1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
|
/*
* Copyright (c) 2019 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "video/encoder_bitrate_adjuster.h"
#include <memory>
#include <vector>
#include "api/units/data_rate.h"
#include "rtc_base/fake_clock.h"
#include "rtc_base/numerics/safe_conversions.h"
#include "test/field_trial.h"
#include "test/gtest.h"
namespace webrtc {
namespace test {
class EncoderBitrateAdjusterTest : public ::testing::Test {
public:
static constexpr int64_t kWindowSizeMs = 3000;
static constexpr int kDefaultBitrateBps = 300000;
static constexpr int kDefaultFrameRateFps = 30;
// For network utilization higher than media utilization, loop over a
// sequence where the first half undershoots and the second half overshoots
// by the same amount.
static constexpr int kSequenceLength = 4;
static_assert(kSequenceLength % 2 == 0, "Sequence length must be even.");
EncoderBitrateAdjusterTest()
: target_bitrate_(DataRate::BitsPerSec(kDefaultBitrateBps)),
target_framerate_fps_(kDefaultFrameRateFps),
tl_pattern_idx_{},
sequence_idx_{} {}
protected:
void SetUpAdjuster(size_t num_spatial_layers,
size_t num_temporal_layers,
bool vp9_svc) {
// Initialize some default VideoCodec instance with the given number of
// layers.
if (vp9_svc) {
codec_.codecType = VideoCodecType::kVideoCodecVP9;
codec_.numberOfSimulcastStreams = 1;
codec_.VP9()->numberOfSpatialLayers = num_spatial_layers;
codec_.VP9()->numberOfTemporalLayers = num_temporal_layers;
for (size_t si = 0; si < num_spatial_layers; ++si) {
codec_.spatialLayers[si].minBitrate = 100 * (1 << si);
codec_.spatialLayers[si].targetBitrate = 200 * (1 << si);
codec_.spatialLayers[si].maxBitrate = 300 * (1 << si);
codec_.spatialLayers[si].active = true;
codec_.spatialLayers[si].numberOfTemporalLayers = num_temporal_layers;
}
} else {
codec_.codecType = VideoCodecType::kVideoCodecVP8;
codec_.numberOfSimulcastStreams = num_spatial_layers;
codec_.VP8()->numberOfTemporalLayers = num_temporal_layers;
for (size_t si = 0; si < num_spatial_layers; ++si) {
codec_.simulcastStream[si].minBitrate = 100 * (1 << si);
codec_.simulcastStream[si].targetBitrate = 200 * (1 << si);
codec_.simulcastStream[si].maxBitrate = 300 * (1 << si);
codec_.simulcastStream[si].active = true;
codec_.simulcastStream[si].numberOfTemporalLayers = num_temporal_layers;
}
}
for (size_t si = 0; si < num_spatial_layers; ++si) {
encoder_info_.fps_allocation[si].resize(num_temporal_layers);
double fraction = 1.0;
for (int ti = num_temporal_layers - 1; ti >= 0; --ti) {
encoder_info_.fps_allocation[si][ti] = static_cast<uint8_t>(
VideoEncoder::EncoderInfo::kMaxFramerateFraction * fraction + 0.5);
fraction /= 2.0;
}
}
adjuster_ = std::make_unique<EncoderBitrateAdjuster>(codec_);
adjuster_->OnEncoderInfo(encoder_info_);
current_adjusted_allocation_ =
adjuster_->AdjustRateAllocation(VideoEncoder::RateControlParameters(
current_input_allocation_, target_framerate_fps_));
}
void InsertFrames(std::vector<std::vector<double>> media_utilization_factors,
int64_t duration_ms) {
InsertFrames(media_utilization_factors, media_utilization_factors,
duration_ms);
}
void InsertFrames(
std::vector<std::vector<double>> media_utilization_factors,
std::vector<std::vector<double>> network_utilization_factors,
int64_t duration_ms) {
RTC_DCHECK_EQ(media_utilization_factors.size(),
network_utilization_factors.size());
const int64_t start_us = rtc::TimeMicros();
while (rtc::TimeMicros() <
start_us + (duration_ms * rtc::kNumMicrosecsPerMillisec)) {
clock_.AdvanceTime(TimeDelta::Seconds(1) / target_framerate_fps_);
for (size_t si = 0; si < NumSpatialLayers(); ++si) {
const std::vector<int>& tl_pattern =
kTlPatterns[NumTemporalLayers(si) - 1];
const size_t ti =
tl_pattern[(tl_pattern_idx_[si]++) % tl_pattern.size()];
uint32_t layer_bitrate_bps =
current_adjusted_allocation_.GetBitrate(si, ti);
double layer_framerate_fps = target_framerate_fps_;
if (encoder_info_.fps_allocation[si].size() > ti) {
uint8_t layer_fps_fraction = encoder_info_.fps_allocation[si][ti];
if (ti > 0) {
// We're interested in the frame rate for this layer only, not
// cumulative frame rate.
layer_fps_fraction -= encoder_info_.fps_allocation[si][ti - 1];
}
layer_framerate_fps =
(target_framerate_fps_ * layer_fps_fraction) /
VideoEncoder::EncoderInfo::kMaxFramerateFraction;
}
double media_utilization_factor = 1.0;
double network_utilization_factor = 1.0;
if (media_utilization_factors.size() > si) {
RTC_DCHECK_EQ(media_utilization_factors[si].size(),
network_utilization_factors[si].size());
if (media_utilization_factors[si].size() > ti) {
media_utilization_factor = media_utilization_factors[si][ti];
network_utilization_factor = network_utilization_factors[si][ti];
}
}
RTC_DCHECK_GE(network_utilization_factor, media_utilization_factor);
// Frame size based on constant (media) overshoot.
const size_t media_frame_size = media_utilization_factor *
(layer_bitrate_bps / 8.0) /
layer_framerate_fps;
constexpr int kFramesWithPenalty = (kSequenceLength / 2) - 1;
RTC_DCHECK_GT(kFramesWithPenalty, 0);
// The positive/negative size diff needed to achieve network rate but
// not media rate penalty is the difference between the utilization
// factors times the media rate frame size, then scaled by the fraction
// between total frames and penalized frames in the sequence.
// Cap to media frame size to avoid negative size undershoot.
const size_t network_frame_size_diff_bytes = std::min(
media_frame_size,
static_cast<size_t>(
(((network_utilization_factor - media_utilization_factor) *
media_frame_size) *
kSequenceLength) /
kFramesWithPenalty +
0.5));
int sequence_idx = sequence_idx_[si][ti];
sequence_idx_[si][ti] = (sequence_idx_[si][ti] + 1) % kSequenceLength;
const DataSize frame_size = DataSize::Bytes(
(sequence_idx < kSequenceLength / 2)
? media_frame_size - network_frame_size_diff_bytes
: media_frame_size + network_frame_size_diff_bytes);
adjuster_->OnEncodedFrame(frame_size, si, ti);
sequence_idx = ++sequence_idx % kSequenceLength;
}
}
}
size_t NumSpatialLayers() const {
if (codec_.codecType == VideoCodecType::kVideoCodecVP9) {
return codec_.VP9().numberOfSpatialLayers;
}
return codec_.numberOfSimulcastStreams;
}
size_t NumTemporalLayers(int spatial_index) {
if (codec_.codecType == VideoCodecType::kVideoCodecVP9) {
return codec_.spatialLayers[spatial_index].numberOfTemporalLayers;
}
return codec_.simulcastStream[spatial_index].numberOfTemporalLayers;
}
void ExpectNear(const VideoBitrateAllocation& expected_allocation,
const VideoBitrateAllocation& actual_allocation,
double allowed_error_fraction) {
for (size_t si = 0; si < kMaxSpatialLayers; ++si) {
for (size_t ti = 0; ti < kMaxTemporalStreams; ++ti) {
if (expected_allocation.HasBitrate(si, ti)) {
EXPECT_TRUE(actual_allocation.HasBitrate(si, ti));
uint32_t expected_layer_bitrate_bps =
expected_allocation.GetBitrate(si, ti);
EXPECT_NEAR(expected_layer_bitrate_bps,
actual_allocation.GetBitrate(si, ti),
static_cast<uint32_t>(expected_layer_bitrate_bps *
allowed_error_fraction));
} else {
EXPECT_FALSE(actual_allocation.HasBitrate(si, ti));
}
}
}
}
VideoBitrateAllocation MultiplyAllocation(
const VideoBitrateAllocation& allocation,
double factor) {
VideoBitrateAllocation multiplied_allocation;
for (size_t si = 0; si < kMaxSpatialLayers; ++si) {
for (size_t ti = 0; ti < kMaxTemporalStreams; ++ti) {
if (allocation.HasBitrate(si, ti)) {
multiplied_allocation.SetBitrate(
si, ti,
static_cast<uint32_t>(factor * allocation.GetBitrate(si, ti) +
0.5));
}
}
}
return multiplied_allocation;
}
VideoCodec codec_;
VideoEncoder::EncoderInfo encoder_info_;
std::unique_ptr<EncoderBitrateAdjuster> adjuster_;
VideoBitrateAllocation current_input_allocation_;
VideoBitrateAllocation current_adjusted_allocation_;
rtc::ScopedFakeClock clock_;
DataRate target_bitrate_;
double target_framerate_fps_;
int tl_pattern_idx_[kMaxSpatialLayers];
int sequence_idx_[kMaxSpatialLayers][kMaxTemporalStreams];
const std::vector<int> kTlPatterns[kMaxTemporalStreams] = {
{0},
{0, 1},
{0, 2, 1, 2},
{0, 3, 2, 3, 1, 3, 2, 3}};
};
TEST_F(EncoderBitrateAdjusterTest, SingleLayerOptimal) {
// Single layer, well behaved encoder.
current_input_allocation_.SetBitrate(0, 0, 300000);
target_framerate_fps_ = 30;
SetUpAdjuster(1, 1, false);
InsertFrames({{1.0}}, kWindowSizeMs);
current_adjusted_allocation_ =
adjuster_->AdjustRateAllocation(VideoEncoder::RateControlParameters(
current_input_allocation_, target_framerate_fps_));
// Adjusted allocation near input. Allow 1% error margin due to rounding
// errors etc.
ExpectNear(current_input_allocation_, current_adjusted_allocation_, 0.01);
}
TEST_F(EncoderBitrateAdjusterTest, SingleLayerOveruse) {
// Single layer, well behaved encoder.
current_input_allocation_.SetBitrate(0, 0, 300000);
target_framerate_fps_ = 30;
SetUpAdjuster(1, 1, false);
InsertFrames({{1.2}}, kWindowSizeMs);
current_adjusted_allocation_ =
adjuster_->AdjustRateAllocation(VideoEncoder::RateControlParameters(
current_input_allocation_, target_framerate_fps_));
// Adjusted allocation lowered by 20%.
ExpectNear(MultiplyAllocation(current_input_allocation_, 1 / 1.2),
current_adjusted_allocation_, 0.01);
}
TEST_F(EncoderBitrateAdjusterTest, SingleLayerUnderuse) {
// Single layer, well behaved encoder.
current_input_allocation_.SetBitrate(0, 0, 300000);
target_framerate_fps_ = 30;
SetUpAdjuster(1, 1, false);
InsertFrames({{0.5}}, kWindowSizeMs);
current_adjusted_allocation_ =
adjuster_->AdjustRateAllocation(VideoEncoder::RateControlParameters(
current_input_allocation_, target_framerate_fps_));
// Undershoot, adjusted should exactly match input.
ExpectNear(current_input_allocation_, current_adjusted_allocation_, 0.00);
}
TEST_F(EncoderBitrateAdjusterTest, ThreeTemporalLayersOptimalSize) {
// Three temporal layers, 60%/20%/20% bps distro, well behaved encoder.
current_input_allocation_.SetBitrate(0, 0, 180000);
current_input_allocation_.SetBitrate(0, 1, 60000);
current_input_allocation_.SetBitrate(0, 2, 60000);
target_framerate_fps_ = 30;
SetUpAdjuster(1, 3, false);
InsertFrames({{1.0, 1.0, 1.0}}, kWindowSizeMs);
current_adjusted_allocation_ =
adjuster_->AdjustRateAllocation(VideoEncoder::RateControlParameters(
current_input_allocation_, target_framerate_fps_));
ExpectNear(current_input_allocation_, current_adjusted_allocation_, 0.01);
}
TEST_F(EncoderBitrateAdjusterTest, ThreeTemporalLayersOvershoot) {
// Three temporal layers, 60%/20%/20% bps distro.
// 10% overshoot on all layers.
current_input_allocation_.SetBitrate(0, 0, 180000);
current_input_allocation_.SetBitrate(0, 1, 60000);
current_input_allocation_.SetBitrate(0, 2, 60000);
target_framerate_fps_ = 30;
SetUpAdjuster(1, 3, false);
InsertFrames({{1.1, 1.1, 1.1}}, kWindowSizeMs);
current_adjusted_allocation_ =
adjuster_->AdjustRateAllocation(VideoEncoder::RateControlParameters(
current_input_allocation_, target_framerate_fps_));
// Adjusted allocation lowered by 10%.
ExpectNear(MultiplyAllocation(current_input_allocation_, 1 / 1.1),
current_adjusted_allocation_, 0.01);
}
TEST_F(EncoderBitrateAdjusterTest, ThreeTemporalLayersUndershoot) {
// Three temporal layers, 60%/20%/20% bps distro, undershoot all layers.
current_input_allocation_.SetBitrate(0, 0, 180000);
current_input_allocation_.SetBitrate(0, 1, 60000);
current_input_allocation_.SetBitrate(0, 2, 60000);
target_framerate_fps_ = 30;
SetUpAdjuster(1, 3, false);
InsertFrames({{0.8, 0.8, 0.8}}, kWindowSizeMs);
current_adjusted_allocation_ =
adjuster_->AdjustRateAllocation(VideoEncoder::RateControlParameters(
current_input_allocation_, target_framerate_fps_));
// Adjusted allocation identical since we don't boost bitrates.
ExpectNear(current_input_allocation_, current_adjusted_allocation_, 0.0);
}
TEST_F(EncoderBitrateAdjusterTest, ThreeTemporalLayersSkewedOvershoot) {
// Three temporal layers, 60%/20%/20% bps distro.
// 10% overshoot on base layer, 20% on higher layers.
current_input_allocation_.SetBitrate(0, 0, 180000);
current_input_allocation_.SetBitrate(0, 1, 60000);
current_input_allocation_.SetBitrate(0, 2, 60000);
target_framerate_fps_ = 30;
SetUpAdjuster(1, 3, false);
InsertFrames({{1.1, 1.2, 1.2}}, kWindowSizeMs);
current_adjusted_allocation_ =
adjuster_->AdjustRateAllocation(VideoEncoder::RateControlParameters(
current_input_allocation_, target_framerate_fps_));
// Expected overshoot is weighted by bitrate:
// (0.6 * 1.1 + 0.2 * 1.2 + 0.2 * 1.2) = 1.14
ExpectNear(MultiplyAllocation(current_input_allocation_, 1 / 1.14),
current_adjusted_allocation_, 0.01);
}
TEST_F(EncoderBitrateAdjusterTest, ThreeTemporalLayersNonLayeredEncoder) {
// Three temporal layers, 60%/20%/20% bps allocation, 10% overshoot,
// encoder does not actually support temporal layers.
current_input_allocation_.SetBitrate(0, 0, 180000);
current_input_allocation_.SetBitrate(0, 1, 60000);
current_input_allocation_.SetBitrate(0, 2, 60000);
target_framerate_fps_ = 30;
SetUpAdjuster(1, 1, false);
InsertFrames({{1.1}}, kWindowSizeMs);
current_adjusted_allocation_ =
adjuster_->AdjustRateAllocation(VideoEncoder::RateControlParameters(
current_input_allocation_, target_framerate_fps_));
// Expect the actual 10% overuse to be detected and the allocation to
// only contain the one entry.
VideoBitrateAllocation expected_allocation;
expected_allocation.SetBitrate(
0, 0,
static_cast<uint32_t>(current_input_allocation_.get_sum_bps() / 1.10));
ExpectNear(expected_allocation, current_adjusted_allocation_, 0.01);
}
TEST_F(EncoderBitrateAdjusterTest, IgnoredStream) {
// Encoder with three temporal layers, but in a mode that does not support
// deterministic frame rate. Those are ignored, even if bitrate overshoots.
current_input_allocation_.SetBitrate(0, 0, 180000);
current_input_allocation_.SetBitrate(0, 1, 60000);
target_framerate_fps_ = 30;
SetUpAdjuster(1, 1, false);
encoder_info_.fps_allocation[0].clear();
adjuster_->OnEncoderInfo(encoder_info_);
InsertFrames({{1.1}}, kWindowSizeMs);
current_adjusted_allocation_ =
adjuster_->AdjustRateAllocation(VideoEncoder::RateControlParameters(
current_input_allocation_, target_framerate_fps_));
// Values passed through.
ExpectNear(current_input_allocation_, current_adjusted_allocation_, 0.00);
}
TEST_F(EncoderBitrateAdjusterTest, DifferentSpatialOvershoots) {
// Two streams, both with three temporal layers.
// S0 has 5% overshoot, S1 has 25% overshoot.
current_input_allocation_.SetBitrate(0, 0, 180000);
current_input_allocation_.SetBitrate(0, 1, 60000);
current_input_allocation_.SetBitrate(0, 2, 60000);
current_input_allocation_.SetBitrate(1, 0, 400000);
current_input_allocation_.SetBitrate(1, 1, 150000);
current_input_allocation_.SetBitrate(1, 2, 150000);
target_framerate_fps_ = 30;
// Run twice, once configured as simulcast and once as VP9 SVC.
for (int i = 0; i < 2; ++i) {
SetUpAdjuster(2, 3, i == 0);
InsertFrames({{1.05, 1.05, 1.05}, {1.25, 1.25, 1.25}}, kWindowSizeMs);
current_adjusted_allocation_ =
adjuster_->AdjustRateAllocation(VideoEncoder::RateControlParameters(
current_input_allocation_, target_framerate_fps_));
VideoBitrateAllocation expected_allocation;
for (size_t ti = 0; ti < 3; ++ti) {
expected_allocation.SetBitrate(
0, ti,
static_cast<uint32_t>(current_input_allocation_.GetBitrate(0, ti) /
1.05));
expected_allocation.SetBitrate(
1, ti,
static_cast<uint32_t>(current_input_allocation_.GetBitrate(1, ti) /
1.25));
}
ExpectNear(expected_allocation, current_adjusted_allocation_, 0.01);
}
}
TEST_F(EncoderBitrateAdjusterTest, HeadroomAllowsOvershootToMediaRate) {
// Two streams, both with three temporal layers.
// Media rate is 1.0, but network rate is higher.
ScopedFieldTrials field_trial(
"WebRTC-VideoRateControl/adjuster_use_headroom:true/");
const uint32_t kS0Bitrate = 300000;
const uint32_t kS1Bitrate = 900000;
current_input_allocation_.SetBitrate(0, 0, kS0Bitrate / 3);
current_input_allocation_.SetBitrate(0, 1, kS0Bitrate / 3);
current_input_allocation_.SetBitrate(0, 2, kS0Bitrate / 3);
current_input_allocation_.SetBitrate(1, 0, kS1Bitrate / 3);
current_input_allocation_.SetBitrate(1, 1, kS1Bitrate / 3);
current_input_allocation_.SetBitrate(1, 2, kS1Bitrate / 3);
target_framerate_fps_ = 30;
// Run twice, once configured as simulcast and once as VP9 SVC.
for (int i = 0; i < 2; ++i) {
SetUpAdjuster(2, 3, i == 0);
// Network rate has 10% overshoot, but media rate is correct at 1.0.
InsertFrames({{1.0, 1.0, 1.0}, {1.0, 1.0, 1.0}},
{{1.1, 1.1, 1.1}, {1.1, 1.1, 1.1}},
kWindowSizeMs * kSequenceLength);
// Push back by 10%.
current_adjusted_allocation_ =
adjuster_->AdjustRateAllocation(VideoEncoder::RateControlParameters(
current_input_allocation_, target_framerate_fps_));
ExpectNear(MultiplyAllocation(current_input_allocation_, 1 / 1.1),
current_adjusted_allocation_, 0.01);
// Add 10% link headroom, overshoot is now allowed.
current_adjusted_allocation_ =
adjuster_->AdjustRateAllocation(VideoEncoder::RateControlParameters(
current_input_allocation_, target_framerate_fps_,
DataRate::BitsPerSec(current_input_allocation_.get_sum_bps() *
1.1)));
ExpectNear(current_input_allocation_, current_adjusted_allocation_, 0.01);
}
}
TEST_F(EncoderBitrateAdjusterTest, DontExceedMediaRateEvenWithHeadroom) {
// Two streams, both with three temporal layers.
// Media rate is 1.1, but network rate is higher.
ScopedFieldTrials field_trial(
"WebRTC-VideoRateControl/adjuster_use_headroom:true/");
const uint32_t kS0Bitrate = 300000;
const uint32_t kS1Bitrate = 900000;
current_input_allocation_.SetBitrate(0, 0, kS0Bitrate / 3);
current_input_allocation_.SetBitrate(0, 1, kS0Bitrate / 3);
current_input_allocation_.SetBitrate(0, 2, kS0Bitrate / 3);
current_input_allocation_.SetBitrate(1, 0, kS1Bitrate / 3);
current_input_allocation_.SetBitrate(1, 1, kS1Bitrate / 3);
current_input_allocation_.SetBitrate(1, 2, kS1Bitrate / 3);
target_framerate_fps_ = 30;
// Run twice, once configured as simulcast and once as VP9 SVC.
for (int i = 0; i < 2; ++i) {
SetUpAdjuster(2, 3, i == 0);
// Network rate has 30% overshoot, media rate has 10% overshoot.
InsertFrames({{1.1, 1.1, 1.1}, {1.1, 1.1, 1.1}},
{{1.3, 1.3, 1.3}, {1.3, 1.3, 1.3}},
kWindowSizeMs * kSequenceLength);
// Push back by 30%.
current_adjusted_allocation_ =
adjuster_->AdjustRateAllocation(VideoEncoder::RateControlParameters(
current_input_allocation_, target_framerate_fps_));
// The up-down causes a bit more noise, allow slightly more error margin.
ExpectNear(MultiplyAllocation(current_input_allocation_, 1 / 1.3),
current_adjusted_allocation_, 0.015);
// Add 100% link headroom, overshoot from network to media rate is allowed.
current_adjusted_allocation_ =
adjuster_->AdjustRateAllocation(VideoEncoder::RateControlParameters(
current_input_allocation_, target_framerate_fps_,
DataRate::BitsPerSec(current_input_allocation_.get_sum_bps() * 2)));
ExpectNear(MultiplyAllocation(current_input_allocation_, 1 / 1.1),
current_adjusted_allocation_, 0.015);
}
}
} // namespace test
} // namespace webrtc
|