summaryrefslogtreecommitdiffstats
path: root/third_party/rust/slab/src/lib.rs
blob: e23ead91292ba4830a0400505eb4841e7be2b684 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
#![cfg_attr(not(feature = "std"), no_std)]
#![warn(
    missing_debug_implementations,
    missing_docs,
    rust_2018_idioms,
    unreachable_pub
)]
#![doc(test(
    no_crate_inject,
    attr(deny(warnings, rust_2018_idioms), allow(dead_code, unused_variables))
))]

//! Pre-allocated storage for a uniform data type.
//!
//! `Slab` provides pre-allocated storage for a single data type. If many values
//! of a single type are being allocated, it can be more efficient to
//! pre-allocate the necessary storage. Since the size of the type is uniform,
//! memory fragmentation can be avoided. Storing, clearing, and lookup
//! operations become very cheap.
//!
//! While `Slab` may look like other Rust collections, it is not intended to be
//! used as a general purpose collection. The primary difference between `Slab`
//! and `Vec` is that `Slab` returns the key when storing the value.
//!
//! It is important to note that keys may be reused. In other words, once a
//! value associated with a given key is removed from a slab, that key may be
//! returned from future calls to `insert`.
//!
//! # Examples
//!
//! Basic storing and retrieval.
//!
//! ```
//! # use slab::*;
//! let mut slab = Slab::new();
//!
//! let hello = slab.insert("hello");
//! let world = slab.insert("world");
//!
//! assert_eq!(slab[hello], "hello");
//! assert_eq!(slab[world], "world");
//!
//! slab[world] = "earth";
//! assert_eq!(slab[world], "earth");
//! ```
//!
//! Sometimes it is useful to be able to associate the key with the value being
//! inserted in the slab. This can be done with the `vacant_entry` API as such:
//!
//! ```
//! # use slab::*;
//! let mut slab = Slab::new();
//!
//! let hello = {
//!     let entry = slab.vacant_entry();
//!     let key = entry.key();
//!
//!     entry.insert((key, "hello"));
//!     key
//! };
//!
//! assert_eq!(hello, slab[hello].0);
//! assert_eq!("hello", slab[hello].1);
//! ```
//!
//! It is generally a good idea to specify the desired capacity of a slab at
//! creation time. Note that `Slab` will grow the internal capacity when
//! attempting to insert a new value once the existing capacity has been reached.
//! To avoid this, add a check.
//!
//! ```
//! # use slab::*;
//! let mut slab = Slab::with_capacity(1024);
//!
//! // ... use the slab
//!
//! if slab.len() == slab.capacity() {
//!     panic!("slab full");
//! }
//!
//! slab.insert("the slab is not at capacity yet");
//! ```
//!
//! # Capacity and reallocation
//!
//! The capacity of a slab is the amount of space allocated for any future
//! values that will be inserted in the slab. This is not to be confused with
//! the *length* of the slab, which specifies the number of actual values
//! currently being inserted. If a slab's length is equal to its capacity, the
//! next value inserted into the slab will require growing the slab by
//! reallocating.
//!
//! For example, a slab with capacity 10 and length 0 would be an empty slab
//! with space for 10 more stored values. Storing 10 or fewer elements into the
//! slab will not change its capacity or cause reallocation to occur. However,
//! if the slab length is increased to 11 (due to another `insert`), it will
//! have to reallocate, which can be slow. For this reason, it is recommended to
//! use [`Slab::with_capacity`] whenever possible to specify how many values the
//! slab is expected to store.
//!
//! # Implementation
//!
//! `Slab` is backed by a `Vec` of slots. Each slot is either occupied or
//! vacant. `Slab` maintains a stack of vacant slots using a linked list. To
//! find a vacant slot, the stack is popped. When a slot is released, it is
//! pushed onto the stack.
//!
//! If there are no more available slots in the stack, then `Vec::reserve(1)` is
//! called and a new slot is created.
//!
//! [`Slab::with_capacity`]: struct.Slab.html#with_capacity

#[cfg(not(feature = "std"))]
extern crate alloc;
#[cfg(feature = "std")]
extern crate std as alloc;

#[cfg(feature = "serde")]
mod serde;

mod builder;

use alloc::vec::{self, Vec};
use core::iter::{self, FromIterator, FusedIterator};
use core::{fmt, mem, ops, slice};

/// Pre-allocated storage for a uniform data type
///
/// See the [module documentation] for more details.
///
/// [module documentation]: index.html
#[derive(Clone)]
pub struct Slab<T> {
    // Chunk of memory
    entries: Vec<Entry<T>>,

    // Number of Filled elements currently in the slab
    len: usize,

    // Offset of the next available slot in the slab. Set to the slab's
    // capacity when the slab is full.
    next: usize,
}

impl<T> Default for Slab<T> {
    fn default() -> Self {
        Slab::new()
    }
}

/// A handle to a vacant entry in a `Slab`.
///
/// `VacantEntry` allows constructing values with the key that they will be
/// assigned to.
///
/// # Examples
///
/// ```
/// # use slab::*;
/// let mut slab = Slab::new();
///
/// let hello = {
///     let entry = slab.vacant_entry();
///     let key = entry.key();
///
///     entry.insert((key, "hello"));
///     key
/// };
///
/// assert_eq!(hello, slab[hello].0);
/// assert_eq!("hello", slab[hello].1);
/// ```
#[derive(Debug)]
pub struct VacantEntry<'a, T> {
    slab: &'a mut Slab<T>,
    key: usize,
}

/// A consuming iterator over the values stored in a `Slab`
pub struct IntoIter<T> {
    entries: iter::Enumerate<vec::IntoIter<Entry<T>>>,
    len: usize,
}

/// An iterator over the values stored in the `Slab`
pub struct Iter<'a, T> {
    entries: iter::Enumerate<slice::Iter<'a, Entry<T>>>,
    len: usize,
}

impl<'a, T> Clone for Iter<'a, T> {
    fn clone(&self) -> Self {
        Self {
            entries: self.entries.clone(),
            len: self.len,
        }
    }
}

/// A mutable iterator over the values stored in the `Slab`
pub struct IterMut<'a, T> {
    entries: iter::Enumerate<slice::IterMut<'a, Entry<T>>>,
    len: usize,
}

/// A draining iterator for `Slab`
pub struct Drain<'a, T> {
    inner: vec::Drain<'a, Entry<T>>,
    len: usize,
}

#[derive(Clone)]
enum Entry<T> {
    Vacant(usize),
    Occupied(T),
}

impl<T> Slab<T> {
    /// Construct a new, empty `Slab`.
    ///
    /// The function does not allocate and the returned slab will have no
    /// capacity until `insert` is called or capacity is explicitly reserved.
    ///
    /// This is `const fn` on Rust 1.39+.
    ///
    /// # Examples
    ///
    /// ```
    /// # use slab::*;
    /// let slab: Slab<i32> = Slab::new();
    /// ```
    #[cfg(not(slab_no_const_vec_new))]
    pub const fn new() -> Self {
        Self {
            entries: Vec::new(),
            next: 0,
            len: 0,
        }
    }
    /// Construct a new, empty `Slab`.
    ///
    /// The function does not allocate and the returned slab will have no
    /// capacity until `insert` is called or capacity is explicitly reserved.
    ///
    /// This is `const fn` on Rust 1.39+.
    #[cfg(slab_no_const_vec_new)]
    pub fn new() -> Self {
        Self {
            entries: Vec::new(),
            next: 0,
            len: 0,
        }
    }

    /// Construct a new, empty `Slab` with the specified capacity.
    ///
    /// The returned slab will be able to store exactly `capacity` without
    /// reallocating. If `capacity` is 0, the slab will not allocate.
    ///
    /// It is important to note that this function does not specify the *length*
    /// of the returned slab, but only the capacity. For an explanation of the
    /// difference between length and capacity, see [Capacity and
    /// reallocation](index.html#capacity-and-reallocation).
    ///
    /// # Examples
    ///
    /// ```
    /// # use slab::*;
    /// let mut slab = Slab::with_capacity(10);
    ///
    /// // The slab contains no values, even though it has capacity for more
    /// assert_eq!(slab.len(), 0);
    ///
    /// // These are all done without reallocating...
    /// for i in 0..10 {
    ///     slab.insert(i);
    /// }
    ///
    /// // ...but this may make the slab reallocate
    /// slab.insert(11);
    /// ```
    pub fn with_capacity(capacity: usize) -> Slab<T> {
        Slab {
            entries: Vec::with_capacity(capacity),
            next: 0,
            len: 0,
        }
    }

    /// Return the number of values the slab can store without reallocating.
    ///
    /// # Examples
    ///
    /// ```
    /// # use slab::*;
    /// let slab: Slab<i32> = Slab::with_capacity(10);
    /// assert_eq!(slab.capacity(), 10);
    /// ```
    pub fn capacity(&self) -> usize {
        self.entries.capacity()
    }

    /// Reserve capacity for at least `additional` more values to be stored
    /// without allocating.
    ///
    /// `reserve` does nothing if the slab already has sufficient capacity for
    /// `additional` more values. If more capacity is required, a new segment of
    /// memory will be allocated and all existing values will be copied into it.
    /// As such, if the slab is already very large, a call to `reserve` can end
    /// up being expensive.
    ///
    /// The slab may reserve more than `additional` extra space in order to
    /// avoid frequent reallocations. Use `reserve_exact` instead to guarantee
    /// that only the requested space is allocated.
    ///
    /// # Panics
    ///
    /// Panics if the new capacity exceeds `isize::MAX` bytes.
    ///
    /// # Examples
    ///
    /// ```
    /// # use slab::*;
    /// let mut slab = Slab::new();
    /// slab.insert("hello");
    /// slab.reserve(10);
    /// assert!(slab.capacity() >= 11);
    /// ```
    pub fn reserve(&mut self, additional: usize) {
        if self.capacity() - self.len >= additional {
            return;
        }
        let need_add = additional - (self.entries.len() - self.len);
        self.entries.reserve(need_add);
    }

    /// Reserve the minimum capacity required to store exactly `additional`
    /// more values.
    ///
    /// `reserve_exact` does nothing if the slab already has sufficient capacity
    /// for `additional` more values. If more capacity is required, a new segment
    /// of memory will be allocated and all existing values will be copied into
    /// it.  As such, if the slab is already very large, a call to `reserve` can
    /// end up being expensive.
    ///
    /// Note that the allocator may give the slab more space than it requests.
    /// Therefore capacity can not be relied upon to be precisely minimal.
    /// Prefer `reserve` if future insertions are expected.
    ///
    /// # Panics
    ///
    /// Panics if the new capacity exceeds `isize::MAX` bytes.
    ///
    /// # Examples
    ///
    /// ```
    /// # use slab::*;
    /// let mut slab = Slab::new();
    /// slab.insert("hello");
    /// slab.reserve_exact(10);
    /// assert!(slab.capacity() >= 11);
    /// ```
    pub fn reserve_exact(&mut self, additional: usize) {
        if self.capacity() - self.len >= additional {
            return;
        }
        let need_add = additional - (self.entries.len() - self.len);
        self.entries.reserve_exact(need_add);
    }

    /// Shrink the capacity of the slab as much as possible without invalidating keys.
    ///
    /// Because values cannot be moved to a different index, the slab cannot
    /// shrink past any stored values.
    /// It will drop down as close as possible to the length but the allocator may
    /// still inform the underlying vector that there is space for a few more elements.
    ///
    /// This function can take O(n) time even when the capacity cannot be reduced
    /// or the allocation is shrunk in place. Repeated calls run in O(1) though.
    ///
    /// # Examples
    ///
    /// ```
    /// # use slab::*;
    /// let mut slab = Slab::with_capacity(10);
    ///
    /// for i in 0..3 {
    ///     slab.insert(i);
    /// }
    ///
    /// slab.shrink_to_fit();
    /// assert!(slab.capacity() >= 3 && slab.capacity() < 10);
    /// ```
    ///
    /// The slab cannot shrink past the last present value even if previous
    /// values are removed:
    ///
    /// ```
    /// # use slab::*;
    /// let mut slab = Slab::with_capacity(10);
    ///
    /// for i in 0..4 {
    ///     slab.insert(i);
    /// }
    ///
    /// slab.remove(0);
    /// slab.remove(3);
    ///
    /// slab.shrink_to_fit();
    /// assert!(slab.capacity() >= 3 && slab.capacity() < 10);
    /// ```
    pub fn shrink_to_fit(&mut self) {
        // Remove all vacant entries after the last occupied one, so that
        // the capacity can be reduced to what is actually needed.
        // If the slab is empty the vector can simply be cleared, but that
        // optimization would not affect time complexity when T: Drop.
        let len_before = self.entries.len();
        while let Some(&Entry::Vacant(_)) = self.entries.last() {
            self.entries.pop();
        }

        // Removing entries breaks the list of vacant entries,
        // so it must be repaired
        if self.entries.len() != len_before {
            // Some vacant entries were removed, so the list now likely¹
            // either contains references to the removed entries, or has an
            // invalid end marker. Fix this by recreating the list.
            self.recreate_vacant_list();
            // ¹: If the removed entries formed the tail of the list, with the
            // most recently popped entry being the head of them, (so that its
            // index is now the end marker) the list is still valid.
            // Checking for that unlikely scenario of this infrequently called
            // is not worth the code complexity.
        }

        self.entries.shrink_to_fit();
    }

    /// Iterate through all entries to recreate and repair the vacant list.
    /// self.len must be correct and is not modified.
    fn recreate_vacant_list(&mut self) {
        self.next = self.entries.len();
        // We can stop once we've found all vacant entries
        let mut remaining_vacant = self.entries.len() - self.len;
        if remaining_vacant == 0 {
            return;
        }

        // Iterate in reverse order so that lower keys are at the start of
        // the vacant list. This way future shrinks are more likely to be
        // able to remove vacant entries.
        for (i, entry) in self.entries.iter_mut().enumerate().rev() {
            if let Entry::Vacant(ref mut next) = *entry {
                *next = self.next;
                self.next = i;
                remaining_vacant -= 1;
                if remaining_vacant == 0 {
                    break;
                }
            }
        }
    }

    /// Reduce the capacity as much as possible, changing the key for elements when necessary.
    ///
    /// To allow updating references to the elements which must be moved to a new key,
    /// this function takes a closure which is called before moving each element.
    /// The second and third parameters to the closure are the current key and
    /// new key respectively.
    /// In case changing the key for one element turns out not to be possible,
    /// the move can be cancelled by returning `false` from the closure.
    /// In that case no further attempts at relocating elements is made.
    /// If the closure unwinds, the slab will be left in a consistent state,
    /// but the value that the closure panicked on might be removed.
    ///
    /// # Examples
    ///
    /// ```
    /// # use slab::*;
    ///
    /// let mut slab = Slab::with_capacity(10);
    /// let a = slab.insert('a');
    /// slab.insert('b');
    /// slab.insert('c');
    /// slab.remove(a);
    /// slab.compact(|&mut value, from, to| {
    ///     assert_eq!((value, from, to), ('c', 2, 0));
    ///     true
    /// });
    /// assert!(slab.capacity() >= 2 && slab.capacity() < 10);
    /// ```
    ///
    /// The value is not moved when the closure returns `Err`:
    ///
    /// ```
    /// # use slab::*;
    ///
    /// let mut slab = Slab::with_capacity(100);
    /// let a = slab.insert('a');
    /// let b = slab.insert('b');
    /// slab.remove(a);
    /// slab.compact(|&mut value, from, to| false);
    /// assert_eq!(slab.iter().next(), Some((b, &'b')));
    /// ```
    pub fn compact<F>(&mut self, mut rekey: F)
    where
        F: FnMut(&mut T, usize, usize) -> bool,
    {
        // If the closure unwinds, we need to restore a valid list of vacant entries
        struct CleanupGuard<'a, T> {
            slab: &'a mut Slab<T>,
            decrement: bool,
        }
        impl<T> Drop for CleanupGuard<'_, T> {
            fn drop(&mut self) {
                if self.decrement {
                    // Value was popped and not pushed back on
                    self.slab.len -= 1;
                }
                self.slab.recreate_vacant_list();
            }
        }
        let mut guard = CleanupGuard {
            slab: self,
            decrement: true,
        };

        let mut occupied_until = 0;
        // While there are vacant entries
        while guard.slab.entries.len() > guard.slab.len {
            // Find a value that needs to be moved,
            // by popping entries until we find an occupied one.
            // (entries cannot be empty because 0 is not greater than anything)
            if let Some(Entry::Occupied(mut value)) = guard.slab.entries.pop() {
                // Found one, now find a vacant entry to move it to
                while let Some(&Entry::Occupied(_)) = guard.slab.entries.get(occupied_until) {
                    occupied_until += 1;
                }
                // Let the caller try to update references to the key
                if !rekey(&mut value, guard.slab.entries.len(), occupied_until) {
                    // Changing the key failed, so push the entry back on at its old index.
                    guard.slab.entries.push(Entry::Occupied(value));
                    guard.decrement = false;
                    guard.slab.entries.shrink_to_fit();
                    return;
                    // Guard drop handles cleanup
                }
                // Put the value in its new spot
                guard.slab.entries[occupied_until] = Entry::Occupied(value);
                // ... and mark it as occupied (this is optional)
                occupied_until += 1;
            }
        }
        guard.slab.next = guard.slab.len;
        guard.slab.entries.shrink_to_fit();
        // Normal cleanup is not necessary
        mem::forget(guard);
    }

    /// Clear the slab of all values.
    ///
    /// # Examples
    ///
    /// ```
    /// # use slab::*;
    /// let mut slab = Slab::new();
    ///
    /// for i in 0..3 {
    ///     slab.insert(i);
    /// }
    ///
    /// slab.clear();
    /// assert!(slab.is_empty());
    /// ```
    pub fn clear(&mut self) {
        self.entries.clear();
        self.len = 0;
        self.next = 0;
    }

    /// Return the number of stored values.
    ///
    /// # Examples
    ///
    /// ```
    /// # use slab::*;
    /// let mut slab = Slab::new();
    ///
    /// for i in 0..3 {
    ///     slab.insert(i);
    /// }
    ///
    /// assert_eq!(3, slab.len());
    /// ```
    pub fn len(&self) -> usize {
        self.len
    }

    /// Return `true` if there are no values stored in the slab.
    ///
    /// # Examples
    ///
    /// ```
    /// # use slab::*;
    /// let mut slab = Slab::new();
    /// assert!(slab.is_empty());
    ///
    /// slab.insert(1);
    /// assert!(!slab.is_empty());
    /// ```
    pub fn is_empty(&self) -> bool {
        self.len == 0
    }

    /// Return an iterator over the slab.
    ///
    /// This function should generally be **avoided** as it is not efficient.
    /// Iterators must iterate over every slot in the slab even if it is
    /// vacant. As such, a slab with a capacity of 1 million but only one
    /// stored value must still iterate the million slots.
    ///
    /// # Examples
    ///
    /// ```
    /// # use slab::*;
    /// let mut slab = Slab::new();
    ///
    /// for i in 0..3 {
    ///     slab.insert(i);
    /// }
    ///
    /// let mut iterator = slab.iter();
    ///
    /// assert_eq!(iterator.next(), Some((0, &0)));
    /// assert_eq!(iterator.next(), Some((1, &1)));
    /// assert_eq!(iterator.next(), Some((2, &2)));
    /// assert_eq!(iterator.next(), None);
    /// ```
    pub fn iter(&self) -> Iter<'_, T> {
        Iter {
            entries: self.entries.iter().enumerate(),
            len: self.len,
        }
    }

    /// Return an iterator that allows modifying each value.
    ///
    /// This function should generally be **avoided** as it is not efficient.
    /// Iterators must iterate over every slot in the slab even if it is
    /// vacant. As such, a slab with a capacity of 1 million but only one
    /// stored value must still iterate the million slots.
    ///
    /// # Examples
    ///
    /// ```
    /// # use slab::*;
    /// let mut slab = Slab::new();
    ///
    /// let key1 = slab.insert(0);
    /// let key2 = slab.insert(1);
    ///
    /// for (key, val) in slab.iter_mut() {
    ///     if key == key1 {
    ///         *val += 2;
    ///     }
    /// }
    ///
    /// assert_eq!(slab[key1], 2);
    /// assert_eq!(slab[key2], 1);
    /// ```
    pub fn iter_mut(&mut self) -> IterMut<'_, T> {
        IterMut {
            entries: self.entries.iter_mut().enumerate(),
            len: self.len,
        }
    }

    /// Return a reference to the value associated with the given key.
    ///
    /// If the given key is not associated with a value, then `None` is
    /// returned.
    ///
    /// # Examples
    ///
    /// ```
    /// # use slab::*;
    /// let mut slab = Slab::new();
    /// let key = slab.insert("hello");
    ///
    /// assert_eq!(slab.get(key), Some(&"hello"));
    /// assert_eq!(slab.get(123), None);
    /// ```
    pub fn get(&self, key: usize) -> Option<&T> {
        match self.entries.get(key) {
            Some(Entry::Occupied(val)) => Some(val),
            _ => None,
        }
    }

    /// Return a mutable reference to the value associated with the given key.
    ///
    /// If the given key is not associated with a value, then `None` is
    /// returned.
    ///
    /// # Examples
    ///
    /// ```
    /// # use slab::*;
    /// let mut slab = Slab::new();
    /// let key = slab.insert("hello");
    ///
    /// *slab.get_mut(key).unwrap() = "world";
    ///
    /// assert_eq!(slab[key], "world");
    /// assert_eq!(slab.get_mut(123), None);
    /// ```
    pub fn get_mut(&mut self, key: usize) -> Option<&mut T> {
        match self.entries.get_mut(key) {
            Some(&mut Entry::Occupied(ref mut val)) => Some(val),
            _ => None,
        }
    }

    /// Return two mutable references to the values associated with the two
    /// given keys simultaneously.
    ///
    /// If any one of the given keys is not associated with a value, then `None`
    /// is returned.
    ///
    /// This function can be used to get two mutable references out of one slab,
    /// so that you can manipulate both of them at the same time, eg. swap them.
    ///
    /// # Panics
    ///
    /// This function will panic if `key1` and `key2` are the same.
    ///
    /// # Examples
    ///
    /// ```
    /// # use slab::*;
    /// use std::mem;
    ///
    /// let mut slab = Slab::new();
    /// let key1 = slab.insert(1);
    /// let key2 = slab.insert(2);
    /// let (value1, value2) = slab.get2_mut(key1, key2).unwrap();
    /// mem::swap(value1, value2);
    /// assert_eq!(slab[key1], 2);
    /// assert_eq!(slab[key2], 1);
    /// ```
    pub fn get2_mut(&mut self, key1: usize, key2: usize) -> Option<(&mut T, &mut T)> {
        assert!(key1 != key2);

        let (entry1, entry2);

        if key1 > key2 {
            let (slice1, slice2) = self.entries.split_at_mut(key1);
            entry1 = slice2.get_mut(0);
            entry2 = slice1.get_mut(key2);
        } else {
            let (slice1, slice2) = self.entries.split_at_mut(key2);
            entry1 = slice1.get_mut(key1);
            entry2 = slice2.get_mut(0);
        }

        match (entry1, entry2) {
            (
                Some(&mut Entry::Occupied(ref mut val1)),
                Some(&mut Entry::Occupied(ref mut val2)),
            ) => Some((val1, val2)),
            _ => None,
        }
    }

    /// Return a reference to the value associated with the given key without
    /// performing bounds checking.
    ///
    /// For a safe alternative see [`get`](Slab::get).
    ///
    /// This function should be used with care.
    ///
    /// # Safety
    ///
    /// The key must be within bounds.
    ///
    /// # Examples
    ///
    /// ```
    /// # use slab::*;
    /// let mut slab = Slab::new();
    /// let key = slab.insert(2);
    ///
    /// unsafe {
    ///     assert_eq!(slab.get_unchecked(key), &2);
    /// }
    /// ```
    pub unsafe fn get_unchecked(&self, key: usize) -> &T {
        match *self.entries.get_unchecked(key) {
            Entry::Occupied(ref val) => val,
            _ => unreachable!(),
        }
    }

    /// Return a mutable reference to the value associated with the given key
    /// without performing bounds checking.
    ///
    /// For a safe alternative see [`get_mut`](Slab::get_mut).
    ///
    /// This function should be used with care.
    ///
    /// # Safety
    ///
    /// The key must be within bounds.
    ///
    /// # Examples
    ///
    /// ```
    /// # use slab::*;
    /// let mut slab = Slab::new();
    /// let key = slab.insert(2);
    ///
    /// unsafe {
    ///     let val = slab.get_unchecked_mut(key);
    ///     *val = 13;
    /// }
    ///
    /// assert_eq!(slab[key], 13);
    /// ```
    pub unsafe fn get_unchecked_mut(&mut self, key: usize) -> &mut T {
        match *self.entries.get_unchecked_mut(key) {
            Entry::Occupied(ref mut val) => val,
            _ => unreachable!(),
        }
    }

    /// Return two mutable references to the values associated with the two
    /// given keys simultaneously without performing bounds checking and safety
    /// condition checking.
    ///
    /// For a safe alternative see [`get2_mut`](Slab::get2_mut).
    ///
    /// This function should be used with care.
    ///
    /// # Safety
    ///
    /// - Both keys must be within bounds.
    /// - The condition `key1 != key2` must hold.
    ///
    /// # Examples
    ///
    /// ```
    /// # use slab::*;
    /// use std::mem;
    ///
    /// let mut slab = Slab::new();
    /// let key1 = slab.insert(1);
    /// let key2 = slab.insert(2);
    /// let (value1, value2) = unsafe { slab.get2_unchecked_mut(key1, key2) };
    /// mem::swap(value1, value2);
    /// assert_eq!(slab[key1], 2);
    /// assert_eq!(slab[key2], 1);
    /// ```
    pub unsafe fn get2_unchecked_mut(&mut self, key1: usize, key2: usize) -> (&mut T, &mut T) {
        debug_assert_ne!(key1, key2);
        let ptr = self.entries.as_mut_ptr();
        let ptr1 = ptr.add(key1);
        let ptr2 = ptr.add(key2);
        match (&mut *ptr1, &mut *ptr2) {
            (&mut Entry::Occupied(ref mut val1), &mut Entry::Occupied(ref mut val2)) => {
                (val1, val2)
            }
            _ => unreachable!(),
        }
    }

    /// Get the key for an element in the slab.
    ///
    /// The reference must point to an element owned by the slab.
    /// Otherwise this function will panic.
    /// This is a constant-time operation because the key can be calculated
    /// from the reference with pointer arithmetic.
    ///
    /// # Panics
    ///
    /// This function will panic if the reference does not point to an element
    /// of the slab.
    ///
    /// # Examples
    ///
    /// ```
    /// # use slab::*;
    ///
    /// let mut slab = Slab::new();
    /// let key = slab.insert(String::from("foo"));
    /// let value = &slab[key];
    /// assert_eq!(slab.key_of(value), key);
    /// ```
    ///
    /// Values are not compared, so passing a reference to a different location
    /// will result in a panic:
    ///
    /// ```should_panic
    /// # use slab::*;
    ///
    /// let mut slab = Slab::new();
    /// let key = slab.insert(0);
    /// let bad = &0;
    /// slab.key_of(bad); // this will panic
    /// unreachable!();
    /// ```
    #[cfg_attr(not(slab_no_track_caller), track_caller)]
    pub fn key_of(&self, present_element: &T) -> usize {
        let element_ptr = present_element as *const T as usize;
        let base_ptr = self.entries.as_ptr() as usize;
        // Use wrapping subtraction in case the reference is bad
        let byte_offset = element_ptr.wrapping_sub(base_ptr);
        // The division rounds away any offset of T inside Entry
        // The size of Entry<T> is never zero even if T is due to Vacant(usize)
        let key = byte_offset / mem::size_of::<Entry<T>>();
        // Prevent returning unspecified (but out of bounds) values
        if key >= self.entries.len() {
            panic!("The reference points to a value outside this slab");
        }
        // The reference cannot point to a vacant entry, because then it would not be valid
        key
    }

    /// Insert a value in the slab, returning key assigned to the value.
    ///
    /// The returned key can later be used to retrieve or remove the value using indexed
    /// lookup and `remove`. Additional capacity is allocated if needed. See
    /// [Capacity and reallocation](index.html#capacity-and-reallocation).
    ///
    /// # Panics
    ///
    /// Panics if the new storage in the vector exceeds `isize::MAX` bytes.
    ///
    /// # Examples
    ///
    /// ```
    /// # use slab::*;
    /// let mut slab = Slab::new();
    /// let key = slab.insert("hello");
    /// assert_eq!(slab[key], "hello");
    /// ```
    pub fn insert(&mut self, val: T) -> usize {
        let key = self.next;

        self.insert_at(key, val);

        key
    }

    /// Returns the key of the next vacant entry.
    ///
    /// This function returns the key of the vacant entry which  will be used
    /// for the next insertion. This is equivalent to
    /// `slab.vacant_entry().key()`, but it doesn't require mutable access.
    ///
    /// # Examples
    ///
    /// ```
    /// # use slab::*;
    /// let mut slab = Slab::new();
    /// assert_eq!(slab.vacant_key(), 0);
    ///
    /// slab.insert(0);
    /// assert_eq!(slab.vacant_key(), 1);
    ///
    /// slab.insert(1);
    /// slab.remove(0);
    /// assert_eq!(slab.vacant_key(), 0);
    /// ```
    pub fn vacant_key(&self) -> usize {
        self.next
    }

    /// Return a handle to a vacant entry allowing for further manipulation.
    ///
    /// This function is useful when creating values that must contain their
    /// slab key. The returned `VacantEntry` reserves a slot in the slab and is
    /// able to query the associated key.
    ///
    /// # Examples
    ///
    /// ```
    /// # use slab::*;
    /// let mut slab = Slab::new();
    ///
    /// let hello = {
    ///     let entry = slab.vacant_entry();
    ///     let key = entry.key();
    ///
    ///     entry.insert((key, "hello"));
    ///     key
    /// };
    ///
    /// assert_eq!(hello, slab[hello].0);
    /// assert_eq!("hello", slab[hello].1);
    /// ```
    pub fn vacant_entry(&mut self) -> VacantEntry<'_, T> {
        VacantEntry {
            key: self.next,
            slab: self,
        }
    }

    fn insert_at(&mut self, key: usize, val: T) {
        self.len += 1;

        if key == self.entries.len() {
            self.entries.push(Entry::Occupied(val));
            self.next = key + 1;
        } else {
            self.next = match self.entries.get(key) {
                Some(&Entry::Vacant(next)) => next,
                _ => unreachable!(),
            };
            self.entries[key] = Entry::Occupied(val);
        }
    }

    /// Tries to remove the value associated with the given key,
    /// returning the value if the key existed.
    ///
    /// The key is then released and may be associated with future stored
    /// values.
    ///
    /// # Examples
    ///
    /// ```
    /// # use slab::*;
    /// let mut slab = Slab::new();
    ///
    /// let hello = slab.insert("hello");
    ///
    /// assert_eq!(slab.try_remove(hello), Some("hello"));
    /// assert!(!slab.contains(hello));
    /// ```
    pub fn try_remove(&mut self, key: usize) -> Option<T> {
        if let Some(entry) = self.entries.get_mut(key) {
            // Swap the entry at the provided value
            let prev = mem::replace(entry, Entry::Vacant(self.next));

            match prev {
                Entry::Occupied(val) => {
                    self.len -= 1;
                    self.next = key;
                    return val.into();
                }
                _ => {
                    // Woops, the entry is actually vacant, restore the state
                    *entry = prev;
                }
            }
        }
        None
    }

    /// Remove and return the value associated with the given key.
    ///
    /// The key is then released and may be associated with future stored
    /// values.
    ///
    /// # Panics
    ///
    /// Panics if `key` is not associated with a value.
    ///
    /// # Examples
    ///
    /// ```
    /// # use slab::*;
    /// let mut slab = Slab::new();
    ///
    /// let hello = slab.insert("hello");
    ///
    /// assert_eq!(slab.remove(hello), "hello");
    /// assert!(!slab.contains(hello));
    /// ```
    #[cfg_attr(not(slab_no_track_caller), track_caller)]
    pub fn remove(&mut self, key: usize) -> T {
        self.try_remove(key).expect("invalid key")
    }

    /// Return `true` if a value is associated with the given key.
    ///
    /// # Examples
    ///
    /// ```
    /// # use slab::*;
    /// let mut slab = Slab::new();
    ///
    /// let hello = slab.insert("hello");
    /// assert!(slab.contains(hello));
    ///
    /// slab.remove(hello);
    ///
    /// assert!(!slab.contains(hello));
    /// ```
    pub fn contains(&self, key: usize) -> bool {
        match self.entries.get(key) {
            Some(&Entry::Occupied(_)) => true,
            _ => false,
        }
    }

    /// Retain only the elements specified by the predicate.
    ///
    /// In other words, remove all elements `e` such that `f(usize, &mut e)`
    /// returns false. This method operates in place and preserves the key
    /// associated with the retained values.
    ///
    /// # Examples
    ///
    /// ```
    /// # use slab::*;
    /// let mut slab = Slab::new();
    ///
    /// let k1 = slab.insert(0);
    /// let k2 = slab.insert(1);
    /// let k3 = slab.insert(2);
    ///
    /// slab.retain(|key, val| key == k1 || *val == 1);
    ///
    /// assert!(slab.contains(k1));
    /// assert!(slab.contains(k2));
    /// assert!(!slab.contains(k3));
    ///
    /// assert_eq!(2, slab.len());
    /// ```
    pub fn retain<F>(&mut self, mut f: F)
    where
        F: FnMut(usize, &mut T) -> bool,
    {
        for i in 0..self.entries.len() {
            let keep = match self.entries[i] {
                Entry::Occupied(ref mut v) => f(i, v),
                _ => true,
            };

            if !keep {
                self.remove(i);
            }
        }
    }

    /// Return a draining iterator that removes all elements from the slab and
    /// yields the removed items.
    ///
    /// Note: Elements are removed even if the iterator is only partially
    /// consumed or not consumed at all.
    ///
    /// # Examples
    ///
    /// ```
    /// # use slab::*;
    /// let mut slab = Slab::new();
    ///
    /// let _ = slab.insert(0);
    /// let _ = slab.insert(1);
    /// let _ = slab.insert(2);
    ///
    /// {
    ///     let mut drain = slab.drain();
    ///
    ///     assert_eq!(Some(0), drain.next());
    ///     assert_eq!(Some(1), drain.next());
    ///     assert_eq!(Some(2), drain.next());
    ///     assert_eq!(None, drain.next());
    /// }
    ///
    /// assert!(slab.is_empty());
    /// ```
    pub fn drain(&mut self) -> Drain<'_, T> {
        let old_len = self.len;
        self.len = 0;
        self.next = 0;
        Drain {
            inner: self.entries.drain(..),
            len: old_len,
        }
    }
}

impl<T> ops::Index<usize> for Slab<T> {
    type Output = T;

    #[cfg_attr(not(slab_no_track_caller), track_caller)]
    fn index(&self, key: usize) -> &T {
        match self.entries.get(key) {
            Some(Entry::Occupied(v)) => v,
            _ => panic!("invalid key"),
        }
    }
}

impl<T> ops::IndexMut<usize> for Slab<T> {
    #[cfg_attr(not(slab_no_track_caller), track_caller)]
    fn index_mut(&mut self, key: usize) -> &mut T {
        match self.entries.get_mut(key) {
            Some(&mut Entry::Occupied(ref mut v)) => v,
            _ => panic!("invalid key"),
        }
    }
}

impl<T> IntoIterator for Slab<T> {
    type Item = (usize, T);
    type IntoIter = IntoIter<T>;

    fn into_iter(self) -> IntoIter<T> {
        IntoIter {
            entries: self.entries.into_iter().enumerate(),
            len: self.len,
        }
    }
}

impl<'a, T> IntoIterator for &'a Slab<T> {
    type Item = (usize, &'a T);
    type IntoIter = Iter<'a, T>;

    fn into_iter(self) -> Iter<'a, T> {
        self.iter()
    }
}

impl<'a, T> IntoIterator for &'a mut Slab<T> {
    type Item = (usize, &'a mut T);
    type IntoIter = IterMut<'a, T>;

    fn into_iter(self) -> IterMut<'a, T> {
        self.iter_mut()
    }
}

/// Create a slab from an iterator of key-value pairs.
///
/// If the iterator produces duplicate keys, the previous value is replaced with the later one.
/// The keys does not need to be sorted beforehand, and this function always
/// takes O(n) time.
/// Note that the returned slab will use space proportional to the largest key,
/// so don't use `Slab` with untrusted keys.
///
/// # Examples
///
/// ```
/// # use slab::*;
///
/// let vec = vec![(2,'a'), (6,'b'), (7,'c')];
/// let slab = vec.into_iter().collect::<Slab<char>>();
/// assert_eq!(slab.len(), 3);
/// assert!(slab.capacity() >= 8);
/// assert_eq!(slab[2], 'a');
/// ```
///
/// With duplicate and unsorted keys:
///
/// ```
/// # use slab::*;
///
/// let vec = vec![(20,'a'), (10,'b'), (11,'c'), (10,'d')];
/// let slab = vec.into_iter().collect::<Slab<char>>();
/// assert_eq!(slab.len(), 3);
/// assert_eq!(slab[10], 'd');
/// ```
impl<T> FromIterator<(usize, T)> for Slab<T> {
    fn from_iter<I>(iterable: I) -> Self
    where
        I: IntoIterator<Item = (usize, T)>,
    {
        let iterator = iterable.into_iter();
        let mut builder = builder::Builder::with_capacity(iterator.size_hint().0);

        for (key, value) in iterator {
            builder.pair(key, value)
        }
        builder.build()
    }
}

impl<T> fmt::Debug for Slab<T>
where
    T: fmt::Debug,
{
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        if fmt.alternate() {
            fmt.debug_map().entries(self.iter()).finish()
        } else {
            fmt.debug_struct("Slab")
                .field("len", &self.len)
                .field("cap", &self.capacity())
                .finish()
        }
    }
}

impl<T> fmt::Debug for IntoIter<T>
where
    T: fmt::Debug,
{
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt.debug_struct("IntoIter")
            .field("remaining", &self.len)
            .finish()
    }
}

impl<T> fmt::Debug for Iter<'_, T>
where
    T: fmt::Debug,
{
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt.debug_struct("Iter")
            .field("remaining", &self.len)
            .finish()
    }
}

impl<T> fmt::Debug for IterMut<'_, T>
where
    T: fmt::Debug,
{
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt.debug_struct("IterMut")
            .field("remaining", &self.len)
            .finish()
    }
}

impl<T> fmt::Debug for Drain<'_, T> {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt.debug_struct("Drain").finish()
    }
}

// ===== VacantEntry =====

impl<'a, T> VacantEntry<'a, T> {
    /// Insert a value in the entry, returning a mutable reference to the value.
    ///
    /// To get the key associated with the value, use `key` prior to calling
    /// `insert`.
    ///
    /// # Examples
    ///
    /// ```
    /// # use slab::*;
    /// let mut slab = Slab::new();
    ///
    /// let hello = {
    ///     let entry = slab.vacant_entry();
    ///     let key = entry.key();
    ///
    ///     entry.insert((key, "hello"));
    ///     key
    /// };
    ///
    /// assert_eq!(hello, slab[hello].0);
    /// assert_eq!("hello", slab[hello].1);
    /// ```
    pub fn insert(self, val: T) -> &'a mut T {
        self.slab.insert_at(self.key, val);

        match self.slab.entries.get_mut(self.key) {
            Some(&mut Entry::Occupied(ref mut v)) => v,
            _ => unreachable!(),
        }
    }

    /// Return the key associated with this entry.
    ///
    /// A value stored in this entry will be associated with this key.
    ///
    /// # Examples
    ///
    /// ```
    /// # use slab::*;
    /// let mut slab = Slab::new();
    ///
    /// let hello = {
    ///     let entry = slab.vacant_entry();
    ///     let key = entry.key();
    ///
    ///     entry.insert((key, "hello"));
    ///     key
    /// };
    ///
    /// assert_eq!(hello, slab[hello].0);
    /// assert_eq!("hello", slab[hello].1);
    /// ```
    pub fn key(&self) -> usize {
        self.key
    }
}

// ===== IntoIter =====

impl<T> Iterator for IntoIter<T> {
    type Item = (usize, T);

    fn next(&mut self) -> Option<Self::Item> {
        for (key, entry) in &mut self.entries {
            if let Entry::Occupied(v) = entry {
                self.len -= 1;
                return Some((key, v));
            }
        }

        debug_assert_eq!(self.len, 0);
        None
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        (self.len, Some(self.len))
    }
}

impl<T> DoubleEndedIterator for IntoIter<T> {
    fn next_back(&mut self) -> Option<Self::Item> {
        while let Some((key, entry)) = self.entries.next_back() {
            if let Entry::Occupied(v) = entry {
                self.len -= 1;
                return Some((key, v));
            }
        }

        debug_assert_eq!(self.len, 0);
        None
    }
}

impl<T> ExactSizeIterator for IntoIter<T> {
    fn len(&self) -> usize {
        self.len
    }
}

impl<T> FusedIterator for IntoIter<T> {}

// ===== Iter =====

impl<'a, T> Iterator for Iter<'a, T> {
    type Item = (usize, &'a T);

    fn next(&mut self) -> Option<Self::Item> {
        for (key, entry) in &mut self.entries {
            if let Entry::Occupied(ref v) = *entry {
                self.len -= 1;
                return Some((key, v));
            }
        }

        debug_assert_eq!(self.len, 0);
        None
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        (self.len, Some(self.len))
    }
}

impl<T> DoubleEndedIterator for Iter<'_, T> {
    fn next_back(&mut self) -> Option<Self::Item> {
        while let Some((key, entry)) = self.entries.next_back() {
            if let Entry::Occupied(ref v) = *entry {
                self.len -= 1;
                return Some((key, v));
            }
        }

        debug_assert_eq!(self.len, 0);
        None
    }
}

impl<T> ExactSizeIterator for Iter<'_, T> {
    fn len(&self) -> usize {
        self.len
    }
}

impl<T> FusedIterator for Iter<'_, T> {}

// ===== IterMut =====

impl<'a, T> Iterator for IterMut<'a, T> {
    type Item = (usize, &'a mut T);

    fn next(&mut self) -> Option<Self::Item> {
        for (key, entry) in &mut self.entries {
            if let Entry::Occupied(ref mut v) = *entry {
                self.len -= 1;
                return Some((key, v));
            }
        }

        debug_assert_eq!(self.len, 0);
        None
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        (self.len, Some(self.len))
    }
}

impl<T> DoubleEndedIterator for IterMut<'_, T> {
    fn next_back(&mut self) -> Option<Self::Item> {
        while let Some((key, entry)) = self.entries.next_back() {
            if let Entry::Occupied(ref mut v) = *entry {
                self.len -= 1;
                return Some((key, v));
            }
        }

        debug_assert_eq!(self.len, 0);
        None
    }
}

impl<T> ExactSizeIterator for IterMut<'_, T> {
    fn len(&self) -> usize {
        self.len
    }
}

impl<T> FusedIterator for IterMut<'_, T> {}

// ===== Drain =====

impl<T> Iterator for Drain<'_, T> {
    type Item = T;

    fn next(&mut self) -> Option<Self::Item> {
        for entry in &mut self.inner {
            if let Entry::Occupied(v) = entry {
                self.len -= 1;
                return Some(v);
            }
        }

        debug_assert_eq!(self.len, 0);
        None
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        (self.len, Some(self.len))
    }
}

impl<T> DoubleEndedIterator for Drain<'_, T> {
    fn next_back(&mut self) -> Option<Self::Item> {
        while let Some(entry) = self.inner.next_back() {
            if let Entry::Occupied(v) = entry {
                self.len -= 1;
                return Some(v);
            }
        }

        debug_assert_eq!(self.len, 0);
        None
    }
}

impl<T> ExactSizeIterator for Drain<'_, T> {
    fn len(&self) -> usize {
        self.len
    }
}

impl<T> FusedIterator for Drain<'_, T> {}