summaryrefslogtreecommitdiffstats
path: root/third_party/webkit/PerformanceTests/ARES-6/ml/benchmark.js
blob: bd6ccd3e3a7850c1ede1c67efe0502b7182ec7f1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
/*
 * Copyright (C) 2017 Apple Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
 */

"use strict";

let currentTime;
if (this.performance && performance.now)
    currentTime = function() { return performance.now() };
else if (this.preciseTime)
    currentTime = function() { return preciseTime() * 1000; };
else
    currentTime = function() { return +new Date(); };

class MLBenchmark {
    constructor() { }

    runIteration()
    {
        let Matrix = MLMatrix;
        let ACTIVATION_FUNCTIONS = FeedforwardNeuralNetworksActivationFunctions;

        function run() {
            
            let it = (name, f) => {
                f();
            };

            function assert(b) {
                if (!b)
                    throw new Error("Bad");
            }

            var functions = Object.keys(ACTIVATION_FUNCTIONS);

            it('Training the neural network with XOR operator', function () {
                var trainingSet = new Matrix([[0, 0], [0, 1], [1, 0], [1, 1]]);
                var predictions = [false, true, true, false];

                for (var i = 0; i < functions.length; ++i) {
                    var options = {
                        hiddenLayers: [4],
                        iterations: 40,
                        learningRate: 0.3,
                        activation: functions[i]
                    };
                    var xorNN = new FeedforwardNeuralNetwork(options);

                    xorNN.train(trainingSet, predictions);
                    var results = xorNN.predict(trainingSet);
                }
            });

            it('Training the neural network with AND operator', function () {
                var trainingSet = [[0, 0], [0, 1], [1, 0], [1, 1]];
                var predictions = [[1, 0], [1, 0], [1, 0], [0, 1]];

                for (var i = 0; i < functions.length; ++i) {
                    var options = {
                        hiddenLayers: [3],
                        iterations: 75,
                        learningRate: 0.3,
                        activation: functions[i]
                    };
                    var andNN = new FeedforwardNeuralNetwork(options);
                    andNN.train(trainingSet, predictions);

                    var results = andNN.predict(trainingSet);
                }
            });

            it('Export and import', function () {
                var trainingSet = [[0, 0], [0, 1], [1, 0], [1, 1]];
                var predictions = [0, 1, 1, 1];

                for (var i = 0; i < functions.length; ++i) {
                    var options = {
                        hiddenLayers: [4],
                        iterations: 40,
                        learningRate: 0.3,
                        activation: functions[i]
                    };
                    var orNN = new FeedforwardNeuralNetwork(options);
                    orNN.train(trainingSet, predictions);

                    var model = JSON.parse(JSON.stringify(orNN));
                    var networkNN = FeedforwardNeuralNetwork.load(model);

                    var results = networkNN.predict(trainingSet);
                }
            });

            it('Multiclass clasification', function () {
                var trainingSet = [[0, 0], [0, 1], [1, 0], [1, 1]];
                var predictions = [2, 0, 1, 0];

                for (var i = 0; i < functions.length; ++i) {
                    var options = {
                        hiddenLayers: [4],
                        iterations: 40,
                        learningRate: 0.5,
                        activation: functions[i]
                    };
                    var nn = new FeedforwardNeuralNetwork(options);
                    nn.train(trainingSet, predictions);

                    var result = nn.predict(trainingSet);
                }
            });

            it('Big case', function () {
                var trainingSet = [[1, 1], [1, 2], [2, 1], [2, 2], [3, 1], [1, 3], [1, 4], [4, 1],
                                    [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [5, 5], [4, 5], [3, 5]];
                var predictions = [[1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0],
                                    [0, 1], [0, 1], [0, 1], [0, 1], [0, 1], [0, 1], [0, 1], [0, 1]];
                for (var i = 0; i < functions.length; ++i) {
                    var options = {
                        hiddenLayers: [20],
                        iterations: 60,
                        learningRate: 0.01,
                        activation: functions[i]
                    };
                    var nn = new FeedforwardNeuralNetwork(options);
                    nn.train(trainingSet, predictions);

                    var result = nn.predict([[5, 4]]);

                    assert(result[0][0] < result[0][1]);
                }
            });
        }

        run();
    }
}

function runBenchmark()
{
    const numIterations = 60;

    let before = currentTime();

    let benchmark = new Benchmark();

    for (let iteration = 0; iteration < numIterations; ++iteration)
        benchmark.runIteration();

    let after = currentTime();
    return after - before;
}