx, obj, id, flags, &slot)) {
return false;
}
}
obj->setSlot(slot, desc.value());
}
}
MOZ_ASSERT(slot < obj->slotSpan());
// Clear any existing dense index after adding a sparse indexed property,
// and investigate converting the object to dense indexes.
if (id.isInt()) {
uint32_t index = id.toInt();
if constexpr (AddOrChange == IsAddOrChange::Add) {
MOZ_ASSERT(!obj->containsDenseElement(index));
} else {
obj->removeDenseElementForSparseIndex(index);
}
// Only try to densify sparse elements if the property we just added/changed
// is in the last slot. This avoids a perf cliff in pathological cases: in
// maybeDensifySparseElements we densify if the slot span is a power-of-two,
// but if we get slots from the free list, the slot span will stay the same
// until the free list is empty. This means we'd get quadratic behavior by
// trying to densify for each sparse element we add. See bug 1782487.
if (slot == obj->slotSpan() - 1) {
DenseElementResult edResult =
NativeObject::maybeDensifySparseElements(cx, obj);
if (edResult == DenseElementResult::Failure) {
return false;
}
if (edResult == DenseElementResult::Success) {
MOZ_ASSERT(!desc.isAccessorDescriptor());
return CallAddPropertyHookDense(cx, obj, index, desc.value());
}
}
}
if (desc.isDataDescriptor()) {
return CallAddPropertyHook(cx, obj, id, desc.value());
}
return CallAddPropertyHook(cx, obj, id, UndefinedHandleValue);
}
// Versions of AddOrChangeProperty optimized for adding a plain data property.
// This function doesn't handle integer ids as we may have to store them in
// dense elements.
static MOZ_ALWAYS_INLINE bool AddDataProperty(JSContext* cx,
Handle<NativeObject*> obj,
HandleId id, HandleValue v) {
MOZ_ASSERT(!id.isInt());
uint32_t slot;
if (!NativeObject::addProperty(cx, obj, id,
PropertyFlags::defaultDataPropFlags, &slot)) {
return false;
}
obj->initSlot(slot, v);
return CallAddPropertyHook(cx, obj, id, v);
}
bool js::AddSlotAndCallAddPropHook(JSContext* cx, Handle<NativeObject*> obj,
HandleValue v, Handle<Shape*> newShape) {
MOZ_ASSERT(obj->getClass()->getAddProperty());
MOZ_ASSERT(newShape->asShared().lastProperty().isDataProperty());
RootedId id(cx, newShape->asShared().lastProperty().key());
MOZ_ASSERT(!id.isInt());
uint32_t slot = newShape->asShared().lastProperty().slot();
if (!obj->setShapeAndAddNewSlot(cx, &newShape->asShared(), slot)) {
return false;
}
obj->initSlot(slot, v);
return CallAddPropertyHook(cx, obj, id, v);
}
static bool IsAccessorDescriptor(const PropertyResult& prop) {
if (prop.isNativeProperty()) {
return prop.propertyInfo().isAccessorProperty();
}
MOZ_ASSERT(prop.isDenseElement() || prop.isTypedArrayElement());
return false;
}
static bool IsDataDescriptor(const PropertyResult& prop) {
return !IsAccessorDescriptor(prop);
}
static bool GetCustomDataProperty(JSContext* cx, HandleObject obj, HandleId id,
MutableHandleValue vp);
static bool GetExistingDataProperty(JSContext* cx, Handle<NativeObject*> obj,
HandleId id, const PropertyResult& prop,
MutableHandleValue vp) {
if (prop.isDenseElement()) {
vp.set(obj->getDenseElement(prop.denseElementIndex()));
return true;
}
if (prop.isTypedArrayElement()) {
size_t idx = prop.typedArrayElementIndex();
return obj->as<TypedArrayObject>().getElement<CanGC>(cx, idx, vp);
}
PropertyInfo propInfo = prop.propertyInfo();
if (propInfo.isDataProperty()) {
vp.set(obj->getSlot(propInfo.slot()));
return true;
}
MOZ_ASSERT(!cx->isHelperThreadContext());
MOZ_RELEASE_ASSERT(propInfo.isCustomDataProperty());
return GetCustomDataProperty(cx, obj, id, vp);
}
/*
* If desc is redundant with an existing own property obj[id], then set
* |*redundant = true| and return true.
*/
static bool DefinePropertyIsRedundant(JSContext* cx, Handle<NativeObject*> obj,
HandleId id, const PropertyResult& prop,
JS::PropertyAttributes attrs,
Handle<PropertyDescriptor> desc,
bool* redundant) {
*redundant = false;
if (desc.hasConfigurable() && desc.configurable() != attrs.configurable()) {
return true;
}
if (desc.hasEnumerable() && desc.enumerable() != attrs.enumerable()) {
return true;
}
if (desc.isDataDescriptor()) {
if (IsAccessorDescriptor(prop)) {
return true;
}
if (desc.hasWritable() && desc.writable() != attrs.writable()) {
return true;
}
if (desc.hasValue()) {
// Get the current value of the existing property.
RootedValue currentValue(cx);
if (!GetExistingDataProperty(cx, obj, id, prop, ¤tValue)) {
return false;
}
// Don't call SameValue here to ensure we properly update distinct
// NaN values.
if (desc.value() != currentValue) {
return true;
}
}
// Check for custom data properties for ArrayObject/ArgumentsObject.
// PropertyDescriptor can't represent these properties so they're never
// redundant.
if (prop.isNativeProperty() && prop.propertyInfo().isCustomDataProperty()) {
return true;
}
} else if (desc.isAccessorDescriptor()) {
if (!prop.isNativeProperty()) {
return true;
}
PropertyInfo propInfo = prop.propertyInfo();
if (desc.hasGetter() && (!propInfo.isAccessorProperty() ||
desc.getter() != obj->getGetter(propInfo))) {
return true;
}
if (desc.hasSetter() && (!propInfo.isAccessorProperty() ||
desc.setter() != obj->getSetter(propInfo))) {
return true;
}
}
*redundant = true;
return true;
}
bool js::NativeDefineProperty(JSContext* cx, Handle<NativeObject*> obj,
HandleId id, Handle<PropertyDescriptor> desc_,
ObjectOpResult& result) {
desc_.assertValid();
// Section numbers and step numbers below refer to ES2018, draft rev
// 540b827fccf6122a984be99ab9af7be20e3b5562.
//
// This function aims to implement 9.1.6 [[DefineOwnProperty]] as well as
// the [[DefineOwnProperty]] methods described in 9.4.2.1 (arrays), 9.4.4.2
// (arguments), and 9.4.5.3 (typed array views).
// Dispense with custom behavior of exotic native objects first.
if (obj->is<ArrayObject>()) {
// 9.4.2.1 step 2. Redefining an array's length is very special.
Rooted<ArrayObject*> arr(cx, &obj->as<ArrayObject>());
if (id == NameToId(cx->names().length)) {
// 9.1.6.3 ValidateAndApplyPropertyDescriptor, step 7.a.
if (desc_.isAccessorDescriptor()) {
return result.fail(JSMSG_CANT_REDEFINE_PROP);
}
MOZ_ASSERT(!cx->isHelperThreadContext());
return ArraySetLength(cx, arr, id, desc_, result);
}
// 9.4.2.1 step 3. Don't extend a fixed-length array.
uint32_t index;
if (IdIsIndex(id, &index)) {
if (WouldDefinePastNonwritableLength(arr, index)) {
return result.fail(JSMSG_CANT_DEFINE_PAST_ARRAY_LENGTH);
}
}
} else if (obj->is<TypedArrayObject>()) {
// 9.4.5.3 step 3. Indexed properties of typed arrays are special.
if (mozilla::Maybe<uint64_t> index = ToTypedArrayIndex(id)) {
MOZ_ASSERT(!cx->isHelperThreadContext());
Rooted<TypedArrayObject*> tobj(cx, &obj->as<TypedArrayObject>());
return DefineTypedArrayElement(cx, tobj, index.value(), desc_, result);
}
} else if (obj->is<ArgumentsObject>()) {
Rooted<ArgumentsObject*> argsobj(cx, &obj->as<ArgumentsObject>());
if (id.isAtom(cx->names().length)) {
// Either we are resolving the .length property on this object,
// or redefining it. In the latter case only, we must reify the
// property.
if (!desc_.resolving()) {
if (!ArgumentsObject::reifyLength(cx, argsobj)) {
return false;
}
}
} else if (id.isAtom(cx->names().callee) &&
argsobj->is<MappedArgumentsObject>()) {
// Do same thing as .length for .callee on MappedArgumentsObject.
if (!desc_.resolving()) {
Rooted<MappedArgumentsObject*> mapped(
cx, &argsobj->as<MappedArgumentsObject>());
if (!MappedArgumentsObject::reifyCallee(cx, mapped)) {
return false;
}
}
} else if (id.isWellKnownSymbol(JS::SymbolCode::iterator)) {
// Do same thing as .length for [@@iterator].
if (!desc_.resolving()) {
if (!ArgumentsObject::reifyIterator(cx, argsobj)) {
return false;
}
}
} else if (id.isInt()) {
if (!desc_.resolving()) {
argsobj->markElementOverridden();
}
}
}
// 9.1.6.1 OrdinaryDefineOwnProperty step 1.
PropertyResult prop;
if (desc_.resolving()) {
// We are being called from a resolve or enumerate hook to reify a
// lazily-resolved property. To avoid reentering the resolve hook and
// recursing forever, skip the resolve hook when doing this lookup.
if (!NativeLookupOwnPropertyNoResolve(cx, obj, id, &prop)) {
return false;
}
} else {
if (!NativeLookupOwnProperty<CanGC>(cx, obj, id, &prop)) {
return false;
}
}
// From this point, the step numbers refer to
// 9.1.6.3, ValidateAndApplyPropertyDescriptor.
// Step 1 is a redundant assertion.
// Filling in desc: Here we make a copy of the desc_ argument. We will turn
// it into a complete descriptor before updating obj. The spec algorithm
// does not explicitly do this, but the end result is the same. Search for
// "fill in" below for places where the filling-in actually occurs.
Rooted<PropertyDescriptor> desc(cx, desc_);
// Step 2.
if (prop.isNotFound()) {
// Note: We are sharing the property definition machinery with private
// fields. Private fields may be added to non-extensible objects.
if (!obj->isExtensible() && !id.isPrivateName() &&
// R&T wrappers are non-extensible, but we still want to be able to
// lazily resolve their properties. We can special-case them to
// allow doing so.
IF_RECORD_TUPLE(
!(IsExtendedPrimitiveWrapper(*obj) && desc_.resolving()), true)) {
return result.fail(JSMSG_CANT_DEFINE_PROP_OBJECT_NOT_EXTENSIBLE);
}
// Fill in missing desc fields with defaults.
CompletePropertyDescriptor(&desc);
if (!AddOrChangeProperty<IsAddOrChange::Add>(cx, obj, id, desc)) {
return false;
}
return result.succeed();
}
// Step 3 and 7.a.i.3, 8.a.iii, 10 (partially). Prop might not actually
// have a real shape, e.g. in the case of typed array elements,
// GetPropertyAttributes is used to paper-over that difference.
JS::PropertyAttributes attrs = GetPropertyAttributes(obj, prop);
bool redundant;
if (!DefinePropertyIsRedundant(cx, obj, id, prop, attrs, desc, &redundant)) {
return false;
}
if (redundant) {
return result.succeed();
}
// Step 4.
if (!attrs.configurable()) {
if (desc.hasConfigurable() && desc.configurable()) {
return result.fail(JSMSG_CANT_REDEFINE_PROP);
}
if (desc.hasEnumerable() && desc.enumerable() != attrs.enumerable()) {
return result.fail(JSMSG_CANT_REDEFINE_PROP);
}
}
// Fill in desc.[[Configurable]] and desc.[[Enumerable]] if missing.
if (!desc.hasConfigurable()) {
desc.setConfigurable(attrs.configurable());
}
if (!desc.hasEnumerable()) {
desc.setEnumerable(attrs.enumerable());
}
// Steps 5-8.
if (desc.isGenericDescriptor()) {
// Step 5. No further validation is required.
// Fill in desc. A generic descriptor has none of these fields, so copy
// everything from shape.
MOZ_ASSERT(!desc.hasValue());
MOZ_ASSERT(!desc.hasWritable());
MOZ_ASSERT(!desc.hasGetter());
MOZ_ASSERT(!desc.hasSetter());
if (IsDataDescriptor(prop)) {
RootedValue currentValue(cx);
if (!GetExistingDataProperty(cx, obj, id, prop, ¤tValue)) {
return false;
}
desc.setValue(currentValue);
desc.setWritable(attrs.writable());
} else {
PropertyInfo propInfo = prop.propertyInfo();
desc.setGetter(obj->getGetter(propInfo));
desc.setSetter(obj->getSetter(propInfo));
}
} else if (desc.isDataDescriptor() != IsDataDescriptor(prop)) {
// Step 6.
if (!attrs.configurable()) {
return result.fail(JSMSG_CANT_REDEFINE_PROP);
}
// Fill in desc fields with default values (steps 6.b.i and 6.c.i).
CompletePropertyDescriptor(&desc);
} else if (desc.isDataDescriptor()) {
// Step 7.
bool frozen = !attrs.configurable() && !attrs.writable();
// Step 7.a.i.1.
if (frozen && desc.hasWritable() && desc.writable()) {
return result.fail(JSMSG_CANT_REDEFINE_PROP);
}
if (frozen || !desc.hasValue()) {
RootedValue currentValue(cx);
if (!GetExistingDataProperty(cx, obj, id, prop, ¤tValue)) {
return false;
}
if (!desc.hasValue()) {
// Fill in desc.[[Value]].
desc.setValue(currentValue);
} else {
// Step 7.a.i.2.
bool same;
MOZ_ASSERT(!cx->isHelperThreadContext());
if (!SameValue(cx, desc.value(), currentValue, &same)) {
return false;
}
if (!same) {
return result.fail(JSMSG_CANT_REDEFINE_PROP);
}
}
}
// Step 7.a.i.3.
if (frozen) {
return result.succeed();
}
// Fill in desc.[[Writable]].
if (!desc.hasWritable()) {
desc.setWritable(attrs.writable());
}
} else {
// Step 8.
PropertyInfo propInfo = prop.propertyInfo();
MOZ_ASSERT(propInfo.isAccessorProperty());
MOZ_ASSERT(desc.isAccessorDescriptor());
// The spec says to use SameValue, but since the values in
// question are objects, we can just compare pointers.
if (desc.hasSetter()) {
// Step 8.a.i.
if (!attrs.configurable() && desc.setter() != obj->getSetter(propInfo)) {
return result.fail(JSMSG_CANT_REDEFINE_PROP);
}
} else {
// Fill in desc.[[Set]] from shape.
desc.setSetter(obj->getSetter(propInfo));
}
if (desc.hasGetter()) {
// Step 8.a.ii.
if (!attrs.configurable() && desc.getter() != obj->getGetter(propInfo)) {
return result.fail(JSMSG_CANT_REDEFINE_PROP);
}
} else {
// Fill in desc.[[Get]] from shape.
desc.setGetter(obj->getGetter(propInfo));
}
// Step 8.a.iii (Omitted).
}
// Step 9.
if (!AddOrChangeProperty<IsAddOrChange::Change>(cx, obj, id, desc, &prop)) {
return false;
}
// Step 10.
return result.succeed();
}
bool js::NativeDefineDataProperty(JSContext* cx, Handle<NativeObject*> obj,
HandleId id, HandleValue value,
unsigned attrs, ObjectOpResult& result) {
Rooted<PropertyDescriptor> desc(cx, PropertyDescriptor::Data(value, attrs));
return NativeDefineProperty(cx, obj, id, desc, result);
}
bool js::NativeDefineAccessorProperty(JSContext* cx, Handle<NativeObject*> obj,
HandleId id, HandleObject getter,
HandleObject setter, unsigned attrs) {
Rooted<PropertyDescriptor> desc(
cx, PropertyDescriptor::Accessor(
getter ? mozilla::Some(getter) : mozilla::Nothing(),
setter ? mozilla::Some(setter) : mozilla::Nothing(), attrs));
ObjectOpResult result;
if (!NativeDefineProperty(cx, obj, id, desc, result)) {
return false;
}
if (!result) {
// Off-thread callers should not get here: they must call this
// function only with known-valid arguments. Populating a new
// PlainObject with configurable properties is fine.
MOZ_ASSERT(!cx->isHelperThreadContext());
result.reportError(cx, obj, id);
return false;
}
return true;
}
bool js::NativeDefineDataProperty(JSContext* cx, Handle<NativeObject*> obj,
HandleId id, HandleValue value,
unsigned attrs) {
ObjectOpResult result;
if (!NativeDefineDataProperty(cx, obj, id, value, attrs, result)) {
return false;
}
if (!result) {
// Off-thread callers should not get here: they must call this
// function only with known-valid arguments. Populating a new
// PlainObject with configurable properties is fine.
MOZ_ASSERT(!cx->isHelperThreadContext());
result.reportError(cx, obj, id);
return false;
}
return true;
}
bool js::NativeDefineDataProperty(JSContext* cx, Handle<NativeObject*> obj,
PropertyName* name, HandleValue value,
unsigned attrs) {
RootedId id(cx, NameToId(name));
return NativeDefineDataProperty(cx, obj, id, value, attrs);
}
static bool DefineNonexistentProperty(JSContext* cx, Handle<NativeObject*> obj,
HandleId id, HandleValue v,
ObjectOpResult& result) {
// Optimized NativeDefineProperty() version for known absent properties.
// Dispense with custom behavior of exotic native objects first.
if (obj->is<ArrayObject>()) {
// Array's length property is non-configurable, so we shouldn't
// encounter it in this function.
MOZ_ASSERT(id != NameToId(cx->names().length));
// 9.4.2.1 step 3. Don't extend a fixed-length array.
uint32_t index;
if (IdIsIndex(id, &index)) {
if (WouldDefinePastNonwritableLength(&obj->as<ArrayObject>(), index)) {
return result.fail(JSMSG_CANT_DEFINE_PAST_ARRAY_LENGTH);
}
}
} else if (obj->is<TypedArrayObject>()) {
// 9.4.5.5 step 2. Indexed properties of typed arrays are special.
if (mozilla::Maybe<uint64_t> index = ToTypedArrayIndex(id)) {
// This method is only called for non-existent properties, which
// means any absent indexed property must be out of range.
MOZ_ASSERT(index.value() >= obj->as<TypedArrayObject>().length());
// The following steps refer to 9.4.5.11 IntegerIndexedElementSet.
// Step 1 is enforced by the caller.
// Steps 2-3.
// We still need to call ToNumber or ToBigInt, because of its
// possible side effects.
if (!obj->as<TypedArrayObject>().convertForSideEffect(cx, v)) {
return false;
}
// Step 4 (nothing to do, the index is out of range).
// Step 5.
return result.succeed();
}
} else if (obj->is<ArgumentsObject>()) {
// If this method is called with either |length| or |@@iterator|, the
// property was previously deleted and hence should already be marked
// as overridden.
MOZ_ASSERT_IF(id.isAtom(cx->names().length),
obj->as<ArgumentsObject>().hasOverriddenLength());
MOZ_ASSERT_IF(id.isWellKnownSymbol(JS::SymbolCode::iterator),
obj->as<ArgumentsObject>().hasOverriddenIterator());
// We still need to mark any element properties as overridden.
if (id.isInt()) {
obj->as<ArgumentsObject>().markElementOverridden();
}
}
#ifdef DEBUG
PropertyResult prop;
if (!NativeLookupOwnPropertyNoResolve(cx, obj, id, &prop)) {
return false;
}
MOZ_ASSERT(prop.isNotFound(), "didn't expect to find an existing property");
#endif
// 9.1.6.3, ValidateAndApplyPropertyDescriptor.
// Step 1 is a redundant assertion, step 3 and later don't apply here.
// Step 2.
if (!obj->isExtensible()) {
return result.fail(JSMSG_CANT_DEFINE_PROP_OBJECT_NOT_EXTENSIBLE);
}
if (id.isInt()) {
// This might be a dense element. Use AddOrChangeProperty as it knows
// how to deal with that.
Rooted<PropertyDescriptor> desc(
cx, PropertyDescriptor::Data(v, {JS::PropertyAttribute::Configurable,
JS::PropertyAttribute::Enumerable,
JS::PropertyAttribute::Writable}));
if (!AddOrChangeProperty<IsAddOrChange::Add>(cx, obj, id, desc)) {
return false;
}
} else {
if (!AddDataProperty(cx, obj, id, v)) {
return false;
}
}
return result.succeed();
}
bool js::AddOrUpdateSparseElementHelper(JSContext* cx,
Handle<NativeObject*> obj,
int32_t int_id, HandleValue v,
bool strict) {
MOZ_ASSERT(obj->is<ArrayObject>() || obj->is<PlainObject>());
// This helper doesn't handle the case where the index is a dense element.
MOZ_ASSERT(int_id >= 0);
MOZ_ASSERT(!obj->containsDenseElement(int_id));
MOZ_ASSERT(PropertyKey::fitsInInt(int_id));
RootedId id(cx, PropertyKey::Int(int_id));
// First decide if this is an add or an update. Because the IC guards have
// already ensured this exists exterior to the dense array range, and the
// prototype checks have ensured there are no indexes on the prototype, we
// can use the shape lineage to find the element if it exists:
uint32_t index;
PropMap* map = obj->shape()->lookup(cx, id, &index);
// If we didn't find the property, we're on the add path: delegate to
// AddOrChangeProperty. This will add either a sparse element or a dense
// element.
if (map == nullptr) {
Rooted<PropertyDescriptor> desc(
cx, PropertyDescriptor::Data(v, {JS::PropertyAttribute::Configurable,
JS::PropertyAttribute::Enumerable,
JS::PropertyAttribute::Writable}));
return AddOrChangeProperty<IsAddOrChange::Add>(cx, obj, id, desc);
}
// At this point we're updating a property: See SetExistingProperty.
PropertyInfo prop = map->getPropertyInfo(index);
if (prop.isDataProperty() && prop.writable()) {
obj->setSlot(prop.slot(), v);
return true;
}
// We don't know exactly what this object looks like, hit the slowpath.
RootedValue receiver(cx, ObjectValue(*obj));
JS::ObjectOpResult result;
return SetProperty(cx, obj, id, v, receiver, result) &&
result.checkStrictModeError(cx, obj, id, strict);
}
/*** [[HasProperty]] ********************************************************/
// ES6 draft rev31 9.1.7.1 OrdinaryHasProperty
bool js::NativeHasProperty(JSContext* cx, Handle<NativeObject*> obj,
HandleId id, bool* foundp) {
Rooted<NativeObject*> pobj(cx, obj);
PropertyResult prop;
// This loop isn't explicit in the spec algorithm. See the comment on step
// 7.a. below.
for (;;) {
// Steps 2-3.
if (!NativeLookupOwnPropertyInline<CanGC>(cx, pobj, id, &prop)) {
return false;
}
// Step 4.
if (prop.isFound()) {
*foundp = true;
return true;
}
// Step 5-6.
JSObject* proto = pobj->staticPrototype();
// Step 8.
// As a side-effect of NativeLookupOwnPropertyInline, we may determine that
// a property is not found and the proto chain should not be searched. This
// can occur for:
// - Out-of-range numeric properties of a TypedArrayObject
// - Recursive resolve hooks (which is expected when they try to set the
// property being resolved).
if (!proto || prop.shouldIgnoreProtoChain()) {
*foundp = false;
return true;
}
// Step 7.a. If the prototype is also native, this step is a
// recursive tail call, and we don't need to go through all the
// plumbing of HasProperty; the top of the loop is where
// we're going to end up anyway. But if pobj is non-native,
// that optimization would be incorrect.
if (!proto->is<NativeObject>()) {
RootedObject protoRoot(cx, proto);
return HasProperty(cx, protoRoot, id, foundp);
}
pobj = &proto->as<NativeObject>();
}
}
/*** [[GetOwnPropertyDescriptor]] *******************************************/
bool js::NativeGetOwnPropertyDescriptor(
JSContext* cx, Handle<NativeObject*> obj, HandleId id,
MutableHandle<mozilla::Maybe<PropertyDescriptor>> desc) {
PropertyResult prop;
if (!NativeLookupOwnProperty<CanGC>(cx, obj, id, &prop)) {
return false;
}
if (prop.isNotFound()) {
desc.reset();
return true;
}
if (prop.isNativeProperty() && prop.propertyInfo().isAccessorProperty()) {
PropertyInfo propInfo = prop.propertyInfo();
desc.set(mozilla::Some(PropertyDescriptor::Accessor(
obj->getGetter(propInfo), obj->getSetter(propInfo),
propInfo.propAttributes())));
return true;
}
RootedValue value(cx);
if (!GetExistingDataProperty(cx, obj, id, prop, &value)) {
return false;
}
JS::PropertyAttributes attrs = GetPropertyAttributes(obj, prop);
desc.set(mozilla::Some(PropertyDescriptor::Data(value, attrs)));
return true;
}
/*** [[Get]] ****************************************************************/
static bool GetCustomDataProperty(JSContext* cx, HandleObject obj, HandleId id,
MutableHandleValue vp) {
cx->check(obj, id, vp);
const JSClass* clasp = obj->getClass();
if (clasp == &ArrayObject::class_) {
if (!ArrayLengthGetter(cx, obj, id, vp)) {
return false;
}
} else if (clasp == &MappedArgumentsObject::class_) {
if (!MappedArgGetter(cx, obj, id, vp)) {
return false;
}
} else {
MOZ_RELEASE_ASSERT(clasp == &UnmappedArgumentsObject::class_);
if (!UnmappedArgGetter(cx, obj, id, vp)) {
return false;
}
}
cx->check(vp);
return true;
}
static inline bool CallGetter(JSContext* cx, Handle<NativeObject*> obj,
HandleValue receiver, HandleId id,
PropertyInfo prop, MutableHandleValue vp) {
MOZ_ASSERT(!prop.isDataProperty());
if (prop.isAccessorProperty()) {
RootedValue getter(cx, obj->getGetterValue(prop));
return js::CallGetter(cx, receiver, getter, vp);
}
MOZ_ASSERT(prop.isCustomDataProperty());
return GetCustomDataProperty(cx, obj, id, vp);
}
template <AllowGC allowGC>
static MOZ_ALWAYS_INLINE bool GetExistingProperty(
JSContext* cx, typename MaybeRooted<Value, allowGC>::HandleType receiver,
typename MaybeRooted<NativeObject*, allowGC>::HandleType obj,
typename MaybeRooted<jsid, allowGC>::HandleType id, PropertyInfo prop,
typename MaybeRooted<Value, allowGC>::MutableHandleType vp) {
if (prop.isDataProperty()) {
vp.set(obj->getSlot(prop.slot()));
return true;
}
vp.setUndefined();
if (!prop.isCustomDataProperty() && !obj->hasGetter(prop)) {
return true;
}
if constexpr (!allowGC) {
return false;
} else {
return CallGetter(cx, obj, receiver, id, prop, vp);
}
}
bool js::NativeGetExistingProperty(JSContext* cx, HandleObject receiver,
Handle<NativeObject*> obj, HandleId id,
PropertyInfo prop, MutableHandleValue vp) {
RootedValue receiverValue(cx, ObjectValue(*receiver));
return GetExistingProperty<CanGC>(cx, receiverValue, obj, id, prop, vp);
}
enum IsNameLookup { NotNameLookup = false, NameLookup = true };
/*
* Finish getting the property `receiver[id]` after looking at every object on
* the prototype chain and not finding any such property.
*
* Per the spec, this should just set the result to `undefined` and call it a
* day. However this function also runs when we're evaluating an
* expression that's an Identifier (that is, an unqualified name lookup),
* so we need to figure out if that's what's happening and throw
* a ReferenceError if so.
*/
static bool GetNonexistentProperty(JSContext* cx, HandleId id,
IsNameLookup nameLookup,
MutableHandleValue vp) {
vp.setUndefined();
// If we are doing a name lookup, this is a ReferenceError.
if (nameLookup) {
ReportIsNotDefined(cx, id);
return false;
}
// Otherwise, just return |undefined|.
return true;
}
// The NoGC version of GetNonexistentProperty, present only to make types line
// up.
bool GetNonexistentProperty(JSContext* cx, const jsid& id,
IsNameLookup nameLookup,
FakeMutableHandle<Value> vp) {
return false;
}
static inline bool GeneralizedGetProperty(JSContext* cx, HandleObject obj,
HandleId id, HandleValue receiver,
IsNameLookup nameLookup,
MutableHandleValue vp) {
AutoCheckRecursionLimit recursion(cx);
if (!recursion.check(cx)) {
return false;
}
if (nameLookup) {
// When nameLookup is true, GetProperty implements ES6 rev 34 (2015 Feb
// 20) 8.1.1.2.6 GetBindingValue, with step 3 (the call to HasProperty)
// and step 6 (the call to Get) fused so that only a single lookup is
// needed.
//
// If we get here, we've reached a non-native object. Fall back on the
// algorithm as specified, with two separate lookups. (Note that we
// throw ReferenceErrors regardless of strictness, technically a bug.)
bool found;
if (!HasProperty(cx, obj, id, &found)) {
return false;
}
if (!found) {
ReportIsNotDefined(cx, id);
return false;
}
}
return GetProperty(cx, obj, receiver, id, vp);
}
static inline bool GeneralizedGetProperty(JSContext* cx, JSObject* obj, jsid id,
const Value& receiver,
IsNameLookup nameLookup,
FakeMutableHandle<Value> vp) {
AutoCheckRecursionLimit recursion(cx);
if (!recursion.checkDontReport(cx)) {
return false;
}
if (nameLookup) {
return false;
}
return GetPropertyNoGC(cx, obj, receiver, id, vp.address());
}
bool js::GetSparseElementHelper(JSContext* cx, Handle<NativeObject*> obj,
int32_t int_id, MutableHandleValue result) {
MOZ_ASSERT(obj->is<ArrayObject>() || obj->is<PlainObject>());
// This helper doesn't handle the case where the index is a dense element.
MOZ_ASSERT(int_id >= 0);
MOZ_ASSERT(!obj->containsDenseElement(int_id));
// Indexed properties can not exist on the prototype chain.
MOZ_ASSERT(!PrototypeMayHaveIndexedProperties(obj));
MOZ_ASSERT(PropertyKey::fitsInInt(int_id));
RootedId id(cx, PropertyKey::Int(int_id));
uint32_t index;
PropMap* map = obj->shape()->lookup(cx, id, &index);
if (!map) {
// Property not found, return directly.
result.setUndefined();
return true;
}
PropertyInfo prop = map->getPropertyInfo(index);
RootedValue receiver(cx, ObjectValue(*obj));
return GetExistingProperty<CanGC>(cx, receiver, obj, id, prop, result);
}
template <AllowGC allowGC>
static MOZ_ALWAYS_INLINE bool NativeGetPropertyInline(
JSContext* cx, typename MaybeRooted<NativeObject*, allowGC>::HandleType obj,
typename MaybeRooted<Value, allowGC>::HandleType receiver,
typename MaybeRooted<jsid, allowGC>::HandleType id, IsNameLookup nameLookup,
typename MaybeRooted<Value, allowGC>::MutableHandleType vp) {
typename MaybeRooted<NativeObject*, allowGC>::RootType pobj(cx, obj);
PropertyResult prop;
// This loop isn't explicit in the spec algorithm. See the comment on step
// 4.d below.
for (;;) {
// Steps 2-3.
if (!NativeLookupOwnPropertyInline<allowGC>(cx, pobj, id, &prop)) {
return false;
}
if (prop.isFound()) {
// Steps 5-8. Special case for dense elements because
// GetExistingProperty doesn't support those.
if (prop.isDenseElement()) {
vp.set(pobj->getDenseElement(prop.denseElementIndex()));
return true;
}
if (prop.isTypedArrayElement()) {
size_t idx = prop.typedArrayElementIndex();
auto* tarr = &pobj->template as<TypedArrayObject>();
return tarr->template getElement<allowGC>(cx, idx, vp);
}
return GetExistingProperty<allowGC>(cx, receiver, pobj, id,
prop.propertyInfo(), vp);
}
// Steps 4.a-b.
JSObject* proto = pobj->staticPrototype();
// Step 4.c. The spec algorithm simply returns undefined if proto is
// null, but see the comment on GetNonexistentProperty.
if (!proto || prop.shouldIgnoreProtoChain()) {
return GetNonexistentProperty(cx, id, nameLookup, vp);
}
// Step 4.d. If the prototype is also native, this step is a
// recursive tail call, and we don't need to go through all the
// plumbing of JSObject::getGeneric; the top of the loop is where
// we're going to end up anyway. But if pobj is non-native,
// that optimization would be incorrect.
if (proto->getOpsGetProperty()) {
RootedObject protoRoot(cx, proto);
return GeneralizedGetProperty(cx, protoRoot, id, receiver, nameLookup,
vp);
}
pobj = &proto->as<NativeObject>();
}
}
bool js::NativeGetProperty(JSContext* cx, Handle<NativeObject*> obj,
HandleValue receiver, HandleId id,
MutableHandleValue vp) {
return NativeGetPropertyInline<CanGC>(cx, obj, receiver, id, NotNameLookup,
vp);
}
bool js::NativeGetPropertyNoGC(JSContext* cx, NativeObject* obj,
const Value& receiver, jsid id, Value* vp) {
AutoAssertNoPendingException noexc(cx);
return NativeGetPropertyInline<NoGC>(cx, obj, receiver, id, NotNameLookup,
vp);
}
bool js::NativeGetElement(JSContext* cx, Handle<NativeObject*> obj,
HandleValue receiver, int32_t index,
MutableHandleValue vp) {
RootedId id(cx);
if (MOZ_LIKELY(index >= 0)) {
if (!IndexToId(cx, index, &id)) {
return false;
}
} else {
RootedValue indexVal(cx, Int32Value(index));
if (!PrimitiveValueToId<CanGC>(cx, indexVal, &id)) {
return false;
}
}
return NativeGetProperty(cx, obj, receiver, id, vp);
}
bool js::GetNameBoundInEnvironment(JSContext* cx, HandleObject envArg,
HandleId id, MutableHandleValue vp) {
// Manually unwrap 'with' environments to prevent looking up @@unscopables
// twice.
//
// This is unfortunate because internally, the engine does not distinguish
// HasProperty from HasBinding: both are implemented as a HasPropertyOp
// hook on a WithEnvironmentObject.
//
// In the case of attempting to get the value of a binding already looked up
// via JSOp::BindName, calling HasProperty on the WithEnvironmentObject is
// equivalent to calling HasBinding a second time. This results in the
// incorrect behavior of performing the @@unscopables check again.
RootedObject env(cx, MaybeUnwrapWithEnvironment(envArg));
RootedValue receiver(cx, ObjectValue(*env));
if (env->getOpsGetProperty()) {
return GeneralizedGetProperty(cx, env, id, receiver, NameLookup, vp);
}
return NativeGetPropertyInline<CanGC>(cx, env.as<NativeObject>(), receiver,
id, NameLookup, vp);
}
/*** [[Set]] ****************************************************************/
static bool SetCustomDataProperty(JSContext* cx, HandleObject obj, HandleId id,
HandleValue v, ObjectOpResult& result) {
cx->check(obj, id, v);
const JSClass* clasp = obj->getClass();
if (clasp == &ArrayObject::class_) {
return ArrayLengthSetter(cx, obj, id, v, result);
}
if (clasp == &MappedArgumentsObject::class_) {
return MappedArgSetter(cx, obj, id, v, result);
}
MOZ_RELEASE_ASSERT(clasp == &UnmappedArgumentsObject::class_);
return UnmappedArgSetter(cx, obj, id, v, result);
}
static bool MaybeReportUndeclaredVarAssignment(JSContext* cx, HandleId id) {
{
jsbytecode* pc;
JSScript* script =
cx->currentScript(&pc, JSContext::AllowCrossRealm::Allow);
if (!script) {
return true;
}
if (!IsStrictSetPC(pc)) {
return true;
}
}
UniqueChars bytes =
IdToPrintableUTF8(cx, id, IdToPrintableBehavior::IdIsIdentifier);
if (!bytes) {
return false;
}
JS_ReportErrorNumberUTF8(cx, GetErrorMessage, nullptr, JSMSG_UNDECLARED_VAR,
bytes.get());
return false;
}
/*
* Finish assignment to a shapeful data property of a native object obj. This
* conforms to no standard and there is a lot of legacy baggage here.
*/
static bool NativeSetExistingDataProperty(JSContext* cx,
Handle<NativeObject*> obj,
HandleId id, PropertyInfo prop,
HandleValue v,
ObjectOpResult& result) {
MOZ_ASSERT(obj->is<NativeObject>());
MOZ_ASSERT(prop.isDataDescriptor());
if (prop.isDataProperty()) {
// The common path. Standard data property.
obj->setSlot(prop.slot(), v);
return result.succeed();
}
MOZ_ASSERT(prop.isCustomDataProperty());
MOZ_ASSERT(!obj->is<WithEnvironmentObject>()); // See bug 1128681.
return SetCustomDataProperty(cx, obj, id, v, result);
}
/*
* When a [[Set]] operation finds no existing property with the given id
* or finds a writable data property on the prototype chain, we end up here.
* Finish the [[Set]] by defining a new property on receiver.
*
* This implements ES6 draft rev 28, 9.1.9 [[Set]] steps 5.b-f, but it
* is really old code and there are a few barnacles.
*/
bool js::SetPropertyByDefining(JSContext* cx, HandleId id, HandleValue v,
HandleValue receiverValue,
ObjectOpResult& result) {
// Step 5.b.
if (!receiverValue.isObject()) {
return result.fail(JSMSG_SET_NON_OBJECT_RECEIVER);
}
RootedObject receiver(cx, &receiverValue.toObject());
bool existing;
{
// Steps 5.c-d.
Rooted<mozilla::Maybe<PropertyDescriptor>> desc(cx);
if (!GetOwnPropertyDescriptor(cx, receiver, id, &desc)) {
return false;
}
existing = desc.isSome();
// Step 5.e.
if (existing) {
// Step 5.e.i.
if (desc->isAccessorDescriptor()) {
return result.fail(JSMSG_OVERWRITING_ACCESSOR);
}
// Step 5.e.ii.
if (!desc->writable()) {
return result.fail(JSMSG_READ_ONLY);
}
}
}
// Steps 5.e.iii-iv. and 5.f.i. Define the new data property.
Rooted<PropertyDescriptor> desc(cx);
if (existing) {
desc = PropertyDescriptor::Empty();
desc.setValue(v);
} else {
desc = PropertyDescriptor::Data(v, {JS::PropertyAttribute::Configurable,
JS::PropertyAttribute::Enumerable,
JS::PropertyAttribute::Writable});
}
return DefineProperty(cx, receiver, id, desc, result);
}
// When setting |id| for |receiver| and |obj| has no property for id, continue
// the search up the prototype chain.
bool js::SetPropertyOnProto(JSContext* cx, HandleObject obj, HandleId id,
HandleValue v, HandleValue receiver,
ObjectOpResult& result) {
MOZ_ASSERT(!obj->is<ProxyObject>());
RootedObject proto(cx, obj->staticPrototype());
if (proto) {
return SetProperty(cx, proto, id, v, receiver, result);
}
return SetPropertyByDefining(cx, id, v, receiver, result);
}
/*
* Implement "the rest of" assignment to a property when no property
* receiver[id] was found anywhere on the prototype chain.
*
* FIXME: This should be updated to follow ES6 draft rev 28, section 9.1.9,
* steps 4.d.i and 5.
*/
template <QualifiedBool IsQualified>
static bool SetNonexistentProperty(JSContext* cx, Handle<NativeObject*> obj,
HandleId id, HandleValue v,
HandleValue receiver,
ObjectOpResult& result) {
if (!IsQualified && receiver.isObject() &&
receiver.toObject().isUnqualifiedVarObj()) {
if (!MaybeReportUndeclaredVarAssignment(cx, id)) {
return false;
}
}
// Pure optimization for the common case. There's no point performing the
// lookup in step 5.c again, as our caller just did it for us.
if (IsQualified && receiver.isObject() && obj == &receiver.toObject()) {
// Ensure that a custom GetOwnPropertyOp, if present, doesn't
// introduce additional properties which weren't previously found by
// LookupOwnProperty.
#ifdef DEBUG
if (GetOwnPropertyOp op = obj->getOpsGetOwnPropertyDescriptor()) {
Rooted<mozilla::Maybe<PropertyDescriptor>> desc(cx);
if (!op(cx, obj, id, &desc)) {
return false;
}
MOZ_ASSERT(desc.isNothing());
}
#endif
// Step 5.e. Define the new data property.
if (DefinePropertyOp op = obj->getOpsDefineProperty()) {
MOZ_ASSERT(!cx->isHelperThreadContext());
Rooted<PropertyDescriptor> desc(
cx, PropertyDescriptor::Data(v, {JS::PropertyAttribute::Configurable,
JS::PropertyAttribute::Enumerable,
JS::PropertyAttribute::Writable}));
return op(cx, obj, id, desc, result);
}
return DefineNonexistentProperty(cx, obj, id, v, result);
}
return SetPropertyByDefining(cx, id, v, receiver, result);
}
// Set an existing own property obj[index] that's a dense element.
static bool SetDenseElement(JSContext* cx, Handle<NativeObject*> obj,
uint32_t index, HandleValue v,
ObjectOpResult& result) {
MOZ_ASSERT(!obj->is<TypedArrayObject>());
MOZ_ASSERT(obj->containsDenseElement(index));
obj->setDenseElement(index, v);
return result.succeed();
}
/*
* Finish the assignment `receiver[id] = v` when an existing property (shape)
* has been found on a native object (pobj). This implements ES6 draft rev 32
* (2015 Feb 2) 9.1.9 steps 5 and 6.
*
* It is necessary to pass both id and shape because shape could be an implicit
* dense or typed array element (i.e. not actually a pointer to a Shape).
*/
static bool SetExistingProperty(JSContext* cx, HandleId id, HandleValue v,
HandleValue receiver,
Handle<NativeObject*> pobj,
const PropertyResult& prop,
ObjectOpResult& result) {
// Step 5 for dense elements.
if (prop.isDenseElement() || prop.isTypedArrayElement()) {
// Step 5.a.
if (pobj->denseElementsAreFrozen()) {
return result.fail(JSMSG_READ_ONLY);
}
// Pure optimization for the common case:
if (receiver.isObject() && pobj == &receiver.toObject()) {
if (prop.isTypedArrayElement()) {
Rooted<TypedArrayObject*> tobj(cx, &pobj->as<TypedArrayObject>());
size_t idx = prop.typedArrayElementIndex();
return SetTypedArrayElement(cx, tobj, idx, v, result);
}
return SetDenseElement(cx, pobj, prop.denseElementIndex(), v, result);
}
// Steps 5.b-f.
return SetPropertyByDefining(cx, id, v, receiver, result);
}
// Step 5 for all other properties.
PropertyInfo propInfo = prop.propertyInfo();
if (propInfo.isDataDescriptor()) {
// Step 5.a.
if (!propInfo.writable()) {
return result.fail(JSMSG_READ_ONLY);
}
// steps 5.c-f.
if (receiver.isObject() && pobj == &receiver.toObject()) {
// Pure optimization for the common case. There's no point performing
// the lookup in step 5.c again, as our caller just did it for us. The
// result is |shapeProp|.
// Steps 5.e.i-ii.
return NativeSetExistingDataProperty(cx, pobj, id, propInfo, v, result);
}
// Shadow pobj[id] by defining a new data property receiver[id].
// Delegate everything to SetPropertyByDefining.
return SetPropertyByDefining(cx, id, v, receiver, result);
}
// Steps 6-11.
MOZ_ASSERT(propInfo.isAccessorProperty());
JSObject* setterObject = pobj->getSetter(propInfo);
if (!setterObject) {
return result.fail(JSMSG_GETTER_ONLY);
}
RootedValue setter(cx, ObjectValue(*setterObject));
if (!js::CallSetter(cx, receiver, setter, v)) {
return false;
}
return result.succeed();
}
template <QualifiedBool IsQualified>
bool js::NativeSetProperty(JSContext* cx, Handle<NativeObject*> obj,
HandleId id, HandleValue v, HandleValue receiver,
ObjectOpResult& result) {
// Step numbers below reference ES6 rev 27 9.1.9, the [[Set]] internal
// method for ordinary objects. We substitute our own names for these names
// used in the spec: O -> pobj, P -> id, ownDesc -> shape.
PropertyResult prop;
Rooted<NativeObject*> pobj(cx, obj);
// This loop isn't explicit in the spec algorithm. See the comment on step
// 4.c.i below. (There's a very similar loop in the NativeGetProperty
// implementation, but unfortunately not similar enough to common up.)
//
// We're intentionally not spec-compliant for TypedArrays:
// When |pobj| is a TypedArray and |id| is a TypedArray index, we should
// ignore |receiver| and instead always try to set the property on |pobj|.
// Bug 1502889 showed that this behavior isn't web-compatible. This issue is
// also reported at <https://github.com/tc39/ecma262/issues/1541>.
for (;;) {
// Steps 2-3.
if (!NativeLookupOwnPropertyInline<CanGC>(cx, pobj, id, &prop)) {
return false;
}
if (prop.isFound()) {
// Steps 5-6.
return SetExistingProperty(cx, id, v, receiver, pobj, prop, result);
}
// Steps 4.a-b.
// As a side-effect of NativeLookupOwnPropertyInline, we may determine that
// a property is not found and the proto chain should not be searched. This
// can occur for:
// - Out-of-range numeric properties of a TypedArrayObject
// - Recursive resolve hooks (which is expected when they try to set the
// property being resolved).
JSObject* proto = pobj->staticPrototype();
if (!proto || prop.shouldIgnoreProtoChain()) {
// Step 4.d.i (and step 5).
return SetNonexistentProperty<IsQualified>(cx, obj, id, v, receiver,
result);
}
// Step 4.c.i. If the prototype is also native, this step is a
// recursive tail call, and we don't need to go through all the
// plumbing of SetProperty; the top of the loop is where we're going to
// end up anyway. But if pobj is non-native, that optimization would be
// incorrect.
if (!proto->is<NativeObject>()) {
// Unqualified assignments are not specified to go through [[Set]]
// at all, but they do go through this function. So check for
// unqualified assignment to a nonexistent global (a strict error).
RootedObject protoRoot(cx, proto);
if (!IsQualified) {
bool found;
if (!HasProperty(cx, protoRoot, id, &found)) {
return false;
}
if (!found) {
return SetNonexistentProperty<IsQualified>(cx, obj, id, v, receiver,
result);
}
}
return SetProperty(cx, protoRoot, id, v, receiver, result);
}
pobj = &proto->as<NativeObject>();
}
}
template bool js::NativeSetProperty<Qualified>(JSContext* cx,
Handle<NativeObject*> obj,
HandleId id, HandleValue value,
HandleValue receiver,
ObjectOpResult& result);
template bool js::NativeSetProperty<Unqualified>(JSContext* cx,
Handle<NativeObject*> obj,
HandleId id, HandleValue value,
HandleValue receiver,
ObjectOpResult& result);
bool js::NativeSetElement(JSContext* cx, Handle<NativeObject*> obj,
uint32_t index, HandleValue v, HandleValue receiver,
ObjectOpResult& result) {
RootedId id(cx);
if (!IndexToId(cx, index, &id)) {
return false;
}
return NativeSetProperty<Qualified>(cx, obj, id, v, receiver, result);
}
/*** [[Delete]] *************************************************************/
static bool CallJSDeletePropertyOp(JSContext* cx, JSDeletePropertyOp op,
HandleObject receiver, HandleId id,
ObjectOpResult& result) {
AutoCheckRecursionLimit recursion(cx);
if (!recursion.check(cx)) {
return false;
}
cx->check(receiver, id);
if (op) {
return op(cx, receiver, id, result);
}
return result.succeed();
}
// ES6 draft rev31 9.1.10 [[Delete]]
bool js::NativeDeleteProperty(JSContext* cx, Handle<NativeObject*> obj,
HandleId id, ObjectOpResult& result) {
#ifdef ENABLE_RECORD_TUPLE
MOZ_ASSERT(!js::IsExtendedPrimitive(*obj));
#endif
// Steps 2-3.
PropertyResult prop;
if (!NativeLookupOwnProperty<CanGC>(cx, obj, id, &prop)) {
return false;
}
// Step 4.
if (prop.isNotFound()) {
// If no property call the class's delProperty hook, passing succeeded
// as the result parameter. This always succeeds when there is no hook.
return CallJSDeletePropertyOp(cx, obj->getClass()->getDelProperty(), obj,
id, result);
}
// Step 6. Non-configurable property.
if (!GetPropertyAttributes(obj, prop).configurable()) {
return result.failCantDelete();
}
// Typed array elements are configurable, but can't be deleted.
if (prop.isTypedArrayElement()) {
return result.failCantDelete();
}
if (!CallJSDeletePropertyOp(cx, obj->getClass()->getDelProperty(), obj, id,
result)) {
return false;
}
if (!result) {
return true;
}
// Step 5.
if (prop.isDenseElement()) {
obj->setDenseElementHole(prop.denseElementIndex());
} else {
if (!NativeObject::removeProperty(cx, obj, id)) {
return false;
}
}
return SuppressDeletedProperty(cx, obj, id);
}
bool js::CopyDataPropertiesNative(JSContext* cx, Handle<PlainObject*> target,
Handle<NativeObject*> from,
Handle<PlainObject*> excludedItems,
bool* optimized) {
#ifdef ENABLE_RECORD_TUPLE
MOZ_ASSERT(!js::IsExtendedPrimitive(*target));
#endif
*optimized = false;
// Don't use the fast path if |from| may have extra indexed or lazy
// properties.
if (from->getDenseInitializedLength() > 0 || from->isIndexed() ||
from->is<TypedArrayObject>() ||
IF_RECORD_TUPLE(from->is<RecordObject>() || from->is<TupleObject>(),
false) ||
from->getClass()->getNewEnumerate() || from->getClass()->getEnumerate()) {
return true;
}
// Collect all enumerable data properties.
Rooted<PropertyInfoWithKeyVector> props(cx, PropertyInfoWithKeyVector(cx));
Rooted<NativeShape*> fromShape(cx, from->shape());
for (ShapePropertyIter<NoGC> iter(fromShape); !iter.done(); iter++) {
jsid id = iter->key();
MOZ_ASSERT(!id.isInt());
if (!iter->enumerable()) {
continue;
}
if (excludedItems && excludedItems->contains(cx, id)) {
continue;
}
// Don't use the fast path if |from| contains non-data properties.
//
// This enables two optimizations:
// 1. We don't need to handle the case when accessors modify |from|.
// 2. String and symbol properties can be added in one go.
if (!iter->isDataProperty()) {
return true;
}
if (!props.append(*iter)) {
return false;
}
}
*optimized = true;
// If |target| contains no own properties, we can directly call
// AddDataPropertyNonPrototype.
const bool targetHadNoOwnProperties = target->empty();
RootedId key(cx);
RootedValue value(cx);
for (size_t i = props.length(); i > 0; i--) {
PropertyInfoWithKey prop = props[i - 1];
MOZ_ASSERT(prop.isDataProperty());
MOZ_ASSERT(prop.enumerable());
key = prop.key();
MOZ_ASSERT(!key.isInt());
MOZ_ASSERT(from->is<NativeObject>());
MOZ_ASSERT(from->shape() == fromShape);
value = from->getSlot(prop.slot());
if (targetHadNoOwnProperties) {
MOZ_ASSERT(!target->containsPure(key),
"didn't expect to find an existing property");
if (!AddDataPropertyToPlainObject(cx, target, key, value)) {
return false;
}
} else {
if (!NativeDefineDataProperty(cx, target, key, value, JSPROP_ENUMERATE)) {
return false;
}
}
}
return true;
}
|