1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "mozilla/ProcInfo.h"
#include "mozilla/ipc/GeckoChildProcessHost.h"
#include "mozilla/SSE.h"
#include "gfxWindowsPlatform.h"
#include "nsMemoryReporterManager.h"
#include "nsWindowsHelpers.h"
#include <windows.h>
#include <psapi.h>
#include <winternl.h>
#ifndef STATUS_INFO_LENGTH_MISMATCH
# define STATUS_INFO_LENGTH_MISMATCH ((NTSTATUS)0xC0000004L)
#endif
#define PR_USEC_PER_NSEC 1000L
typedef HRESULT(WINAPI* GETTHREADDESCRIPTION)(HANDLE hThread,
PWSTR* threadDescription);
namespace mozilla {
static uint64_t ToNanoSeconds(const FILETIME& aFileTime) {
// FILETIME values are 100-nanoseconds units, converting
ULARGE_INTEGER usec = {{aFileTime.dwLowDateTime, aFileTime.dwHighDateTime}};
return usec.QuadPart * 100;
}
int GetCycleTimeFrequencyMHz() {
static const int frequency = []() {
// Having a constant TSC is required to convert cycle time to actual time.
if (!mozilla::has_constant_tsc()) {
return 0;
}
// Now get the nominal CPU frequency.
HKEY key;
static const WCHAR keyName[] =
L"HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0";
if (RegOpenKeyEx(HKEY_LOCAL_MACHINE, keyName, 0, KEY_QUERY_VALUE, &key) ==
ERROR_SUCCESS) {
DWORD data, len;
len = sizeof(data);
if (RegQueryValueEx(key, L"~Mhz", 0, 0, reinterpret_cast<LPBYTE>(&data),
&len) == ERROR_SUCCESS) {
return static_cast<int>(data);
}
}
return 0;
}();
return frequency;
}
nsresult GetCpuTimeSinceProcessStartInMs(uint64_t* aResult) {
int frequencyInMHz = GetCycleTimeFrequencyMHz();
if (frequencyInMHz) {
uint64_t cpuCycleCount;
if (!QueryProcessCycleTime(::GetCurrentProcess(), &cpuCycleCount)) {
return NS_ERROR_FAILURE;
}
constexpr int HZ_PER_MHZ = 1000000;
*aResult =
cpuCycleCount / (frequencyInMHz * (HZ_PER_MHZ / PR_MSEC_PER_SEC));
return NS_OK;
}
FILETIME createTime, exitTime, kernelTime, userTime;
if (!GetProcessTimes(::GetCurrentProcess(), &createTime, &exitTime,
&kernelTime, &userTime)) {
return NS_ERROR_FAILURE;
}
*aResult =
(ToNanoSeconds(kernelTime) + ToNanoSeconds(userTime)) / PR_NSEC_PER_MSEC;
return NS_OK;
}
nsresult GetGpuTimeSinceProcessStartInMs(uint64_t* aResult) {
return gfxWindowsPlatform::GetGpuTimeSinceProcessStartInMs(aResult);
}
ProcInfoPromise::ResolveOrRejectValue GetProcInfoSync(
nsTArray<ProcInfoRequest>&& aRequests) {
ProcInfoPromise::ResolveOrRejectValue result;
HashMap<base::ProcessId, ProcInfo> gathered;
if (!gathered.reserve(aRequests.Length())) {
result.SetReject(NS_ERROR_OUT_OF_MEMORY);
return result;
}
int frequencyInMHz = GetCycleTimeFrequencyMHz();
// ---- Copying data on processes (minus threads).
for (const auto& request : aRequests) {
nsAutoHandle handle(OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
FALSE, request.pid));
if (!handle) {
// Ignore process, it may have died.
continue;
}
uint64_t cpuCycleTime;
if (!QueryProcessCycleTime(handle.get(), &cpuCycleTime)) {
// Ignore process, it may have died.
continue;
}
uint64_t cpuTime;
if (frequencyInMHz) {
cpuTime = cpuCycleTime * PR_USEC_PER_NSEC / frequencyInMHz;
} else {
FILETIME createTime, exitTime, kernelTime, userTime;
if (!GetProcessTimes(handle.get(), &createTime, &exitTime, &kernelTime,
&userTime)) {
// Ignore process, it may have died.
continue;
}
cpuTime = ToNanoSeconds(kernelTime) + ToNanoSeconds(userTime);
}
PROCESS_MEMORY_COUNTERS_EX memoryCounters;
if (!GetProcessMemoryInfo(handle.get(),
(PPROCESS_MEMORY_COUNTERS)&memoryCounters,
sizeof(memoryCounters))) {
// Ignore process, it may have died.
continue;
}
// Assumption: values of `pid` are distinct between processes,
// regardless of any race condition we might have stumbled upon. Even
// if it somehow could happen, in the worst case scenario, we might
// end up overwriting one process info and we might end up with too
// many threads attached to a process, as the data is not crucial, we
// do not need to defend against that (unlikely) scenario.
ProcInfo info;
info.pid = request.pid;
info.childId = request.childId;
info.type = request.processType;
info.origin = request.origin;
info.windows = std::move(request.windowInfo);
info.utilityActors = std::move(request.utilityInfo);
info.cpuTime = cpuTime;
info.cpuCycleCount = cpuCycleTime;
info.memory = memoryCounters.PrivateUsage;
if (!gathered.put(request.pid, std::move(info))) {
result.SetReject(NS_ERROR_OUT_OF_MEMORY);
return result;
}
}
// ---- Add thread data to already-copied processes.
NTSTATUS ntStatus;
UniquePtr<char[]> buf;
ULONG bufLen = 512u * 1024u;
// We must query for information in a loop, since we are effectively asking
// the kernel to take a snapshot of all the processes on the system;
// the size of the required buffer may fluctuate between successive calls.
do {
// These allocations can be hundreds of megabytes on some computers, so
// we should use fallible new here.
buf = MakeUniqueFallible<char[]>(bufLen);
if (!buf) {
result.SetReject(NS_ERROR_OUT_OF_MEMORY);
return result;
}
ntStatus = ::NtQuerySystemInformation(SystemProcessInformation, buf.get(),
bufLen, &bufLen);
if (ntStatus != STATUS_INFO_LENGTH_MISMATCH) {
break;
}
// If we need another NtQuerySystemInformation call, allocate a
// slightly larger buffer than what would have been needed this time,
// to account for possible process or thread creations that might
// happen between our calls.
bufLen += 8u * 1024u;
} while (true);
if (!NT_SUCCESS(ntStatus)) {
result.SetReject(NS_ERROR_UNEXPECTED);
return result;
}
// `GetThreadDescription` is available as of Windows 10.
// We attempt to import it dynamically, knowing that it
// may be `nullptr`.
auto getThreadDescription =
reinterpret_cast<GETTHREADDESCRIPTION>(::GetProcAddress(
::GetModuleHandleW(L"Kernel32.dll"), "GetThreadDescription"));
PSYSTEM_PROCESS_INFORMATION processInfo;
for (ULONG offset = 0;; offset += processInfo->NextEntryOffset) {
MOZ_RELEASE_ASSERT(offset < bufLen);
processInfo =
reinterpret_cast<PSYSTEM_PROCESS_INFORMATION>(buf.get() + offset);
ULONG pid = HandleToUlong(processInfo->UniqueProcessId);
// Check if we are interested in this process.
auto processLookup = gathered.lookup(pid);
if (processLookup) {
for (ULONG i = 0; i < processInfo->NumberOfThreads; ++i) {
// The thread information structs are stored in the buffer right
// after the SYSTEM_PROCESS_INFORMATION struct.
PSYSTEM_THREAD_INFORMATION thread =
reinterpret_cast<PSYSTEM_THREAD_INFORMATION>(
buf.get() + offset + sizeof(SYSTEM_PROCESS_INFORMATION) +
sizeof(SYSTEM_THREAD_INFORMATION) * i);
ULONG tid = HandleToUlong(thread->ClientId.UniqueThread);
ThreadInfo* threadInfo =
processLookup->value().threads.AppendElement(fallible);
if (!threadInfo) {
result.SetReject(NS_ERROR_OUT_OF_MEMORY);
return result;
}
nsAutoHandle hThread(
OpenThread(/* dwDesiredAccess = */ THREAD_QUERY_INFORMATION,
/* bInheritHandle = */ FALSE,
/* dwThreadId = */ tid));
if (!hThread) {
// Cannot open thread. Not sure why, but let's erase this thread
// and attempt to find data on other threads.
processLookup->value().threads.RemoveLastElement();
continue;
}
threadInfo->tid = tid;
// Attempt to get thread times.
// If we fail, continue without this piece of information.
if (QueryThreadCycleTime(hThread.get(), &threadInfo->cpuCycleCount) &&
frequencyInMHz) {
threadInfo->cpuTime =
threadInfo->cpuCycleCount * PR_USEC_PER_NSEC / frequencyInMHz;
} else {
FILETIME createTime, exitTime, kernelTime, userTime;
if (GetThreadTimes(hThread.get(), &createTime, &exitTime, &kernelTime,
&userTime)) {
threadInfo->cpuTime =
ToNanoSeconds(kernelTime) + ToNanoSeconds(userTime);
}
}
// Attempt to get thread name.
// If we fail, continue without this piece of information.
if (getThreadDescription) {
PWSTR threadName = nullptr;
if (getThreadDescription(hThread.get(), &threadName) && threadName) {
threadInfo->name = threadName;
}
if (threadName) {
LocalFree(threadName);
}
}
}
}
if (processInfo->NextEntryOffset == 0) {
break;
}
}
// ----- We're ready to return.
result.SetResolve(std::move(gathered));
return result;
}
} // namespace mozilla
|