1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
|
use crate::constants::{MAX_I32_SCALE, MAX_PRECISION_I32, POWERS_10};
use crate::Decimal;
#[derive(Debug)]
pub struct Buf12 {
pub data: [u32; 3],
}
impl Buf12 {
pub(super) const fn from_dec64(value: &Dec64) -> Self {
Buf12 {
data: [value.low64 as u32, (value.low64 >> 32) as u32, value.hi],
}
}
pub(super) const fn from_decimal(value: &Decimal) -> Self {
Buf12 {
data: value.mantissa_array3(),
}
}
#[inline(always)]
pub const fn lo(&self) -> u32 {
self.data[0]
}
#[inline(always)]
pub const fn mid(&self) -> u32 {
self.data[1]
}
#[inline(always)]
pub const fn hi(&self) -> u32 {
self.data[2]
}
#[inline(always)]
pub fn set_lo(&mut self, value: u32) {
self.data[0] = value;
}
#[inline(always)]
pub fn set_mid(&mut self, value: u32) {
self.data[1] = value;
}
#[inline(always)]
pub fn set_hi(&mut self, value: u32) {
self.data[2] = value;
}
#[inline(always)]
pub const fn low64(&self) -> u64 {
((self.data[1] as u64) << 32) | (self.data[0] as u64)
}
#[inline(always)]
pub fn set_low64(&mut self, value: u64) {
self.data[1] = (value >> 32) as u32;
self.data[0] = value as u32;
}
#[inline(always)]
pub const fn high64(&self) -> u64 {
((self.data[2] as u64) << 32) | (self.data[1] as u64)
}
#[inline(always)]
pub fn set_high64(&mut self, value: u64) {
self.data[2] = (value >> 32) as u32;
self.data[1] = value as u32;
}
// Determine the maximum value of x that ensures that the quotient when scaled up by 10^x
// still fits in 96 bits. Ultimately, we want to make scale positive - if we can't then
// we're going to overflow. Because x is ultimately used to lookup inside the POWERS array, it
// must be a valid value 0 <= x <= 9
pub fn find_scale(&self, scale: i32) -> Option<usize> {
const OVERFLOW_MAX_9_HI: u32 = 4;
const OVERFLOW_MAX_8_HI: u32 = 42;
const OVERFLOW_MAX_7_HI: u32 = 429;
const OVERFLOW_MAX_6_HI: u32 = 4294;
const OVERFLOW_MAX_5_HI: u32 = 42949;
const OVERFLOW_MAX_4_HI: u32 = 429496;
const OVERFLOW_MAX_3_HI: u32 = 4294967;
const OVERFLOW_MAX_2_HI: u32 = 42949672;
const OVERFLOW_MAX_1_HI: u32 = 429496729;
const OVERFLOW_MAX_9_LOW64: u64 = 5441186219426131129;
let hi = self.data[2];
let low64 = self.low64();
let mut x = 0usize;
// Quick check to stop us from trying to scale any more.
//
if hi > OVERFLOW_MAX_1_HI {
// If it's less than 0, which it probably is - overflow. We can't do anything.
if scale < 0 {
return None;
}
return Some(x);
}
if scale > MAX_PRECISION_I32 - 9 {
// We can't scale by 10^9 without exceeding the max scale factor.
// Instead, we'll try to scale by the most that we can and see if that works.
// This is safe to do due to the check above. e.g. scale > 19 in the above, so it will
// evaluate to 9 or less below.
x = (MAX_PRECISION_I32 - scale) as usize;
if hi < POWER_OVERFLOW_VALUES[x - 1].data[2] {
if x as i32 + scale < 0 {
// We still overflow
return None;
}
return Some(x);
}
} else if hi < OVERFLOW_MAX_9_HI || hi == OVERFLOW_MAX_9_HI && low64 <= OVERFLOW_MAX_9_LOW64 {
return Some(9);
}
// Do a binary search to find a power to scale by that is less than 9
x = if hi > OVERFLOW_MAX_5_HI {
if hi > OVERFLOW_MAX_3_HI {
if hi > OVERFLOW_MAX_2_HI {
1
} else {
2
}
} else if hi > OVERFLOW_MAX_4_HI {
3
} else {
4
}
} else if hi > OVERFLOW_MAX_7_HI {
if hi > OVERFLOW_MAX_6_HI {
5
} else {
6
}
} else if hi > OVERFLOW_MAX_8_HI {
7
} else {
8
};
// Double check what we've found won't overflow. Otherwise, we go one below.
if hi == POWER_OVERFLOW_VALUES[x - 1].data[2] && low64 > POWER_OVERFLOW_VALUES[x - 1].low64() {
x -= 1;
}
// Confirm we've actually resolved things
if x as i32 + scale < 0 {
None
} else {
Some(x)
}
}
}
// This is a table of the largest values that will not overflow when multiplied
// by a given power as represented by the index.
static POWER_OVERFLOW_VALUES: [Buf12; 8] = [
Buf12 {
data: [2576980377, 2576980377, 429496729],
},
Buf12 {
data: [687194767, 4123168604, 42949672],
},
Buf12 {
data: [2645699854, 1271310319, 4294967],
},
Buf12 {
data: [694066715, 3133608139, 429496],
},
Buf12 {
data: [2216890319, 2890341191, 42949],
},
Buf12 {
data: [2369172679, 4154504685, 4294],
},
Buf12 {
data: [4102387834, 2133437386, 429],
},
Buf12 {
data: [410238783, 4078814305, 42],
},
];
pub(super) struct Dec64 {
pub negative: bool,
pub scale: u32,
pub hi: u32,
pub low64: u64,
}
impl Dec64 {
pub(super) const fn new(d: &Decimal) -> Dec64 {
let m = d.mantissa_array3();
if m[1] == 0 {
Dec64 {
negative: d.is_sign_negative(),
scale: d.scale(),
hi: m[2],
low64: m[0] as u64,
}
} else {
Dec64 {
negative: d.is_sign_negative(),
scale: d.scale(),
hi: m[2],
low64: ((m[1] as u64) << 32) | (m[0] as u64),
}
}
}
#[inline(always)]
pub(super) const fn lo(&self) -> u32 {
self.low64 as u32
}
#[inline(always)]
pub(super) const fn mid(&self) -> u32 {
(self.low64 >> 32) as u32
}
#[inline(always)]
pub(super) const fn high64(&self) -> u64 {
(self.low64 >> 32) | ((self.hi as u64) << 32)
}
pub(super) const fn to_decimal(&self) -> Decimal {
Decimal::from_parts(
self.low64 as u32,
(self.low64 >> 32) as u32,
self.hi,
self.negative,
self.scale,
)
}
}
pub struct Buf16 {
pub data: [u32; 4],
}
impl Buf16 {
pub const fn zero() -> Self {
Buf16 { data: [0, 0, 0, 0] }
}
pub const fn low64(&self) -> u64 {
((self.data[1] as u64) << 32) | (self.data[0] as u64)
}
pub fn set_low64(&mut self, value: u64) {
self.data[1] = (value >> 32) as u32;
self.data[0] = value as u32;
}
pub const fn mid64(&self) -> u64 {
((self.data[2] as u64) << 32) | (self.data[1] as u64)
}
pub fn set_mid64(&mut self, value: u64) {
self.data[2] = (value >> 32) as u32;
self.data[1] = value as u32;
}
pub const fn high64(&self) -> u64 {
((self.data[3] as u64) << 32) | (self.data[2] as u64)
}
pub fn set_high64(&mut self, value: u64) {
self.data[3] = (value >> 32) as u32;
self.data[2] = value as u32;
}
}
#[derive(Debug)]
pub struct Buf24 {
pub data: [u32; 6],
}
impl Buf24 {
pub const fn zero() -> Self {
Buf24 {
data: [0, 0, 0, 0, 0, 0],
}
}
pub const fn low64(&self) -> u64 {
((self.data[1] as u64) << 32) | (self.data[0] as u64)
}
pub fn set_low64(&mut self, value: u64) {
self.data[1] = (value >> 32) as u32;
self.data[0] = value as u32;
}
#[allow(dead_code)]
pub const fn mid64(&self) -> u64 {
((self.data[3] as u64) << 32) | (self.data[2] as u64)
}
pub fn set_mid64(&mut self, value: u64) {
self.data[3] = (value >> 32) as u32;
self.data[2] = value as u32;
}
#[allow(dead_code)]
pub const fn high64(&self) -> u64 {
((self.data[5] as u64) << 32) | (self.data[4] as u64)
}
pub fn set_high64(&mut self, value: u64) {
self.data[5] = (value >> 32) as u32;
self.data[4] = value as u32;
}
pub const fn upper_word(&self) -> usize {
if self.data[5] > 0 {
return 5;
}
if self.data[4] > 0 {
return 4;
}
if self.data[3] > 0 {
return 3;
}
if self.data[2] > 0 {
return 2;
}
if self.data[1] > 0 {
return 1;
}
0
}
// Attempt to rescale the number into 96 bits. If successful, the scale is returned wrapped
// in an Option. If it failed due to overflow, we return None.
// * `upper` - Index of last non-zero value in self.
// * `scale` - Current scale factor for this value.
pub fn rescale(&mut self, upper: usize, scale: u32) -> Option<u32> {
let mut scale = scale as i32;
let mut upper = upper;
// Determine a rescale target to start with
let mut rescale_target = 0i32;
if upper > 2 {
rescale_target = upper as i32 * 32 - 64 - 1;
rescale_target -= self.data[upper].leading_zeros() as i32;
rescale_target = ((rescale_target * 77) >> 8) + 1;
if rescale_target > scale {
return None;
}
}
// Make sure we scale enough to bring it into a valid range
if rescale_target < scale - MAX_PRECISION_I32 {
rescale_target = scale - MAX_PRECISION_I32;
}
if rescale_target > 0 {
// We're going to keep reducing by powers of 10. So, start by reducing the scale by
// that amount.
scale -= rescale_target;
let mut sticky = 0;
let mut remainder = 0;
loop {
sticky |= remainder;
let mut power = if rescale_target > 8 {
POWERS_10[9]
} else {
POWERS_10[rescale_target as usize]
};
let high = self.data[upper];
let high_quotient = high / power;
remainder = high - high_quotient * power;
for item in self.data.iter_mut().rev().skip(6 - upper) {
let num = (*item as u64).wrapping_add((remainder as u64) << 32);
*item = (num / power as u64) as u32;
remainder = (num as u32).wrapping_sub(item.wrapping_mul(power));
}
self.data[upper] = high_quotient;
// If the high quotient was zero then decrease the upper bound
if high_quotient == 0 && upper > 0 {
upper -= 1;
}
if rescale_target > MAX_I32_SCALE {
// Scale some more
rescale_target -= MAX_I32_SCALE;
continue;
}
// If we fit into 96 bits then we've scaled enough. Otherwise, scale once more.
if upper > 2 {
if scale == 0 {
return None;
}
// Equivalent to scaling down by 10
rescale_target = 1;
scale -= 1;
continue;
}
// Round the final result.
power >>= 1;
let carried = if power <= remainder {
// If we're less than half then we're fine. Otherwise, we round if odd or if the
// sticky bit is set.
if power < remainder || ((self.data[0] & 1) | sticky) != 0 {
// Round up
self.data[0] = self.data[0].wrapping_add(1);
// Check if we carried
self.data[0] == 0
} else {
false
}
} else {
false
};
// If we carried then propagate through the portions
if carried {
let mut pos = 0;
for (index, value) in self.data.iter_mut().enumerate().skip(1) {
pos = index;
*value = value.wrapping_add(1);
if *value != 0 {
break;
}
}
// If we ended up rounding over the 96 bits then we'll try to rescale down (again)
if pos > 2 {
// Nothing to scale down from will cause overflow
if scale == 0 {
return None;
}
// Loop back around using scale of 10.
// Reset the sticky bit and remainder before looping.
upper = pos;
sticky = 0;
remainder = 0;
rescale_target = 1;
scale -= 1;
continue;
}
}
break;
}
}
Some(scale as u32)
}
}
|