1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
|
// Copyright (c) the JPEG XL Project Authors. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//
// Author: Jyrki Alakuijala (jyrki.alakuijala@gmail.com)
#ifndef LIB_JXL_BUTTERAUGLI_BUTTERAUGLI_H_
#define LIB_JXL_BUTTERAUGLI_BUTTERAUGLI_H_
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <atomic>
#include <cmath>
#include <memory>
#include <vector>
#include "lib/jxl/base/compiler_specific.h"
#include "lib/jxl/common.h"
#include "lib/jxl/image.h"
#include "lib/jxl/image_ops.h"
#define BUTTERAUGLI_ENABLE_CHECKS 0
#define BUTTERAUGLI_RESTRICT JXL_RESTRICT
// This is the main interface to butteraugli image similarity
// analysis function.
namespace jxl {
struct ButteraugliParams {
// Multiplier for penalizing new HF artifacts more than blurring away
// features. 1.0=neutral.
float hf_asymmetry = 1.0f;
// Multiplier for the psychovisual difference in the X channel.
float xmul = 1.0f;
// Number of nits that correspond to 1.0f input values.
float intensity_target = 80.0f;
};
// ButteraugliInterface defines the public interface for butteraugli.
//
// It calculates the difference between rgb0 and rgb1.
//
// rgb0 and rgb1 contain the images. rgb0[c][px] and rgb1[c][px] contains
// the red image for c == 0, green for c == 1, blue for c == 2. Location index
// px is calculated as y * xsize + x.
//
// Value of pixels of images rgb0 and rgb1 need to be represented as raw
// intensity. Most image formats store gamma corrected intensity in pixel
// values. This gamma correction has to be removed, by applying the following
// function to values in the 0-1 range:
// butteraugli_val = pow(input_val, gamma);
// A typical value of gamma is 2.2. It is usually stored in the image header.
// Take care not to confuse that value with its inverse. The gamma value should
// be always greater than one.
// Butteraugli does not work as intended if the caller does not perform
// gamma correction.
//
// hf_asymmetry is a multiplier for penalizing new HF artifacts more than
// blurring away features (1.0 -> neutral).
//
// diffmap will contain an image of the size xsize * ysize, containing
// localized differences for values px (indexed with the px the same as rgb0
// and rgb1). diffvalue will give a global score of similarity.
//
// A diffvalue smaller than kButteraugliGood indicates that images can be
// observed as the same image.
// diffvalue larger than kButteraugliBad indicates that a difference between
// the images can be observed.
// A diffvalue between kButteraugliGood and kButteraugliBad indicates that
// a subtle difference can be observed between the images.
//
// Returns true on success.
bool ButteraugliInterface(const Image3F &rgb0, const Image3F &rgb1,
const ButteraugliParams ¶ms, ImageF &diffmap,
double &diffvalue);
// Deprecated (calls the previous function)
bool ButteraugliInterface(const Image3F &rgb0, const Image3F &rgb1,
float hf_asymmetry, float xmul, ImageF &diffmap,
double &diffvalue);
// Converts the butteraugli score into fuzzy class values that are continuous
// at the class boundary. The class boundary location is based on human
// raters, but the slope is arbitrary. Particularly, it does not reflect
// the expectation value of probabilities of the human raters. It is just
// expected that a smoother class boundary will allow for higher-level
// optimization algorithms to work faster.
//
// Returns 2.0 for a perfect match, and 1.0 for 'ok', 0.0 for bad. Because the
// scoring is fuzzy, a butteraugli score of 0.96 would return a class of
// around 1.9.
double ButteraugliFuzzyClass(double score);
// Input values should be in range 0 (bad) to 2 (good). Use
// kButteraugliNormalization as normalization.
double ButteraugliFuzzyInverse(double seek);
// Implementation details, don't use anything below or your code will
// break in the future.
#ifdef _MSC_VER
#define BUTTERAUGLI_INLINE __forceinline
#else
#define BUTTERAUGLI_INLINE inline
#endif
#ifdef __clang__
// Early versions of Clang did not support __builtin_assume_aligned.
#define BUTTERAUGLI_HAS_ASSUME_ALIGNED __has_builtin(__builtin_assume_aligned)
#elif defined(__GNUC__)
#define BUTTERAUGLI_HAS_ASSUME_ALIGNED 1
#else
#define BUTTERAUGLI_HAS_ASSUME_ALIGNED 0
#endif
// Returns a void* pointer which the compiler then assumes is N-byte aligned.
// Example: float* JXL_RESTRICT aligned = (float*)JXL_ASSUME_ALIGNED(in, 32);
//
// The assignment semantics are required by GCC/Clang. ICC provides an in-place
// __assume_aligned, whereas MSVC's __assume appears unsuitable.
#if BUTTERAUGLI_HAS_ASSUME_ALIGNED
#define BUTTERAUGLI_ASSUME_ALIGNED(ptr, align) \
__builtin_assume_aligned((ptr), (align))
#else
#define BUTTERAUGLI_ASSUME_ALIGNED(ptr, align) (ptr)
#endif // BUTTERAUGLI_HAS_ASSUME_ALIGNED
struct PsychoImage {
ImageF uhf[2]; // XY
ImageF hf[2]; // XY
Image3F mf; // XYB
Image3F lf; // XYB
};
// Blur needs a transposed image.
// Hold it here and only allocate on demand to reduce memory usage.
struct BlurTemp {
ImageF *GetTransposed(const ImageF &in) {
if (transposed_temp.xsize() == 0) {
transposed_temp = ImageF(in.ysize(), in.xsize());
}
return &transposed_temp;
}
ImageF transposed_temp;
};
class ButteraugliComparator {
public:
// Butteraugli is calibrated at xmul = 1.0. We add a multiplier here so that
// we can test the hypothesis that a higher weighing of the X channel would
// improve results at higher Butteraugli values.
ButteraugliComparator(const Image3F &rgb0, const ButteraugliParams ¶ms);
virtual ~ButteraugliComparator() = default;
// Computes the butteraugli map between the original image given in the
// constructor and the distorted image give here.
void Diffmap(const Image3F &rgb1, ImageF &result) const;
// Same as above, but OpsinDynamicsImage() was already applied.
void DiffmapOpsinDynamicsImage(const Image3F &xyb1, ImageF &result) const;
// Same as above, but the frequency decomposition was already applied.
void DiffmapPsychoImage(const PsychoImage &pi1, ImageF &diffmap) const;
void Mask(ImageF *BUTTERAUGLI_RESTRICT mask) const;
private:
Image3F *Temp() const;
void ReleaseTemp() const;
const size_t xsize_;
const size_t ysize_;
ButteraugliParams params_;
PsychoImage pi0_;
// Shared temporary image storage to reduce the number of allocations;
// obtained via Temp(), must call ReleaseTemp when no longer needed.
mutable Image3F temp_;
mutable std::atomic_flag temp_in_use_ = ATOMIC_FLAG_INIT;
mutable BlurTemp blur_temp_;
std::unique_ptr<ButteraugliComparator> sub_;
};
// Deprecated.
bool ButteraugliDiffmap(const Image3F &rgb0, const Image3F &rgb1,
double hf_asymmetry, double xmul, ImageF &diffmap);
bool ButteraugliDiffmap(const Image3F &rgb0, const Image3F &rgb1,
const ButteraugliParams ¶ms, ImageF &diffmap);
double ButteraugliScoreFromDiffmap(const ImageF &diffmap,
const ButteraugliParams *params = nullptr);
// Generate rgb-representation of the distance between two images.
Image3F CreateHeatMapImage(const ImageF &distmap, double good_threshold,
double bad_threshold);
} // namespace jxl
#endif // LIB_JXL_BUTTERAUGLI_BUTTERAUGLI_H_
|