1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
|
use crate::constants::{
MAX_I128_REPR, MAX_PRECISION_U32, POWERS_10, SCALE_MASK, SCALE_SHIFT, SIGN_MASK, SIGN_SHIFT, U32_MASK, U8_MASK,
UNSIGN_MASK,
};
use crate::ops;
use crate::Error;
use core::{
cmp::{Ordering::Equal, *},
fmt,
hash::{Hash, Hasher},
iter::{Product, Sum},
ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Rem, RemAssign, Sub, SubAssign},
str::FromStr,
};
// Diesel configuration
#[cfg(feature = "diesel2")]
use diesel::deserialize::FromSqlRow;
#[cfg(feature = "diesel2")]
use diesel::expression::AsExpression;
#[cfg(any(feature = "diesel1", feature = "diesel2"))]
use diesel::sql_types::Numeric;
#[allow(unused_imports)] // It's not actually dead code below, but the compiler thinks it is.
#[cfg(not(feature = "std"))]
use num_traits::float::FloatCore;
use num_traits::{FromPrimitive, Num, One, Signed, ToPrimitive, Zero};
#[cfg(feature = "rkyv")]
use rkyv::{Archive, Deserialize, Serialize};
/// The smallest value that can be represented by this decimal type.
const MIN: Decimal = Decimal {
flags: 2_147_483_648,
lo: 4_294_967_295,
mid: 4_294_967_295,
hi: 4_294_967_295,
};
/// The largest value that can be represented by this decimal type.
const MAX: Decimal = Decimal {
flags: 0,
lo: 4_294_967_295,
mid: 4_294_967_295,
hi: 4_294_967_295,
};
const ZERO: Decimal = Decimal {
flags: 0,
lo: 0,
mid: 0,
hi: 0,
};
const ONE: Decimal = Decimal {
flags: 0,
lo: 1,
mid: 0,
hi: 0,
};
const TWO: Decimal = Decimal {
flags: 0,
lo: 2,
mid: 0,
hi: 0,
};
const TEN: Decimal = Decimal {
flags: 0,
lo: 10,
mid: 0,
hi: 0,
};
const ONE_HUNDRED: Decimal = Decimal {
flags: 0,
lo: 100,
mid: 0,
hi: 0,
};
const ONE_THOUSAND: Decimal = Decimal {
flags: 0,
lo: 1000,
mid: 0,
hi: 0,
};
const NEGATIVE_ONE: Decimal = Decimal {
flags: 2147483648,
lo: 1,
mid: 0,
hi: 0,
};
/// `UnpackedDecimal` contains unpacked representation of `Decimal` where each component
/// of decimal-format stored in it's own field
#[derive(Clone, Copy, Debug, PartialEq)]
pub struct UnpackedDecimal {
pub negative: bool,
pub scale: u32,
pub hi: u32,
pub mid: u32,
pub lo: u32,
}
/// `Decimal` represents a 128 bit representation of a fixed-precision decimal number.
/// The finite set of values of type `Decimal` are of the form m / 10<sup>e</sup>,
/// where m is an integer such that -2<sup>96</sup> < m < 2<sup>96</sup>, and e is an integer
/// between 0 and 28 inclusive.
#[derive(Clone, Copy)]
#[cfg_attr(
all(feature = "diesel1", not(feature = "diesel2")),
derive(FromSqlRow, AsExpression),
sql_type = "Numeric"
)]
#[cfg_attr(feature = "diesel2", derive(FromSqlRow, AsExpression), diesel(sql_type = Numeric))]
#[cfg_attr(feature = "c-repr", repr(C))]
#[cfg_attr(
feature = "borsh",
derive(borsh::BorshDeserialize, borsh::BorshSerialize, borsh::BorshSchema)
)]
#[cfg_attr(
feature = "rkyv",
derive(Archive, Deserialize, Serialize),
archive(compare(PartialEq)),
archive_attr(derive(Clone, Copy, Debug))
)]
#[cfg_attr(feature = "rkyv-safe", archive_attr(derive(bytecheck::CheckBytes)))]
pub struct Decimal {
// Bits 0-15: unused
// Bits 16-23: Contains "e", a value between 0-28 that indicates the scale
// Bits 24-30: unused
// Bit 31: the sign of the Decimal value, 0 meaning positive and 1 meaning negative.
flags: u32,
// The lo, mid, hi, and flags fields contain the representation of the
// Decimal value as a 96-bit integer.
hi: u32,
lo: u32,
mid: u32,
}
/// `RoundingStrategy` represents the different rounding strategies that can be used by
/// `round_dp_with_strategy`.
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub enum RoundingStrategy {
/// When a number is halfway between two others, it is rounded toward the nearest even number.
/// Also known as "Bankers Rounding".
/// e.g.
/// 6.5 -> 6, 7.5 -> 8
MidpointNearestEven,
/// When a number is halfway between two others, it is rounded toward the nearest number that
/// is away from zero. e.g. 6.4 -> 6, 6.5 -> 7, -6.5 -> -7
MidpointAwayFromZero,
/// When a number is halfway between two others, it is rounded toward the nearest number that
/// is toward zero. e.g. 6.4 -> 6, 6.5 -> 6, -6.5 -> -6
MidpointTowardZero,
/// The number is always rounded toward zero. e.g. -6.8 -> -6, 6.8 -> 6
ToZero,
/// The number is always rounded away from zero. e.g. -6.8 -> -7, 6.8 -> 7
AwayFromZero,
/// The number is always rounded towards negative infinity. e.g. 6.8 -> 6, -6.8 -> -7
ToNegativeInfinity,
/// The number is always rounded towards positive infinity. e.g. 6.8 -> 7, -6.8 -> -6
ToPositiveInfinity,
/// When a number is halfway between two others, it is rounded toward the nearest even number.
/// e.g.
/// 6.5 -> 6, 7.5 -> 8
#[deprecated(since = "1.11.0", note = "Please use RoundingStrategy::MidpointNearestEven instead")]
BankersRounding,
/// Rounds up if the value >= 5, otherwise rounds down, e.g. 6.5 -> 7
#[deprecated(since = "1.11.0", note = "Please use RoundingStrategy::MidpointAwayFromZero instead")]
RoundHalfUp,
/// Rounds down if the value =< 5, otherwise rounds up, e.g. 6.5 -> 6, 6.51 -> 7 1.4999999 -> 1
#[deprecated(since = "1.11.0", note = "Please use RoundingStrategy::MidpointTowardZero instead")]
RoundHalfDown,
/// Always round down.
#[deprecated(since = "1.11.0", note = "Please use RoundingStrategy::ToZero instead")]
RoundDown,
/// Always round up.
#[deprecated(since = "1.11.0", note = "Please use RoundingStrategy::AwayFromZero instead")]
RoundUp,
}
#[allow(dead_code)]
impl Decimal {
/// The smallest value that can be represented by this decimal type.
///
/// # Examples
///
/// Basic usage:
/// ```
/// # use rust_decimal::Decimal;
/// # use rust_decimal_macros::dec;
/// assert_eq!(Decimal::MIN, dec!(-79_228_162_514_264_337_593_543_950_335));
/// ```
pub const MIN: Decimal = MIN;
/// The largest value that can be represented by this decimal type.
///
/// # Examples
///
/// Basic usage:
/// ```
/// # use rust_decimal::Decimal;
/// # use rust_decimal_macros::dec;
/// assert_eq!(Decimal::MAX, dec!(79_228_162_514_264_337_593_543_950_335));
/// ```
pub const MAX: Decimal = MAX;
/// A constant representing 0.
///
/// # Examples
///
/// Basic usage:
/// ```
/// # use rust_decimal::Decimal;
/// # use rust_decimal_macros::dec;
/// assert_eq!(Decimal::ZERO, dec!(0));
/// ```
pub const ZERO: Decimal = ZERO;
/// A constant representing 1.
///
/// # Examples
///
/// Basic usage:
/// ```
/// # use rust_decimal::Decimal;
/// # use rust_decimal_macros::dec;
/// assert_eq!(Decimal::ONE, dec!(1));
/// ```
pub const ONE: Decimal = ONE;
/// A constant representing -1.
///
/// # Examples
///
/// Basic usage:
/// ```
/// # use rust_decimal::Decimal;
/// # use rust_decimal_macros::dec;
/// assert_eq!(Decimal::NEGATIVE_ONE, dec!(-1));
/// ```
pub const NEGATIVE_ONE: Decimal = NEGATIVE_ONE;
/// A constant representing 2.
///
/// # Examples
///
/// Basic usage:
/// ```
/// # use rust_decimal::Decimal;
/// # use rust_decimal_macros::dec;
/// assert_eq!(Decimal::TWO, dec!(2));
/// ```
pub const TWO: Decimal = TWO;
/// A constant representing 10.
///
/// # Examples
///
/// Basic usage:
/// ```
/// # use rust_decimal::Decimal;
/// # use rust_decimal_macros::dec;
/// assert_eq!(Decimal::TEN, dec!(10));
/// ```
pub const TEN: Decimal = TEN;
/// A constant representing 100.
///
/// # Examples
///
/// Basic usage:
/// ```
/// # use rust_decimal::Decimal;
/// # use rust_decimal_macros::dec;
/// assert_eq!(Decimal::ONE_HUNDRED, dec!(100));
/// ```
pub const ONE_HUNDRED: Decimal = ONE_HUNDRED;
/// A constant representing 1000.
///
/// # Examples
///
/// Basic usage:
/// ```
/// # use rust_decimal::Decimal;
/// # use rust_decimal_macros::dec;
/// assert_eq!(Decimal::ONE_THOUSAND, dec!(1000));
/// ```
pub const ONE_THOUSAND: Decimal = ONE_THOUSAND;
/// A constant representing π as 3.1415926535897932384626433833
///
/// # Examples
///
/// Basic usage:
/// ```
/// # use rust_decimal::Decimal;
/// # use rust_decimal_macros::dec;
/// assert_eq!(Decimal::PI, dec!(3.1415926535897932384626433833));
/// ```
#[cfg(feature = "maths")]
pub const PI: Decimal = Decimal {
flags: 1835008,
lo: 1102470953,
mid: 185874565,
hi: 1703060790,
};
/// A constant representing π/2 as 1.5707963267948966192313216916
///
/// # Examples
///
/// Basic usage:
/// ```
/// # use rust_decimal::Decimal;
/// # use rust_decimal_macros::dec;
/// assert_eq!(Decimal::HALF_PI, dec!(1.5707963267948966192313216916));
/// ```
#[cfg(feature = "maths")]
pub const HALF_PI: Decimal = Decimal {
flags: 1835008,
lo: 2698719124,
mid: 92937282,
hi: 851530395,
};
/// A constant representing π/4 as 0.7853981633974483096156608458
///
/// # Examples
///
/// Basic usage:
/// ```
/// # use rust_decimal::Decimal;
/// # use rust_decimal_macros::dec;
/// assert_eq!(Decimal::QUARTER_PI, dec!(0.7853981633974483096156608458));
/// ```
#[cfg(feature = "maths")]
pub const QUARTER_PI: Decimal = Decimal {
flags: 1835008,
lo: 1349359562,
mid: 2193952289,
hi: 425765197,
};
/// A constant representing 2π as 6.2831853071795864769252867666
///
/// # Examples
///
/// Basic usage:
/// ```
/// # use rust_decimal::Decimal;
/// # use rust_decimal_macros::dec;
/// assert_eq!(Decimal::TWO_PI, dec!(6.2831853071795864769252867666));
/// ```
#[cfg(feature = "maths")]
pub const TWO_PI: Decimal = Decimal {
flags: 1835008,
lo: 2204941906,
mid: 371749130,
hi: 3406121580,
};
/// A constant representing Euler's number (e) as 2.7182818284590452353602874714
///
/// # Examples
///
/// Basic usage:
/// ```
/// # use rust_decimal::Decimal;
/// # use rust_decimal_macros::dec;
/// assert_eq!(Decimal::E, dec!(2.7182818284590452353602874714));
/// ```
#[cfg(feature = "maths")]
pub const E: Decimal = Decimal {
flags: 1835008,
lo: 2239425882,
mid: 3958169141,
hi: 1473583531,
};
/// A constant representing the inverse of Euler's number (1/e) as 0.3678794411714423215955237702
///
/// # Examples
///
/// Basic usage:
/// ```
/// # use rust_decimal::Decimal;
/// # use rust_decimal_macros::dec;
/// assert_eq!(Decimal::E_INVERSE, dec!(0.3678794411714423215955237702));
/// ```
#[cfg(feature = "maths")]
pub const E_INVERSE: Decimal = Decimal {
flags: 1835008,
lo: 2384059206,
mid: 2857938002,
hi: 199427844,
};
/// Returns a `Decimal` with a 64 bit `m` representation and corresponding `e` scale.
///
/// # Arguments
///
/// * `num` - An i64 that represents the `m` portion of the decimal number
/// * `scale` - A u32 representing the `e` portion of the decimal number.
///
/// # Panics
///
/// This function panics if `scale` is > 28.
///
/// # Example
///
/// ```
/// # use rust_decimal::Decimal;
/// #
/// let pi = Decimal::new(3141, 3);
/// assert_eq!(pi.to_string(), "3.141");
/// ```
#[must_use]
pub fn new(num: i64, scale: u32) -> Decimal {
match Self::try_new(num, scale) {
Err(e) => panic!("{}", e),
Ok(d) => d,
}
}
/// Checked version of `Decimal::new`. Will return `Err` instead of panicking at run-time.
///
/// # Example
///
/// ```rust
/// # use rust_decimal::Decimal;
/// #
/// let max = Decimal::try_new(i64::MAX, u32::MAX);
/// assert!(max.is_err());
/// ```
pub const fn try_new(num: i64, scale: u32) -> crate::Result<Decimal> {
if scale > MAX_PRECISION_U32 {
return Err(Error::ScaleExceedsMaximumPrecision(scale));
}
let flags: u32 = scale << SCALE_SHIFT;
if num < 0 {
let pos_num = num.wrapping_neg() as u64;
return Ok(Decimal {
flags: flags | SIGN_MASK,
hi: 0,
lo: (pos_num & U32_MASK) as u32,
mid: ((pos_num >> 32) & U32_MASK) as u32,
});
}
Ok(Decimal {
flags,
hi: 0,
lo: (num as u64 & U32_MASK) as u32,
mid: ((num as u64 >> 32) & U32_MASK) as u32,
})
}
/// Creates a `Decimal` using a 128 bit signed `m` representation and corresponding `e` scale.
///
/// # Arguments
///
/// * `num` - An i128 that represents the `m` portion of the decimal number
/// * `scale` - A u32 representing the `e` portion of the decimal number.
///
/// # Panics
///
/// This function panics if `scale` is > 28 or if `num` exceeds the maximum supported 96 bits.
///
/// # Example
///
/// ```rust
/// # use rust_decimal::Decimal;
/// #
/// let pi = Decimal::from_i128_with_scale(3141i128, 3);
/// assert_eq!(pi.to_string(), "3.141");
/// ```
#[must_use]
pub fn from_i128_with_scale(num: i128, scale: u32) -> Decimal {
match Self::try_from_i128_with_scale(num, scale) {
Ok(d) => d,
Err(e) => panic!("{}", e),
}
}
/// Checked version of `Decimal::from_i128_with_scale`. Will return `Err` instead
/// of panicking at run-time.
///
/// # Example
///
/// ```rust
/// # use rust_decimal::Decimal;
/// #
/// let max = Decimal::try_from_i128_with_scale(i128::MAX, u32::MAX);
/// assert!(max.is_err());
/// ```
pub const fn try_from_i128_with_scale(num: i128, scale: u32) -> crate::Result<Decimal> {
if scale > MAX_PRECISION_U32 {
return Err(Error::ScaleExceedsMaximumPrecision(scale));
}
let mut neg = false;
let mut wrapped = num;
if num > MAX_I128_REPR {
return Err(Error::ExceedsMaximumPossibleValue);
} else if num < -MAX_I128_REPR {
return Err(Error::LessThanMinimumPossibleValue);
} else if num < 0 {
neg = true;
wrapped = -num;
}
let flags: u32 = flags(neg, scale);
Ok(Decimal {
flags,
lo: (wrapped as u64 & U32_MASK) as u32,
mid: ((wrapped as u64 >> 32) & U32_MASK) as u32,
hi: ((wrapped as u128 >> 64) as u64 & U32_MASK) as u32,
})
}
/// Returns a `Decimal` using the instances constituent parts.
///
/// # Arguments
///
/// * `lo` - The low 32 bits of a 96-bit integer.
/// * `mid` - The middle 32 bits of a 96-bit integer.
/// * `hi` - The high 32 bits of a 96-bit integer.
/// * `negative` - `true` to indicate a negative number.
/// * `scale` - A power of 10 ranging from 0 to 28.
///
/// # Caution: Undefined behavior
///
/// While a scale greater than 28 can be passed in, it will be automatically capped by this
/// function at the maximum precision. The library opts towards this functionality as opposed
/// to a panic to ensure that the function can be treated as constant. This may lead to
/// undefined behavior in downstream applications and should be treated with caution.
///
/// # Example
///
/// ```
/// # use rust_decimal::Decimal;
/// #
/// let pi = Decimal::from_parts(1102470952, 185874565, 1703060790, false, 28);
/// assert_eq!(pi.to_string(), "3.1415926535897932384626433832");
/// ```
#[must_use]
pub const fn from_parts(lo: u32, mid: u32, hi: u32, negative: bool, scale: u32) -> Decimal {
Decimal {
lo,
mid,
hi,
flags: flags(
if lo == 0 && mid == 0 && hi == 0 {
false
} else {
negative
},
scale % (MAX_PRECISION_U32 + 1),
),
}
}
#[must_use]
pub(crate) const fn from_parts_raw(lo: u32, mid: u32, hi: u32, flags: u32) -> Decimal {
if lo == 0 && mid == 0 && hi == 0 {
Decimal {
lo,
mid,
hi,
flags: flags & SCALE_MASK,
}
} else {
Decimal { flags, hi, lo, mid }
}
}
/// Returns a `Result` which if successful contains the `Decimal` constitution of
/// the scientific notation provided by `value`.
///
/// # Arguments
///
/// * `value` - The scientific notation of the `Decimal`.
///
/// # Example
///
/// ```
/// # use rust_decimal::Decimal;
/// #
/// # fn main() -> Result<(), rust_decimal::Error> {
/// let value = Decimal::from_scientific("9.7e-7")?;
/// assert_eq!(value.to_string(), "0.00000097");
/// # Ok(())
/// # }
/// ```
pub fn from_scientific(value: &str) -> Result<Decimal, Error> {
const ERROR_MESSAGE: &str = "Failed to parse";
let mut split = value.splitn(2, |c| c == 'e' || c == 'E');
let base = split.next().ok_or_else(|| Error::from(ERROR_MESSAGE))?;
let exp = split.next().ok_or_else(|| Error::from(ERROR_MESSAGE))?;
let mut ret = Decimal::from_str(base)?;
let current_scale = ret.scale();
if let Some(stripped) = exp.strip_prefix('-') {
let exp: u32 = stripped.parse().map_err(|_| Error::from(ERROR_MESSAGE))?;
ret.set_scale(current_scale + exp)?;
} else {
let exp: u32 = exp.parse().map_err(|_| Error::from(ERROR_MESSAGE))?;
if exp <= current_scale {
ret.set_scale(current_scale - exp)?;
} else if exp > 0 {
use crate::constants::BIG_POWERS_10;
// This is a case whereby the mantissa needs to be larger to be correctly
// represented within the decimal type. A good example is 1.2E10. At this point,
// we've parsed 1.2 as the base and 10 as the exponent. To represent this within a
// Decimal type we effectively store the mantissa as 12,000,000,000 and scale as
// zero.
if exp > MAX_PRECISION_U32 {
return Err(Error::ScaleExceedsMaximumPrecision(exp));
}
let mut exp = exp as usize;
// Max two iterations. If exp is 1 then it needs to index position 0 of the array.
while exp > 0 {
let pow;
if exp >= BIG_POWERS_10.len() {
pow = BIG_POWERS_10[BIG_POWERS_10.len() - 1];
exp -= BIG_POWERS_10.len();
} else {
pow = BIG_POWERS_10[exp - 1];
exp = 0;
}
let pow = Decimal {
flags: 0,
lo: pow as u32,
mid: (pow >> 32) as u32,
hi: 0,
};
match ret.checked_mul(pow) {
Some(r) => ret = r,
None => return Err(Error::ExceedsMaximumPossibleValue),
};
}
ret.normalize_assign();
}
}
Ok(ret)
}
/// Converts a string slice in a given base to a decimal.
///
/// The string is expected to be an optional + sign followed by digits.
/// Digits are a subset of these characters, depending on radix, and will return an error if outside
/// the expected range:
///
/// * 0-9
/// * a-z
/// * A-Z
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// # use rust_decimal::prelude::*;
/// #
/// # fn main() -> Result<(), rust_decimal::Error> {
/// assert_eq!(Decimal::from_str_radix("A", 16)?.to_string(), "10");
/// # Ok(())
/// # }
/// ```
pub fn from_str_radix(str: &str, radix: u32) -> Result<Self, crate::Error> {
if radix == 10 {
crate::str::parse_str_radix_10(str)
} else {
crate::str::parse_str_radix_n(str, radix)
}
}
/// Parses a string slice into a decimal. If the value underflows and cannot be represented with the
/// given scale then this will return an error.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// # use rust_decimal::prelude::*;
/// # use rust_decimal::Error;
/// #
/// # fn main() -> Result<(), rust_decimal::Error> {
/// assert_eq!(Decimal::from_str_exact("0.001")?.to_string(), "0.001");
/// assert_eq!(Decimal::from_str_exact("0.00000_00000_00000_00000_00000_001")?.to_string(), "0.0000000000000000000000000001");
/// assert_eq!(Decimal::from_str_exact("0.00000_00000_00000_00000_00000_0001"), Err(Error::Underflow));
/// # Ok(())
/// # }
/// ```
pub fn from_str_exact(str: &str) -> Result<Self, crate::Error> {
crate::str::parse_str_radix_10_exact(str)
}
/// Returns the scale of the decimal number, otherwise known as `e`.
///
/// # Example
///
/// ```
/// # use rust_decimal::Decimal;
/// #
/// let num = Decimal::new(1234, 3);
/// assert_eq!(num.scale(), 3u32);
/// ```
#[inline]
#[must_use]
pub const fn scale(&self) -> u32 {
((self.flags & SCALE_MASK) >> SCALE_SHIFT) as u32
}
/// Returns the mantissa of the decimal number.
///
/// # Example
///
/// ```
/// # use rust_decimal::prelude::*;
/// use rust_decimal_macros::dec;
///
/// let num = dec!(-1.2345678);
/// assert_eq!(num.mantissa(), -12345678i128);
/// assert_eq!(num.scale(), 7);
/// ```
#[must_use]
pub const fn mantissa(&self) -> i128 {
let raw = (self.lo as i128) | ((self.mid as i128) << 32) | ((self.hi as i128) << 64);
if self.is_sign_negative() {
-raw
} else {
raw
}
}
/// Returns true if this Decimal number is equivalent to zero.
///
/// # Example
///
/// ```
/// # use rust_decimal::prelude::*;
/// #
/// let num = Decimal::ZERO;
/// assert!(num.is_zero());
/// ```
#[must_use]
pub const fn is_zero(&self) -> bool {
self.lo == 0 && self.mid == 0 && self.hi == 0
}
/// An optimized method for changing the sign of a decimal number.
///
/// # Arguments
///
/// * `positive`: true if the resulting decimal should be positive.
///
/// # Example
///
/// ```
/// # use rust_decimal::Decimal;
/// #
/// let mut one = Decimal::ONE;
/// one.set_sign(false);
/// assert_eq!(one.to_string(), "-1");
/// ```
#[deprecated(since = "1.4.0", note = "please use `set_sign_positive` instead")]
pub fn set_sign(&mut self, positive: bool) {
self.set_sign_positive(positive);
}
/// An optimized method for changing the sign of a decimal number.
///
/// # Arguments
///
/// * `positive`: true if the resulting decimal should be positive.
///
/// # Example
///
/// ```
/// # use rust_decimal::Decimal;
/// #
/// let mut one = Decimal::ONE;
/// one.set_sign_positive(false);
/// assert_eq!(one.to_string(), "-1");
/// ```
#[inline(always)]
pub fn set_sign_positive(&mut self, positive: bool) {
if positive {
self.flags &= UNSIGN_MASK;
} else {
self.flags |= SIGN_MASK;
}
}
/// An optimized method for changing the sign of a decimal number.
///
/// # Arguments
///
/// * `negative`: true if the resulting decimal should be negative.
///
/// # Example
///
/// ```
/// # use rust_decimal::Decimal;
/// #
/// let mut one = Decimal::ONE;
/// one.set_sign_negative(true);
/// assert_eq!(one.to_string(), "-1");
/// ```
#[inline(always)]
pub fn set_sign_negative(&mut self, negative: bool) {
self.set_sign_positive(!negative);
}
/// An optimized method for changing the scale of a decimal number.
///
/// # Arguments
///
/// * `scale`: the new scale of the number
///
/// # Example
///
/// ```
/// # use rust_decimal::Decimal;
/// #
/// # fn main() -> Result<(), rust_decimal::Error> {
/// let mut one = Decimal::ONE;
/// one.set_scale(5)?;
/// assert_eq!(one.to_string(), "0.00001");
/// # Ok(())
/// # }
/// ```
pub fn set_scale(&mut self, scale: u32) -> Result<(), Error> {
if scale > MAX_PRECISION_U32 {
return Err(Error::ScaleExceedsMaximumPrecision(scale));
}
self.flags = (scale << SCALE_SHIFT) | (self.flags & SIGN_MASK);
Ok(())
}
/// Modifies the `Decimal` towards the desired scale, attempting to do so without changing the
/// underlying number itself.
///
/// Setting the scale to something less then the current `Decimal`s scale will
/// cause the newly created `Decimal` to perform rounding using the `MidpointAwayFromZero` strategy.
///
/// Scales greater than the maximum precision that can be represented by `Decimal` will be
/// automatically rounded to either `Decimal::MAX_PRECISION` or the maximum precision that can
/// be represented with the given mantissa.
///
/// # Arguments
/// * `scale`: The desired scale to use for the new `Decimal` number.
///
/// # Example
///
/// ```
/// # use rust_decimal::prelude::*;
/// use rust_decimal_macros::dec;
///
/// // Rescaling to a higher scale preserves the value
/// let mut number = dec!(1.123);
/// assert_eq!(number.scale(), 3);
/// number.rescale(6);
/// assert_eq!(number.to_string(), "1.123000");
/// assert_eq!(number.scale(), 6);
///
/// // Rescaling to a lower scale forces the number to be rounded
/// let mut number = dec!(1.45);
/// assert_eq!(number.scale(), 2);
/// number.rescale(1);
/// assert_eq!(number.to_string(), "1.5");
/// assert_eq!(number.scale(), 1);
///
/// // This function never fails. Consequently, if a scale is provided that is unable to be
/// // represented using the given mantissa, then the maximum possible scale is used.
/// let mut number = dec!(11.76470588235294);
/// assert_eq!(number.scale(), 14);
/// number.rescale(28);
/// // A scale of 28 cannot be represented given this mantissa, however it was able to represent
/// // a number with a scale of 27
/// assert_eq!(number.to_string(), "11.764705882352940000000000000");
/// assert_eq!(number.scale(), 27);
/// ```
pub fn rescale(&mut self, scale: u32) {
let mut array = [self.lo, self.mid, self.hi];
let mut value_scale = self.scale();
ops::array::rescale_internal(&mut array, &mut value_scale, scale);
self.lo = array[0];
self.mid = array[1];
self.hi = array[2];
self.flags = flags(self.is_sign_negative(), value_scale);
}
/// Returns a serialized version of the decimal number.
/// The resulting byte array will have the following representation:
///
/// * Bytes 1-4: flags
/// * Bytes 5-8: lo portion of `m`
/// * Bytes 9-12: mid portion of `m`
/// * Bytes 13-16: high portion of `m`
#[must_use]
pub const fn serialize(&self) -> [u8; 16] {
[
(self.flags & U8_MASK) as u8,
((self.flags >> 8) & U8_MASK) as u8,
((self.flags >> 16) & U8_MASK) as u8,
((self.flags >> 24) & U8_MASK) as u8,
(self.lo & U8_MASK) as u8,
((self.lo >> 8) & U8_MASK) as u8,
((self.lo >> 16) & U8_MASK) as u8,
((self.lo >> 24) & U8_MASK) as u8,
(self.mid & U8_MASK) as u8,
((self.mid >> 8) & U8_MASK) as u8,
((self.mid >> 16) & U8_MASK) as u8,
((self.mid >> 24) & U8_MASK) as u8,
(self.hi & U8_MASK) as u8,
((self.hi >> 8) & U8_MASK) as u8,
((self.hi >> 16) & U8_MASK) as u8,
((self.hi >> 24) & U8_MASK) as u8,
]
}
/// Deserializes the given bytes into a decimal number.
/// The deserialized byte representation must be 16 bytes and adhere to the following convention:
///
/// * Bytes 1-4: flags
/// * Bytes 5-8: lo portion of `m`
/// * Bytes 9-12: mid portion of `m`
/// * Bytes 13-16: high portion of `m`
#[must_use]
pub fn deserialize(bytes: [u8; 16]) -> Decimal {
// We can bound flags by a bitwise mask to correspond to:
// Bits 0-15: unused
// Bits 16-23: Contains "e", a value between 0-28 that indicates the scale
// Bits 24-30: unused
// Bit 31: the sign of the Decimal value, 0 meaning positive and 1 meaning negative.
let mut raw = Decimal {
flags: ((bytes[0] as u32) | (bytes[1] as u32) << 8 | (bytes[2] as u32) << 16 | (bytes[3] as u32) << 24)
& 0x801F_0000,
lo: (bytes[4] as u32) | (bytes[5] as u32) << 8 | (bytes[6] as u32) << 16 | (bytes[7] as u32) << 24,
mid: (bytes[8] as u32) | (bytes[9] as u32) << 8 | (bytes[10] as u32) << 16 | (bytes[11] as u32) << 24,
hi: (bytes[12] as u32) | (bytes[13] as u32) << 8 | (bytes[14] as u32) << 16 | (bytes[15] as u32) << 24,
};
// Scale must be bound to maximum precision. Only two values can be greater than this
if raw.scale() > MAX_PRECISION_U32 {
let mut bits = raw.mantissa_array3();
let remainder = match raw.scale() {
29 => crate::ops::array::div_by_1x(&mut bits, 1),
30 => crate::ops::array::div_by_1x(&mut bits, 2),
31 => crate::ops::array::div_by_1x(&mut bits, 3),
_ => 0,
};
if remainder >= 5 {
ops::array::add_one_internal(&mut bits);
}
raw.lo = bits[0];
raw.mid = bits[1];
raw.hi = bits[2];
raw.flags = flags(raw.is_sign_negative(), MAX_PRECISION_U32);
}
raw
}
/// Returns `true` if the decimal is negative.
#[deprecated(since = "0.6.3", note = "please use `is_sign_negative` instead")]
#[must_use]
pub fn is_negative(&self) -> bool {
self.is_sign_negative()
}
/// Returns `true` if the decimal is positive.
#[deprecated(since = "0.6.3", note = "please use `is_sign_positive` instead")]
#[must_use]
pub fn is_positive(&self) -> bool {
self.is_sign_positive()
}
/// Returns `true` if the sign bit of the decimal is negative.
///
/// # Example
/// ```
/// # use rust_decimal::prelude::*;
/// #
/// assert_eq!(true, Decimal::new(-1, 0).is_sign_negative());
/// assert_eq!(false, Decimal::new(1, 0).is_sign_negative());
/// ```
#[inline(always)]
#[must_use]
pub const fn is_sign_negative(&self) -> bool {
self.flags & SIGN_MASK > 0
}
/// Returns `true` if the sign bit of the decimal is positive.
///
/// # Example
/// ```
/// # use rust_decimal::prelude::*;
/// #
/// assert_eq!(false, Decimal::new(-1, 0).is_sign_positive());
/// assert_eq!(true, Decimal::new(1, 0).is_sign_positive());
/// ```
#[inline(always)]
#[must_use]
pub const fn is_sign_positive(&self) -> bool {
self.flags & SIGN_MASK == 0
}
/// Returns the minimum possible number that `Decimal` can represent.
#[deprecated(since = "1.12.0", note = "Use the associated constant Decimal::MIN")]
#[must_use]
pub const fn min_value() -> Decimal {
MIN
}
/// Returns the maximum possible number that `Decimal` can represent.
#[deprecated(since = "1.12.0", note = "Use the associated constant Decimal::MAX")]
#[must_use]
pub const fn max_value() -> Decimal {
MAX
}
/// Returns a new `Decimal` integral with no fractional portion.
/// This is a true truncation whereby no rounding is performed.
///
/// # Example
///
/// ```
/// # use rust_decimal::Decimal;
/// #
/// let pi = Decimal::new(3141, 3);
/// let trunc = Decimal::new(3, 0);
/// // note that it returns a decimal
/// assert_eq!(pi.trunc(), trunc);
/// ```
#[must_use]
pub fn trunc(&self) -> Decimal {
let mut scale = self.scale();
if scale == 0 {
// Nothing to do
return *self;
}
let mut working = [self.lo, self.mid, self.hi];
while scale > 0 {
// We're removing precision, so we don't care about overflow
if scale < 10 {
ops::array::div_by_u32(&mut working, POWERS_10[scale as usize]);
break;
} else {
ops::array::div_by_u32(&mut working, POWERS_10[9]);
// Only 9 as this array starts with 1
scale -= 9;
}
}
Decimal {
lo: working[0],
mid: working[1],
hi: working[2],
flags: flags(self.is_sign_negative(), 0),
}
}
/// Returns a new `Decimal` representing the fractional portion of the number.
///
/// # Example
///
/// ```
/// # use rust_decimal::Decimal;
/// #
/// let pi = Decimal::new(3141, 3);
/// let fract = Decimal::new(141, 3);
/// // note that it returns a decimal
/// assert_eq!(pi.fract(), fract);
/// ```
#[must_use]
pub fn fract(&self) -> Decimal {
// This is essentially the original number minus the integral.
// Could possibly be optimized in the future
*self - self.trunc()
}
/// Computes the absolute value of `self`.
///
/// # Example
///
/// ```
/// # use rust_decimal::Decimal;
/// #
/// let num = Decimal::new(-3141, 3);
/// assert_eq!(num.abs().to_string(), "3.141");
/// ```
#[must_use]
pub fn abs(&self) -> Decimal {
let mut me = *self;
me.set_sign_positive(true);
me
}
/// Returns the largest integer less than or equal to a number.
///
/// # Example
///
/// ```
/// # use rust_decimal::Decimal;
/// #
/// let num = Decimal::new(3641, 3);
/// assert_eq!(num.floor().to_string(), "3");
/// ```
#[must_use]
pub fn floor(&self) -> Decimal {
let scale = self.scale();
if scale == 0 {
// Nothing to do
return *self;
}
// Opportunity for optimization here
let floored = self.trunc();
if self.is_sign_negative() && !self.fract().is_zero() {
floored - ONE
} else {
floored
}
}
/// Returns the smallest integer greater than or equal to a number.
///
/// # Example
///
/// ```
/// # use rust_decimal::Decimal;
/// #
/// let num = Decimal::new(3141, 3);
/// assert_eq!(num.ceil().to_string(), "4");
/// let num = Decimal::new(3, 0);
/// assert_eq!(num.ceil().to_string(), "3");
/// ```
#[must_use]
pub fn ceil(&self) -> Decimal {
let scale = self.scale();
if scale == 0 {
// Nothing to do
return *self;
}
// Opportunity for optimization here
if self.is_sign_positive() && !self.fract().is_zero() {
self.trunc() + ONE
} else {
self.trunc()
}
}
/// Returns the maximum of the two numbers.
///
/// ```
/// # use rust_decimal::Decimal;
/// #
/// let x = Decimal::new(1, 0);
/// let y = Decimal::new(2, 0);
/// assert_eq!(y, x.max(y));
/// ```
#[must_use]
pub fn max(self, other: Decimal) -> Decimal {
if self < other {
other
} else {
self
}
}
/// Returns the minimum of the two numbers.
///
/// ```
/// # use rust_decimal::Decimal;
/// #
/// let x = Decimal::new(1, 0);
/// let y = Decimal::new(2, 0);
/// assert_eq!(x, x.min(y));
/// ```
#[must_use]
pub fn min(self, other: Decimal) -> Decimal {
if self > other {
other
} else {
self
}
}
/// Strips any trailing zero's from a `Decimal` and converts -0 to 0.
///
/// # Example
///
/// ```
/// # use rust_decimal::prelude::*;
/// # fn main() -> Result<(), rust_decimal::Error> {
/// let number = Decimal::from_str("3.100")?;
/// assert_eq!(number.normalize().to_string(), "3.1");
/// # Ok(())
/// # }
/// ```
#[must_use]
pub fn normalize(&self) -> Decimal {
let mut result = *self;
result.normalize_assign();
result
}
/// An in place version of `normalize`. Strips any trailing zero's from a `Decimal` and converts -0 to 0.
///
/// # Example
///
/// ```
/// # use rust_decimal::prelude::*;
/// # fn main() -> Result<(), rust_decimal::Error> {
/// let mut number = Decimal::from_str("3.100")?;
/// assert_eq!(number.to_string(), "3.100");
/// number.normalize_assign();
/// assert_eq!(number.to_string(), "3.1");
/// # Ok(())
/// # }
/// ```
pub fn normalize_assign(&mut self) {
if self.is_zero() {
self.flags = 0;
return;
}
let mut scale = self.scale();
if scale == 0 {
return;
}
let mut result = self.mantissa_array3();
let mut working = self.mantissa_array3();
while scale > 0 {
if ops::array::div_by_u32(&mut working, 10) > 0 {
break;
}
scale -= 1;
result.copy_from_slice(&working);
}
self.lo = result[0];
self.mid = result[1];
self.hi = result[2];
self.flags = flags(self.is_sign_negative(), scale);
}
/// Returns a new `Decimal` number with no fractional portion (i.e. an integer).
/// Rounding currently follows "Bankers Rounding" rules. e.g. 6.5 -> 6, 7.5 -> 8
///
/// # Example
///
/// ```
/// # use rust_decimal::Decimal;
/// #
/// // Demonstrating bankers rounding...
/// let number_down = Decimal::new(65, 1);
/// let number_up = Decimal::new(75, 1);
/// assert_eq!(number_down.round().to_string(), "6");
/// assert_eq!(number_up.round().to_string(), "8");
/// ```
#[must_use]
pub fn round(&self) -> Decimal {
self.round_dp(0)
}
/// Returns a new `Decimal` number with the specified number of decimal points for fractional
/// portion.
/// Rounding is performed using the provided [`RoundingStrategy`]
///
/// # Arguments
/// * `dp`: the number of decimal points to round to.
/// * `strategy`: the [`RoundingStrategy`] to use.
///
/// # Example
///
/// ```
/// # use rust_decimal::{Decimal, RoundingStrategy};
/// # use rust_decimal_macros::dec;
/// #
/// let tax = dec!(3.4395);
/// assert_eq!(tax.round_dp_with_strategy(2, RoundingStrategy::MidpointAwayFromZero).to_string(), "3.44");
/// ```
#[must_use]
pub fn round_dp_with_strategy(&self, dp: u32, strategy: RoundingStrategy) -> Decimal {
// Short circuit for zero
if self.is_zero() {
return Decimal {
lo: 0,
mid: 0,
hi: 0,
flags: flags(self.is_sign_negative(), dp),
};
}
let old_scale = self.scale();
// return early if decimal has a smaller number of fractional places than dp
// e.g. 2.51 rounded to 3 decimal places is 2.51
if old_scale <= dp {
return *self;
}
let mut value = [self.lo, self.mid, self.hi];
let mut value_scale = self.scale();
let negative = self.is_sign_negative();
value_scale -= dp;
// Rescale to zero so it's easier to work with
while value_scale > 0 {
if value_scale < 10 {
ops::array::div_by_u32(&mut value, POWERS_10[value_scale as usize]);
value_scale = 0;
} else {
ops::array::div_by_u32(&mut value, POWERS_10[9]);
value_scale -= 9;
}
}
// Do some midpoint rounding checks
// We're actually doing two things here.
// 1. Figuring out midpoint rounding when we're right on the boundary. e.g. 2.50000
// 2. Figuring out whether to add one or not e.g. 2.51
// For this, we need to figure out the fractional portion that is additional to
// the rounded number. e.g. for 0.12345 rounding to 2dp we'd want 345.
// We're doing the equivalent of losing precision (e.g. to get 0.12)
// then increasing the precision back up to 0.12000
let mut offset = [self.lo, self.mid, self.hi];
let mut diff = old_scale - dp;
while diff > 0 {
if diff < 10 {
ops::array::div_by_u32(&mut offset, POWERS_10[diff as usize]);
break;
} else {
ops::array::div_by_u32(&mut offset, POWERS_10[9]);
// Only 9 as this array starts with 1
diff -= 9;
}
}
let mut diff = old_scale - dp;
while diff > 0 {
if diff < 10 {
ops::array::mul_by_u32(&mut offset, POWERS_10[diff as usize]);
break;
} else {
ops::array::mul_by_u32(&mut offset, POWERS_10[9]);
// Only 9 as this array starts with 1
diff -= 9;
}
}
let mut decimal_portion = [self.lo, self.mid, self.hi];
ops::array::sub_by_internal(&mut decimal_portion, &offset);
// If the decimal_portion is zero then we round based on the other data
let mut cap = [5, 0, 0];
for _ in 0..(old_scale - dp - 1) {
ops::array::mul_by_u32(&mut cap, 10);
}
let order = ops::array::cmp_internal(&decimal_portion, &cap);
#[allow(deprecated)]
match strategy {
RoundingStrategy::BankersRounding | RoundingStrategy::MidpointNearestEven => {
match order {
Ordering::Equal => {
if (value[0] & 1) == 1 {
ops::array::add_one_internal(&mut value);
}
}
Ordering::Greater => {
// Doesn't matter about the decimal portion
ops::array::add_one_internal(&mut value);
}
_ => {}
}
}
RoundingStrategy::RoundHalfDown | RoundingStrategy::MidpointTowardZero => {
if let Ordering::Greater = order {
ops::array::add_one_internal(&mut value);
}
}
RoundingStrategy::RoundHalfUp | RoundingStrategy::MidpointAwayFromZero => {
// when Ordering::Equal, decimal_portion is 0.5 exactly
// when Ordering::Greater, decimal_portion is > 0.5
match order {
Ordering::Equal => {
ops::array::add_one_internal(&mut value);
}
Ordering::Greater => {
// Doesn't matter about the decimal portion
ops::array::add_one_internal(&mut value);
}
_ => {}
}
}
RoundingStrategy::RoundUp | RoundingStrategy::AwayFromZero => {
if !ops::array::is_all_zero(&decimal_portion) {
ops::array::add_one_internal(&mut value);
}
}
RoundingStrategy::ToPositiveInfinity => {
if !negative && !ops::array::is_all_zero(&decimal_portion) {
ops::array::add_one_internal(&mut value);
}
}
RoundingStrategy::ToNegativeInfinity => {
if negative && !ops::array::is_all_zero(&decimal_portion) {
ops::array::add_one_internal(&mut value);
}
}
RoundingStrategy::RoundDown | RoundingStrategy::ToZero => (),
}
Decimal::from_parts(value[0], value[1], value[2], negative, dp)
}
/// Returns a new `Decimal` number with the specified number of decimal points for fractional portion.
/// Rounding currently follows "Bankers Rounding" rules. e.g. 6.5 -> 6, 7.5 -> 8
///
/// # Arguments
/// * `dp`: the number of decimal points to round to.
///
/// # Example
///
/// ```
/// # use rust_decimal::Decimal;
/// # use rust_decimal_macros::dec;
/// #
/// let pi = dec!(3.1415926535897932384626433832);
/// assert_eq!(pi.round_dp(2).to_string(), "3.14");
/// ```
#[must_use]
pub fn round_dp(&self, dp: u32) -> Decimal {
self.round_dp_with_strategy(dp, RoundingStrategy::MidpointNearestEven)
}
/// Returns `Some(Decimal)` number rounded to the specified number of significant digits. If
/// the resulting number is unable to be represented by the `Decimal` number then `None` will
/// be returned.
/// When the number of significant figures of the `Decimal` being rounded is greater than the requested
/// number of significant digits then rounding will be performed using `MidpointNearestEven` strategy.
///
/// # Arguments
/// * `digits`: the number of significant digits to round to.
///
/// # Remarks
/// A significant figure is determined using the following rules:
/// 1. Non-zero digits are always significant.
/// 2. Zeros between non-zero digits are always significant.
/// 3. Leading zeros are never significant.
/// 4. Trailing zeros are only significant if the number contains a decimal point.
///
/// # Example
///
/// ```
/// # use rust_decimal::Decimal;
/// use rust_decimal_macros::dec;
///
/// let value = dec!(305.459);
/// assert_eq!(value.round_sf(0), Some(dec!(0)));
/// assert_eq!(value.round_sf(1), Some(dec!(300)));
/// assert_eq!(value.round_sf(2), Some(dec!(310)));
/// assert_eq!(value.round_sf(3), Some(dec!(305)));
/// assert_eq!(value.round_sf(4), Some(dec!(305.5)));
/// assert_eq!(value.round_sf(5), Some(dec!(305.46)));
/// assert_eq!(value.round_sf(6), Some(dec!(305.459)));
/// assert_eq!(value.round_sf(7), Some(dec!(305.4590)));
/// assert_eq!(Decimal::MAX.round_sf(1), None);
///
/// let value = dec!(0.012301);
/// assert_eq!(value.round_sf(3), Some(dec!(0.0123)));
/// ```
#[must_use]
pub fn round_sf(&self, digits: u32) -> Option<Decimal> {
self.round_sf_with_strategy(digits, RoundingStrategy::MidpointNearestEven)
}
/// Returns `Some(Decimal)` number rounded to the specified number of significant digits. If
/// the resulting number is unable to be represented by the `Decimal` number then `None` will
/// be returned.
/// When the number of significant figures of the `Decimal` being rounded is greater than the requested
/// number of significant digits then rounding will be performed using the provided [RoundingStrategy].
///
/// # Arguments
/// * `digits`: the number of significant digits to round to.
/// * `strategy`: if required, the rounding strategy to use.
///
/// # Remarks
/// A significant figure is determined using the following rules:
/// 1. Non-zero digits are always significant.
/// 2. Zeros between non-zero digits are always significant.
/// 3. Leading zeros are never significant.
/// 4. Trailing zeros are only significant if the number contains a decimal point.
///
/// # Example
///
/// ```
/// # use rust_decimal::{Decimal, RoundingStrategy};
/// use rust_decimal_macros::dec;
///
/// let value = dec!(305.459);
/// assert_eq!(value.round_sf_with_strategy(0, RoundingStrategy::ToZero), Some(dec!(0)));
/// assert_eq!(value.round_sf_with_strategy(1, RoundingStrategy::ToZero), Some(dec!(300)));
/// assert_eq!(value.round_sf_with_strategy(2, RoundingStrategy::ToZero), Some(dec!(300)));
/// assert_eq!(value.round_sf_with_strategy(3, RoundingStrategy::ToZero), Some(dec!(305)));
/// assert_eq!(value.round_sf_with_strategy(4, RoundingStrategy::ToZero), Some(dec!(305.4)));
/// assert_eq!(value.round_sf_with_strategy(5, RoundingStrategy::ToZero), Some(dec!(305.45)));
/// assert_eq!(value.round_sf_with_strategy(6, RoundingStrategy::ToZero), Some(dec!(305.459)));
/// assert_eq!(value.round_sf_with_strategy(7, RoundingStrategy::ToZero), Some(dec!(305.4590)));
/// assert_eq!(Decimal::MAX.round_sf_with_strategy(1, RoundingStrategy::ToZero), Some(dec!(70000000000000000000000000000)));
///
/// let value = dec!(0.012301);
/// assert_eq!(value.round_sf_with_strategy(3, RoundingStrategy::AwayFromZero), Some(dec!(0.0124)));
/// ```
#[must_use]
pub fn round_sf_with_strategy(&self, digits: u32, strategy: RoundingStrategy) -> Option<Decimal> {
if self.is_zero() || digits == 0 {
return Some(Decimal::ZERO);
}
// We start by grabbing the mantissa and figuring out how many significant figures it is
// made up of. We do this by just dividing by 10 and checking remainders - effectively
// we're performing a naive log10.
let mut working = self.mantissa_array3();
let mut mantissa_sf = 0;
while !ops::array::is_all_zero(&working) {
let _remainder = ops::array::div_by_u32(&mut working, 10u32);
mantissa_sf += 1;
if working[2] == 0 && working[1] == 0 && working[0] == 1 {
mantissa_sf += 1;
break;
}
}
let scale = self.scale();
match digits.cmp(&mantissa_sf) {
Ordering::Greater => {
// If we're requesting a higher number of significant figures, we rescale
let mut array = [self.lo, self.mid, self.hi];
let mut value_scale = scale;
ops::array::rescale_internal(&mut array, &mut value_scale, scale + digits - mantissa_sf);
Some(Decimal {
lo: array[0],
mid: array[1],
hi: array[2],
flags: flags(self.is_sign_negative(), value_scale),
})
}
Ordering::Less => {
// We're requesting a lower number of significant digits.
let diff = mantissa_sf - digits;
// If the diff is greater than the scale we're focused on the integral. Otherwise, we can
// just round.
if diff > scale {
use crate::constants::BIG_POWERS_10;
// We need to adjust the integral portion. This also should be rounded, consequently
// we reduce the number down, round it, and then scale back up.
// E.g. If we have 305.459 scaling to a sf of 2 - we first reduce the number
// down to 30.5459, round it to 31 and then scale it back up to 310.
// Likewise, if we have 12301 scaling to a sf of 3 - we first reduce the number
// down to 123.01, round it to 123 and then scale it back up to 12300.
let mut num = *self;
let mut exp = (diff - scale) as usize;
while exp > 0 {
let pow;
if exp >= BIG_POWERS_10.len() {
pow = Decimal::from(BIG_POWERS_10[BIG_POWERS_10.len() - 1]);
exp -= BIG_POWERS_10.len();
} else {
pow = Decimal::from(BIG_POWERS_10[exp - 1]);
exp = 0;
}
num = num.checked_div(pow)?;
}
let mut num = num.round_dp_with_strategy(0, strategy).trunc();
let mut exp = (mantissa_sf - digits - scale) as usize;
while exp > 0 {
let pow;
if exp >= BIG_POWERS_10.len() {
pow = Decimal::from(BIG_POWERS_10[BIG_POWERS_10.len() - 1]);
exp -= BIG_POWERS_10.len();
} else {
pow = Decimal::from(BIG_POWERS_10[exp - 1]);
exp = 0;
}
num = num.checked_mul(pow)?;
}
Some(num)
} else {
Some(self.round_dp_with_strategy(scale - diff, strategy))
}
}
Ordering::Equal => {
// Case where significant figures = requested significant digits.
Some(*self)
}
}
}
/// Convert `Decimal` to an internal representation of the underlying struct. This is useful
/// for debugging the internal state of the object.
///
/// # Important Disclaimer
/// This is primarily intended for library maintainers. The internal representation of a
/// `Decimal` is considered "unstable" for public use.
///
/// # Example
///
/// ```
/// # use rust_decimal::Decimal;
/// use rust_decimal_macros::dec;
///
/// let pi = dec!(3.1415926535897932384626433832);
/// assert_eq!(format!("{:?}", pi), "3.1415926535897932384626433832");
/// assert_eq!(format!("{:?}", pi.unpack()), "UnpackedDecimal { \
/// negative: false, scale: 28, hi: 1703060790, mid: 185874565, lo: 1102470952 \
/// }");
/// ```
#[must_use]
pub const fn unpack(&self) -> UnpackedDecimal {
UnpackedDecimal {
negative: self.is_sign_negative(),
scale: self.scale(),
hi: self.hi,
lo: self.lo,
mid: self.mid,
}
}
#[inline(always)]
pub(crate) const fn lo(&self) -> u32 {
self.lo
}
#[inline(always)]
pub(crate) const fn mid(&self) -> u32 {
self.mid
}
#[inline(always)]
pub(crate) const fn hi(&self) -> u32 {
self.hi
}
#[inline(always)]
pub(crate) const fn flags(&self) -> u32 {
self.flags
}
#[inline(always)]
pub(crate) const fn mantissa_array3(&self) -> [u32; 3] {
[self.lo, self.mid, self.hi]
}
#[inline(always)]
pub(crate) const fn mantissa_array4(&self) -> [u32; 4] {
[self.lo, self.mid, self.hi, 0]
}
/// Parses a 32-bit float into a Decimal number whilst retaining any non-guaranteed precision.
///
/// Typically when a float is parsed in Rust Decimal, any excess bits (after ~7.22 decimal points for
/// f32 as per IEEE-754) are removed due to any digits following this are considered an approximation
/// at best. This function bypasses this additional step and retains these excess bits.
///
/// # Example
///
/// ```
/// # use rust_decimal::prelude::*;
/// #
/// // Usually floats are parsed leveraging float guarantees. i.e. 0.1_f32 => 0.1
/// assert_eq!("0.1", Decimal::from_f32(0.1_f32).unwrap().to_string());
///
/// // Sometimes, we may want to represent the approximation exactly.
/// assert_eq!("0.100000001490116119384765625", Decimal::from_f32_retain(0.1_f32).unwrap().to_string());
/// ```
pub fn from_f32_retain(n: f32) -> Option<Self> {
from_f32(n, false)
}
/// Parses a 64-bit float into a Decimal number whilst retaining any non-guaranteed precision.
///
/// Typically when a float is parsed in Rust Decimal, any excess bits (after ~15.95 decimal points for
/// f64 as per IEEE-754) are removed due to any digits following this are considered an approximation
/// at best. This function bypasses this additional step and retains these excess bits.
///
/// # Example
///
/// ```
/// # use rust_decimal::prelude::*;
/// #
/// // Usually floats are parsed leveraging float guarantees. i.e. 0.1_f64 => 0.1
/// assert_eq!("0.1", Decimal::from_f64(0.1_f64).unwrap().to_string());
///
/// // Sometimes, we may want to represent the approximation exactly.
/// assert_eq!("0.1000000000000000055511151231", Decimal::from_f64_retain(0.1_f64).unwrap().to_string());
/// ```
pub fn from_f64_retain(n: f64) -> Option<Self> {
from_f64(n, false)
}
}
impl Default for Decimal {
/// Returns the default value for a `Decimal` (equivalent to `Decimal::ZERO`). [Read more]
///
/// [Read more]: core::default::Default#tymethod.default
#[inline]
fn default() -> Self {
ZERO
}
}
pub(crate) enum CalculationResult {
Ok(Decimal),
Overflow,
DivByZero,
}
#[inline]
const fn flags(neg: bool, scale: u32) -> u32 {
(scale << SCALE_SHIFT) | ((neg as u32) << SIGN_SHIFT)
}
macro_rules! integer_docs {
( true ) => {
" by truncating and returning the integer component"
};
( false ) => {
""
};
}
// #[doc] attributes are formatted poorly with rustfmt so skip for now.
// See https://github.com/rust-lang/rustfmt/issues/5062 for more information.
#[rustfmt::skip]
macro_rules! impl_try_from_decimal {
($TInto:ty, $conversion_fn:path, $additional_docs:expr) => {
#[doc = concat!(
"Try to convert a `Decimal` to `",
stringify!($TInto),
"`",
$additional_docs,
".\n\nCan fail if the `Decimal` is out of range for `",
stringify!($TInto),
"`.",
)]
impl TryFrom<Decimal> for $TInto {
type Error = crate::Error;
#[inline]
fn try_from(t: Decimal) -> Result<Self, Error> {
$conversion_fn(&t).ok_or_else(|| Error::ConversionTo(stringify!($TInto).into()))
}
}
};
}
impl_try_from_decimal!(f32, Decimal::to_f32, integer_docs!(false));
impl_try_from_decimal!(f64, Decimal::to_f64, integer_docs!(false));
impl_try_from_decimal!(isize, Decimal::to_isize, integer_docs!(true));
impl_try_from_decimal!(i8, Decimal::to_i8, integer_docs!(true));
impl_try_from_decimal!(i16, Decimal::to_i16, integer_docs!(true));
impl_try_from_decimal!(i32, Decimal::to_i32, integer_docs!(true));
impl_try_from_decimal!(i64, Decimal::to_i64, integer_docs!(true));
impl_try_from_decimal!(i128, Decimal::to_i128, integer_docs!(true));
impl_try_from_decimal!(usize, Decimal::to_usize, integer_docs!(true));
impl_try_from_decimal!(u8, Decimal::to_u8, integer_docs!(true));
impl_try_from_decimal!(u16, Decimal::to_u16, integer_docs!(true));
impl_try_from_decimal!(u32, Decimal::to_u32, integer_docs!(true));
impl_try_from_decimal!(u64, Decimal::to_u64, integer_docs!(true));
impl_try_from_decimal!(u128, Decimal::to_u128, integer_docs!(true));
// #[doc] attributes are formatted poorly with rustfmt so skip for now.
// See https://github.com/rust-lang/rustfmt/issues/5062 for more information.
#[rustfmt::skip]
macro_rules! impl_try_from_primitive {
($TFrom:ty, $conversion_fn:path $(, $err:expr)?) => {
#[doc = concat!(
"Try to convert a `",
stringify!($TFrom),
"` into a `Decimal`.\n\nCan fail if the value is out of range for `Decimal`."
)]
impl TryFrom<$TFrom> for Decimal {
type Error = crate::Error;
#[inline]
fn try_from(t: $TFrom) -> Result<Self, Error> {
$conversion_fn(t) $( .ok_or_else(|| $err) )?
}
}
};
}
impl_try_from_primitive!(f32, Self::from_f32, Error::ConversionTo("Decimal".into()));
impl_try_from_primitive!(f64, Self::from_f64, Error::ConversionTo("Decimal".into()));
impl_try_from_primitive!(&str, core::str::FromStr::from_str);
macro_rules! impl_from {
($T:ty, $from_ty:path) => {
///
/// Conversion to `Decimal`.
///
impl core::convert::From<$T> for Decimal {
#[inline]
fn from(t: $T) -> Self {
$from_ty(t).unwrap()
}
}
};
}
impl_from!(isize, FromPrimitive::from_isize);
impl_from!(i8, FromPrimitive::from_i8);
impl_from!(i16, FromPrimitive::from_i16);
impl_from!(i32, FromPrimitive::from_i32);
impl_from!(i64, FromPrimitive::from_i64);
impl_from!(usize, FromPrimitive::from_usize);
impl_from!(u8, FromPrimitive::from_u8);
impl_from!(u16, FromPrimitive::from_u16);
impl_from!(u32, FromPrimitive::from_u32);
impl_from!(u64, FromPrimitive::from_u64);
impl_from!(i128, FromPrimitive::from_i128);
impl_from!(u128, FromPrimitive::from_u128);
impl Zero for Decimal {
fn zero() -> Decimal {
ZERO
}
fn is_zero(&self) -> bool {
self.is_zero()
}
}
impl One for Decimal {
fn one() -> Decimal {
ONE
}
}
impl Signed for Decimal {
fn abs(&self) -> Self {
self.abs()
}
fn abs_sub(&self, other: &Self) -> Self {
if self <= other {
ZERO
} else {
self.abs()
}
}
fn signum(&self) -> Self {
if self.is_zero() {
ZERO
} else {
let mut value = ONE;
if self.is_sign_negative() {
value.set_sign_negative(true);
}
value
}
}
fn is_positive(&self) -> bool {
self.is_sign_positive()
}
fn is_negative(&self) -> bool {
self.is_sign_negative()
}
}
impl Num for Decimal {
type FromStrRadixErr = Error;
fn from_str_radix(str: &str, radix: u32) -> Result<Self, Self::FromStrRadixErr> {
Decimal::from_str_radix(str, radix)
}
}
impl FromStr for Decimal {
type Err = Error;
fn from_str(value: &str) -> Result<Decimal, Self::Err> {
crate::str::parse_str_radix_10(value)
}
}
impl FromPrimitive for Decimal {
fn from_i32(n: i32) -> Option<Decimal> {
let flags: u32;
let value_copy: i64;
if n >= 0 {
flags = 0;
value_copy = n as i64;
} else {
flags = SIGN_MASK;
value_copy = -(n as i64);
}
Some(Decimal {
flags,
lo: value_copy as u32,
mid: 0,
hi: 0,
})
}
fn from_i64(n: i64) -> Option<Decimal> {
let flags: u32;
let value_copy: i128;
if n >= 0 {
flags = 0;
value_copy = n as i128;
} else {
flags = SIGN_MASK;
value_copy = -(n as i128);
}
Some(Decimal {
flags,
lo: value_copy as u32,
mid: (value_copy >> 32) as u32,
hi: 0,
})
}
fn from_i128(n: i128) -> Option<Decimal> {
let flags;
let unsigned;
if n >= 0 {
unsigned = n as u128;
flags = 0;
} else {
unsigned = -n as u128;
flags = SIGN_MASK;
};
// Check if we overflow
if unsigned >> 96 != 0 {
return None;
}
Some(Decimal {
flags,
lo: unsigned as u32,
mid: (unsigned >> 32) as u32,
hi: (unsigned >> 64) as u32,
})
}
fn from_u32(n: u32) -> Option<Decimal> {
Some(Decimal {
flags: 0,
lo: n,
mid: 0,
hi: 0,
})
}
fn from_u64(n: u64) -> Option<Decimal> {
Some(Decimal {
flags: 0,
lo: n as u32,
mid: (n >> 32) as u32,
hi: 0,
})
}
fn from_u128(n: u128) -> Option<Decimal> {
// Check if we overflow
if n >> 96 != 0 {
return None;
}
Some(Decimal {
flags: 0,
lo: n as u32,
mid: (n >> 32) as u32,
hi: (n >> 64) as u32,
})
}
fn from_f32(n: f32) -> Option<Decimal> {
// By default, we remove excess bits. This allows 0.1_f64 == dec!(0.1).
from_f32(n, true)
}
fn from_f64(n: f64) -> Option<Decimal> {
// By default, we remove excess bits. This allows 0.1_f64 == dec!(0.1).
from_f64(n, true)
}
}
#[inline]
fn from_f64(n: f64, remove_excess_bits: bool) -> Option<Decimal> {
// Handle the case if it is NaN, Infinity or -Infinity
if !n.is_finite() {
return None;
}
// It's a shame we can't use a union for this due to it being broken up by bits
// i.e. 1/11/52 (sign, exponent, mantissa)
// See https://en.wikipedia.org/wiki/IEEE_754-1985
// n = (sign*-1) * 2^exp * mantissa
// Decimal of course stores this differently... 10^-exp * significand
let raw = n.to_bits();
let positive = (raw >> 63) == 0;
let biased_exponent = ((raw >> 52) & 0x7FF) as i32;
let mantissa = raw & 0x000F_FFFF_FFFF_FFFF;
// Handle the special zero case
if biased_exponent == 0 && mantissa == 0 {
let mut zero = ZERO;
if !positive {
zero.set_sign_negative(true);
}
return Some(zero);
}
// Get the bits and exponent2
let mut exponent2 = biased_exponent - 1023;
let mut bits = [
(mantissa & 0xFFFF_FFFF) as u32,
((mantissa >> 32) & 0xFFFF_FFFF) as u32,
0u32,
];
if biased_exponent == 0 {
// Denormalized number - correct the exponent
exponent2 += 1;
} else {
// Add extra hidden bit to mantissa
bits[1] |= 0x0010_0000;
}
// The act of copying a mantissa as integer bits is equivalent to shifting
// left the mantissa 52 bits. The exponent is reduced to compensate.
exponent2 -= 52;
// Convert to decimal
base2_to_decimal(&mut bits, exponent2, positive, true, remove_excess_bits)
}
#[inline]
fn from_f32(n: f32, remove_excess_bits: bool) -> Option<Decimal> {
// Handle the case if it is NaN, Infinity or -Infinity
if !n.is_finite() {
return None;
}
// It's a shame we can't use a union for this due to it being broken up by bits
// i.e. 1/8/23 (sign, exponent, mantissa)
// See https://en.wikipedia.org/wiki/IEEE_754-1985
// n = (sign*-1) * 2^exp * mantissa
// Decimal of course stores this differently... 10^-exp * significand
let raw = n.to_bits();
let positive = (raw >> 31) == 0;
let biased_exponent = ((raw >> 23) & 0xFF) as i32;
let mantissa = raw & 0x007F_FFFF;
// Handle the special zero case
if biased_exponent == 0 && mantissa == 0 {
let mut zero = ZERO;
if !positive {
zero.set_sign_negative(true);
}
return Some(zero);
}
// Get the bits and exponent2
let mut exponent2 = biased_exponent - 127;
let mut bits = [mantissa, 0u32, 0u32];
if biased_exponent == 0 {
// Denormalized number - correct the exponent
exponent2 += 1;
} else {
// Add extra hidden bit to mantissa
bits[0] |= 0x0080_0000;
}
// The act of copying a mantissa as integer bits is equivalent to shifting
// left the mantissa 23 bits. The exponent is reduced to compensate.
exponent2 -= 23;
// Convert to decimal
base2_to_decimal(&mut bits, exponent2, positive, false, remove_excess_bits)
}
fn base2_to_decimal(
bits: &mut [u32; 3],
exponent2: i32,
positive: bool,
is64: bool,
remove_excess_bits: bool,
) -> Option<Decimal> {
// 2^exponent2 = (10^exponent2)/(5^exponent2)
// = (5^-exponent2)*(10^exponent2)
let mut exponent5 = -exponent2;
let mut exponent10 = exponent2; // Ultimately, we want this for the scale
while exponent5 > 0 {
// Check to see if the mantissa is divisible by 2
if bits[0] & 0x1 == 0 {
exponent10 += 1;
exponent5 -= 1;
// We can divide by 2 without losing precision
let hi_carry = bits[2] & 0x1 == 1;
bits[2] >>= 1;
let mid_carry = bits[1] & 0x1 == 1;
bits[1] = (bits[1] >> 1) | if hi_carry { SIGN_MASK } else { 0 };
bits[0] = (bits[0] >> 1) | if mid_carry { SIGN_MASK } else { 0 };
} else {
// The mantissa is NOT divisible by 2. Therefore the mantissa should
// be multiplied by 5, unless the multiplication overflows.
exponent5 -= 1;
let mut temp = [bits[0], bits[1], bits[2]];
if ops::array::mul_by_u32(&mut temp, 5) == 0 {
// Multiplication succeeded without overflow, so copy result back
bits[0] = temp[0];
bits[1] = temp[1];
bits[2] = temp[2];
} else {
// Multiplication by 5 overflows. The mantissa should be divided
// by 2, and therefore will lose significant digits.
exponent10 += 1;
// Shift right
let hi_carry = bits[2] & 0x1 == 1;
bits[2] >>= 1;
let mid_carry = bits[1] & 0x1 == 1;
bits[1] = (bits[1] >> 1) | if hi_carry { SIGN_MASK } else { 0 };
bits[0] = (bits[0] >> 1) | if mid_carry { SIGN_MASK } else { 0 };
}
}
}
// In order to divide the value by 5, it is best to multiply by 2/10.
// Therefore, exponent10 is decremented, and the mantissa should be multiplied by 2
while exponent5 < 0 {
if bits[2] & SIGN_MASK == 0 {
// No far left bit, the mantissa can withstand a shift-left without overflowing
exponent10 -= 1;
exponent5 += 1;
ops::array::shl1_internal(bits, 0);
} else {
// The mantissa would overflow if shifted. Therefore it should be
// directly divided by 5. This will lose significant digits, unless
// by chance the mantissa happens to be divisible by 5.
exponent5 += 1;
ops::array::div_by_u32(bits, 5);
}
}
// At this point, the mantissa has assimilated the exponent5, but
// exponent10 might not be suitable for assignment. exponent10 must be
// in the range [-MAX_PRECISION..0], so the mantissa must be scaled up or
// down appropriately.
while exponent10 > 0 {
// In order to bring exponent10 down to 0, the mantissa should be
// multiplied by 10 to compensate. If the exponent10 is too big, this
// will cause the mantissa to overflow.
if ops::array::mul_by_u32(bits, 10) == 0 {
exponent10 -= 1;
} else {
// Overflowed - return?
return None;
}
}
// In order to bring exponent up to -MAX_PRECISION, the mantissa should
// be divided by 10 to compensate. If the exponent10 is too small, this
// will cause the mantissa to underflow and become 0.
while exponent10 < -(MAX_PRECISION_U32 as i32) {
let rem10 = ops::array::div_by_u32(bits, 10);
exponent10 += 1;
if ops::array::is_all_zero(bits) {
// Underflow, unable to keep dividing
exponent10 = 0;
} else if rem10 >= 5 {
ops::array::add_one_internal(bits);
}
}
if remove_excess_bits {
// This step is required in order to remove excess bits of precision from the
// end of the bit representation, down to the precision guaranteed by the
// floating point number (see IEEE-754).
if is64 {
// Guaranteed to approx 15/16 dp
while exponent10 < 0 && (bits[2] != 0 || (bits[1] & 0xFFF0_0000) != 0) {
let rem10 = ops::array::div_by_u32(bits, 10);
exponent10 += 1;
if rem10 >= 5 {
ops::array::add_one_internal(bits);
}
}
} else {
// Guaranteed to about 7/8 dp
while exponent10 < 0 && ((bits[0] & 0xFF00_0000) != 0 || bits[1] != 0 || bits[2] != 0) {
let rem10 = ops::array::div_by_u32(bits, 10);
exponent10 += 1;
if rem10 >= 5 {
ops::array::add_one_internal(bits);
}
}
}
// Remove multiples of 10 from the representation
while exponent10 < 0 {
let mut temp = [bits[0], bits[1], bits[2]];
let remainder = ops::array::div_by_u32(&mut temp, 10);
if remainder == 0 {
exponent10 += 1;
bits[0] = temp[0];
bits[1] = temp[1];
bits[2] = temp[2];
} else {
break;
}
}
}
Some(Decimal {
lo: bits[0],
mid: bits[1],
hi: bits[2],
flags: flags(!positive, -exponent10 as u32),
})
}
impl ToPrimitive for Decimal {
fn to_i64(&self) -> Option<i64> {
let d = self.trunc();
// If it is in the hi bit then it is a clear overflow.
if d.hi != 0 {
// Overflow
return None;
}
let negative = self.is_sign_negative();
// A bit more convoluted in terms of checking when it comes to the hi bit due to twos-complement
if d.mid & 0x8000_0000 > 0 {
if negative && d.mid == 0x8000_0000 && d.lo == 0 {
// We do this because below we try to convert the i64 to a positive first - of which
// doesn't fit into an i64.
return Some(i64::MIN);
}
return None;
}
let raw: i64 = (i64::from(d.mid) << 32) | i64::from(d.lo);
if negative {
Some(raw.neg())
} else {
Some(raw)
}
}
fn to_i128(&self) -> Option<i128> {
let d = self.trunc();
let raw: i128 = ((i128::from(d.hi) << 64) | i128::from(d.mid) << 32) | i128::from(d.lo);
if self.is_sign_negative() {
Some(-raw)
} else {
Some(raw)
}
}
fn to_u64(&self) -> Option<u64> {
if self.is_sign_negative() {
return None;
}
let d = self.trunc();
if d.hi != 0 {
// Overflow
return None;
}
Some((u64::from(d.mid) << 32) | u64::from(d.lo))
}
fn to_u128(&self) -> Option<u128> {
if self.is_sign_negative() {
return None;
}
let d = self.trunc();
Some((u128::from(d.hi) << 64) | (u128::from(d.mid) << 32) | u128::from(d.lo))
}
fn to_f64(&self) -> Option<f64> {
if self.scale() == 0 {
// If scale is zero, we are storing a 96-bit integer value, that would
// always fit into i128, which in turn is always representable as f64,
// albeit with loss of precision for values outside of -2^53..2^53 range.
let integer = self.to_i128();
integer.map(|i| i as f64)
} else {
let sign: f64 = if self.is_sign_negative() { -1.0 } else { 1.0 };
let mut mantissa: u128 = self.lo.into();
mantissa |= (self.mid as u128) << 32;
mantissa |= (self.hi as u128) << 64;
// scale is at most 28, so this fits comfortably into a u128.
let scale = self.scale();
let precision: u128 = 10_u128.pow(scale);
let integral_part = mantissa / precision;
let frac_part = mantissa % precision;
let frac_f64 = (frac_part as f64) / (precision as f64);
let value = sign * ((integral_part as f64) + frac_f64);
let round_to = 10f64.powi(self.scale() as i32);
Some((value * round_to).round() / round_to)
}
}
}
impl fmt::Display for Decimal {
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
let (rep, additional) = crate::str::to_str_internal(self, false, f.precision());
if let Some(additional) = additional {
let value = [rep.as_str(), "0".repeat(additional).as_str()].concat();
f.pad_integral(self.is_sign_positive(), "", value.as_str())
} else {
f.pad_integral(self.is_sign_positive(), "", rep.as_str())
}
}
}
impl fmt::Debug for Decimal {
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
fmt::Display::fmt(self, f)
}
}
impl fmt::LowerExp for Decimal {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
crate::str::fmt_scientific_notation(self, "e", f)
}
}
impl fmt::UpperExp for Decimal {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
crate::str::fmt_scientific_notation(self, "E", f)
}
}
impl Neg for Decimal {
type Output = Decimal;
fn neg(self) -> Decimal {
let mut copy = self;
copy.set_sign_negative(self.is_sign_positive());
copy
}
}
impl<'a> Neg for &'a Decimal {
type Output = Decimal;
fn neg(self) -> Decimal {
Decimal {
flags: flags(!self.is_sign_negative(), self.scale()),
hi: self.hi,
lo: self.lo,
mid: self.mid,
}
}
}
impl AddAssign for Decimal {
fn add_assign(&mut self, other: Decimal) {
let result = self.add(other);
self.lo = result.lo;
self.mid = result.mid;
self.hi = result.hi;
self.flags = result.flags;
}
}
impl<'a> AddAssign<&'a Decimal> for Decimal {
fn add_assign(&mut self, other: &'a Decimal) {
Decimal::add_assign(self, *other)
}
}
impl<'a> AddAssign<Decimal> for &'a mut Decimal {
fn add_assign(&mut self, other: Decimal) {
Decimal::add_assign(*self, other)
}
}
impl<'a> AddAssign<&'a Decimal> for &'a mut Decimal {
fn add_assign(&mut self, other: &'a Decimal) {
Decimal::add_assign(*self, *other)
}
}
impl SubAssign for Decimal {
fn sub_assign(&mut self, other: Decimal) {
let result = self.sub(other);
self.lo = result.lo;
self.mid = result.mid;
self.hi = result.hi;
self.flags = result.flags;
}
}
impl<'a> SubAssign<&'a Decimal> for Decimal {
fn sub_assign(&mut self, other: &'a Decimal) {
Decimal::sub_assign(self, *other)
}
}
impl<'a> SubAssign<Decimal> for &'a mut Decimal {
fn sub_assign(&mut self, other: Decimal) {
Decimal::sub_assign(*self, other)
}
}
impl<'a> SubAssign<&'a Decimal> for &'a mut Decimal {
fn sub_assign(&mut self, other: &'a Decimal) {
Decimal::sub_assign(*self, *other)
}
}
impl MulAssign for Decimal {
fn mul_assign(&mut self, other: Decimal) {
let result = self.mul(other);
self.lo = result.lo;
self.mid = result.mid;
self.hi = result.hi;
self.flags = result.flags;
}
}
impl<'a> MulAssign<&'a Decimal> for Decimal {
fn mul_assign(&mut self, other: &'a Decimal) {
Decimal::mul_assign(self, *other)
}
}
impl<'a> MulAssign<Decimal> for &'a mut Decimal {
fn mul_assign(&mut self, other: Decimal) {
Decimal::mul_assign(*self, other)
}
}
impl<'a> MulAssign<&'a Decimal> for &'a mut Decimal {
fn mul_assign(&mut self, other: &'a Decimal) {
Decimal::mul_assign(*self, *other)
}
}
impl DivAssign for Decimal {
fn div_assign(&mut self, other: Decimal) {
let result = self.div(other);
self.lo = result.lo;
self.mid = result.mid;
self.hi = result.hi;
self.flags = result.flags;
}
}
impl<'a> DivAssign<&'a Decimal> for Decimal {
fn div_assign(&mut self, other: &'a Decimal) {
Decimal::div_assign(self, *other)
}
}
impl<'a> DivAssign<Decimal> for &'a mut Decimal {
fn div_assign(&mut self, other: Decimal) {
Decimal::div_assign(*self, other)
}
}
impl<'a> DivAssign<&'a Decimal> for &'a mut Decimal {
fn div_assign(&mut self, other: &'a Decimal) {
Decimal::div_assign(*self, *other)
}
}
impl RemAssign for Decimal {
fn rem_assign(&mut self, other: Decimal) {
let result = self.rem(other);
self.lo = result.lo;
self.mid = result.mid;
self.hi = result.hi;
self.flags = result.flags;
}
}
impl<'a> RemAssign<&'a Decimal> for Decimal {
fn rem_assign(&mut self, other: &'a Decimal) {
Decimal::rem_assign(self, *other)
}
}
impl<'a> RemAssign<Decimal> for &'a mut Decimal {
fn rem_assign(&mut self, other: Decimal) {
Decimal::rem_assign(*self, other)
}
}
impl<'a> RemAssign<&'a Decimal> for &'a mut Decimal {
fn rem_assign(&mut self, other: &'a Decimal) {
Decimal::rem_assign(*self, *other)
}
}
impl PartialEq for Decimal {
#[inline]
fn eq(&self, other: &Decimal) -> bool {
self.cmp(other) == Equal
}
}
impl Eq for Decimal {}
impl Hash for Decimal {
fn hash<H: Hasher>(&self, state: &mut H) {
let n = self.normalize();
n.lo.hash(state);
n.mid.hash(state);
n.hi.hash(state);
n.flags.hash(state);
}
}
impl PartialOrd for Decimal {
#[inline]
fn partial_cmp(&self, other: &Decimal) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl Ord for Decimal {
fn cmp(&self, other: &Decimal) -> Ordering {
ops::cmp_impl(self, other)
}
}
impl Product for Decimal {
/// Panics if out-of-bounds
fn product<I: Iterator<Item = Decimal>>(iter: I) -> Self {
let mut product = ONE;
for i in iter {
product *= i;
}
product
}
}
impl<'a> Product<&'a Decimal> for Decimal {
/// Panics if out-of-bounds
fn product<I: Iterator<Item = &'a Decimal>>(iter: I) -> Self {
let mut product = ONE;
for i in iter {
product *= i;
}
product
}
}
impl Sum for Decimal {
fn sum<I: Iterator<Item = Decimal>>(iter: I) -> Self {
let mut sum = ZERO;
for i in iter {
sum += i;
}
sum
}
}
impl<'a> Sum<&'a Decimal> for Decimal {
fn sum<I: Iterator<Item = &'a Decimal>>(iter: I) -> Self {
let mut sum = ZERO;
for i in iter {
sum += i;
}
sum
}
}
|