1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
*
* Copyright 2017 Mozilla Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "wasm/WasmProcess.h"
#include "mozilla/Attributes.h"
#include "mozilla/BinarySearch.h"
#include "mozilla/ScopeExit.h"
#include "gc/Memory.h"
#include "threading/ExclusiveData.h"
#include "vm/MutexIDs.h"
#include "vm/Runtime.h"
#include "wasm/WasmBuiltins.h"
#include "wasm/WasmCode.h"
#include "wasm/WasmInstance.h"
using namespace js;
using namespace wasm;
using mozilla::BinarySearchIf;
// Per-process map from values of program-counter (pc) to CodeSegments.
//
// Whenever a new CodeSegment is ready to use, it has to be registered so that
// we can have fast lookups from pc to CodeSegments in numerous places. Since
// wasm compilation may be tiered, and the second tier doesn't have access to
// any JSContext/JS::Compartment/etc lying around, we have to use a process-wide
// map instead.
using CodeSegmentVector = Vector<const CodeSegment*, 0, SystemAllocPolicy>;
Atomic<bool> wasm::CodeExists(false);
// Because of profiling, the thread running wasm might need to know to which
// CodeSegment the current PC belongs, during a call to lookup(). A lookup
// is a read-only operation, and we don't want to take a lock then
// (otherwise, we could have a deadlock situation if an async lookup
// happened on a given thread that was holding mutatorsMutex_ while getting
// sampled). Since the writer could be modifying the data that is getting
// looked up, the writer functions use spin-locks to know if there are any
// observers (i.e. calls to lookup()) of the atomic data.
static Atomic<size_t> sNumActiveLookups(0);
class ProcessCodeSegmentMap {
// Since writes (insertions or removals) can happen on any background
// thread at the same time, we need a lock here.
Mutex mutatorsMutex_ MOZ_UNANNOTATED;
CodeSegmentVector segments1_;
CodeSegmentVector segments2_;
// Except during swapAndWait(), there are no lookup() observers of the
// vector pointed to by mutableCodeSegments_
CodeSegmentVector* mutableCodeSegments_;
Atomic<const CodeSegmentVector*> readonlyCodeSegments_;
struct CodeSegmentPC {
const void* pc;
explicit CodeSegmentPC(const void* pc) : pc(pc) {}
int operator()(const CodeSegment* cs) const {
if (cs->containsCodePC(pc)) {
return 0;
}
if (pc < cs->base()) {
return -1;
}
return 1;
}
};
void swapAndWait() {
// Both vectors are consistent for lookup at this point although their
// contents are different: there is no way for the looked up PC to be
// in the code segment that is getting registered, because the code
// segment is not even fully created yet.
// If a lookup happens before this instruction, then the
// soon-to-become-former read-only pointer is used during the lookup,
// which is valid.
mutableCodeSegments_ = const_cast<CodeSegmentVector*>(
readonlyCodeSegments_.exchange(mutableCodeSegments_));
// If a lookup happens after this instruction, then the updated vector
// is used, which is valid:
// - in case of insertion, it means the new vector contains more data,
// but it's fine since the code segment is getting registered and thus
// isn't even fully created yet, so the code can't be running.
// - in case of removal, it means the new vector contains one less
// entry, but it's fine since unregistering means the code segment
// isn't used by any live instance anymore, thus PC can't be in the
// to-be-removed code segment's range.
// A lookup could have happened on any of the two vectors. Wait for
// observers to be done using any vector before mutating.
while (sNumActiveLookups > 0) {
}
}
public:
ProcessCodeSegmentMap()
: mutatorsMutex_(mutexid::WasmCodeSegmentMap),
mutableCodeSegments_(&segments1_),
readonlyCodeSegments_(&segments2_) {}
~ProcessCodeSegmentMap() {
MOZ_RELEASE_ASSERT(sNumActiveLookups == 0);
MOZ_ASSERT(segments1_.empty());
MOZ_ASSERT(segments2_.empty());
segments1_.clearAndFree();
segments2_.clearAndFree();
}
bool insert(const CodeSegment* cs) {
LockGuard<Mutex> lock(mutatorsMutex_);
size_t index;
MOZ_ALWAYS_FALSE(BinarySearchIf(*mutableCodeSegments_, 0,
mutableCodeSegments_->length(),
CodeSegmentPC(cs->base()), &index));
if (!mutableCodeSegments_->insert(mutableCodeSegments_->begin() + index,
cs)) {
return false;
}
CodeExists = true;
swapAndWait();
#ifdef DEBUG
size_t otherIndex;
MOZ_ALWAYS_FALSE(BinarySearchIf(*mutableCodeSegments_, 0,
mutableCodeSegments_->length(),
CodeSegmentPC(cs->base()), &otherIndex));
MOZ_ASSERT(index == otherIndex);
#endif
// Although we could simply revert the insertion in the read-only
// vector, it is simpler to just crash and given that each CodeSegment
// consumes multiple pages, it is unlikely this insert() would OOM in
// practice
AutoEnterOOMUnsafeRegion oom;
if (!mutableCodeSegments_->insert(mutableCodeSegments_->begin() + index,
cs)) {
oom.crash("when inserting a CodeSegment in the process-wide map");
}
return true;
}
void remove(const CodeSegment* cs) {
LockGuard<Mutex> lock(mutatorsMutex_);
size_t index;
MOZ_ALWAYS_TRUE(BinarySearchIf(*mutableCodeSegments_, 0,
mutableCodeSegments_->length(),
CodeSegmentPC(cs->base()), &index));
mutableCodeSegments_->erase(mutableCodeSegments_->begin() + index);
if (!mutableCodeSegments_->length()) {
CodeExists = false;
}
swapAndWait();
#ifdef DEBUG
size_t otherIndex;
MOZ_ALWAYS_TRUE(BinarySearchIf(*mutableCodeSegments_, 0,
mutableCodeSegments_->length(),
CodeSegmentPC(cs->base()), &otherIndex));
MOZ_ASSERT(index == otherIndex);
#endif
mutableCodeSegments_->erase(mutableCodeSegments_->begin() + index);
}
const CodeSegment* lookup(const void* pc) {
const CodeSegmentVector* readonly = readonlyCodeSegments_;
size_t index;
if (!BinarySearchIf(*readonly, 0, readonly->length(), CodeSegmentPC(pc),
&index)) {
return nullptr;
}
// It is fine returning a raw CodeSegment*, because we assume we are
// looking up a live PC in code which is on the stack, keeping the
// CodeSegment alive.
return (*readonly)[index];
}
};
// This field is only atomic to handle buggy scenarios where we crash during
// startup or shutdown and thus racily perform wasm::LookupCodeSegment() from
// the crashing thread.
static Atomic<ProcessCodeSegmentMap*> sProcessCodeSegmentMap(nullptr);
bool wasm::RegisterCodeSegment(const CodeSegment* cs) {
MOZ_ASSERT(cs->codeTier().code().initialized());
// This function cannot race with startup/shutdown.
ProcessCodeSegmentMap* map = sProcessCodeSegmentMap;
MOZ_RELEASE_ASSERT(map);
return map->insert(cs);
}
void wasm::UnregisterCodeSegment(const CodeSegment* cs) {
// This function cannot race with startup/shutdown.
ProcessCodeSegmentMap* map = sProcessCodeSegmentMap;
MOZ_RELEASE_ASSERT(map);
map->remove(cs);
}
const CodeSegment* wasm::LookupCodeSegment(
const void* pc, const CodeRange** codeRange /*= nullptr */) {
// Since wasm::LookupCodeSegment() can race with wasm::ShutDown(), we must
// additionally keep sNumActiveLookups above zero for the duration we're
// using the ProcessCodeSegmentMap. wasm::ShutDown() spin-waits on
// sNumActiveLookups getting to zero.
auto decObserver = mozilla::MakeScopeExit([&] {
MOZ_ASSERT(sNumActiveLookups > 0);
sNumActiveLookups--;
});
sNumActiveLookups++;
ProcessCodeSegmentMap* map = sProcessCodeSegmentMap;
if (!map) {
return nullptr;
}
if (const CodeSegment* found = map->lookup(pc)) {
if (codeRange) {
*codeRange = found->isModule() ? found->asModule()->lookupRange(pc)
: found->asLazyStub()->lookupRange(pc);
}
return found;
}
if (codeRange) {
*codeRange = nullptr;
}
return nullptr;
}
const Code* wasm::LookupCode(const void* pc,
const CodeRange** codeRange /* = nullptr */) {
const CodeSegment* found = LookupCodeSegment(pc, codeRange);
MOZ_ASSERT_IF(!found && codeRange, !*codeRange);
return found ? &found->code() : nullptr;
}
bool wasm::InCompiledCode(void* pc) {
if (LookupCodeSegment(pc)) {
return true;
}
const CodeRange* codeRange;
uint8_t* codeBase;
return LookupBuiltinThunk(pc, &codeRange, &codeBase);
}
/**
* ReadLockFlag maintains a flag that can be mutated multiple times before it
* is read, at which point it maintains the same value.
*/
class ReadLockFlag {
private:
bool enabled_;
bool read_;
public:
ReadLockFlag() : enabled_(false), read_(false) {}
bool get() {
read_ = true;
return enabled_;
}
bool set(bool enabled) {
if (read_) {
return false;
}
enabled_ = enabled;
return true;
}
};
#ifdef WASM_SUPPORTS_HUGE_MEMORY
/*
* Some 64 bit systems greatly limit the range of available virtual memory. We
* require about 6GiB for each wasm huge memory, which can exhaust the address
* spaces of these systems quickly. In order to avoid this, we only enable huge
* memory if we observe a large enough address space.
*
* This number is conservatively chosen to continue using huge memory on our
* smallest address space system, Android on ARM64 (39 bits), along with a bit
* for error in detecting the address space limit.
*/
static const size_t MinAddressBitsForHugeMemory = 38;
/*
* In addition to the above, some systems impose an independent limit on the
* amount of virtual memory that may be used.
*/
static const size_t MinVirtualMemoryLimitForHugeMemory =
size_t(1) << MinAddressBitsForHugeMemory;
#endif
ExclusiveData<ReadLockFlag> sHugeMemoryEnabled32(
mutexid::WasmHugeMemoryEnabled);
ExclusiveData<ReadLockFlag> sHugeMemoryEnabled64(
mutexid::WasmHugeMemoryEnabled);
static MOZ_NEVER_INLINE bool IsHugeMemoryEnabledHelper32() {
auto state = sHugeMemoryEnabled32.lock();
return state->get();
}
static MOZ_NEVER_INLINE bool IsHugeMemoryEnabledHelper64() {
auto state = sHugeMemoryEnabled64.lock();
return state->get();
}
bool wasm::IsHugeMemoryEnabled(wasm::IndexType t) {
if (t == IndexType::I32) {
static bool enabled32 = IsHugeMemoryEnabledHelper32();
return enabled32;
}
static bool enabled64 = IsHugeMemoryEnabledHelper64();
return enabled64;
}
bool wasm::DisableHugeMemory() {
bool ok = true;
{
auto state = sHugeMemoryEnabled64.lock();
ok = ok && state->set(false);
}
{
auto state = sHugeMemoryEnabled32.lock();
ok = ok && state->set(false);
}
return ok;
}
void ConfigureHugeMemory() {
#ifdef WASM_SUPPORTS_HUGE_MEMORY
bool ok = true;
{
// Currently no huge memory for IndexType::I64, so always set to false.
auto state = sHugeMemoryEnabled64.lock();
ok = ok && state->set(false);
}
if (gc::SystemAddressBits() < MinAddressBitsForHugeMemory) {
return;
}
if (gc::VirtualMemoryLimit() != size_t(-1) &&
gc::VirtualMemoryLimit() < MinVirtualMemoryLimitForHugeMemory) {
return;
}
{
auto state = sHugeMemoryEnabled32.lock();
ok = ok && state->set(true);
}
MOZ_RELEASE_ASSERT(ok);
#endif
}
bool wasm::Init() {
MOZ_RELEASE_ASSERT(!sProcessCodeSegmentMap);
uintptr_t pageSize = gc::SystemPageSize();
MOZ_RELEASE_ASSERT(wasm::NullPtrGuardSize <= pageSize);
ConfigureHugeMemory();
AutoEnterOOMUnsafeRegion oomUnsafe;
ProcessCodeSegmentMap* map = js_new<ProcessCodeSegmentMap>();
if (!map) {
oomUnsafe.crash("js::wasm::Init");
}
sProcessCodeSegmentMap = map;
return true;
}
void wasm::ShutDown() {
// If there are live runtimes then we are already pretty much leaking the
// world, so to avoid spurious assertions (which are valid and valuable when
// there are not live JSRuntimes), don't bother releasing anything here.
if (JSRuntime::hasLiveRuntimes()) {
return;
}
PurgeCanonicalTypes();
// After signalling shutdown by clearing sProcessCodeSegmentMap, wait for
// concurrent wasm::LookupCodeSegment()s to finish.
ProcessCodeSegmentMap* map = sProcessCodeSegmentMap;
MOZ_RELEASE_ASSERT(map);
sProcessCodeSegmentMap = nullptr;
while (sNumActiveLookups > 0) {
}
ReleaseBuiltinThunks();
js_delete(map);
}
|