1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
|
// Copyright (c) the JPEG XL Project Authors. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "lib/jxl/image.h"
#include <algorithm> // swap
#undef HWY_TARGET_INCLUDE
#define HWY_TARGET_INCLUDE "lib/jxl/image.cc"
#include <hwy/foreach_target.h>
#include <hwy/highway.h>
#include "lib/jxl/base/profiler.h"
#include "lib/jxl/common.h"
#include "lib/jxl/image_ops.h"
#include "lib/jxl/sanitizers.h"
HWY_BEFORE_NAMESPACE();
namespace jxl {
namespace HWY_NAMESPACE {
size_t GetVectorSize() { return HWY_LANES(uint8_t); }
// NOLINTNEXTLINE(google-readability-namespace-comments)
} // namespace HWY_NAMESPACE
} // namespace jxl
HWY_AFTER_NAMESPACE();
#if HWY_ONCE
namespace jxl {
namespace {
HWY_EXPORT(GetVectorSize); // Local function.
// Returns distance [bytes] between the start of two consecutive rows, a
// multiple of vector/cache line size but NOT CacheAligned::kAlias - see below.
size_t BytesPerRow(const size_t xsize, const size_t sizeof_t) {
const size_t vec_size = VectorSize();
size_t valid_bytes = xsize * sizeof_t;
// Allow unaligned accesses starting at the last valid value - this may raise
// msan errors unless the user calls InitializePaddingForUnalignedAccesses.
// Skip for the scalar case because no extra lanes will be loaded.
if (vec_size != 0) {
valid_bytes += vec_size - sizeof_t;
}
// Round up to vector and cache line size.
const size_t align = std::max(vec_size, CacheAligned::kAlignment);
size_t bytes_per_row = RoundUpTo(valid_bytes, align);
// During the lengthy window before writes are committed to memory, CPUs
// guard against read after write hazards by checking the address, but
// only the lower 11 bits. We avoid a false dependency between writes to
// consecutive rows by ensuring their sizes are not multiples of 2 KiB.
// Avoid2K prevents the same problem for the planes of an Image3.
if (bytes_per_row % CacheAligned::kAlias == 0) {
bytes_per_row += align;
}
JXL_ASSERT(bytes_per_row % align == 0);
return bytes_per_row;
}
} // namespace
size_t VectorSize() {
static size_t bytes = HWY_DYNAMIC_DISPATCH(GetVectorSize)();
return bytes;
}
PlaneBase::PlaneBase(const size_t xsize, const size_t ysize,
const size_t sizeof_t)
: xsize_(static_cast<uint32_t>(xsize)),
ysize_(static_cast<uint32_t>(ysize)),
orig_xsize_(static_cast<uint32_t>(xsize)),
orig_ysize_(static_cast<uint32_t>(ysize)) {
// (Can't profile CacheAligned itself because it is used by profiler.h)
PROFILER_FUNC;
JXL_CHECK(xsize == xsize_);
JXL_CHECK(ysize == ysize_);
JXL_ASSERT(sizeof_t == 1 || sizeof_t == 2 || sizeof_t == 4 || sizeof_t == 8);
bytes_per_row_ = 0;
// Dimensions can be zero, e.g. for lazily-allocated images. Only allocate
// if nonzero, because "zero" bytes still have padding/bookkeeping overhead.
if (xsize != 0 && ysize != 0) {
bytes_per_row_ = BytesPerRow(xsize, sizeof_t);
bytes_ = AllocateArray(bytes_per_row_ * ysize);
JXL_CHECK(bytes_.get());
InitializePadding(sizeof_t, Padding::kRoundUp);
}
}
void PlaneBase::InitializePadding(const size_t sizeof_t, Padding padding) {
#if defined(MEMORY_SANITIZER) || HWY_IDE
if (xsize_ == 0 || ysize_ == 0) return;
const size_t vec_size = VectorSize();
if (vec_size == 0) return; // Scalar mode: no padding needed
const size_t valid_size = xsize_ * sizeof_t;
const size_t initialize_size = padding == Padding::kRoundUp
? RoundUpTo(valid_size, vec_size)
: valid_size + vec_size - sizeof_t;
if (valid_size == initialize_size) return;
for (size_t y = 0; y < ysize_; ++y) {
uint8_t* JXL_RESTRICT row = static_cast<uint8_t*>(VoidRow(y));
#if defined(__clang__) && \
((!defined(__apple_build_version__) && __clang_major__ <= 6) || \
(defined(__apple_build_version__) && \
__apple_build_version__ <= 10001145))
// There's a bug in msan in clang-6 when handling AVX2 operations. This
// workaround allows tests to pass on msan, although it is slower and
// prevents msan warnings from uninitialized images.
std::fill(row, msan::kSanitizerSentinelByte, initialize_size);
#else
memset(row + valid_size, msan::kSanitizerSentinelByte,
initialize_size - valid_size);
#endif // clang6
}
#endif // MEMORY_SANITIZER
}
void PlaneBase::Swap(PlaneBase& other) {
std::swap(xsize_, other.xsize_);
std::swap(ysize_, other.ysize_);
std::swap(orig_xsize_, other.orig_xsize_);
std::swap(orig_ysize_, other.orig_ysize_);
std::swap(bytes_per_row_, other.bytes_per_row_);
std::swap(bytes_, other.bytes_);
}
Image3F PadImageMirror(const Image3F& in, const size_t xborder,
const size_t yborder) {
size_t xsize = in.xsize();
size_t ysize = in.ysize();
Image3F out(xsize + 2 * xborder, ysize + 2 * yborder);
if (xborder > xsize || yborder > ysize) {
for (size_t c = 0; c < 3; c++) {
for (int32_t y = 0; y < static_cast<int32_t>(out.ysize()); y++) {
float* row_out = out.PlaneRow(c, y);
const float* row_in = in.PlaneRow(
c, Mirror(y - static_cast<int32_t>(yborder), in.ysize()));
for (int32_t x = 0; x < static_cast<int32_t>(out.xsize()); x++) {
int32_t xin = Mirror(x - static_cast<int32_t>(xborder), in.xsize());
row_out[x] = row_in[xin];
}
}
}
return out;
}
CopyImageTo(in, Rect(xborder, yborder, xsize, ysize), &out);
for (size_t c = 0; c < 3; c++) {
// Horizontal pad.
for (size_t y = 0; y < ysize; y++) {
for (size_t x = 0; x < xborder; x++) {
out.PlaneRow(c, y + yborder)[x] =
in.ConstPlaneRow(c, y)[xborder - x - 1];
out.PlaneRow(c, y + yborder)[x + xsize + xborder] =
in.ConstPlaneRow(c, y)[xsize - 1 - x];
}
}
// Vertical pad.
for (size_t y = 0; y < yborder; y++) {
memcpy(out.PlaneRow(c, y), out.ConstPlaneRow(c, 2 * yborder - 1 - y),
out.xsize() * sizeof(float));
memcpy(out.PlaneRow(c, y + ysize + yborder),
out.ConstPlaneRow(c, ysize + yborder - 1 - y),
out.xsize() * sizeof(float));
}
}
return out;
}
void PadImageToBlockMultipleInPlace(Image3F* JXL_RESTRICT in,
size_t block_dim) {
PROFILER_FUNC;
const size_t xsize_orig = in->xsize();
const size_t ysize_orig = in->ysize();
const size_t xsize = RoundUpTo(xsize_orig, block_dim);
const size_t ysize = RoundUpTo(ysize_orig, block_dim);
// Expands image size to the originally-allocated size.
in->ShrinkTo(xsize, ysize);
for (size_t c = 0; c < 3; c++) {
for (size_t y = 0; y < ysize_orig; y++) {
float* JXL_RESTRICT row = in->PlaneRow(c, y);
for (size_t x = xsize_orig; x < xsize; x++) {
row[x] = row[xsize_orig - 1];
}
}
const float* JXL_RESTRICT row_src = in->ConstPlaneRow(c, ysize_orig - 1);
for (size_t y = ysize_orig; y < ysize; y++) {
memcpy(in->PlaneRow(c, y), row_src, xsize * sizeof(float));
}
}
}
static void DownsampleImage(const ImageF& input, size_t factor,
ImageF* output) {
JXL_ASSERT(factor != 1);
output->ShrinkTo(DivCeil(input.xsize(), factor),
DivCeil(input.ysize(), factor));
size_t in_stride = input.PixelsPerRow();
for (size_t y = 0; y < output->ysize(); y++) {
float* row_out = output->Row(y);
const float* row_in = input.Row(factor * y);
for (size_t x = 0; x < output->xsize(); x++) {
size_t cnt = 0;
float sum = 0;
for (size_t iy = 0; iy < factor && iy + factor * y < input.ysize();
iy++) {
for (size_t ix = 0; ix < factor && ix + factor * x < input.xsize();
ix++) {
sum += row_in[iy * in_stride + x * factor + ix];
cnt++;
}
}
row_out[x] = sum / cnt;
}
}
}
void DownsampleImage(ImageF* image, size_t factor) {
// Allocate extra space to avoid a reallocation when padding.
ImageF downsampled(DivCeil(image->xsize(), factor) + kBlockDim,
DivCeil(image->ysize(), factor) + kBlockDim);
DownsampleImage(*image, factor, &downsampled);
*image = std::move(downsampled);
}
void DownsampleImage(Image3F* opsin, size_t factor) {
JXL_ASSERT(factor != 1);
// Allocate extra space to avoid a reallocation when padding.
Image3F downsampled(DivCeil(opsin->xsize(), factor) + kBlockDim,
DivCeil(opsin->ysize(), factor) + kBlockDim);
downsampled.ShrinkTo(downsampled.xsize() - kBlockDim,
downsampled.ysize() - kBlockDim);
for (size_t c = 0; c < 3; c++) {
DownsampleImage(opsin->Plane(c), factor, &downsampled.Plane(c));
}
*opsin = std::move(downsampled);
}
} // namespace jxl
#endif // HWY_ONCE
|