summaryrefslogtreecommitdiffstats
path: root/third_party/rust/rust_decimal/src/maths.rs
blob: c402453002abd05e4da7adc7e389b11938428856 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
use crate::prelude::*;
use num_traits::pow::Pow;

// Tolerance for inaccuracies when calculating exp
const EXP_TOLERANCE: Decimal = Decimal::from_parts(2, 0, 0, false, 7);
// Approximation of 1/ln(10) = 0.4342944819032518276511289189
const LN10_INVERSE: Decimal = Decimal::from_parts_raw(1763037029, 1670682625, 235431510, 1835008);
// Total iterations of taylor series for Trig.
const TRIG_SERIES_UPPER_BOUND: usize = 6;
// PI / 8
const EIGHTH_PI: Decimal = Decimal::from_parts_raw(2822163429, 3244459792, 212882598, 1835008);

// Table representing {index}!
const FACTORIAL: [Decimal; 28] = [
    Decimal::from_parts(1, 0, 0, false, 0),
    Decimal::from_parts(1, 0, 0, false, 0),
    Decimal::from_parts(2, 0, 0, false, 0),
    Decimal::from_parts(6, 0, 0, false, 0),
    Decimal::from_parts(24, 0, 0, false, 0),
    // 5!
    Decimal::from_parts(120, 0, 0, false, 0),
    Decimal::from_parts(720, 0, 0, false, 0),
    Decimal::from_parts(5040, 0, 0, false, 0),
    Decimal::from_parts(40320, 0, 0, false, 0),
    Decimal::from_parts(362880, 0, 0, false, 0),
    // 10!
    Decimal::from_parts(3628800, 0, 0, false, 0),
    Decimal::from_parts(39916800, 0, 0, false, 0),
    Decimal::from_parts(479001600, 0, 0, false, 0),
    Decimal::from_parts(1932053504, 1, 0, false, 0),
    Decimal::from_parts(1278945280, 20, 0, false, 0),
    // 15!
    Decimal::from_parts(2004310016, 304, 0, false, 0),
    Decimal::from_parts(2004189184, 4871, 0, false, 0),
    Decimal::from_parts(4006445056, 82814, 0, false, 0),
    Decimal::from_parts(3396534272, 1490668, 0, false, 0),
    Decimal::from_parts(109641728, 28322707, 0, false, 0),
    // 20!
    Decimal::from_parts(2192834560, 566454140, 0, false, 0),
    Decimal::from_parts(3099852800, 3305602358, 2, false, 0),
    Decimal::from_parts(3772252160, 4003775155, 60, false, 0),
    Decimal::from_parts(862453760, 1892515369, 1401, false, 0),
    Decimal::from_parts(3519021056, 2470695900, 33634, false, 0),
    // 25!
    Decimal::from_parts(2076180480, 1637855376, 840864, false, 0),
    Decimal::from_parts(2441084928, 3929534124, 21862473, false, 0),
    Decimal::from_parts(1484783616, 3018206259, 590286795, false, 0),
];

/// Trait exposing various mathematical operations that can be applied using a Decimal. This is only
/// present when the `maths` feature has been enabled.
pub trait MathematicalOps {
    /// The estimated exponential function, e<sup>x</sup>. Stops calculating when it is within
    /// tolerance of roughly `0.0000002`.
    fn exp(&self) -> Decimal;

    /// The estimated exponential function, e<sup>x</sup>. Stops calculating when it is within
    /// tolerance of roughly `0.0000002`. Returns `None` on overflow.
    fn checked_exp(&self) -> Option<Decimal>;

    /// The estimated exponential function, e<sup>x</sup> using the `tolerance` provided as a hint
    /// as to when to stop calculating. A larger tolerance will cause the number to stop calculating
    /// sooner at the potential cost of a slightly less accurate result.
    fn exp_with_tolerance(&self, tolerance: Decimal) -> Decimal;

    /// The estimated exponential function, e<sup>x</sup> using the `tolerance` provided as a hint
    /// as to when to stop calculating. A larger tolerance will cause the number to stop calculating
    /// sooner at the potential cost of a slightly less accurate result.
    /// Returns `None` on overflow.
    fn checked_exp_with_tolerance(&self, tolerance: Decimal) -> Option<Decimal>;

    /// Raise self to the given integer exponent: x<sup>y</sup>
    fn powi(&self, exp: i64) -> Decimal;

    /// Raise self to the given integer exponent x<sup>y</sup> returning `None` on overflow.
    fn checked_powi(&self, exp: i64) -> Option<Decimal>;

    /// Raise self to the given unsigned integer exponent: x<sup>y</sup>
    fn powu(&self, exp: u64) -> Decimal;

    /// Raise self to the given unsigned integer exponent x<sup>y</sup> returning `None` on overflow.
    fn checked_powu(&self, exp: u64) -> Option<Decimal>;

    /// Raise self to the given floating point exponent: x<sup>y</sup>
    fn powf(&self, exp: f64) -> Decimal;

    /// Raise self to the given floating point exponent x<sup>y</sup> returning `None` on overflow.
    fn checked_powf(&self, exp: f64) -> Option<Decimal>;

    /// Raise self to the given Decimal exponent: x<sup>y</sup>. If `exp` is not whole then the approximation
    /// e<sup>y*ln(x)</sup> is used.
    fn powd(&self, exp: Decimal) -> Decimal;

    /// Raise self to the given Decimal exponent x<sup>y</sup> returning `None` on overflow.
    /// If `exp` is not whole then the approximation e<sup>y*ln(x)</sup> is used.
    fn checked_powd(&self, exp: Decimal) -> Option<Decimal>;

    /// The square root of a Decimal. Uses a standard Babylonian method.
    fn sqrt(&self) -> Option<Decimal>;

    /// Calculates the natural logarithm for a Decimal calculated using Taylor's series.
    fn ln(&self) -> Decimal;

    /// Calculates the checked natural logarithm for a Decimal calculated using Taylor's series.
    /// Returns `None` for negative numbers or zero.
    fn checked_ln(&self) -> Option<Decimal>;

    /// Calculates the base 10 logarithm of a specified Decimal number.
    fn log10(&self) -> Decimal;

    /// Calculates the checked base 10 logarithm of a specified Decimal number.
    /// Returns `None` for negative numbers or zero.
    fn checked_log10(&self) -> Option<Decimal>;

    /// Abramowitz Approximation of Error Function from [wikipedia](https://en.wikipedia.org/wiki/Error_function#Numerical_approximations)
    fn erf(&self) -> Decimal;

    /// The Cumulative distribution function for a Normal distribution
    fn norm_cdf(&self) -> Decimal;

    /// The Probability density function for a Normal distribution.
    fn norm_pdf(&self) -> Decimal;

    /// The Probability density function for a Normal distribution returning `None` on overflow.
    fn checked_norm_pdf(&self) -> Option<Decimal>;

    /// Computes the sine of a number (in radians).
    /// Panics upon overflow.
    fn sin(&self) -> Decimal;

    /// Computes the checked sine of a number (in radians).
    fn checked_sin(&self) -> Option<Decimal>;

    /// Computes the cosine of a number (in radians).
    /// Panics upon overflow.
    fn cos(&self) -> Decimal;

    /// Computes the checked cosine of a number (in radians).
    fn checked_cos(&self) -> Option<Decimal>;

    /// Computes the tangent of a number (in radians).
    /// Panics upon overflow or upon approaching a limit.
    fn tan(&self) -> Decimal;

    /// Computes the checked tangent of a number (in radians).
    /// Returns None on limit.
    fn checked_tan(&self) -> Option<Decimal>;
}

impl MathematicalOps for Decimal {
    fn exp(&self) -> Decimal {
        self.exp_with_tolerance(EXP_TOLERANCE)
    }

    fn checked_exp(&self) -> Option<Decimal> {
        self.checked_exp_with_tolerance(EXP_TOLERANCE)
    }

    fn exp_with_tolerance(&self, tolerance: Decimal) -> Decimal {
        match self.checked_exp_with_tolerance(tolerance) {
            Some(d) => d,
            None => {
                if self.is_sign_negative() {
                    panic!("Exp underflowed")
                } else {
                    panic!("Exp overflowed")
                }
            }
        }
    }

    fn checked_exp_with_tolerance(&self, tolerance: Decimal) -> Option<Decimal> {
        if self.is_zero() {
            return Some(Decimal::ONE);
        }
        if self.is_sign_negative() {
            let mut flipped = *self;
            flipped.set_sign_positive(true);
            let exp = flipped.checked_exp_with_tolerance(tolerance)?;
            return Decimal::ONE.checked_div(exp);
        }

        let mut term = *self;
        let mut result = self.checked_add(Decimal::ONE)?;

        for factorial in FACTORIAL.iter().skip(2) {
            term = self.checked_mul(term)?;
            let next = result + (term / factorial);
            let diff = (next - result).abs();
            result = next;
            if diff <= tolerance {
                break;
            }
        }

        Some(result)
    }

    fn powi(&self, exp: i64) -> Decimal {
        match self.checked_powi(exp) {
            Some(result) => result,
            None => panic!("Pow overflowed"),
        }
    }

    fn checked_powi(&self, exp: i64) -> Option<Decimal> {
        // For negative exponents we change x^-y into 1 / x^y.
        // Otherwise, we calculate a standard unsigned exponent
        if exp >= 0 {
            return self.checked_powu(exp as u64);
        }

        // Get the unsigned exponent
        let exp = exp.unsigned_abs();
        let pow = match self.checked_powu(exp) {
            Some(v) => v,
            None => return None,
        };
        Decimal::ONE.checked_div(pow)
    }

    fn powu(&self, exp: u64) -> Decimal {
        match self.checked_powu(exp) {
            Some(result) => result,
            None => panic!("Pow overflowed"),
        }
    }

    fn checked_powu(&self, exp: u64) -> Option<Decimal> {
        match exp {
            0 => Some(Decimal::ONE),
            1 => Some(*self),
            2 => self.checked_mul(*self),
            _ => {
                // Get the squared value
                let squared = match self.checked_mul(*self) {
                    Some(s) => s,
                    None => return None,
                };
                // Square self once and make an infinite sized iterator of the square.
                let iter = core::iter::repeat(squared);

                // We then take half of the exponent to create a finite iterator and then multiply those together.
                let mut product = Decimal::ONE;
                for x in iter.take((exp >> 1) as usize) {
                    match product.checked_mul(x) {
                        Some(r) => product = r,
                        None => return None,
                    };
                }

                // If the exponent is odd we still need to multiply once more
                if exp & 0x1 > 0 {
                    match self.checked_mul(product) {
                        Some(p) => product = p,
                        None => return None,
                    }
                }
                product.normalize_assign();
                Some(product)
            }
        }
    }

    fn powf(&self, exp: f64) -> Decimal {
        match self.checked_powf(exp) {
            Some(result) => result,
            None => panic!("Pow overflowed"),
        }
    }

    fn checked_powf(&self, exp: f64) -> Option<Decimal> {
        let exp = match Decimal::from_f64(exp) {
            Some(f) => f,
            None => return None,
        };
        self.checked_powd(exp)
    }

    fn powd(&self, exp: Decimal) -> Decimal {
        match self.checked_powd(exp) {
            Some(result) => result,
            None => panic!("Pow overflowed"),
        }
    }

    fn checked_powd(&self, exp: Decimal) -> Option<Decimal> {
        if exp.is_zero() {
            return Some(Decimal::ONE);
        }
        if self.is_zero() {
            return Some(Decimal::ZERO);
        }
        if self.is_one() {
            return Some(Decimal::ONE);
        }
        if exp.is_one() {
            return Some(*self);
        }

        // If the scale is 0 then it's a trivial calculation
        let exp = exp.normalize();
        if exp.scale() == 0 {
            if exp.mid() != 0 || exp.hi() != 0 {
                // Exponent way too big
                return None;
            }

            return if exp.is_sign_negative() {
                self.checked_powi(-(exp.lo() as i64))
            } else {
                self.checked_powu(exp.lo() as u64)
            };
        }

        // We do some approximations since we've got a decimal exponent.
        // For positive bases: a^b = exp(b*ln(a))
        let negative = self.is_sign_negative();
        let e = match self.abs().ln().checked_mul(exp) {
            Some(e) => e,
            None => return None,
        };
        let mut result = e.checked_exp()?;
        result.set_sign_negative(negative);
        Some(result)
    }

    fn sqrt(&self) -> Option<Decimal> {
        if self.is_sign_negative() {
            return None;
        }

        if self.is_zero() {
            return Some(Decimal::ZERO);
        }

        // Start with an arbitrary number as the first guess
        let mut result = self / Decimal::TWO;
        // Too small to represent, so we start with self
        // Future iterations could actually avoid using a decimal altogether and use a buffered
        // vector, only combining back into a decimal on return
        if result.is_zero() {
            result = *self;
        }
        let mut last = result + Decimal::ONE;

        // Keep going while the difference is larger than the tolerance
        let mut circuit_breaker = 0;
        while last != result {
            circuit_breaker += 1;
            assert!(circuit_breaker < 1000, "geo mean circuit breaker");

            last = result;
            result = (result + self / result) / Decimal::TWO;
        }

        Some(result)
    }

    #[cfg(feature = "maths-nopanic")]
    fn ln(&self) -> Decimal {
        match self.checked_ln() {
            Some(result) => result,
            None => Decimal::ZERO,
        }
    }

    #[cfg(not(feature = "maths-nopanic"))]
    fn ln(&self) -> Decimal {
        match self.checked_ln() {
            Some(result) => result,
            None => {
                if self.is_sign_negative() {
                    panic!("Unable to calculate ln for negative numbers")
                } else if self.is_zero() {
                    panic!("Unable to calculate ln for zero")
                } else {
                    panic!("Calculation of ln failed for unknown reasons")
                }
            }
        }
    }

    fn checked_ln(&self) -> Option<Decimal> {
        if self.is_sign_negative() || self.is_zero() {
            return None;
        }
        if self.is_one() {
            return Some(Decimal::ZERO);
        }

        // Approximate using Taylor Series
        let mut x = *self;
        let mut count = 0;
        while x >= Decimal::ONE {
            x *= Decimal::E_INVERSE;
            count += 1;
        }
        while x <= Decimal::E_INVERSE {
            x *= Decimal::E;
            count -= 1;
        }
        x -= Decimal::ONE;
        if x.is_zero() {
            return Some(Decimal::new(count, 0));
        }
        let mut result = Decimal::ZERO;
        let mut iteration = 0;
        let mut y = Decimal::ONE;
        let mut last = Decimal::ONE;
        while last != result && iteration < 100 {
            iteration += 1;
            last = result;
            y *= -x;
            result += y / Decimal::new(iteration, 0);
        }
        Some(Decimal::new(count, 0) - result)
    }

    #[cfg(feature = "maths-nopanic")]
    fn log10(&self) -> Decimal {
        match self.checked_log10() {
            Some(result) => result,
            None => Decimal::ZERO,
        }
    }

    #[cfg(not(feature = "maths-nopanic"))]
    fn log10(&self) -> Decimal {
        match self.checked_log10() {
            Some(result) => result,
            None => {
                if self.is_sign_negative() {
                    panic!("Unable to calculate log10 for negative numbers")
                } else if self.is_zero() {
                    panic!("Unable to calculate log10 for zero")
                } else {
                    panic!("Calculation of log10 failed for unknown reasons")
                }
            }
        }
    }

    fn checked_log10(&self) -> Option<Decimal> {
        use crate::ops::array::{div_by_u32, is_all_zero};
        // Early exits
        if self.is_sign_negative() || self.is_zero() {
            return None;
        }
        if self.is_one() {
            return Some(Decimal::ZERO);
        }

        // This uses a very basic method for calculating log10. We know the following is true:
        //   log10(n) = ln(n) / ln(10)
        // From this we can perform some small optimizations:
        //  1. ln(10) is a constant
        //  2. Multiplication is faster than division, so we can pre-calculate the constant 1/ln(10)
        // This allows us to then simplify log10(n) to:
        //   log10(n) = C * ln(n)

        // Before doing all of this however, we see if there are simple calculations to be made.
        let scale = self.scale();
        let mut working = self.mantissa_array3();

        // Check for scales less than 1 as an early exit
        if scale > 0 && working[2] == 0 && working[1] == 0 && working[0] == 1 {
            return Some(Decimal::from_parts(scale, 0, 0, true, 0));
        }

        // Loop for detecting bordering base 10 values
        let mut result = 0;
        let mut base10 = true;
        while !is_all_zero(&working) {
            let remainder = div_by_u32(&mut working, 10u32);
            if remainder != 0 {
                base10 = false;
                break;
            }
            result += 1;
            if working[2] == 0 && working[1] == 0 && working[0] == 1 {
                break;
            }
        }
        if base10 {
            return Some((result - scale as i32).into());
        }

        self.checked_ln().map(|result| LN10_INVERSE * result)
    }

    fn erf(&self) -> Decimal {
        if self.is_sign_positive() {
            let one = &Decimal::ONE;

            let xa1 = self * Decimal::from_parts(705230784, 0, 0, false, 10);
            let xa2 = self.powi(2) * Decimal::from_parts(422820123, 0, 0, false, 10);
            let xa3 = self.powi(3) * Decimal::from_parts(92705272, 0, 0, false, 10);
            let xa4 = self.powi(4) * Decimal::from_parts(1520143, 0, 0, false, 10);
            let xa5 = self.powi(5) * Decimal::from_parts(2765672, 0, 0, false, 10);
            let xa6 = self.powi(6) * Decimal::from_parts(430638, 0, 0, false, 10);

            let sum = one + xa1 + xa2 + xa3 + xa4 + xa5 + xa6;
            one - (one / sum.powi(16))
        } else {
            -self.abs().erf()
        }
    }

    fn norm_cdf(&self) -> Decimal {
        (Decimal::ONE + (self / Decimal::from_parts(2318911239, 3292722, 0, false, 16)).erf()) / Decimal::TWO
    }

    fn norm_pdf(&self) -> Decimal {
        match self.checked_norm_pdf() {
            Some(d) => d,
            None => panic!("Norm Pdf overflowed"),
        }
    }

    fn checked_norm_pdf(&self) -> Option<Decimal> {
        let sqrt2pi = Decimal::from_parts_raw(2133383024, 2079885984, 1358845910, 1835008);
        let factor = -self.checked_powi(2)?;
        let factor = factor.checked_div(Decimal::TWO)?;
        factor.checked_exp()?.checked_div(sqrt2pi)
    }

    fn sin(&self) -> Decimal {
        match self.checked_sin() {
            Some(x) => x,
            None => panic!("Sin overflowed"),
        }
    }

    fn checked_sin(&self) -> Option<Decimal> {
        if self.is_zero() {
            return Some(Decimal::ZERO);
        }
        if self.is_sign_negative() {
            // -Sin(-x)
            return (-self).checked_sin().map(|x| -x);
        }
        if self >= &Decimal::TWO_PI {
            // Reduce large numbers early - we can do this using rem to constrain to a range
            let adjusted = self.checked_rem(Decimal::TWO_PI)?;
            return adjusted.checked_sin();
        }
        if self >= &Decimal::PI {
            // -Sin(x-π)
            return (self - Decimal::PI).checked_sin().map(|x| -x);
        }
        if self >= &Decimal::QUARTER_PI {
            // Cos(π2-x)
            return (Decimal::HALF_PI - self).checked_cos();
        }

        // Taylor series:
        // ∑(n=0 to ∞) : ((−1)^n / (2n + 1)!) * x^(2n + 1) , x∈R
        // First few expansions:
        // x^1/1! - x^3/3! + x^5/5! - x^7/7! + x^9/9!
        let mut result = Decimal::ZERO;
        for n in 0..TRIG_SERIES_UPPER_BOUND {
            let x = 2 * n + 1;
            let element = self.checked_powi(x as i64)?.checked_div(FACTORIAL[x])?;
            if n & 0x1 == 0 {
                result += element;
            } else {
                result -= element;
            }
        }
        Some(result)
    }

    fn cos(&self) -> Decimal {
        match self.checked_cos() {
            Some(x) => x,
            None => panic!("Cos overflowed"),
        }
    }

    fn checked_cos(&self) -> Option<Decimal> {
        if self.is_zero() {
            return Some(Decimal::ONE);
        }
        if self.is_sign_negative() {
            // Cos(-x)
            return (-self).checked_cos();
        }
        if self >= &Decimal::TWO_PI {
            // Reduce large numbers early - we can do this using rem to constrain to a range
            let adjusted = self.checked_rem(Decimal::TWO_PI)?;
            return adjusted.checked_cos();
        }
        if self >= &Decimal::PI {
            // -Cos(x-π)
            return (self - Decimal::PI).checked_cos().map(|x| -x);
        }
        if self >= &Decimal::QUARTER_PI {
            // Sin(π2-x)
            return (Decimal::HALF_PI - self).checked_sin();
        }

        // Taylor series:
        // ∑(n=0 to ∞) : ((−1)^n / (2n)!) * x^(2n) , x∈R
        // First few expansions:
        // x^0/0! - x^2/2! + x^4/4! - x^6/6! + x^8/8!
        let mut result = Decimal::ZERO;
        for n in 0..TRIG_SERIES_UPPER_BOUND {
            let x = 2 * n;
            let element = self.checked_powi(x as i64)?.checked_div(FACTORIAL[x])?;
            if n & 0x1 == 0 {
                result += element;
            } else {
                result -= element;
            }
        }
        Some(result)
    }

    fn tan(&self) -> Decimal {
        match self.checked_tan() {
            Some(x) => x,
            None => panic!("Tan overflowed"),
        }
    }

    fn checked_tan(&self) -> Option<Decimal> {
        if self.is_zero() {
            return Some(Decimal::ZERO);
        }
        if self.is_sign_negative() {
            // -Tan(-x)
            return (-self).checked_tan().map(|x| -x);
        }
        if self >= &Decimal::TWO_PI {
            // Reduce large numbers early - we can do this using rem to constrain to a range
            let adjusted = self.checked_rem(Decimal::TWO_PI)?;
            return adjusted.checked_tan();
        }
        // Reduce to 0 <= x <= PI
        if self >= &Decimal::PI {
            // Tan(x-π)
            return (self - Decimal::PI).checked_tan();
        }
        // Reduce to 0 <= x <= PI/2
        if self > &Decimal::HALF_PI {
            // We can use the symmetrical function inside the first quadrant
            // e.g. tan(x) = -tan((PI/2 - x) + PI/2)
            return ((Decimal::HALF_PI - self) + Decimal::HALF_PI).checked_tan().map(|x| -x);
        }

        // It has now been reduced to 0 <= x <= PI/2. If it is >= PI/4 we can make it even smaller
        // by calculating tan(PI/2 - x) and taking the reciprocal
        if self > &Decimal::QUARTER_PI {
            return match (Decimal::HALF_PI - self).checked_tan() {
                Some(x) => Decimal::ONE.checked_div(x),
                None => None,
            };
        }

        // Due the way that tan(x) sharply tends towards infinity, we try to optimize
        // the resulting accuracy by using Trigonometric identity when > PI/8. We do this by
        // replacing the angle with one that is half as big.
        if self > &EIGHTH_PI {
            // Work out tan(x/2)
            let tan_half = (self / Decimal::TWO).checked_tan()?;
            // Work out the dividend i.e. 2tan(x/2)
            let dividend = Decimal::TWO.checked_mul(tan_half)?;

            // Work out the divisor i.e. 1 - tan^2(x/2)
            let squared = tan_half.checked_mul(tan_half)?;
            let divisor = Decimal::ONE - squared;
            // Treat this as infinity
            if divisor.is_zero() {
                return None;
            }
            return dividend.checked_div(divisor);
        }

        // Do a polynomial approximation based upon the Maclaurin series.
        // This can be simplified to something like:
        //
        // ∑(n=1,3,5,7,9)(f(n)(0)/n!)x^n
        //
        // First few expansions (which we leverage):
        // (f'(0)/1!)x^1 + (f'''(0)/3!)x^3 + (f'''''(0)/5!)x^5 + (f'''''''/7!)x^7
        //
        // x + (1/3)x^3 + (2/15)x^5 + (17/315)x^7 + (62/2835)x^9 + (1382/155925)x^11
        //
        // (Generated by https://www.wolframalpha.com/widgets/view.jsp?id=fe1ad8d4f5dbb3cb866d0c89beb527a6)
        // The more terms, the better the accuracy. This generates accuracy within approx 10^-8 for angles
        // less than PI/8.
        const SERIES: [(Decimal, u64); 6] = [
            // 1 / 3
            (Decimal::from_parts_raw(89478485, 347537611, 180700362, 1835008), 3),
            // 2 / 15
            (Decimal::from_parts_raw(894784853, 3574988881, 72280144, 1835008), 5),
            // 17 / 315
            (Decimal::from_parts_raw(905437054, 3907911371, 2925624, 1769472), 7),
            // 62 / 2835
            (Decimal::from_parts_raw(3191872741, 2108928381, 11855473, 1835008), 9),
            // 1382 / 155925
            (Decimal::from_parts_raw(3482645539, 2612995122, 4804769, 1835008), 11),
            // 21844 / 6081075
            (Decimal::from_parts_raw(4189029078, 2192791200, 1947296, 1835008), 13),
        ];
        let mut result = *self;
        for (fraction, pow) in SERIES {
            result += fraction * self.powu(pow);
        }
        Some(result)
    }
}

impl Pow<Decimal> for Decimal {
    type Output = Decimal;

    fn pow(self, rhs: Decimal) -> Self::Output {
        MathematicalOps::powd(&self, rhs)
    }
}

impl Pow<u64> for Decimal {
    type Output = Decimal;

    fn pow(self, rhs: u64) -> Self::Output {
        MathematicalOps::powu(&self, rhs)
    }
}

impl Pow<i64> for Decimal {
    type Output = Decimal;

    fn pow(self, rhs: i64) -> Self::Output {
        MathematicalOps::powi(&self, rhs)
    }
}

impl Pow<f64> for Decimal {
    type Output = Decimal;

    fn pow(self, rhs: f64) -> Self::Output {
        MathematicalOps::powf(&self, rhs)
    }
}

#[cfg(test)]
mod test {
    use super::*;

    #[cfg(not(feature = "std"))]
    use alloc::string::ToString;

    #[test]
    fn test_factorials() {
        assert_eq!("1", FACTORIAL[0].to_string(), "0!");
        assert_eq!("1", FACTORIAL[1].to_string(), "1!");
        assert_eq!("2", FACTORIAL[2].to_string(), "2!");
        assert_eq!("6", FACTORIAL[3].to_string(), "3!");
        assert_eq!("24", FACTORIAL[4].to_string(), "4!");
        assert_eq!("120", FACTORIAL[5].to_string(), "5!");
        assert_eq!("720", FACTORIAL[6].to_string(), "6!");
        assert_eq!("5040", FACTORIAL[7].to_string(), "7!");
        assert_eq!("40320", FACTORIAL[8].to_string(), "8!");
        assert_eq!("362880", FACTORIAL[9].to_string(), "9!");
        assert_eq!("3628800", FACTORIAL[10].to_string(), "10!");
        assert_eq!("39916800", FACTORIAL[11].to_string(), "11!");
        assert_eq!("479001600", FACTORIAL[12].to_string(), "12!");
        assert_eq!("6227020800", FACTORIAL[13].to_string(), "13!");
        assert_eq!("87178291200", FACTORIAL[14].to_string(), "14!");
        assert_eq!("1307674368000", FACTORIAL[15].to_string(), "15!");
        assert_eq!("20922789888000", FACTORIAL[16].to_string(), "16!");
        assert_eq!("355687428096000", FACTORIAL[17].to_string(), "17!");
        assert_eq!("6402373705728000", FACTORIAL[18].to_string(), "18!");
        assert_eq!("121645100408832000", FACTORIAL[19].to_string(), "19!");
        assert_eq!("2432902008176640000", FACTORIAL[20].to_string(), "20!");
        assert_eq!("51090942171709440000", FACTORIAL[21].to_string(), "21!");
        assert_eq!("1124000727777607680000", FACTORIAL[22].to_string(), "22!");
        assert_eq!("25852016738884976640000", FACTORIAL[23].to_string(), "23!");
        assert_eq!("620448401733239439360000", FACTORIAL[24].to_string(), "24!");
        assert_eq!("15511210043330985984000000", FACTORIAL[25].to_string(), "25!");
        assert_eq!("403291461126605635584000000", FACTORIAL[26].to_string(), "26!");
        assert_eq!("10888869450418352160768000000", FACTORIAL[27].to_string(), "27!");
    }
}