1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
*
* Copyright 2016 Mozilla Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// This is an INTERNAL header for Wasm baseline compiler: CPU stack frame,
// stack maps, and associated logic.
#ifndef wasm_wasm_baseline_frame_h
#define wasm_wasm_baseline_frame_h
#include "wasm/WasmBaselineCompile.h" // For BaseLocalIter
#include "wasm/WasmBCDefs.h"
#include "wasm/WasmBCRegDefs.h"
#include "wasm/WasmBCStk.h"
#include "wasm/WasmConstants.h" // For MaxFrameSize
// [SMDOC] Wasm baseline compiler's stack frame.
//
// For background, see "Wasm's ABIs" in WasmFrame.h, the following should never
// be in conflict with that.
//
// The stack frame has four parts ("below" means at lower addresses):
//
// - the Frame element;
// - the Local area, including the DebugFrame element and possibly a spilled
// pointer to stack results, if any; allocated below the header with various
// forms of alignment;
// - the Dynamic area, comprising the temporary storage the compiler uses for
// register spilling, allocated below the Local area;
// - the Arguments area, comprising memory allocated for outgoing calls,
// allocated below the Dynamic area.
//
// +==============================+
// | Incoming stack arg |
// | ... |
// ------------- +==============================+
// | Frame (fixed size) |
// ------------- +==============================+ <-------------------- FP
// ^ | DebugFrame (optional) | ^ ^ ^^
// localSize | Register arg local | | | ||
// | | ... | | | framePushed
// | | Register stack result ptr?| | | ||
// | | Non-arg local | | | ||
// | | ... | | | ||
// | | (padding) | | | ||
// | | Instance pointer | | | ||
// | +------------------------------+ | | ||
// v | (padding) | | v ||
// ------------- +==============================+ currentStackHeight ||
// ^ | Dynamic (variable size) | | ||
// dynamicSize | ... | | ||
// v | ... | v ||
// ------------- | (free space, sometimes) | --------- v|
// +==============================+ <----- SP not-during calls
// | Arguments (sometimes) | |
// | ... | v
// +==============================+ <----- SP during calls
//
// The Frame is addressed off the stack pointer. masm.framePushed() is always
// correct, and masm.getStackPointer() + masm.framePushed() always addresses the
// Frame, with the DebugFrame optionally below it.
//
// The Local area (including the DebugFrame and, if needed, the spilled value of
// the stack results area pointer) is laid out by BaseLocalIter and is allocated
// and deallocated by standard prologue and epilogue functions that manipulate
// the stack pointer, but it is accessed via BaseStackFrame.
//
// The Dynamic area is maintained by and accessed via BaseStackFrame. On some
// systems (such as ARM64), the Dynamic memory may be allocated in chunks
// because the SP needs a specific alignment, and in this case there will
// normally be some free space directly above the SP. The stack height does not
// include the free space, it reflects the logically used space only.
//
// The Dynamic area is where space for stack results is allocated when calling
// functions that return results on the stack. If a function has stack results,
// a pointer to the low address of the stack result area is passed as an
// additional argument, according to the usual ABI. See
// ABIResultIter::HasStackResults.
//
// The Arguments area is allocated and deallocated via BaseStackFrame (see
// comments later) but is accessed directly off the stack pointer.
namespace js {
namespace wasm {
using namespace js::jit;
// Abstraction of the height of the stack frame, to avoid type confusion.
class StackHeight {
friend class BaseStackFrameAllocator;
uint32_t height;
public:
explicit StackHeight(uint32_t h) : height(h) {}
static StackHeight Invalid() { return StackHeight(UINT32_MAX); }
bool isValid() const { return height != UINT32_MAX; }
bool operator==(StackHeight rhs) const {
MOZ_ASSERT(isValid() && rhs.isValid());
return height == rhs.height;
}
bool operator!=(StackHeight rhs) const { return !(*this == rhs); }
};
// Abstraction for where multi-value results go on the machine stack.
class StackResultsLoc {
uint32_t bytes_;
size_t count_;
Maybe<uint32_t> height_;
public:
StackResultsLoc() : bytes_(0), count_(0){};
StackResultsLoc(uint32_t bytes, size_t count, uint32_t height)
: bytes_(bytes), count_(count), height_(Some(height)) {
MOZ_ASSERT(bytes != 0);
MOZ_ASSERT(count != 0);
MOZ_ASSERT(height != 0);
}
uint32_t bytes() const { return bytes_; }
uint32_t count() const { return count_; }
uint32_t height() const { return height_.value(); }
bool hasStackResults() const { return bytes() != 0; }
StackResults stackResults() const {
return hasStackResults() ? StackResults::HasStackResults
: StackResults::NoStackResults;
}
};
// Abstraction of the baseline compiler's stack frame (except for the Frame /
// DebugFrame parts). See comments above for more. Remember, "below" on the
// stack means at lower addresses.
//
// The abstraction is split into two parts: BaseStackFrameAllocator is
// responsible for allocating and deallocating space on the stack and for
// performing computations that are affected by how the allocation is performed;
// BaseStackFrame then provides a pleasant interface for stack frame management.
class BaseStackFrameAllocator {
MacroAssembler& masm;
#ifdef RABALDR_CHUNKY_STACK
// On platforms that require the stack pointer to be aligned on a boundary
// greater than the typical stack item (eg, ARM64 requires 16-byte alignment
// but items are 8 bytes), allocate stack memory in chunks, and use a
// separate stack height variable to track the effective stack pointer
// within the allocated area. Effectively, there's a variable amount of
// free space directly above the stack pointer. See diagram above.
// The following must be true in order for the stack height to be
// predictable at control flow joins:
//
// - The Local area is always aligned according to WasmStackAlignment, ie,
// masm.framePushed() % WasmStackAlignment is zero after allocating
// locals.
//
// - ChunkSize is always a multiple of WasmStackAlignment.
//
// - Pushing and popping are always in units of ChunkSize (hence preserving
// alignment).
//
// - The free space on the stack (masm.framePushed() - currentStackHeight_)
// is a predictable (nonnegative) amount.
// As an optimization, we pre-allocate some space on the stack, the size of
// this allocation is InitialChunk and it must be a multiple of ChunkSize.
// It is allocated as part of the function prologue and deallocated as part
// of the epilogue, along with the locals.
//
// If ChunkSize is too large then we risk overflowing the stack on simple
// recursions with few live values where stack overflow should not be a
// risk; if it is too small we spend too much time adjusting the stack
// pointer.
//
// Good values for ChunkSize are the subject of future empirical analysis;
// eight words is just an educated guess.
static constexpr uint32_t ChunkSize = 8 * sizeof(void*);
static constexpr uint32_t InitialChunk = ChunkSize;
// The current logical height of the frame is
// currentStackHeight_ = localSize_ + dynamicSize
// where dynamicSize is not accounted for explicitly and localSize_ also
// includes size for the DebugFrame.
//
// The allocated size of the frame, provided by masm.framePushed(), is usually
// larger than currentStackHeight_, notably at the beginning of execution when
// we've allocated InitialChunk extra space.
uint32_t currentStackHeight_;
#endif
// Size of the Local area in bytes (stable after BaseCompiler::init() has
// called BaseStackFrame::setupLocals(), which in turn calls
// BaseStackFrameAllocator::setLocalSize()), always rounded to the proper
// stack alignment. The Local area is then allocated in beginFunction(),
// following the allocation of the Header. See onFixedStackAllocated()
// below.
uint32_t localSize_;
protected:
///////////////////////////////////////////////////////////////////////////
//
// Initialization
explicit BaseStackFrameAllocator(MacroAssembler& masm)
: masm(masm),
#ifdef RABALDR_CHUNKY_STACK
currentStackHeight_(0),
#endif
localSize_(UINT32_MAX) {
}
protected:
//////////////////////////////////////////////////////////////////////
//
// The Local area - the static part of the frame.
// Record the size of the Local area, once it is known.
void setLocalSize(uint32_t localSize) {
MOZ_ASSERT(localSize == AlignBytes(localSize, sizeof(void*)),
"localSize_ should be aligned to at least a pointer");
MOZ_ASSERT(localSize_ == UINT32_MAX);
localSize_ = localSize;
}
// Record the current stack height, after it has become stable in
// beginFunction(). See also BaseStackFrame::onFixedStackAllocated().
void onFixedStackAllocated() {
MOZ_ASSERT(localSize_ != UINT32_MAX);
#ifdef RABALDR_CHUNKY_STACK
currentStackHeight_ = localSize_;
#endif
}
public:
// The fixed amount of memory, in bytes, allocated on the stack below the
// Header for purposes such as locals and other fixed values. Includes all
// necessary alignment, and on ARM64 also the initial chunk for the working
// stack memory.
uint32_t fixedAllocSize() const {
MOZ_ASSERT(localSize_ != UINT32_MAX);
#ifdef RABALDR_CHUNKY_STACK
return localSize_ + InitialChunk;
#else
return localSize_;
#endif
}
#ifdef RABALDR_CHUNKY_STACK
// The allocated frame size is frequently larger than the logical stack
// height; we round up to a chunk boundary, and special case the initial
// chunk.
uint32_t framePushedForHeight(uint32_t logicalHeight) {
if (logicalHeight <= fixedAllocSize()) {
return fixedAllocSize();
}
return fixedAllocSize() +
AlignBytes(logicalHeight - fixedAllocSize(), ChunkSize);
}
#endif
protected:
//////////////////////////////////////////////////////////////////////
//
// The Dynamic area - the dynamic part of the frame, for spilling and saving
// intermediate values.
// Offset off of sp_ for the slot at stack area location `offset`.
int32_t stackOffset(int32_t offset) {
MOZ_ASSERT(offset > 0);
return masm.framePushed() - offset;
}
uint32_t computeHeightWithStackResults(StackHeight stackBase,
uint32_t stackResultBytes) {
MOZ_ASSERT(stackResultBytes);
MOZ_ASSERT(currentStackHeight() >= stackBase.height);
return stackBase.height + stackResultBytes;
}
#ifdef RABALDR_CHUNKY_STACK
void pushChunkyBytes(uint32_t bytes) {
checkChunkyInvariants();
uint32_t freeSpace = masm.framePushed() - currentStackHeight_;
if (freeSpace < bytes) {
uint32_t bytesToReserve = AlignBytes(bytes - freeSpace, ChunkSize);
MOZ_ASSERT(bytesToReserve + freeSpace >= bytes);
masm.reserveStack(bytesToReserve);
}
currentStackHeight_ += bytes;
checkChunkyInvariants();
}
void popChunkyBytes(uint32_t bytes) {
checkChunkyInvariants();
currentStackHeight_ -= bytes;
// Sometimes, popChunkyBytes() is used to pop a larger area, as when we drop
// values consumed by a call, and we may need to drop several chunks. But
// never drop the initial chunk. Crucially, the amount we drop is always an
// integral number of chunks.
uint32_t freeSpace = masm.framePushed() - currentStackHeight_;
if (freeSpace >= ChunkSize) {
uint32_t targetAllocSize = framePushedForHeight(currentStackHeight_);
uint32_t amountToFree = masm.framePushed() - targetAllocSize;
MOZ_ASSERT(amountToFree % ChunkSize == 0);
if (amountToFree) {
masm.freeStack(amountToFree);
}
}
checkChunkyInvariants();
}
#endif
uint32_t currentStackHeight() const {
#ifdef RABALDR_CHUNKY_STACK
return currentStackHeight_;
#else
return masm.framePushed();
#endif
}
private:
#ifdef RABALDR_CHUNKY_STACK
void checkChunkyInvariants() {
MOZ_ASSERT(masm.framePushed() >= fixedAllocSize());
MOZ_ASSERT(masm.framePushed() >= currentStackHeight_);
MOZ_ASSERT(masm.framePushed() == fixedAllocSize() ||
masm.framePushed() - currentStackHeight_ < ChunkSize);
MOZ_ASSERT((masm.framePushed() - localSize_) % ChunkSize == 0);
}
#endif
// For a given stack height, return the appropriate size of the allocated
// frame.
uint32_t framePushedForHeight(StackHeight stackHeight) {
#ifdef RABALDR_CHUNKY_STACK
// A more complicated adjustment is needed.
return framePushedForHeight(stackHeight.height);
#else
// The allocated frame size equals the stack height.
return stackHeight.height;
#endif
}
public:
// The current height of the stack area, not necessarily zero-based, in a
// type-safe way.
StackHeight stackHeight() const { return StackHeight(currentStackHeight()); }
// Set the frame height to a previously recorded value.
void setStackHeight(StackHeight amount) {
#ifdef RABALDR_CHUNKY_STACK
currentStackHeight_ = amount.height;
masm.setFramePushed(framePushedForHeight(amount));
checkChunkyInvariants();
#else
masm.setFramePushed(amount.height);
#endif
}
// The current height of the dynamic part of the stack area (ie, the backing
// store for the evaluation stack), zero-based.
uint32_t dynamicHeight() const { return currentStackHeight() - localSize_; }
// Before branching to an outer control label, pop the execution stack to
// the level expected by that region, but do not update masm.framePushed()
// as that will happen as compilation leaves the block.
//
// Note these operate directly on the stack pointer register.
void popStackBeforeBranch(StackHeight destStackHeight,
uint32_t stackResultBytes) {
uint32_t framePushedHere = masm.framePushed();
StackHeight heightThere =
StackHeight(destStackHeight.height + stackResultBytes);
uint32_t framePushedThere = framePushedForHeight(heightThere);
if (framePushedHere > framePushedThere) {
masm.addToStackPtr(Imm32(framePushedHere - framePushedThere));
}
}
void popStackBeforeBranch(StackHeight destStackHeight, ResultType type) {
popStackBeforeBranch(destStackHeight,
ABIResultIter::MeasureStackBytes(type));
}
// Given that there are |stackParamSize| bytes on the dynamic stack
// corresponding to the stack results, return the stack height once these
// parameters are popped.
StackHeight stackResultsBase(uint32_t stackParamSize) {
return StackHeight(currentStackHeight() - stackParamSize);
}
// For most of WebAssembly, adjacent instructions have fallthrough control
// flow between them, which allows us to simply thread the current stack
// height through the compiler. There are two exceptions to this rule: when
// leaving a block via dead code, and when entering the "else" arm of an "if".
// In these cases, the stack height is the block entry height, plus any stack
// values (results in the block exit case, parameters in the else entry case).
void resetStackHeight(StackHeight destStackHeight, ResultType type) {
uint32_t height = destStackHeight.height;
height += ABIResultIter::MeasureStackBytes(type);
setStackHeight(StackHeight(height));
}
// Return offset of stack result.
uint32_t locateStackResult(const ABIResult& result, StackHeight stackBase,
uint32_t stackResultBytes) {
MOZ_ASSERT(result.onStack());
MOZ_ASSERT(result.stackOffset() + result.size() <= stackResultBytes);
uint32_t end = computeHeightWithStackResults(stackBase, stackResultBytes);
return end - result.stackOffset();
}
public:
//////////////////////////////////////////////////////////////////////
//
// The Argument area - for outgoing calls.
//
// We abstract these operations as an optimization: we can merge the freeing
// of the argument area and dropping values off the stack after a call. But
// they always amount to manipulating the real stack pointer by some amount.
//
// Note that we do not update currentStackHeight_ for this; the frame does
// not know about outgoing arguments. But we do update framePushed(), so we
// can still index into the frame below the outgoing arguments area.
// This is always equivalent to a masm.reserveStack() call.
void allocArgArea(size_t argSize) {
if (argSize) {
masm.reserveStack(argSize);
}
}
// This frees the argument area allocated by allocArgArea(), and `argSize`
// must be equal to the `argSize` argument to allocArgArea(). In addition
// we drop some values from the frame, corresponding to the values that were
// consumed by the call.
void freeArgAreaAndPopBytes(size_t argSize, size_t dropSize) {
#ifdef RABALDR_CHUNKY_STACK
// Freeing the outgoing arguments and freeing the consumed values have
// different semantics here, which is why the operation is split.
if (argSize) {
masm.freeStack(argSize);
}
popChunkyBytes(dropSize);
#else
if (argSize + dropSize) {
masm.freeStack(argSize + dropSize);
}
#endif
}
};
class BaseStackFrame final : public BaseStackFrameAllocator {
MacroAssembler& masm;
// The largest observed value of masm.framePushed(), ie, the size of the
// stack frame. Read this for its true value only when code generation is
// finished.
uint32_t maxFramePushed_;
// Patch point where we check for stack overflow.
CodeOffset stackAddOffset_;
// Low byte offset of pointer to stack results, if any.
Maybe<int32_t> stackResultsPtrOffset_;
// The offset of instance pointer.
uint32_t instancePointerOffset_;
// Low byte offset of local area for true locals (not parameters).
uint32_t varLow_;
// High byte offset + 1 of local area for true locals.
uint32_t varHigh_;
// The stack pointer, cached for brevity.
RegisterOrSP sp_;
public:
explicit BaseStackFrame(MacroAssembler& masm)
: BaseStackFrameAllocator(masm),
masm(masm),
maxFramePushed_(0),
stackAddOffset_(0),
instancePointerOffset_(UINT32_MAX),
varLow_(UINT32_MAX),
varHigh_(UINT32_MAX),
sp_(masm.getStackPointer()) {}
///////////////////////////////////////////////////////////////////////////
//
// Stack management and overflow checking
// This must be called once beginFunction has allocated space for the Header
// (the Frame and DebugFrame) and the Local area, and will record the current
// frame size for internal use by the stack abstractions.
void onFixedStackAllocated() {
maxFramePushed_ = masm.framePushed();
BaseStackFrameAllocator::onFixedStackAllocated();
}
// We won't know until after we've generated code how big the frame will be
// (we may need arbitrary spill slots and outgoing param slots) so emit a
// patchable add that is patched in endFunction().
//
// Note the platform scratch register may be used by branchPtr(), so
// generally tmp must be something else.
void checkStack(Register tmp, BytecodeOffset trapOffset) {
stackAddOffset_ = masm.sub32FromStackPtrWithPatch(tmp);
Label ok;
masm.branchPtr(Assembler::Below,
Address(InstanceReg, wasm::Instance::offsetOfStackLimit()),
tmp, &ok);
masm.wasmTrap(Trap::StackOverflow, trapOffset);
masm.bind(&ok);
}
void patchCheckStack() {
masm.patchSub32FromStackPtr(stackAddOffset_,
Imm32(int32_t(maxFramePushed_)));
}
// Very large frames are implausible, probably an attack.
bool checkStackHeight() { return maxFramePushed_ <= MaxFrameSize; }
///////////////////////////////////////////////////////////////////////////
//
// Local area
struct Local {
// Type of the value.
const MIRType type;
// Byte offset from Frame "into" the locals, ie positive for true locals
// and negative for incoming args that read directly from the arg area.
// It assumes the stack is growing down and that locals are on the stack
// at lower addresses than Frame, and is the offset from Frame of the
// lowest-addressed byte of the local.
const int32_t offs;
Local(MIRType type, int32_t offs) : type(type), offs(offs) {}
bool isStackArgument() const { return offs < 0; }
};
// Profiling shows that the number of parameters and locals frequently
// touches or exceeds 8. So 16 seems like a reasonable starting point.
using LocalVector = Vector<Local, 16, SystemAllocPolicy>;
// Initialize `localInfo` based on the types of `locals` and `args`.
[[nodiscard]] bool setupLocals(const ValTypeVector& locals,
const ArgTypeVector& args, bool debugEnabled,
LocalVector* localInfo) {
if (!localInfo->reserve(locals.length())) {
return false;
}
DebugOnly<uint32_t> index = 0;
BaseLocalIter i(locals, args, debugEnabled);
for (; !i.done() && i.index() < args.lengthWithoutStackResults(); i++) {
MOZ_ASSERT(i.isArg());
MOZ_ASSERT(i.index() == index);
localInfo->infallibleEmplaceBack(i.mirType(), i.frameOffset());
index++;
}
varLow_ = i.frameSize();
for (; !i.done(); i++) {
MOZ_ASSERT(!i.isArg());
MOZ_ASSERT(i.index() == index);
localInfo->infallibleEmplaceBack(i.mirType(), i.frameOffset());
index++;
}
varHigh_ = i.frameSize();
// Reserve an additional stack slot for the instance pointer.
const uint32_t pointerAlignedVarHigh = AlignBytes(varHigh_, sizeof(void*));
const uint32_t localSize = pointerAlignedVarHigh + sizeof(void*);
instancePointerOffset_ = localSize;
setLocalSize(AlignBytes(localSize, WasmStackAlignment));
if (args.hasSyntheticStackResultPointerArg()) {
stackResultsPtrOffset_ = Some(i.stackResultPointerOffset());
}
return true;
}
void zeroLocals(BaseRegAlloc* ra);
Address addressOfLocal(const Local& local, uint32_t additionalOffset = 0) {
if (local.isStackArgument()) {
return Address(FramePointer,
stackArgumentOffsetFromFp(local) + additionalOffset);
}
return Address(sp_, localOffsetFromSp(local) + additionalOffset);
}
void loadLocalI32(const Local& src, RegI32 dest) {
masm.load32(addressOfLocal(src), dest);
}
#ifndef JS_PUNBOX64
void loadLocalI64Low(const Local& src, RegI32 dest) {
masm.load32(addressOfLocal(src, INT64LOW_OFFSET), dest);
}
void loadLocalI64High(const Local& src, RegI32 dest) {
masm.load32(addressOfLocal(src, INT64HIGH_OFFSET), dest);
}
#endif
void loadLocalI64(const Local& src, RegI64 dest) {
masm.load64(addressOfLocal(src), dest);
}
void loadLocalRef(const Local& src, RegRef dest) {
masm.loadPtr(addressOfLocal(src), dest);
}
void loadLocalF64(const Local& src, RegF64 dest) {
masm.loadDouble(addressOfLocal(src), dest);
}
void loadLocalF32(const Local& src, RegF32 dest) {
masm.loadFloat32(addressOfLocal(src), dest);
}
#ifdef ENABLE_WASM_SIMD
void loadLocalV128(const Local& src, RegV128 dest) {
masm.loadUnalignedSimd128(addressOfLocal(src), dest);
}
#endif
void storeLocalI32(RegI32 src, const Local& dest) {
masm.store32(src, addressOfLocal(dest));
}
void storeLocalI64(RegI64 src, const Local& dest) {
masm.store64(src, addressOfLocal(dest));
}
void storeLocalRef(RegRef src, const Local& dest) {
masm.storePtr(src, addressOfLocal(dest));
}
void storeLocalF64(RegF64 src, const Local& dest) {
masm.storeDouble(src, addressOfLocal(dest));
}
void storeLocalF32(RegF32 src, const Local& dest) {
masm.storeFloat32(src, addressOfLocal(dest));
}
#ifdef ENABLE_WASM_SIMD
void storeLocalV128(RegV128 src, const Local& dest) {
masm.storeUnalignedSimd128(src, addressOfLocal(dest));
}
#endif
// Offset off of sp_ for `local`.
int32_t localOffsetFromSp(const Local& local) {
MOZ_ASSERT(!local.isStackArgument());
return localOffset(local.offs);
}
// Offset off of frame pointer for `stack argument`.
int32_t stackArgumentOffsetFromFp(const Local& local) {
MOZ_ASSERT(local.isStackArgument());
return -local.offs;
}
// The incoming stack result area pointer is for stack results of the function
// being compiled.
void loadIncomingStackResultAreaPtr(RegPtr reg) {
const int32_t offset = stackResultsPtrOffset_.value();
Address src = offset < 0 ? Address(FramePointer, -offset)
: Address(sp_, stackOffset(offset));
masm.loadPtr(src, reg);
}
void storeIncomingStackResultAreaPtr(RegPtr reg) {
// If we get here, that means the pointer to the stack results area was
// passed in as a register, and therefore it will be spilled below the
// frame, so the offset is a positive height.
MOZ_ASSERT(stackResultsPtrOffset_.value() > 0);
masm.storePtr(reg,
Address(sp_, stackOffset(stackResultsPtrOffset_.value())));
}
void loadInstancePtr(Register dst) {
masm.loadPtr(Address(sp_, stackOffset(instancePointerOffset_)), dst);
}
void storeInstancePtr(Register instance) {
masm.storePtr(instance, Address(sp_, stackOffset(instancePointerOffset_)));
}
int32_t getInstancePtrOffset() { return stackOffset(instancePointerOffset_); }
// An outgoing stack result area pointer is for stack results of callees of
// the function being compiled.
void computeOutgoingStackResultAreaPtr(const StackResultsLoc& results,
RegPtr dest) {
MOZ_ASSERT(results.height() <= masm.framePushed());
uint32_t offsetFromSP = masm.framePushed() - results.height();
masm.moveStackPtrTo(dest);
if (offsetFromSP) {
masm.addPtr(Imm32(offsetFromSP), dest);
}
}
private:
// Offset off of sp_ for a local with offset `offset` from Frame.
int32_t localOffset(int32_t offset) { return masm.framePushed() - offset; }
public:
///////////////////////////////////////////////////////////////////////////
//
// Dynamic area
static constexpr size_t StackSizeOfPtr = ABIResult::StackSizeOfPtr;
static constexpr size_t StackSizeOfInt64 = ABIResult::StackSizeOfInt64;
static constexpr size_t StackSizeOfFloat = ABIResult::StackSizeOfFloat;
static constexpr size_t StackSizeOfDouble = ABIResult::StackSizeOfDouble;
#ifdef ENABLE_WASM_SIMD
static constexpr size_t StackSizeOfV128 = ABIResult::StackSizeOfV128;
#endif
// Pushes the register `r` to the stack. This pushes the full 64-bit width on
// 64-bit systems, and 32-bits otherwise.
uint32_t pushGPR(Register r) {
DebugOnly<uint32_t> stackBefore = currentStackHeight();
#ifdef RABALDR_CHUNKY_STACK
pushChunkyBytes(StackSizeOfPtr);
masm.storePtr(r, Address(sp_, stackOffset(currentStackHeight())));
#else
masm.Push(r);
#endif
maxFramePushed_ = std::max(maxFramePushed_, masm.framePushed());
MOZ_ASSERT(stackBefore + StackSizeOfPtr == currentStackHeight());
return currentStackHeight();
}
uint32_t pushFloat32(FloatRegister r) {
DebugOnly<uint32_t> stackBefore = currentStackHeight();
#ifdef RABALDR_CHUNKY_STACK
pushChunkyBytes(StackSizeOfFloat);
masm.storeFloat32(r, Address(sp_, stackOffset(currentStackHeight())));
#else
masm.Push(r);
#endif
maxFramePushed_ = std::max(maxFramePushed_, masm.framePushed());
MOZ_ASSERT(stackBefore + StackSizeOfFloat == currentStackHeight());
return currentStackHeight();
}
#ifdef ENABLE_WASM_SIMD
uint32_t pushV128(RegV128 r) {
DebugOnly<uint32_t> stackBefore = currentStackHeight();
# ifdef RABALDR_CHUNKY_STACK
pushChunkyBytes(StackSizeOfV128);
# else
masm.adjustStack(-(int)StackSizeOfV128);
# endif
masm.storeUnalignedSimd128(r,
Address(sp_, stackOffset(currentStackHeight())));
maxFramePushed_ = std::max(maxFramePushed_, masm.framePushed());
MOZ_ASSERT(stackBefore + StackSizeOfV128 == currentStackHeight());
return currentStackHeight();
}
#endif
uint32_t pushDouble(FloatRegister r) {
DebugOnly<uint32_t> stackBefore = currentStackHeight();
#ifdef RABALDR_CHUNKY_STACK
pushChunkyBytes(StackSizeOfDouble);
masm.storeDouble(r, Address(sp_, stackOffset(currentStackHeight())));
#else
masm.Push(r);
#endif
maxFramePushed_ = std::max(maxFramePushed_, masm.framePushed());
MOZ_ASSERT(stackBefore + StackSizeOfDouble == currentStackHeight());
return currentStackHeight();
}
// Pops the stack into the register `r`. This pops the full 64-bit width on
// 64-bit systems, and 32-bits otherwise.
void popGPR(Register r) {
DebugOnly<uint32_t> stackBefore = currentStackHeight();
#ifdef RABALDR_CHUNKY_STACK
masm.loadPtr(Address(sp_, stackOffset(currentStackHeight())), r);
popChunkyBytes(StackSizeOfPtr);
#else
masm.Pop(r);
#endif
MOZ_ASSERT(stackBefore - StackSizeOfPtr == currentStackHeight());
}
void popFloat32(FloatRegister r) {
DebugOnly<uint32_t> stackBefore = currentStackHeight();
#ifdef RABALDR_CHUNKY_STACK
masm.loadFloat32(Address(sp_, stackOffset(currentStackHeight())), r);
popChunkyBytes(StackSizeOfFloat);
#else
masm.Pop(r);
#endif
MOZ_ASSERT(stackBefore - StackSizeOfFloat == currentStackHeight());
}
void popDouble(FloatRegister r) {
DebugOnly<uint32_t> stackBefore = currentStackHeight();
#ifdef RABALDR_CHUNKY_STACK
masm.loadDouble(Address(sp_, stackOffset(currentStackHeight())), r);
popChunkyBytes(StackSizeOfDouble);
#else
masm.Pop(r);
#endif
MOZ_ASSERT(stackBefore - StackSizeOfDouble == currentStackHeight());
}
#ifdef ENABLE_WASM_SIMD
void popV128(RegV128 r) {
DebugOnly<uint32_t> stackBefore = currentStackHeight();
masm.loadUnalignedSimd128(Address(sp_, stackOffset(currentStackHeight())),
r);
# ifdef RABALDR_CHUNKY_STACK
popChunkyBytes(StackSizeOfV128);
# else
masm.adjustStack((int)StackSizeOfV128);
# endif
MOZ_ASSERT(stackBefore - StackSizeOfV128 == currentStackHeight());
}
#endif
void popBytes(size_t bytes) {
if (bytes > 0) {
#ifdef RABALDR_CHUNKY_STACK
popChunkyBytes(bytes);
#else
masm.freeStack(bytes);
#endif
}
}
void loadStackI32(int32_t offset, RegI32 dest) {
masm.load32(Address(sp_, stackOffset(offset)), dest);
}
void loadStackI64(int32_t offset, RegI64 dest) {
masm.load64(Address(sp_, stackOffset(offset)), dest);
}
#ifndef JS_PUNBOX64
void loadStackI64Low(int32_t offset, RegI32 dest) {
masm.load32(Address(sp_, stackOffset(offset - INT64LOW_OFFSET)), dest);
}
void loadStackI64High(int32_t offset, RegI32 dest) {
masm.load32(Address(sp_, stackOffset(offset - INT64HIGH_OFFSET)), dest);
}
#endif
void loadStackRef(int32_t offset, RegRef dest) {
masm.loadPtr(Address(sp_, stackOffset(offset)), dest);
}
void loadStackF64(int32_t offset, RegF64 dest) {
masm.loadDouble(Address(sp_, stackOffset(offset)), dest);
}
void loadStackF32(int32_t offset, RegF32 dest) {
masm.loadFloat32(Address(sp_, stackOffset(offset)), dest);
}
#ifdef ENABLE_WASM_SIMD
void loadStackV128(int32_t offset, RegV128 dest) {
masm.loadUnalignedSimd128(Address(sp_, stackOffset(offset)), dest);
}
#endif
uint32_t prepareStackResultArea(StackHeight stackBase,
uint32_t stackResultBytes) {
uint32_t end = computeHeightWithStackResults(stackBase, stackResultBytes);
if (currentStackHeight() < end) {
uint32_t bytes = end - currentStackHeight();
#ifdef RABALDR_CHUNKY_STACK
pushChunkyBytes(bytes);
#else
masm.reserveStack(bytes);
#endif
maxFramePushed_ = std::max(maxFramePushed_, masm.framePushed());
}
return end;
}
void finishStackResultArea(StackHeight stackBase, uint32_t stackResultBytes) {
uint32_t end = computeHeightWithStackResults(stackBase, stackResultBytes);
MOZ_ASSERT(currentStackHeight() >= end);
popBytes(currentStackHeight() - end);
}
// |srcHeight| and |destHeight| are stack heights *including* |bytes|.
void shuffleStackResultsTowardFP(uint32_t srcHeight, uint32_t destHeight,
uint32_t bytes, Register temp) {
MOZ_ASSERT(destHeight < srcHeight);
MOZ_ASSERT(bytes % sizeof(uint32_t) == 0);
uint32_t destOffset = stackOffset(destHeight) + bytes;
uint32_t srcOffset = stackOffset(srcHeight) + bytes;
while (bytes >= sizeof(intptr_t)) {
destOffset -= sizeof(intptr_t);
srcOffset -= sizeof(intptr_t);
bytes -= sizeof(intptr_t);
masm.loadPtr(Address(sp_, srcOffset), temp);
masm.storePtr(temp, Address(sp_, destOffset));
}
if (bytes) {
MOZ_ASSERT(bytes == sizeof(uint32_t));
destOffset -= sizeof(uint32_t);
srcOffset -= sizeof(uint32_t);
masm.load32(Address(sp_, srcOffset), temp);
masm.store32(temp, Address(sp_, destOffset));
}
}
// Unlike the overload that operates on raw heights, |srcHeight| and
// |destHeight| are stack heights *not including* |bytes|.
void shuffleStackResultsTowardFP(StackHeight srcHeight,
StackHeight destHeight, uint32_t bytes,
Register temp) {
MOZ_ASSERT(srcHeight.isValid());
MOZ_ASSERT(destHeight.isValid());
uint32_t src = computeHeightWithStackResults(srcHeight, bytes);
uint32_t dest = computeHeightWithStackResults(destHeight, bytes);
MOZ_ASSERT(src <= currentStackHeight());
MOZ_ASSERT(dest <= currentStackHeight());
shuffleStackResultsTowardFP(src, dest, bytes, temp);
}
// |srcHeight| and |destHeight| are stack heights *including* |bytes|.
void shuffleStackResultsTowardSP(uint32_t srcHeight, uint32_t destHeight,
uint32_t bytes, Register temp) {
MOZ_ASSERT(destHeight > srcHeight);
MOZ_ASSERT(bytes % sizeof(uint32_t) == 0);
uint32_t destOffset = stackOffset(destHeight);
uint32_t srcOffset = stackOffset(srcHeight);
while (bytes >= sizeof(intptr_t)) {
masm.loadPtr(Address(sp_, srcOffset), temp);
masm.storePtr(temp, Address(sp_, destOffset));
destOffset += sizeof(intptr_t);
srcOffset += sizeof(intptr_t);
bytes -= sizeof(intptr_t);
}
if (bytes) {
MOZ_ASSERT(bytes == sizeof(uint32_t));
masm.load32(Address(sp_, srcOffset), temp);
masm.store32(temp, Address(sp_, destOffset));
}
}
// Copy results from the top of the current stack frame to an area of memory,
// and pop the stack accordingly. `dest` is the address of the low byte of
// that memory.
void popStackResultsToMemory(Register dest, uint32_t bytes, Register temp) {
MOZ_ASSERT(bytes <= currentStackHeight());
MOZ_ASSERT(bytes % sizeof(uint32_t) == 0);
uint32_t bytesToPop = bytes;
uint32_t srcOffset = stackOffset(currentStackHeight());
uint32_t destOffset = 0;
while (bytes >= sizeof(intptr_t)) {
masm.loadPtr(Address(sp_, srcOffset), temp);
masm.storePtr(temp, Address(dest, destOffset));
destOffset += sizeof(intptr_t);
srcOffset += sizeof(intptr_t);
bytes -= sizeof(intptr_t);
}
if (bytes) {
MOZ_ASSERT(bytes == sizeof(uint32_t));
masm.load32(Address(sp_, srcOffset), temp);
masm.store32(temp, Address(dest, destOffset));
}
popBytes(bytesToPop);
}
void allocArgArea(size_t argSize) {
if (argSize) {
BaseStackFrameAllocator::allocArgArea(argSize);
maxFramePushed_ = std::max(maxFramePushed_, masm.framePushed());
}
}
private:
void store32BitsToStack(int32_t imm, uint32_t destHeight, Register temp) {
masm.move32(Imm32(imm), temp);
masm.store32(temp, Address(sp_, stackOffset(destHeight)));
}
void store64BitsToStack(int64_t imm, uint32_t destHeight, Register temp) {
#ifdef JS_PUNBOX64
masm.move64(Imm64(imm), Register64(temp));
masm.store64(Register64(temp), Address(sp_, stackOffset(destHeight)));
#else
union {
int64_t i64;
int32_t i32[2];
} bits = {.i64 = imm};
static_assert(sizeof(bits) == 8);
store32BitsToStack(bits.i32[0], destHeight, temp);
store32BitsToStack(bits.i32[1], destHeight - sizeof(int32_t), temp);
#endif
}
public:
void storeImmediatePtrToStack(intptr_t imm, uint32_t destHeight,
Register temp) {
#ifdef JS_PUNBOX64
static_assert(StackSizeOfPtr == 8);
store64BitsToStack(imm, destHeight, temp);
#else
static_assert(StackSizeOfPtr == 4);
store32BitsToStack(int32_t(imm), destHeight, temp);
#endif
}
void storeImmediateI64ToStack(int64_t imm, uint32_t destHeight,
Register temp) {
store64BitsToStack(imm, destHeight, temp);
}
void storeImmediateF32ToStack(float imm, uint32_t destHeight, Register temp) {
union {
int32_t i32;
float f32;
} bits = {.f32 = imm};
static_assert(sizeof(bits) == 4);
// Do not store 4 bytes if StackSizeOfFloat == 8. It's probably OK to do
// so, but it costs little to store something predictable.
if (StackSizeOfFloat == 4) {
store32BitsToStack(bits.i32, destHeight, temp);
} else {
store64BitsToStack(uint32_t(bits.i32), destHeight, temp);
}
}
void storeImmediateF64ToStack(double imm, uint32_t destHeight,
Register temp) {
union {
int64_t i64;
double f64;
} bits = {.f64 = imm};
static_assert(sizeof(bits) == 8);
store64BitsToStack(bits.i64, destHeight, temp);
}
#ifdef ENABLE_WASM_SIMD
void storeImmediateV128ToStack(V128 imm, uint32_t destHeight, Register temp) {
union {
int32_t i32[4];
uint8_t bytes[16];
} bits{};
static_assert(sizeof(bits) == 16);
memcpy(bits.bytes, imm.bytes, 16);
for (unsigned i = 0; i < 4; i++) {
store32BitsToStack(bits.i32[i], destHeight - i * sizeof(int32_t), temp);
}
}
#endif
};
//////////////////////////////////////////////////////////////////////////////
//
// MachineStackTracker, used for stack-slot pointerness tracking.
// An expensive operation in stack-map creation is copying of the
// MachineStackTracker (MST) into the final StackMap. This is done in
// StackMapGenerator::createStackMap. Given that this is basically a
// bit-array copy, it is reasonable to ask whether the two classes could have
// a more similar representation, so that the copy could then be done with
// `memcpy`.
//
// Although in principle feasible, the follow complications exist, and so for
// the moment, this has not been done.
//
// * StackMap is optimised for compact size (storage) since there will be
// many, so it uses a true bitmap. MST is intended to be fast and simple,
// and only one exists at once (per compilation thread). Doing this would
// require MST to use a true bitmap, and hence ..
//
// * .. the copying can't be a straight memcpy, since StackMap has entries for
// words not covered by MST. Hence the copy would need to shift bits in
// each byte left or right (statistically speaking, in 7 cases out of 8) in
// order to ensure no "holes" in the resulting bitmap.
//
// * Furthermore the copying would need to logically invert the direction of
// the stacks. For MST, index zero in the vector corresponds to the highest
// address in the stack. For StackMap, bit index zero corresponds to the
// lowest address in the stack.
//
// * Finally, StackMap is a variable-length structure whose size must be known
// at creation time. The size of an MST by contrast isn't known at creation
// time -- it grows as the baseline compiler pushes stuff on its value
// stack. That's why it has to have vector entry 0 being the highest address.
//
// * Although not directly relevant, StackMaps are also created by the via-Ion
// compilation routes, by translation from the pre-existing "JS-era"
// LSafePoints (CreateStackMapFromLSafepoint). So if we want to mash
// StackMap around to suit baseline better, we also need to ensure it
// doesn't break Ion somehow.
class MachineStackTracker {
// Simulates the machine's stack, with one bool per word. The booleans are
// represented as `uint8_t`s so as to guarantee the element size is one
// byte. Index zero in this vector corresponds to the highest address in
// the machine's stack. The last entry corresponds to what SP currently
// points at. This all assumes a grow-down stack.
//
// numPtrs_ contains the number of "true" values in vec_, and is therefore
// redundant. But it serves as a constant-time way to detect the common
// case where vec_ holds no "true" values.
size_t numPtrs_;
Vector<uint8_t, 64, SystemAllocPolicy> vec_;
public:
MachineStackTracker() : numPtrs_(0) {}
~MachineStackTracker() {
#ifdef DEBUG
size_t n = 0;
for (uint8_t b : vec_) {
n += (b ? 1 : 0);
}
MOZ_ASSERT(n == numPtrs_);
#endif
}
// Clone this MachineStackTracker, writing the result at |dst|.
[[nodiscard]] bool cloneTo(MachineStackTracker* dst);
// Notionally push |n| non-pointers on the stack.
[[nodiscard]] bool pushNonGCPointers(size_t n) {
return vec_.appendN(uint8_t(false), n);
}
// Mark the stack slot |offsetFromSP| up from the bottom as holding a
// pointer.
void setGCPointer(size_t offsetFromSP) {
// offsetFromSP == 0 denotes the most recently pushed item, == 1 the
// second most recently pushed item, etc.
MOZ_ASSERT(offsetFromSP < vec_.length());
size_t offsetFromTop = vec_.length() - 1 - offsetFromSP;
numPtrs_ = numPtrs_ + 1 - (vec_[offsetFromTop] ? 1 : 0);
vec_[offsetFromTop] = uint8_t(true);
}
// Query the pointerness of the slot |offsetFromSP| up from the bottom.
bool isGCPointer(size_t offsetFromSP) const {
MOZ_ASSERT(offsetFromSP < vec_.length());
size_t offsetFromTop = vec_.length() - 1 - offsetFromSP;
return bool(vec_[offsetFromTop]);
}
// Return the number of words tracked by this MachineStackTracker.
size_t length() const { return vec_.length(); }
// Return the number of pointer-typed words tracked by this
// MachineStackTracker.
size_t numPtrs() const {
MOZ_ASSERT(numPtrs_ <= length());
return numPtrs_;
}
// Discard all contents, but (per mozilla::Vector::clear semantics) don't
// free or reallocate any dynamic storage associated with |vec_|.
void clear() {
vec_.clear();
numPtrs_ = 0;
}
// An iterator that produces indices of reftyped slots, starting at the
// logical bottom of the (grow-down) stack. Indices have the same meaning
// as the arguments to `isGCPointer`. That is, if this iterator produces a
// value `i`, then it means that `isGCPointer(i) == true`; if the value `i`
// is never produced then `isGCPointer(i) == false`. The values are
// produced in ascending order.
//
// Because most slots are non-reftyped, some effort has been put into
// skipping over large groups of non-reftyped slots quickly.
class Iter {
// Both `bufU8_` and `bufU32_` are made to point to `vec_`s array of
// `uint8_t`s, so we can scan (backwards) through it either in bytes or
// 32-bit words. Recall that the last element in `vec_` pertains to the
// lowest-addressed word in the machine's grow-down stack, and we want to
// iterate logically "up" this stack, so we need to iterate backwards
// through `vec_`.
//
// This dual-pointer scheme assumes that the `vec_`s content array is at
// least 32-bit aligned.
const uint8_t* bufU8_;
const uint32_t* bufU32_;
// The number of elements in `bufU8_`.
const size_t nElems_;
// The index in `bufU8_` where the next search should start.
size_t next_;
public:
explicit Iter(const MachineStackTracker& mst)
: bufU8_((uint8_t*)mst.vec_.begin()),
bufU32_((uint32_t*)mst.vec_.begin()),
nElems_(mst.vec_.length()),
next_(mst.vec_.length() - 1) {
MOZ_ASSERT(uintptr_t(bufU8_) == uintptr_t(bufU32_));
// Check minimum alignment constraint on the array.
MOZ_ASSERT(0 == (uintptr_t(bufU8_) & 3));
}
~Iter() { MOZ_ASSERT(uintptr_t(bufU8_) == uintptr_t(bufU32_)); }
// It is important, for termination of the search loop in `next()`, that
// this has the value obtained by subtracting 1 from size_t(0).
static constexpr size_t FINISHED = ~size_t(0);
static_assert(FINISHED == size_t(0) - 1);
// Returns the next index `i` for which `isGCPointer(i) == true`.
size_t get() {
while (next_ != FINISHED) {
if (bufU8_[next_]) {
next_--;
return nElems_ - 1 - (next_ + 1);
}
// Invariant: next_ != FINISHED (so it's still a valid index)
// and: bufU8_[next_] == 0
// (so we need to move backwards by at least 1)
//
// BEGIN optimization -- this could be removed without affecting
// correctness.
if ((next_ & 7) == 0) {
// We're at the "bottom" of the current dual-4-element word. Check
// if we can jump backwards by 8. This saves a conditional branch
// and a few cycles by ORing two adjacent 32-bit words together,
// whilst not requiring 64-bit alignment of `bufU32_`.
while (next_ >= 8 &&
(bufU32_[(next_ - 4) >> 2] | bufU32_[(next_ - 8) >> 2]) == 0) {
next_ -= 8;
}
}
// END optimization
next_--;
}
return FINISHED;
}
};
};
//////////////////////////////////////////////////////////////////////////////
//
// StackMapGenerator, which carries all state needed to create stackmaps.
enum class HasDebugFrameWithLiveRefs { No, Maybe };
struct StackMapGenerator {
private:
// --- These are constant for the life of the function's compilation ---
// For generating stackmaps, we'll need to know the offsets of registers
// as saved by the trap exit stub.
const RegisterOffsets& trapExitLayout_;
const size_t trapExitLayoutNumWords_;
// Completed stackmaps are added here
StackMaps* stackMaps_;
// So as to be able to get current offset when creating stackmaps
const MacroAssembler& masm_;
public:
// --- These are constant once we've completed beginFunction() ---
// The number of words of arguments passed to this function in memory.
size_t numStackArgWords;
MachineStackTracker machineStackTracker; // tracks machine stack pointerness
// This holds masm.framePushed at entry to the function's body. It is a
// Maybe because createStackMap needs to know whether or not we're still
// in the prologue. It makes a Nothing-to-Some transition just once per
// function.
Maybe<uint32_t> framePushedAtEntryToBody;
// --- These can change at any point ---
// This holds masm.framePushed at it would be be for a function call
// instruction, but excluding the stack area used to pass arguments in
// memory. That is, for an upcoming function call, this will hold
//
// masm.framePushed() at the call instruction -
// StackArgAreaSizeUnaligned(argumentTypes)
//
// This value denotes the lowest-addressed stack word covered by the current
// function's stackmap. Words below this point form the highest-addressed
// area of the callee's stackmap. Note that all alignment padding above the
// arguments-in-memory themselves belongs to the caller's stackmap, which
// is why this is defined in terms of StackArgAreaSizeUnaligned() rather than
// StackArgAreaSizeAligned().
//
// When not inside a function call setup/teardown sequence, it is Nothing.
// It can make Nothing-to/from-Some transitions arbitrarily as we progress
// through the function body.
Maybe<uint32_t> framePushedExcludingOutboundCallArgs;
// The number of memory-resident, ref-typed entries on the containing
// BaseCompiler::stk_.
size_t memRefsOnStk;
// This is a copy of machineStackTracker that is used only within individual
// calls to createStackMap. It is here only to avoid possible heap allocation
// costs resulting from making it local to createStackMap().
MachineStackTracker augmentedMst;
StackMapGenerator(StackMaps* stackMaps, const RegisterOffsets& trapExitLayout,
const size_t trapExitLayoutNumWords,
const MacroAssembler& masm)
: trapExitLayout_(trapExitLayout),
trapExitLayoutNumWords_(trapExitLayoutNumWords),
stackMaps_(stackMaps),
masm_(masm),
numStackArgWords(0),
memRefsOnStk(0) {}
// At the beginning of a function, we may have live roots in registers (as
// arguments) at the point where we perform a stack overflow check. This
// method generates the "extra" stackmap entries to describe that, in the
// case that the check fails and we wind up calling into the wasm exit
// stub, as generated by GenerateTrapExit().
//
// The resulting map must correspond precisely with the stack layout
// created for the integer registers as saved by (code generated by)
// GenerateTrapExit(). To do that we use trapExitLayout_ and
// trapExitLayoutNumWords_, which together comprise a description of the
// layout and are created by GenerateTrapExitRegisterOffsets().
[[nodiscard]] bool generateStackmapEntriesForTrapExit(
const ArgTypeVector& args, ExitStubMapVector* extras);
// Creates a stackmap associated with the instruction denoted by
// |assemblerOffset|, incorporating pointers from the current operand
// stack |stk|, incorporating possible extra pointers in |extra| at the
// lower addressed end, and possibly with the associated frame having a
// DebugFrame that must be traced, as indicated by |debugFrameWithLiveRefs|.
[[nodiscard]] bool createStackMap(
const char* who, const ExitStubMapVector& extras,
uint32_t assemblerOffset,
HasDebugFrameWithLiveRefs debugFrameWithLiveRefs, const StkVector& stk);
};
} // namespace wasm
} // namespace js
#endif // wasm_wasm_baseline_frame_h
|