1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
|
/* SPDX-License-Identifier: GPL-3.0-or-later */
// standard includes
#include <inttypes.h>
#include <limits.h>
#include <stdio.h>
#include <time.h>
// libknot includes
#include <libknot/libknot.h>
// dynarray is inside libknot since 3.1, but it's differently named
#ifdef knot_dynarray_declare
#define dynarray_declare knot_dynarray_declare
#define dynarray_define knot_dynarray_define
#define dynarray_foreach knot_dynarray_foreach
#else
#include <contrib/dynarray.h>
#endif
// resolver includes
#include <lib/cache/api.h>
#include <lib/cache/impl.h>
#include <lib/defines.h>
#include "lib/cache/cdb_lmdb.h"
#include "lib/utils.h"
#include "kr_cache_gc.h"
#include "categories.h"
#include "db.h"
// section: dbval_copy
static knot_db_val_t *dbval_copy(const knot_db_val_t * from)
{
knot_db_val_t *to = malloc(sizeof(knot_db_val_t) + from->len);
if (to != NULL) {
memcpy(to, from, sizeof(knot_db_val_t));
to->data = to + 1; // == ((uit8_t *)to) + sizeof(knot_db_val_t)
memcpy(to->data, from->data, from->len);
}
return to;
}
// section: rrtype list
dynarray_declare(rrtype, uint16_t, DYNARRAY_VISIBILITY_STATIC, 64)
dynarray_define(rrtype, uint16_t, DYNARRAY_VISIBILITY_STATIC)
static void rrtypelist_add(rrtype_dynarray_t * arr, uint16_t add_type)
{
bool already_present = false;
dynarray_foreach(rrtype, uint16_t, i, *arr) {
if (*i == add_type) {
already_present = true;
break;
}
}
if (!already_present) {
rrtype_dynarray_add(arr, &add_type);
}
}
static void rrtypelist_print(rrtype_dynarray_t * arr)
{
char type_s[32] = { 0 };
dynarray_foreach(rrtype, uint16_t, i, *arr) {
knot_rrtype_to_string(*i, type_s, sizeof(type_s));
printf(" %s", type_s);
}
printf("\n");
}
dynarray_declare(entry, knot_db_val_t *, DYNARRAY_VISIBILITY_STATIC, 256)
dynarray_define(entry, knot_db_val_t *, DYNARRAY_VISIBILITY_STATIC)
static void entry_dynarray_deep_free(entry_dynarray_t * d)
{
dynarray_foreach(entry, knot_db_val_t *, i, *d) {
free(*i);
}
entry_dynarray_free(d);
}
typedef struct {
size_t categories_sizes[CATEGORIES];
size_t records;
} ctx_compute_categories_t;
int cb_compute_categories(const knot_db_val_t * key, gc_record_info_t * info,
void *vctx)
{
ctx_compute_categories_t *ctx = vctx;
category_t cat = kr_gc_categorize(info);
(void)key;
ctx->categories_sizes[cat] += info->entry_size;
ctx->records++;
return KNOT_EOK;
}
typedef struct {
category_t limit_category;
entry_dynarray_t to_delete;
size_t cfg_temp_keys_space;
size_t used_space;
size_t oversize_records;
} ctx_delete_categories_t;
int cb_delete_categories(const knot_db_val_t * key, gc_record_info_t * info,
void *vctx)
{
ctx_delete_categories_t *ctx = vctx;
category_t cat = kr_gc_categorize(info);
if (cat >= ctx->limit_category) {
knot_db_val_t *todelete = dbval_copy(key);
size_t used = ctx->used_space + key->len + sizeof(*key);
if ((ctx->cfg_temp_keys_space > 0 &&
used > ctx->cfg_temp_keys_space) || todelete == NULL) {
ctx->oversize_records++;
free(todelete);
} else {
entry_dynarray_add(&ctx->to_delete, &todelete);
ctx->used_space = used;
}
}
return KNOT_EOK;
}
struct kr_cache_gc_state {
struct kr_cache kres_db;
knot_db_t *db;
};
void kr_cache_gc_free_state(kr_cache_gc_state_t **state)
{
if (kr_fails_assert(state))
return;
if (!*state) { // not open
return;
}
kr_gc_cache_close(&(*state)->kres_db, (*state)->db);
free(*state);
*state = NULL;
}
int kr_cache_gc(kr_cache_gc_cfg_t *cfg, kr_cache_gc_state_t **state)
{
// The whole function works in four "big phases":
//// 1. find out whether we should even do analysis and deletion.
if (kr_fails_assert(cfg && state))
return KNOT_EINVAL;
int ret;
// Ensure that we have open and "healthy" cache.
if (!*state) {
*state = calloc(1, sizeof(**state));
if (!*state) {
return KNOT_ENOMEM;
}
ret = kr_gc_cache_open(cfg->cache_path, &(*state)->kres_db,
&(*state)->db);
} else { // To be sure, we guard against the file getting replaced.
ret = kr_gc_cache_check_health(&(*state)->kres_db, &(*state)->db);
// In particular, missing data.mdb gives us kr_error(ENOENT) == KNOT_ENOENT
}
if (ret) {
free(*state);
*state = NULL;
return ret;
}
knot_db_t *const db = (*state)->db; // frequently used shortcut
const double db_usage = kr_cdb_lmdb()->usage_percent((*state)->kres_db.db);
const bool large_usage = db_usage >= cfg->cache_max_usage;
if (cfg->dry_run || large_usage || VERBOSE_STATUS) { // don't print this on every size check
printf("Usage: %.2lf%%\n", db_usage);
}
if (cfg->dry_run || !large_usage) {
return KNOT_EOK;
}
//// 2. classify all cache items into categories
// and compute which categories to delete.
kr_timer_t timer_analyze = { 0 }, timer_choose = { 0 }, timer_delete =
{ 0 }, timer_rw_txn = { 0 };
kr_timer_start(&timer_analyze);
ctx_compute_categories_t cats = { { 0 }
};
ret = kr_gc_cache_iter(db, cfg, cb_compute_categories, &cats);
if (ret != KNOT_EOK) {
kr_cache_gc_free_state(state);
return ret;
}
//ssize_t amount_tofree = knot_db_lmdb_get_mapsize(db) * cfg->cache_to_be_freed / 100;
// Mixing ^^ page usage and entry sizes (key+value lengths) didn't work
// too well, probably due to internal fragmentation after some GC cycles.
// Therefore let's scale this by the ratio of these two sums.
ssize_t cats_sumsize = 0;
for (int i = 0; i < CATEGORIES; ++i) {
cats_sumsize += cats.categories_sizes[i];
}
/* use less precise variant to avoid 32-bit overflow */
ssize_t amount_tofree = cats_sumsize / 100 * cfg->cache_to_be_freed;
kr_log_debug(CACHE, "tofree: %zd / %zd\n", amount_tofree, cats_sumsize);
if (VERBOSE_STATUS) {
for (int i = 0; i < CATEGORIES; i++) {
if (cats.categories_sizes[i] > 0) {
printf("category %.2d size %zu\n", i,
cats.categories_sizes[i]);
}
}
}
category_t limit_category = CATEGORIES;
while (limit_category > 0 && amount_tofree > 0) {
amount_tofree -= cats.categories_sizes[--limit_category];
}
printf("Cache analyzed in %.0lf msecs, %zu records, limit category is %d.\n",
kr_timer_elapsed(&timer_analyze) * 1000, cats.records, limit_category);
//// 3. pass whole cache again to collect a list of keys that should be deleted.
kr_timer_start(&timer_choose);
ctx_delete_categories_t to_del = { 0 };
to_del.cfg_temp_keys_space = cfg->temp_keys_space;
to_del.limit_category = limit_category;
ret = kr_gc_cache_iter(db, cfg, cb_delete_categories, &to_del);
if (ret != KNOT_EOK) {
entry_dynarray_deep_free(&to_del.to_delete);
kr_cache_gc_free_state(state);
return ret;
}
printf
("%zu records to be deleted using %.2lf MBytes of temporary memory, %zu records skipped due to memory limit.\n",
to_del.to_delete.size, ((double)to_del.used_space / 1048576.0),
to_del.oversize_records);
//// 4. execute the planned deletions.
const knot_db_api_t *api = knot_db_lmdb_api();
knot_db_txn_t txn = { 0 };
size_t deleted_records = 0, already_gone = 0, rw_txn_count = 0;
kr_timer_start(&timer_delete);
kr_timer_start(&timer_rw_txn);
rrtype_dynarray_t deleted_rrtypes = { 0 };
ret = api->txn_begin(db, &txn, 0);
if (ret != KNOT_EOK) {
printf("Error starting R/W DB transaction (%s).\n",
knot_strerror(ret));
entry_dynarray_deep_free(&to_del.to_delete);
kr_cache_gc_free_state(state);
return ret;
}
dynarray_foreach(entry, knot_db_val_t *, i, to_del.to_delete) {
ret = api->del(&txn, *i);
switch (ret) {
case KNOT_EOK:
deleted_records++;
const int entry_type = kr_gc_key_consistent(**i);
if (entry_type >= 0) // some "inconsistent" entries are OK
rrtypelist_add(&deleted_rrtypes, entry_type);
break;
case KNOT_ENOENT:
already_gone++;
if (VERBOSE_STATUS) {
// kresd normally only inserts (or overwrites),
// so it's generally suspicious when a key goes missing.
printf("Record already gone (key len %zu): ", (*i)->len);
debug_printbin((*i)->data, (*i)->len);
printf("\n");
}
break;
case KNOT_ESPACE:
printf("Warning: out of space, bailing out to retry later.\n");
api->txn_abort(&txn);
goto finish;
default:
printf("Warning: skipping deletion because of error (%s)\n",
knot_strerror(ret));
api->txn_abort(&txn);
ret = api->txn_begin(db, &txn, 0);
if (ret != KNOT_EOK) {
printf
("Error: can't begin txn because of error (%s)\n",
knot_strerror(ret));
goto finish;
}
continue;
}
if ((cfg->rw_txn_items > 0 &&
(deleted_records + already_gone) % cfg->rw_txn_items == 0) ||
(cfg->rw_txn_duration > 0 &&
kr_timer_elapsed_us(&timer_rw_txn) > cfg->rw_txn_duration)) {
ret = api->txn_commit(&txn);
if (ret == KNOT_EOK) {
rw_txn_count++;
usleep(cfg->rw_txn_delay);
kr_timer_start(&timer_rw_txn);
ret = api->txn_begin(db, &txn, 0);
}
if (ret != KNOT_EOK) {
printf("Error: transaction failed (%s)\n",
knot_strerror(ret));
goto finish;
}
}
}
ret = api->txn_commit(&txn);
finish:
printf("Deleted %zu records (%zu already gone) types", deleted_records,
already_gone);
rrtypelist_print(&deleted_rrtypes);
printf("It took %.0lf msecs, %zu transactions (%s)\n\n",
kr_timer_elapsed(&timer_delete) * 1000, rw_txn_count, knot_strerror(ret));
rrtype_dynarray_free(&deleted_rrtypes);
entry_dynarray_deep_free(&to_del.to_delete);
// OK, let's close it in this case.
kr_cache_gc_free_state(state);
return ret;
}
|