summaryrefslogtreecommitdiffstats
path: root/security/manager/ssl/rsclientcerts/src/util.rs
blob: d0011a0a2ed39c87632bdbfa5a496f74d6c7f18c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
/* -*- Mode: rust; rust-indent-offset: 4 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

use byteorder::{BigEndian, NativeEndian, ReadBytesExt, WriteBytesExt};
use std::convert::TryInto;

use crate::error::{Error, ErrorType};
use crate::error_here;

/// Accessing fields of packed structs is unsafe (it may be undefined behavior if the field isn't
/// aligned). Since we're implementing a PKCS#11 module, we already have to trust the caller not to
/// give us bad data, so normally we would deal with this by adding an unsafe block. If we do that,
/// though, the compiler complains that the unsafe block is unnecessary. Thus, we use this macro to
/// annotate the unsafe block to silence the compiler.
#[macro_export]
macro_rules! unsafe_packed_field_access {
    ($e:expr) => {{
        #[allow(unused_unsafe)]
        let tmp = unsafe { $e };
        tmp
    }};
}

// The following ENCODED_OID_BYTES_* consist of the encoded bytes of an ASN.1
// OBJECT IDENTIFIER specifying the indicated OID (in other words, the full
// tag, length, and value).
#[cfg(target_os = "macos")]
pub const ENCODED_OID_BYTES_SECP256R1: &[u8] =
    &[0x06, 0x08, 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x03, 0x01, 0x07];
#[cfg(target_os = "macos")]
pub const ENCODED_OID_BYTES_SECP384R1: &[u8] = &[0x06, 0x05, 0x2b, 0x81, 0x04, 0x00, 0x22];
#[cfg(target_os = "macos")]
pub const ENCODED_OID_BYTES_SECP521R1: &[u8] = &[0x06, 0x05, 0x2b, 0x81, 0x04, 0x00, 0x23];

// The following OID_BYTES_* consist of the contents of the bytes of an ASN.1
// OBJECT IDENTIFIER specifying the indicated OID (in other words, just the
// value, and not the tag or length).
#[cfg(target_os = "macos")]
pub const OID_BYTES_SHA_256: &[u8] = &[0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01];
#[cfg(target_os = "macos")]
pub const OID_BYTES_SHA_384: &[u8] = &[0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02];
#[cfg(target_os = "macos")]
pub const OID_BYTES_SHA_512: &[u8] = &[0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03];
#[cfg(target_os = "macos")]
pub const OID_BYTES_SHA_1: &[u8] = &[0x2b, 0x0e, 0x03, 0x02, 0x1a];

// This is a helper function to take a value and lay it out in memory how
// PKCS#11 is expecting it.
pub fn serialize_uint<T: TryInto<u64>>(value: T) -> Result<Vec<u8>, Error> {
    let value_size = std::mem::size_of::<T>();
    let mut value_buf = Vec::with_capacity(value_size);
    let value_as_u64 = value
        .try_into()
        .map_err(|_| error_here!(ErrorType::ValueTooLarge))?;
    value_buf
        .write_uint::<NativeEndian>(value_as_u64, value_size)
        .map_err(|_| error_here!(ErrorType::LibraryFailure))?;
    Ok(value_buf)
}

/// Given a slice of DER bytes representing an RSA public key, extracts the bytes of the modulus
/// as an unsigned integer. Also verifies that the public exponent is present (again as an
/// unsigned integer). Finally verifies that reading these values consumes the entirety of the
/// slice.
/// RSAPublicKey ::= SEQUENCE {
///     modulus           INTEGER,  -- n
///     publicExponent    INTEGER   -- e
/// }
pub fn read_rsa_modulus(public_key: &[u8]) -> Result<Vec<u8>, Error> {
    let mut sequence = Sequence::new(public_key)?;
    let modulus_value = sequence.read_unsigned_integer()?;
    let _exponent = sequence.read_unsigned_integer()?;
    if !sequence.at_end() {
        return Err(error_here!(ErrorType::ExtraInput));
    }
    Ok(modulus_value.to_vec())
}

/// Given a slice of DER bytes representing a DigestInfo, extracts the bytes of
/// the OID of the hash algorithm and the digest.
/// DigestInfo ::= SEQUENCE {
///   digestAlgorithm DigestAlgorithmIdentifier,
///   digest Digest }
///
/// DigestAlgorithmIdentifier ::= AlgorithmIdentifier
///
/// AlgorithmIdentifier  ::=  SEQUENCE  {
///      algorithm               OBJECT IDENTIFIER,
///      parameters              ANY DEFINED BY algorithm OPTIONAL  }
///
/// Digest ::= OCTET STRING
pub fn read_digest_info(digest_info: &[u8]) -> Result<(&[u8], &[u8]), Error> {
    let mut sequence = Sequence::new(digest_info)?;
    let mut algorithm = sequence.read_sequence()?;
    let oid = algorithm.read_oid()?;
    algorithm.read_null()?;
    if !algorithm.at_end() {
        return Err(error_here!(ErrorType::ExtraInput));
    }
    let digest = sequence.read_octet_string()?;
    if !sequence.at_end() {
        return Err(error_here!(ErrorType::ExtraInput));
    }
    Ok((oid, digest))
}

/// Given a slice of DER bytes representing an ECDSA signature, extracts the bytes of `r` and `s`
/// as unsigned integers. Also verifies that this consumes the entirety of the slice.
///   Ecdsa-Sig-Value  ::=  SEQUENCE  {
///        r     INTEGER,
///        s     INTEGER  }
#[cfg(target_os = "macos")]
pub fn read_ec_sig_point(signature: &[u8]) -> Result<(&[u8], &[u8]), Error> {
    let mut sequence = Sequence::new(signature)?;
    let r = sequence.read_unsigned_integer()?;
    let s = sequence.read_unsigned_integer()?;
    if !sequence.at_end() {
        return Err(error_here!(ErrorType::ExtraInput));
    }
    Ok((r, s))
}

/// Given a slice of DER bytes representing an X.509 certificate, extracts the encoded serial
/// number, issuer, and subject. Does not verify that the remainder of the certificate is in any
/// way well-formed.
///   Certificate  ::=  SEQUENCE  {
///           tbsCertificate       TBSCertificate,
///           signatureAlgorithm   AlgorithmIdentifier,
///           signatureValue       BIT STRING  }
///
///   TBSCertificate  ::=  SEQUENCE  {
///           version         [0]  EXPLICIT Version DEFAULT v1,
///           serialNumber         CertificateSerialNumber,
///           signature            AlgorithmIdentifier,
///           issuer               Name,
///           validity             Validity,
///           subject              Name,
///           ...
///
///   CertificateSerialNumber  ::=  INTEGER
///
///   Name ::= CHOICE { -- only one possibility for now --
///     rdnSequence  RDNSequence }
///
///   RDNSequence ::= SEQUENCE OF RelativeDistinguishedName
///
///   Validity ::= SEQUENCE {
///        notBefore      Time,
///        notAfter       Time  }
#[allow(clippy::type_complexity)]
pub fn read_encoded_certificate_identifiers(
    certificate: &[u8],
) -> Result<(Vec<u8>, Vec<u8>, Vec<u8>), Error> {
    let mut certificate_sequence = Sequence::new(certificate)?;
    let mut tbs_certificate_sequence = certificate_sequence.read_sequence()?;
    let _version = tbs_certificate_sequence.read_tagged_value(0)?;
    let serial_number = tbs_certificate_sequence.read_encoded_sequence_component(INTEGER)?;
    let _signature = tbs_certificate_sequence.read_sequence()?;
    let issuer =
        tbs_certificate_sequence.read_encoded_sequence_component(SEQUENCE | CONSTRUCTED)?;
    let _validity = tbs_certificate_sequence.read_sequence()?;
    let subject =
        tbs_certificate_sequence.read_encoded_sequence_component(SEQUENCE | CONSTRUCTED)?;
    Ok((serial_number, issuer, subject))
}

/// Helper macro for reading some bytes from a slice while checking the slice is long enough.
/// Returns a pair consisting of a slice of the bytes read and a slice of the rest of the bytes
/// from the original slice.
macro_rules! try_read_bytes {
    ($data:ident, $len:expr) => {{
        if $data.len() < $len {
            return Err(error_here!(ErrorType::TruncatedInput));
        }
        $data.split_at($len)
    }};
}

/// ASN.1 tag identifying an integer.
const INTEGER: u8 = 0x02;
/// ASN.1 tag identifying an octet string.
const OCTET_STRING: u8 = 0x04;
/// ASN.1 tag identifying a null value.
const NULL: u8 = 0x05;
/// ASN.1 tag identifying an object identifier (OID).
const OBJECT_IDENTIFIER: u8 = 0x06;
/// ASN.1 tag identifying a sequence.
const SEQUENCE: u8 = 0x10;
/// ASN.1 tag modifier identifying an item as constructed.
const CONSTRUCTED: u8 = 0x20;
/// ASN.1 tag modifier identifying an item as context-specific.
const CONTEXT_SPECIFIC: u8 = 0x80;

/// A helper struct for reading items from a DER SEQUENCE (in this case, all sequences are
/// assumed to be CONSTRUCTED).
struct Sequence<'a> {
    /// The contents of the SEQUENCE.
    contents: Der<'a>,
}

impl<'a> Sequence<'a> {
    fn new(input: &'a [u8]) -> Result<Sequence<'a>, Error> {
        let mut der = Der::new(input);
        let (_, _, sequence_bytes) = der.read_tlv(SEQUENCE | CONSTRUCTED)?;
        // We're assuming we want to consume the entire input for now.
        if !der.at_end() {
            return Err(error_here!(ErrorType::ExtraInput));
        }
        Ok(Sequence {
            contents: Der::new(sequence_bytes),
        })
    }

    // TODO: we're not exhaustively validating this integer
    fn read_unsigned_integer(&mut self) -> Result<&'a [u8], Error> {
        let (_, _, bytes) = self.contents.read_tlv(INTEGER)?;
        if bytes.is_empty() {
            return Err(error_here!(ErrorType::InvalidInput));
        }
        // There may be a leading zero (we should also check that the first bit
        // of the rest of the integer is set).
        if bytes[0] == 0 && bytes.len() > 1 {
            let (_, integer) = bytes.split_at(1);
            Ok(integer)
        } else {
            Ok(bytes)
        }
    }

    fn read_octet_string(&mut self) -> Result<&'a [u8], Error> {
        let (_, _, bytes) = self.contents.read_tlv(OCTET_STRING)?;
        Ok(bytes)
    }

    fn read_oid(&mut self) -> Result<&'a [u8], Error> {
        let (_, _, bytes) = self.contents.read_tlv(OBJECT_IDENTIFIER)?;
        Ok(bytes)
    }

    fn read_null(&mut self) -> Result<(), Error> {
        let (_, _, bytes) = self.contents.read_tlv(NULL)?;
        if bytes.is_empty() {
            Ok(())
        } else {
            Err(error_here!(ErrorType::InvalidInput))
        }
    }

    fn read_sequence(&mut self) -> Result<Sequence<'a>, Error> {
        let (_, _, sequence_bytes) = self.contents.read_tlv(SEQUENCE | CONSTRUCTED)?;
        Ok(Sequence {
            contents: Der::new(sequence_bytes),
        })
    }

    fn read_tagged_value(&mut self, tag: u8) -> Result<&'a [u8], Error> {
        let (_, _, tagged_value_bytes) = self
            .contents
            .read_tlv(CONTEXT_SPECIFIC | CONSTRUCTED | tag)?;
        Ok(tagged_value_bytes)
    }

    fn read_encoded_sequence_component(&mut self, tag: u8) -> Result<Vec<u8>, Error> {
        let (tag, length, value) = self.contents.read_tlv(tag)?;
        let mut encoded_component_bytes = length;
        encoded_component_bytes.insert(0, tag);
        encoded_component_bytes.extend_from_slice(value);
        Ok(encoded_component_bytes)
    }

    fn at_end(&self) -> bool {
        self.contents.at_end()
    }
}

/// A helper struct for reading DER data. The contents are treated like a cursor, so its position
/// is updated as data is read.
struct Der<'a> {
    contents: &'a [u8],
}

impl<'a> Der<'a> {
    fn new(contents: &'a [u8]) -> Der<'a> {
        Der { contents }
    }

    // In theory, a caller could encounter an error and try another operation, in which case we may
    // be in an inconsistent state. As long as this implementation isn't exposed to code that would
    // use it incorrectly (i.e. it stays in this module and we only expose a stateless API), it
    // should be safe.
    /// Given an expected tag, reads the next (tag, lengh, value) from the contents. Most
    /// consumers will only be interested in the value, but some may want the entire encoded
    /// contents, in which case the returned tuple can be concatenated.
    fn read_tlv(&mut self, tag: u8) -> Result<(u8, Vec<u8>, &'a [u8]), Error> {
        let contents = self.contents;
        let (tag_read, rest) = try_read_bytes!(contents, 1);
        if tag_read[0] != tag {
            return Err(error_here!(ErrorType::InvalidInput));
        }
        let mut accumulated_length_bytes = Vec::with_capacity(4);
        let (length1, rest) = try_read_bytes!(rest, 1);
        accumulated_length_bytes.extend_from_slice(length1);
        let (length, to_read_from) = if length1[0] < 0x80 {
            (length1[0] as usize, rest)
        } else if length1[0] == 0x81 {
            let (length, rest) = try_read_bytes!(rest, 1);
            accumulated_length_bytes.extend_from_slice(length);
            if length[0] < 0x80 {
                return Err(error_here!(ErrorType::InvalidInput));
            }
            (length[0] as usize, rest)
        } else if length1[0] == 0x82 {
            let (mut lengths, rest) = try_read_bytes!(rest, 2);
            accumulated_length_bytes.extend_from_slice(lengths);
            let length = lengths
                .read_u16::<BigEndian>()
                .map_err(|_| error_here!(ErrorType::LibraryFailure))?;
            if length < 256 {
                return Err(error_here!(ErrorType::InvalidInput));
            }
            (length as usize, rest)
        } else {
            return Err(error_here!(ErrorType::UnsupportedInput));
        };
        let (contents, rest) = try_read_bytes!(to_read_from, length);
        self.contents = rest;
        Ok((tag, accumulated_length_bytes, contents))
    }

    fn at_end(&self) -> bool {
        self.contents.is_empty()
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn der_test_empty_input() {
        let input = Vec::new();
        let mut der = Der::new(&input);
        assert!(der.read_tlv(INTEGER).is_err());
    }

    #[test]
    fn der_test_no_length() {
        let input = vec![INTEGER];
        let mut der = Der::new(&input);
        assert!(der.read_tlv(INTEGER).is_err());
    }

    #[test]
    fn der_test_empty_sequence() {
        let input = vec![SEQUENCE, 0];
        let mut der = Der::new(&input);
        let read_result = der.read_tlv(SEQUENCE);
        assert!(read_result.is_ok());
        let (tag, length, sequence_bytes) = read_result.unwrap();
        assert_eq!(tag, SEQUENCE);
        assert_eq!(length, vec![0]);
        assert_eq!(sequence_bytes.len(), 0);
        assert!(der.at_end());
    }

    #[test]
    fn der_test_not_at_end() {
        let input = vec![SEQUENCE, 0, 1];
        let mut der = Der::new(&input);
        let read_result = der.read_tlv(SEQUENCE);
        assert!(read_result.is_ok());
        let (tag, length, sequence_bytes) = read_result.unwrap();
        assert_eq!(tag, SEQUENCE);
        assert_eq!(length, vec![0]);
        assert_eq!(sequence_bytes.len(), 0);
        assert!(!der.at_end());
    }

    #[test]
    fn der_test_wrong_tag() {
        let input = vec![SEQUENCE, 0];
        let mut der = Der::new(&input);
        assert!(der.read_tlv(INTEGER).is_err());
    }

    #[test]
    fn der_test_truncated_two_byte_length() {
        let input = vec![SEQUENCE, 0x81];
        let mut der = Der::new(&input);
        assert!(der.read_tlv(SEQUENCE).is_err());
    }

    #[test]
    fn der_test_truncated_three_byte_length() {
        let input = vec![SEQUENCE, 0x82, 1];
        let mut der = Der::new(&input);
        assert!(der.read_tlv(SEQUENCE).is_err());
    }

    #[test]
    fn der_test_truncated_data() {
        let input = vec![SEQUENCE, 20, 1];
        let mut der = Der::new(&input);
        assert!(der.read_tlv(SEQUENCE).is_err());
    }

    #[test]
    fn der_test_sequence() {
        let input = vec![
            SEQUENCE, 20, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 0, 0,
        ];
        let mut der = Der::new(&input);
        let result = der.read_tlv(SEQUENCE);
        assert!(result.is_ok());
        let (tag, length, value) = result.unwrap();
        assert_eq!(tag, SEQUENCE);
        assert_eq!(length, vec![20]);
        assert_eq!(
            value,
            [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 0, 0]
        );
        assert!(der.at_end());
    }

    #[test]
    fn der_test_not_shortest_two_byte_length_encoding() {
        let input = vec![SEQUENCE, 0x81, 1, 1];
        let mut der = Der::new(&input);
        assert!(der.read_tlv(SEQUENCE).is_err());
    }

    #[test]
    fn der_test_not_shortest_three_byte_length_encoding() {
        let input = vec![SEQUENCE, 0x82, 0, 1, 1];
        let mut der = Der::new(&input);
        assert!(der.read_tlv(SEQUENCE).is_err());
    }

    #[test]
    fn der_test_indefinite_length_unsupported() {
        let input = vec![SEQUENCE, 0x80, 1, 2, 3, 0x00, 0x00];
        let mut der = Der::new(&input);
        assert!(der.read_tlv(SEQUENCE).is_err());
    }

    #[test]
    fn der_test_input_too_long() {
        // This isn't valid DER (the contents of the SEQUENCE are truncated), but it demonstrates
        // that we don't try to read too much if we're given a long length (and also that we don't
        // support lengths 2^16 and up).
        let input = vec![SEQUENCE, 0x83, 0x01, 0x00, 0x01, 1, 1, 1, 1];
        let mut der = Der::new(&input);
        assert!(der.read_tlv(SEQUENCE).is_err());
    }

    #[test]
    fn empty_input_fails() {
        let empty = Vec::new();
        assert!(read_rsa_modulus(&empty).is_err());
        #[cfg(target_os = "macos")]
        assert!(read_ec_sig_point(&empty).is_err());
        assert!(read_encoded_certificate_identifiers(&empty).is_err());
    }

    #[test]
    fn empty_sequence_fails() {
        let empty = vec![SEQUENCE | CONSTRUCTED];
        assert!(read_rsa_modulus(&empty).is_err());
        #[cfg(target_os = "macos")]
        assert!(read_ec_sig_point(&empty).is_err());
        assert!(read_encoded_certificate_identifiers(&empty).is_err());
    }

    #[test]
    fn test_read_rsa_modulus() {
        let rsa_key = include_bytes!("../test/rsa.bin");
        let result = read_rsa_modulus(rsa_key);
        assert!(result.is_ok());
        let modulus = result.unwrap();
        assert_eq!(modulus, include_bytes!("../test/modulus.bin").to_vec());
    }

    #[test]
    fn test_read_certificate_identifiers() {
        let certificate = include_bytes!("../test/certificate.bin");
        let result = read_encoded_certificate_identifiers(certificate);
        assert!(result.is_ok());
        let (serial_number, issuer, subject) = result.unwrap();
        assert_eq!(
            serial_number,
            &[
                0x02, 0x14, 0x3f, 0xed, 0x7b, 0x43, 0x47, 0x8a, 0x53, 0x42, 0x5b, 0x0d, 0x50, 0xe1,
                0x37, 0x88, 0x2a, 0x20, 0x3f, 0x31, 0x17, 0x20
            ]
        );
        assert_eq!(
            issuer,
            &[
                0x30, 0x12, 0x31, 0x10, 0x30, 0x0e, 0x06, 0x03, 0x55, 0x04, 0x03, 0x0c, 0x07, 0x54,
                0x65, 0x73, 0x74, 0x20, 0x43, 0x41
            ]
        );
        assert_eq!(
            subject,
            &[
                0x30, 0x1a, 0x31, 0x18, 0x30, 0x16, 0x06, 0x03, 0x55, 0x04, 0x03, 0x0c, 0x0f, 0x54,
                0x65, 0x73, 0x74, 0x20, 0x45, 0x6e, 0x64, 0x2d, 0x65, 0x6e, 0x74, 0x69, 0x74, 0x79
            ]
        );
    }

    #[test]
    #[cfg(target_os = "windows")]
    fn test_read_digest() {
        // SEQUENCE
        //   SEQUENCE
        //     OBJECT IDENTIFIER 2.16.840.1.101.3.4.2.1 sha-256
        //       NULL
        //   OCTET STRING 1A7FCDB9A5F649F954885CFE145F3E93F0D1FA72BE980CC6EC82C70E1407C7D2
        let digest_info = [
            0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x1, 0x65, 0x03, 0x04, 0x02,
            0x01, 0x05, 0x00, 0x04, 0x20, 0x1a, 0x7f, 0xcd, 0xb9, 0xa5, 0xf6, 0x49, 0xf9, 0x54,
            0x88, 0x5c, 0xfe, 0x14, 0x5f, 0x3e, 0x93, 0xf0, 0xd1, 0xfa, 0x72, 0xbe, 0x98, 0x0c,
            0xc6, 0xec, 0x82, 0xc7, 0x0e, 0x14, 0x07, 0xc7, 0xd2,
        ];
        let result = read_digest(&digest_info);
        assert!(result.is_ok());
        let digest = result.unwrap();
        assert_eq!(
            digest,
            &[
                0x1a, 0x7f, 0xcd, 0xb9, 0xa5, 0xf6, 0x49, 0xf9, 0x54, 0x88, 0x5c, 0xfe, 0x14, 0x5f,
                0x3e, 0x93, 0xf0, 0xd1, 0xfa, 0x72, 0xbe, 0x98, 0x0c, 0xc6, 0xec, 0x82, 0xc7, 0x0e,
                0x14, 0x07, 0xc7, 0xd2
            ]
        );
    }
}