1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
|
use crate::Decimal;
use rand::{
distributions::{
uniform::{SampleBorrow, SampleUniform, UniformInt, UniformSampler},
Distribution, Standard,
},
Rng,
};
impl Distribution<Decimal> for Standard {
fn sample<R>(&self, rng: &mut R) -> Decimal
where
R: Rng + ?Sized,
{
Decimal::from_parts(
rng.next_u32(),
rng.next_u32(),
rng.next_u32(),
rng.gen(),
rng.next_u32(),
)
}
}
impl SampleUniform for Decimal {
type Sampler = DecimalSampler;
}
#[derive(Clone, Copy, Debug, PartialEq)]
pub struct DecimalSampler {
mantissa_sampler: UniformInt<i128>,
scale: u32,
}
impl UniformSampler for DecimalSampler {
type X = Decimal;
/// Creates a new sampler that will yield random decimal objects between `low` and `high`.
///
/// The sampler will always provide decimals at the same scale as the inputs; if the inputs
/// have different scales, the higher scale is used.
///
/// # Example
///
/// ```
/// # use rand::Rng;
/// # use rust_decimal_macros::dec;
/// let mut rng = rand::rngs::OsRng;
/// let random = rng.gen_range(dec!(1.00)..dec!(2.00));
/// assert!(random >= dec!(1.00));
/// assert!(random < dec!(2.00));
/// assert_eq!(random.scale(), 2);
/// ```
#[inline]
fn new<B1, B2>(low: B1, high: B2) -> Self
where
B1: SampleBorrow<Self::X> + Sized,
B2: SampleBorrow<Self::X> + Sized,
{
let (low, high) = sync_scales(*low.borrow(), *high.borrow());
let high = Decimal::from_i128_with_scale(high.mantissa() - 1, high.scale());
UniformSampler::new_inclusive(low, high)
}
/// Creates a new sampler that will yield random decimal objects between `low` and `high`.
///
/// The sampler will always provide decimals at the same scale as the inputs; if the inputs
/// have different scales, the higher scale is used.
///
/// # Example
///
/// ```
/// # use rand::Rng;
/// # use rust_decimal_macros::dec;
/// let mut rng = rand::rngs::OsRng;
/// let random = rng.gen_range(dec!(1.00)..=dec!(2.00));
/// assert!(random >= dec!(1.00));
/// assert!(random <= dec!(2.00));
/// assert_eq!(random.scale(), 2);
/// ```
#[inline]
fn new_inclusive<B1, B2>(low: B1, high: B2) -> Self
where
B1: SampleBorrow<Self::X> + Sized,
B2: SampleBorrow<Self::X> + Sized,
{
let (low, high) = sync_scales(*low.borrow(), *high.borrow());
// Return our sampler, which contains an underlying i128 sampler so we
// outsource the actual randomness implementation.
Self {
mantissa_sampler: UniformInt::new_inclusive(low.mantissa(), high.mantissa()),
scale: low.scale(),
}
}
#[inline]
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X {
let mantissa = self.mantissa_sampler.sample(rng);
Decimal::from_i128_with_scale(mantissa, self.scale)
}
}
/// Return equivalent Decimal objects with the same scale as one another.
#[inline]
fn sync_scales(mut a: Decimal, mut b: Decimal) -> (Decimal, Decimal) {
if a.scale() == b.scale() {
return (a, b);
}
// Set scales to match one another, because we are relying on mantissas'
// being comparable in order outsource the actual sampling implementation.
a.rescale(a.scale().max(b.scale()));
b.rescale(a.scale().max(b.scale()));
// Edge case: If the values have _wildly_ different scales, the values may not have rescaled far enough to match one another.
//
// In this case, we accept some precision loss because the randomization approach we are using assumes that the scales will necessarily match.
if a.scale() != b.scale() {
a.rescale(a.scale().min(b.scale()));
b.rescale(a.scale().min(b.scale()));
}
(a, b)
}
#[cfg(test)]
mod tests {
use std::collections::HashSet;
use super::*;
macro_rules! dec {
($e:expr) => {
Decimal::from_str_exact(stringify!($e)).unwrap()
};
}
#[test]
fn has_random_decimal_instances() {
let mut rng = rand::rngs::OsRng;
let random: [Decimal; 32] = rng.gen();
assert!(random.windows(2).any(|slice| { slice[0] != slice[1] }));
}
#[test]
fn generates_within_range() {
let mut rng = rand::rngs::OsRng;
for _ in 0..128 {
let random = rng.gen_range(dec!(1.00)..dec!(1.05));
assert!(random < dec!(1.05));
assert!(random >= dec!(1.00));
}
}
#[test]
fn generates_within_inclusive_range() {
let mut rng = rand::rngs::OsRng;
let mut values: HashSet<Decimal> = HashSet::new();
for _ in 0..256 {
let random = rng.gen_range(dec!(1.00)..=dec!(1.01));
// The scale is 2, so 1.00 and 1.01 are the only two valid choices.
assert!(random == dec!(1.00) || random == dec!(1.01));
values.insert(random);
}
// Somewhat flaky, will fail 1 out of every 2^255 times this is run.
// Probably acceptable in the real world.
assert_eq!(values.len(), 2);
}
#[test]
fn test_edge_case_scales_match() {
let (low, high) = sync_scales(dec!(1.000_000_000_000_000_000_01), dec!(100_000_000_000_000_000_001));
assert_eq!(low.scale(), high.scale());
}
}
|