diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 09:06:44 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 09:06:44 +0000 |
commit | ed5640d8b587fbcfed7dd7967f3de04b37a76f26 (patch) | |
tree | 7a5f7c6c9d02226d7471cb3cc8fbbf631b415303 /basegfx/source/workbench/bezierclip.cxx | |
parent | Initial commit. (diff) | |
download | libreoffice-ed5640d8b587fbcfed7dd7967f3de04b37a76f26.tar.xz libreoffice-ed5640d8b587fbcfed7dd7967f3de04b37a76f26.zip |
Adding upstream version 4:7.4.7.upstream/4%7.4.7upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'basegfx/source/workbench/bezierclip.cxx')
-rw-r--r-- | basegfx/source/workbench/bezierclip.cxx | 2006 |
1 files changed, 2006 insertions, 0 deletions
diff --git a/basegfx/source/workbench/bezierclip.cxx b/basegfx/source/workbench/bezierclip.cxx new file mode 100644 index 000000000..676f239ef --- /dev/null +++ b/basegfx/source/workbench/bezierclip.cxx @@ -0,0 +1,2006 @@ +/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ +/* + * This file is part of the LibreOffice project. + * + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. + * + * This file incorporates work covered by the following license notice: + * + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed + * with this work for additional information regarding copyright + * ownership. The ASF licenses this file to you under the Apache + * License, Version 2.0 (the "License"); you may not use this file + * except in compliance with the License. You may obtain a copy of + * the License at http://www.apache.org/licenses/LICENSE-2.0 . + */ + +#include <iostream> +#include <cassert> +#include <algorithm> +#include <iterator> +#include <vector> +#include <utility> + +#include <math.h> + +#include <bezierclip.hxx> +#include <gauss.hxx> + +// what to test +#define WITH_ASSERTIONS +//#define WITH_CONVEXHULL_TEST +//#define WITH_MULTISUBDIVIDE_TEST +//#define WITH_FATLINE_TEST +//#define WITH_CALCFOCUS_TEST +//#define WITH_SAFEPARAMBASE_TEST +//#define WITH_SAFEPARAMS_TEST +//#define WITH_SAFEPARAM_DETAILED_TEST +//#define WITH_SAFEFOCUSPARAM_CALCFOCUS +//#define WITH_SAFEFOCUSPARAM_TEST +//#define WITH_SAFEFOCUSPARAM_DETAILED_TEST +#define WITH_BEZIERCLIP_TEST + +/* Implementation of the so-called 'Fat-Line Bezier Clipping Algorithm' by Sederberg et al. + * + * Actual reference is: T. W. Sederberg and T Nishita: Curve + * intersection using Bezier clipping. In Computer Aided Design, 22 + * (9), 1990, pp. 538--549 + */ + +/* Misc helper + * =========== + */ +int fallFac( int n, int k ) +{ +#ifdef WITH_ASSERTIONS + assert(n>=k); // "For factorials, n must be greater or equal k" + assert(n>=0); // "For factorials, n must be positive" + assert(k>=0); // "For factorials, k must be positive" +#endif + + int res( 1 ); + + while( k-- && n ) res *= n--; + + return res; +} + +int fac( int n ) +{ + return fallFac(n, n); +} + +/* Bezier fat line clipping part + * ============================= + */ + +void Impl_calcFatLine( FatLine& line, const Bezier& c ) +{ + // Prepare normalized implicit line + // ================================ + + // calculate vector orthogonal to p1-p4: + line.a = -(c.p0.y - c.p3.y); + line.b = (c.p0.x - c.p3.x); + + // normalize + const double len(std::hypot(line.a, line.b)); + if( !tolZero(len) ) + { + line.a /= len; + line.b /= len; + } + + line.c = -(line.a*c.p0.x + line.b*c.p0.y); + + // Determine bounding fat line from it + // =================================== + + // calc control point distances + const double dP2( calcLineDistance(line.a, line.b, line.c, c.p1.x, c.p1.y ) ); + const double dP3( calcLineDistance(line.a, line.b, line.c, c.p2.x, c.p2.y ) ); + + // calc approximate bounding lines to curve (tight bounds are + // possible here, but more expensive to calculate and thus not + // worth the overhead) + if( dP2 * dP3 > 0.0 ) + { + line.dMin = 3.0/4.0 * std::min(0.0, std::min(dP2, dP3)); + line.dMax = 3.0/4.0 * std::max(0.0, std::max(dP2, dP3)); + } + else + { + line.dMin = 4.0/9.0 * std::min(0.0, std::min(dP2, dP3)); + line.dMax = 4.0/9.0 * std::max(0.0, std::max(dP2, dP3)); + } +} + +void Impl_calcBounds( Point2D& leftTop, + Point2D& rightBottom, + const Bezier& c1 ) +{ + leftTop.x = std::min( c1.p0.x, std::min( c1.p1.x, std::min( c1.p2.x, c1.p3.x ) ) ); + leftTop.y = std::min( c1.p0.y, std::min( c1.p1.y, std::min( c1.p2.y, c1.p3.y ) ) ); + rightBottom.x = std::max( c1.p0.x, std::max( c1.p1.x, std::max( c1.p2.x, c1.p3.x ) ) ); + rightBottom.y = std::max( c1.p0.y, std::max( c1.p1.y, std::max( c1.p2.y, c1.p3.y ) ) ); +} + +bool Impl_doBBoxIntersect( const Bezier& c1, + const Bezier& c2 ) +{ + // calc rectangular boxes from c1 and c2 + Point2D lt1; + Point2D rb1; + Point2D lt2; + Point2D rb2; + + Impl_calcBounds( lt1, rb1, c1 ); + Impl_calcBounds( lt2, rb2, c2 ); + + if( std::min(rb1.x, rb2.x) < std::max(lt1.x, lt2.x) || + std::min(rb1.y, rb2.y) < std::max(lt1.y, lt2.y) ) + { + return false; + } + else + { + return true; + } +} + +/* calculates two t's for the given bernstein control polygon: the first is + * the intersection of the min value line with the convex hull from + * the left, the second is the intersection of the max value line with + * the convex hull from the right. + */ +bool Impl_calcSafeParams( double& t1, + double& t2, + const Polygon2D& rPoly, + double lowerYBound, + double upperYBound ) +{ + // need the convex hull of the control polygon, as this is + // guaranteed to completely bound the curve + Polygon2D convHull( convexHull(rPoly) ); + + // init min and max buffers + t1 = 0.0 ; + double currLowerT( 1.0 ); + + t2 = 1.0; + double currHigherT( 0.0 ); + + if( convHull.size() <= 1 ) + return false; // only one point? Then we're done with clipping + + /* now, clip against lower and higher bounds */ + Point2D p0; + Point2D p1; + + bool bIntersection( false ); + + for( Polygon2D::size_type i=0; i<convHull.size(); ++i ) + { + // have to check against convHull.size() segments, as the + // convex hull is, by definition, closed. Thus, for the + // last point, we take the first point as partner. + if( i+1 == convHull.size() ) + { + // close the polygon + p0 = convHull[i]; + p1 = convHull[0]; + } + else + { + p0 = convHull[i]; + p1 = convHull[i+1]; + } + + // is the segment in question within or crossing the + // horizontal band spanned by lowerYBound and upperYBound? If + // not, we've got no intersection. If yes, we maybe don't have + // an intersection, but we've got to update the permissible + // range, nevertheless. This is because inside lying segments + // leads to full range forbidden. + if( (tolLessEqual(p0.y, upperYBound) || tolLessEqual(p1.y, upperYBound)) && + (tolGreaterEqual(p0.y, lowerYBound) || tolGreaterEqual(p1.y, lowerYBound)) ) + { + // calc intersection of convex hull segment with + // one of the horizontal bounds lines + // to optimize a bit, r_x is calculated only in else case + const double r_y( p1.y - p0.y ); + + if( tolZero(r_y) ) + { + // r_y is virtually zero, thus we've got a horizontal + // line. Now check whether we maybe coincide with lower or + // upper horizontal bound line. + if( tolEqual(p0.y, lowerYBound) || + tolEqual(p0.y, upperYBound) ) + { + // yes, simulate intersection then + currLowerT = std::min(currLowerT, std::min(p0.x, p1.x)); + currHigherT = std::max(currHigherT, std::max(p0.x, p1.x)); + } + } + else + { + // check against lower and higher bounds + // ===================================== + const double r_x( p1.x - p0.x ); + + // calc intersection with horizontal dMin line + const double currTLow( (lowerYBound - p0.y) * r_x / r_y + p0.x ); + + // calc intersection with horizontal dMax line + const double currTHigh( (upperYBound - p0.y) * r_x / r_y + p0.x ); + + currLowerT = std::min(currLowerT, std::min(currTLow, currTHigh)); + currHigherT = std::max(currHigherT, std::max(currTLow, currTHigh)); + } + + // set flag that at least one segment is contained or + // intersects given horizontal band. + bIntersection = true; + } + } + +#ifndef WITH_SAFEPARAMBASE_TEST + // limit intersections found to permissible t parameter range + t1 = std::max(0.0, currLowerT); + t2 = std::min(1.0, currHigherT); +#endif + + return bIntersection; +} + +/* calculates two t's for the given bernstein polynomial: the first is + * the intersection of the min value line with the convex hull from + * the left, the second is the intersection of the max value line with + * the convex hull from the right. + * + * The polynomial coefficients c0 to c3 given to this method + * must correspond to t values of 0, 1/3, 2/3 and 1, respectively. + */ +bool Impl_calcSafeParams_clip( double& t1, + double& t2, + const FatLine& bounds, + double c0, + double c1, + double c2, + double c3 ) +{ + /* first of all, determine convex hull of c0-c3 */ + Polygon2D poly(4); + poly[0] = Point2D(0, c0); + poly[1] = Point2D(1.0/3.0, c1); + poly[2] = Point2D(2.0/3.0, c2); + poly[3] = Point2D(1, c3); + +#ifndef WITH_SAFEPARAM_DETAILED_TEST + + return Impl_calcSafeParams( t1, t2, poly, bounds.dMin, bounds.dMax ); + +#else + bool bRet( Impl_calcSafeParams( t1, t2, poly, bounds.dMin, bounds.dMax ) ); + + Polygon2D convHull( convexHull( poly ) ); + + std::cout << "# convex hull testing" << std::endl + << "plot [t=0:1] "; + std::cout << " bez(" + << poly[0].x << "," + << poly[1].x << "," + << poly[2].x << "," + << poly[3].x << ",t),bez(" + << poly[0].y << "," + << poly[1].y << "," + << poly[2].y << "," + << poly[3].y << ",t), " + << "t, " << bounds.dMin << ", " + << "t, " << bounds.dMax << ", " + << t1 << ", t, " + << t2 << ", t, " + << "'-' using ($1):($2) title \"control polygon\" with lp, " + << "'-' using ($1):($2) title \"convex hull\" with lp" << std::endl; + + unsigned int k; + for( k=0; k<poly.size(); ++k ) + { + std::cout << poly[k].x << " " << poly[k].y << std::endl; + } + std::cout << poly[0].x << " " << poly[0].y << std::endl; + std::cout << "e" << std::endl; + + for( k=0; k<convHull.size(); ++k ) + { + std::cout << convHull[k].x << " " << convHull[k].y << std::endl; + } + std::cout << convHull[0].x << " " << convHull[0].y << std::endl; + std::cout << "e" << std::endl; + + return bRet; +#endif +} + +void Impl_deCasteljauAt( Bezier& part1, + Bezier& part2, + const Bezier& input, + double t ) +{ + // deCasteljau bezier arc, scheme is: + + // First row is C_0^n,C_1^n,...,C_n^n + // Second row is P_1^n,...,P_n^n + // etc. + // with P_k^r = (1 - x_s)P_{k-1}^{r-1} + x_s P_k{r-1} + + // this results in: + + // P1 P2 P3 P4 + // L1 P2 P3 R4 + // L2 H R3 + // L3 R2 + // L4/R1 + if( tolZero(t) ) + { + // t is zero -> part2 is input curve, part1 is empty (input.p0, that is) + part1.p0.x = part1.p1.x = part1.p2.x = part1.p3.x = input.p0.x; + part1.p0.y = part1.p1.y = part1.p2.y = part1.p3.y = input.p0.y; + part2 = input; + } + else if( tolEqual(t, 1.0) ) + { + // t is one -> part1 is input curve, part2 is empty (input.p3, that is) + part1 = input; + part2.p0.x = part2.p1.x = part2.p2.x = part2.p3.x = input.p3.x; + part2.p0.y = part2.p1.y = part2.p2.y = part2.p3.y = input.p3.y; + } + else + { + part1.p0.x = input.p0.x; part1.p0.y = input.p0.y; + part1.p1.x = (1.0 - t)*part1.p0.x + t*input.p1.x; part1.p1.y = (1.0 - t)*part1.p0.y + t*input.p1.y; + const double Hx ( (1.0 - t)*input.p1.x + t*input.p2.x ), Hy ( (1.0 - t)*input.p1.y + t*input.p2.y ); + part1.p2.x = (1.0 - t)*part1.p1.x + t*Hx; part1.p2.y = (1.0 - t)*part1.p1.y + t*Hy; + part2.p3.x = input.p3.x; part2.p3.y = input.p3.y; + part2.p2.x = (1.0 - t)*input.p2.x + t*input.p3.x; part2.p2.y = (1.0 - t)*input.p2.y + t*input.p3.y; + part2.p1.x = (1.0 - t)*Hx + t*part2.p2.x; part2.p1.y = (1.0 - t)*Hy + t*part2.p2.y; + part2.p0.x = (1.0 - t)*part1.p2.x + t*part2.p1.x; part2.p0.y = (1.0 - t)*part1.p2.y + t*part2.p1.y; + part1.p3.x = part2.p0.x; part1.p3.y = part2.p0.y; + } +} + +void printCurvesWithSafeRange( const Bezier& c1, const Bezier& c2, double t1_c1, double t2_c1, + const Bezier& c2_part, const FatLine& bounds_c2 ) +{ + static int offset = 0; + + std::cout << "# safe param range testing" << std::endl + << "plot [t=0.0:1.0] "; + + // clip safe ranges off c1 + Bezier c1_part1; + Bezier c1_part2; + Bezier c1_part3; + + // subdivide at t1_c1 + Impl_deCasteljauAt( c1_part1, c1_part2, c1, t1_c1 ); + // subdivide at t2_c1 + Impl_deCasteljauAt( c1_part1, c1_part3, c1_part2, t2_c1 ); + + // output remaining segment (c1_part1) + + std::cout << "bez(" + << c1.p0.x+offset << "," + << c1.p1.x+offset << "," + << c1.p2.x+offset << "," + << c1.p3.x+offset << ",t),bez(" + << c1.p0.y << "," + << c1.p1.y << "," + << c1.p2.y << "," + << c1.p3.y << ",t), bez(" + << c2.p0.x+offset << "," + << c2.p1.x+offset << "," + << c2.p2.x+offset << "," + << c2.p3.x+offset << ",t),bez(" + << c2.p0.y << "," + << c2.p1.y << "," + << c2.p2.y << "," + << c2.p3.y << ",t), " +#if 1 + << "bez(" + << c1_part1.p0.x+offset << "," + << c1_part1.p1.x+offset << "," + << c1_part1.p2.x+offset << "," + << c1_part1.p3.x+offset << ",t),bez(" + << c1_part1.p0.y << "," + << c1_part1.p1.y << "," + << c1_part1.p2.y << "," + << c1_part1.p3.y << ",t), " +#endif +#if 1 + << "bez(" + << c2_part.p0.x+offset << "," + << c2_part.p1.x+offset << "," + << c2_part.p2.x+offset << "," + << c2_part.p3.x+offset << ",t),bez(" + << c2_part.p0.y << "," + << c2_part.p1.y << "," + << c2_part.p2.y << "," + << c2_part.p3.y << ",t), " +#endif + << "linex(" + << bounds_c2.a << "," + << bounds_c2.b << "," + << bounds_c2.c << ",t)+" << offset << ", liney(" + << bounds_c2.a << "," + << bounds_c2.b << "," + << bounds_c2.c << ",t) title \"fat line (center)\", linex(" + << bounds_c2.a << "," + << bounds_c2.b << "," + << bounds_c2.c-bounds_c2.dMin << ",t)+" << offset << ", liney(" + << bounds_c2.a << "," + << bounds_c2.b << "," + << bounds_c2.c-bounds_c2.dMin << ",t) title \"fat line (min) \", linex(" + << bounds_c2.a << "," + << bounds_c2.b << "," + << bounds_c2.c-bounds_c2.dMax << ",t)+" << offset << ", liney(" + << bounds_c2.a << "," + << bounds_c2.b << "," + << bounds_c2.c-bounds_c2.dMax << ",t) title \"fat line (max) \"" << std::endl; + + offset += 1; +} + +void printResultWithFinalCurves( const Bezier& c1, const Bezier& c1_part, + const Bezier& c2, const Bezier& c2_part, + double t1_c1, double t2_c1 ) +{ + static int offset = 0; + + std::cout << "# final result" << std::endl + << "plot [t=0.0:1.0] "; + + std::cout << "bez(" + << c1.p0.x+offset << "," + << c1.p1.x+offset << "," + << c1.p2.x+offset << "," + << c1.p3.x+offset << ",t),bez(" + << c1.p0.y << "," + << c1.p1.y << "," + << c1.p2.y << "," + << c1.p3.y << ",t), bez(" + << c1_part.p0.x+offset << "," + << c1_part.p1.x+offset << "," + << c1_part.p2.x+offset << "," + << c1_part.p3.x+offset << ",t),bez(" + << c1_part.p0.y << "," + << c1_part.p1.y << "," + << c1_part.p2.y << "," + << c1_part.p3.y << ",t), " + << " pointmarkx(bez(" + << c1.p0.x+offset << "," + << c1.p1.x+offset << "," + << c1.p2.x+offset << "," + << c1.p3.x+offset << "," + << t1_c1 << "),t), " + << " pointmarky(bez(" + << c1.p0.y << "," + << c1.p1.y << "," + << c1.p2.y << "," + << c1.p3.y << "," + << t1_c1 << "),t), " + << " pointmarkx(bez(" + << c1.p0.x+offset << "," + << c1.p1.x+offset << "," + << c1.p2.x+offset << "," + << c1.p3.x+offset << "," + << t2_c1 << "),t), " + << " pointmarky(bez(" + << c1.p0.y << "," + << c1.p1.y << "," + << c1.p2.y << "," + << c1.p3.y << "," + << t2_c1 << "),t), " + + << "bez(" + << c2.p0.x+offset << "," + << c2.p1.x+offset << "," + << c2.p2.x+offset << "," + << c2.p3.x+offset << ",t),bez(" + << c2.p0.y << "," + << c2.p1.y << "," + << c2.p2.y << "," + << c2.p3.y << ",t), " + << "bez(" + << c2_part.p0.x+offset << "," + << c2_part.p1.x+offset << "," + << c2_part.p2.x+offset << "," + << c2_part.p3.x+offset << ",t),bez(" + << c2_part.p0.y << "," + << c2_part.p1.y << "," + << c2_part.p2.y << "," + << c2_part.p3.y << ",t)" << std::endl; + + offset += 1; +} + +/** determine parameter ranges [0,t1) and (t2,1] on c1, where c1 is guaranteed to lie outside c2. + Returns false, if the two curves don't even intersect. + + @param t1 + Range [0,t1) on c1 is guaranteed to lie outside c2 + + @param t2 + Range (t2,1] on c1 is guaranteed to lie outside c2 + + @param c1_orig + Original curve c1 + + @param c1_part + Subdivided current part of c1 + + @param c2_orig + Original curve c2 + + @param c2_part + Subdivided current part of c2 + */ +bool Impl_calcClipRange( double& t1, + double& t2, + const Bezier& c1_orig, + const Bezier& c1_part, + const Bezier& c2_orig, + const Bezier& c2_part ) +{ + // TODO: Maybe also check fat line orthogonal to P0P3, having P0 + // and P3 as the extremal points + + if( Impl_doBBoxIntersect(c1_part, c2_part) ) + { + // Calculate fat lines around c1 + FatLine bounds_c2; + + // must use the subdivided version of c2, since the fat line + // algorithm works implicitly with the convex hull bounding + // box. + Impl_calcFatLine(bounds_c2, c2_part); + + // determine clip positions on c2. Can use original c1 (which + // is necessary anyway, to get the t's on the original curve), + // since the distance calculations work directly in the + // Bernstein polynomial parameter domain. + if( Impl_calcSafeParams_clip( t1, t2, bounds_c2, + calcLineDistance( bounds_c2.a, + bounds_c2.b, + bounds_c2.c, + c1_orig.p0.x, + c1_orig.p0.y ), + calcLineDistance( bounds_c2.a, + bounds_c2.b, + bounds_c2.c, + c1_orig.p1.x, + c1_orig.p1.y ), + calcLineDistance( bounds_c2.a, + bounds_c2.b, + bounds_c2.c, + c1_orig.p2.x, + c1_orig.p2.y ), + calcLineDistance( bounds_c2.a, + bounds_c2.b, + bounds_c2.c, + c1_orig.p3.x, + c1_orig.p3.y ) ) ) + { + //printCurvesWithSafeRange(c1_orig, c2_orig, t1, t2, c2_part, bounds_c2); + + // they do intersect + return true; + } + } + + // they don't intersect: nothing to do + return false; +} + +/* Tangent intersection part + * ========================= + */ + +void Impl_calcFocus( Bezier& res, const Bezier& c ) +{ + // arbitrary small value, for now + // TODO: find meaningful value + const double minPivotValue( 1.0e-20 ); + + Point2D::value_type fMatrix[6]; + Point2D::value_type fRes[2]; + + // calc new curve from hodograph, c and linear blend + + // Coefficients for derivative of c are (C_i=n(C_{i+1} - C_i)): + + // 3(P1 - P0), 3(P2 - P1), 3(P3 - P2) (bezier curve of degree 2) + + // The hodograph is then (bezier curve of 2nd degree is P0(1-t)^2 + 2P1(1-t)t + P2t^2): + + // 3(P1 - P0)(1-t)^2 + 6(P2 - P1)(1-t)t + 3(P3 - P2)t^2 + + // rotate by 90 degrees: x=-y, y=x and you get the normal vector function N(t): + + // x(t) = -(3(P1.y - P0.y)(1-t)^2 + 6(P2.y - P1.y)(1-t)t + 3(P3.y - P2.y)t^2) + // y(t) = 3(P1.x - P0.x)(1-t)^2 + 6(P2.x - P1.x)(1-t)t + 3(P3.x - P2.x)t^2 + + // Now, the focus curve is defined to be F(t)=P(t) + c(t)N(t), + // where P(t) is the original curve, and c(t)=c0(1-t) + c1 t + + // This results in the following expression for F(t): + + // x(t) = P0.x (1-t)^3 + 3 P1.x (1-t)^2t + 3 P2.x (1.t)t^2 + P3.x t^3 - + // (c0(1-t) + c1 t)(3(P1.y - P0.y)(1-t)^2 + 6(P2.y - P1.y)(1-t)t + 3(P3.y - P2.y)t^2) + + // y(t) = P0.y (1-t)^3 + 3 P1.y (1-t)^2t + 3 P2.y (1.t)t^2 + P3.y t^3 + + // (c0(1-t) + c1 t)(3(P1.x - P0.x)(1-t)^2 + 6(P2.x - P1.x)(1-t)t + 3(P3.x - P2.x)t^2) + + // As a heuristic, we set F(0)=F(1) (thus, the curve is closed and _tends_ to be small): + + // For F(0), the following results: + + // x(0) = P0.x - c0 3(P1.y - P0.y) + // y(0) = P0.y + c0 3(P1.x - P0.x) + + // For F(1), the following results: + + // x(1) = P3.x - c1 3(P3.y - P2.y) + // y(1) = P3.y + c1 3(P3.x - P2.x) + + // Reorder, collect and substitute into F(0)=F(1): + + // P0.x - c0 3(P1.y - P0.y) = P3.x - c1 3(P3.y - P2.y) + // P0.y + c0 3(P1.x - P0.x) = P3.y + c1 3(P3.x - P2.x) + + // which yields + + // (P0.y - P1.y)c0 + (P3.y - P2.y)c1 = (P3.x - P0.x)/3 + // (P1.x - P0.x)c0 + (P2.x - P3.x)c1 = (P3.y - P0.y)/3 + + // so, this is what we calculate here (determine c0 and c1): + fMatrix[0] = c.p1.x - c.p0.x; + fMatrix[1] = c.p2.x - c.p3.x; + fMatrix[2] = (c.p3.y - c.p0.y)/3.0; + fMatrix[3] = c.p0.y - c.p1.y; + fMatrix[4] = c.p3.y - c.p2.y; + fMatrix[5] = (c.p3.x - c.p0.x)/3.0; + + // TODO: determine meaningful value for + if( !solve(fMatrix, 2, 3, fRes, minPivotValue) ) + { + // TODO: generate meaningful values here + // singular or nearly singular system -- use arbitrary + // values for res + fRes[0] = 0.0; + fRes[1] = 1.0; + + std::cerr << "Matrix singular!" << std::endl; + } + + // now, the reordered and per-coefficient collected focus curve is + // the following third degree bezier curve F(t): + + // x(t) = P0.x (1-t)^3 + 3 P1.x (1-t)^2t + 3 P2.x (1.t)t^2 + P3.x t^3 - + // (c0(1-t) + c1 t)(3(P1.y - P0.y)(1-t)^2 + 6(P2.y - P1.y)(1-t)t + 3(P3.y - P2.y)t^2) + // = P0.x (1-t)^3 + 3 P1.x (1-t)^2t + 3 P2.x (1.t)t^2 + P3.x t^3 - + // (3c0P1.y(1-t)^3 - 3c0P0.y(1-t)^3 + 6c0P2.y(1-t)^2t - 6c0P1.y(1-t)^2t + + // 3c0P3.y(1-t)t^2 - 3c0P2.y(1-t)t^2 + + // 3c1P1.y(1-t)^2t - 3c1P0.y(1-t)^2t + 6c1P2.y(1-t)t^2 - 6c1P1.y(1-t)t^2 + + // 3c1P3.yt^3 - 3c1P2.yt^3) + // = (P0.x - 3 c0 P1.y + 3 c0 P0.y)(1-t)^3 + + // 3(P1.x - c1 P1.y + c1 P0.y - 2 c0 P2.y + 2 c0 P1.y)(1-t)^2t + + // 3(P2.x - 2 c1 P2.y + 2 c1 P1.y - c0 P3.y + c0 P2.y)(1-t)t^2 + + // (P3.x - 3 c1 P3.y + 3 c1 P2.y)t^3 + // = (P0.x - 3 c0(P1.y - P0.y))(1-t)^3 + + // 3(P1.x - c1(P1.y - P0.y) - 2c0(P2.y - P1.y))(1-t)^2t + + // 3(P2.x - 2 c1(P2.y - P1.y) - c0(P3.y - P2.y))(1-t)t^2 + + // (P3.x - 3 c1(P3.y - P2.y))t^3 + + // y(t) = P0.y (1-t)^3 + 3 P1.y (1-t)^2t + 3 P2.y (1-t)t^2 + P3.y t^3 + + // (c0(1-t) + c1 t)(3(P1.x - P0.x)(1-t)^2 + 6(P2.x - P1.x)(1-t)t + 3(P3.x - P2.x)t^2) + // = P0.y (1-t)^3 + 3 P1.y (1-t)^2t + 3 P2.y (1-t)t^2 + P3.y t^3 + + // 3c0(P1.x - P0.x)(1-t)^3 + 6c0(P2.x - P1.x)(1-t)^2t + 3c0(P3.x - P2.x)(1-t)t^2 + + // 3c1(P1.x - P0.x)(1-t)^2t + 6c1(P2.x - P1.x)(1-t)t^2 + 3c1(P3.x - P2.x)t^3 + // = (P0.y + 3 c0 (P1.x - P0.x))(1-t)^3 + + // 3(P1.y + 2 c0 (P2.x - P1.x) + c1 (P1.x - P0.x))(1-t)^2t + + // 3(P2.y + c0 (P3.x - P2.x) + 2 c1 (P2.x - P1.x))(1-t)t^2 + + // (P3.y + 3 c1 (P3.x - P2.x))t^3 + + // Therefore, the coefficients F0 to F3 of the focus curve are: + + // F0.x = (P0.x - 3 c0(P1.y - P0.y)) F0.y = (P0.y + 3 c0 (P1.x - P0.x)) + // F1.x = (P1.x - c1(P1.y - P0.y) - 2c0(P2.y - P1.y)) F1.y = (P1.y + 2 c0 (P2.x - P1.x) + c1 (P1.x - P0.x)) + // F2.x = (P2.x - 2 c1(P2.y - P1.y) - c0(P3.y - P2.y)) F2.y = (P2.y + c0 (P3.x - P2.x) + 2 c1 (P2.x - P1.x)) + // F3.x = (P3.x - 3 c1(P3.y - P2.y)) F3.y = (P3.y + 3 c1 (P3.x - P2.x)) + + res.p0.x = c.p0.x - 3*fRes[0]*(c.p1.y - c.p0.y); + res.p1.x = c.p1.x - fRes[1]*(c.p1.y - c.p0.y) - 2*fRes[0]*(c.p2.y - c.p1.y); + res.p2.x = c.p2.x - 2*fRes[1]*(c.p2.y - c.p1.y) - fRes[0]*(c.p3.y - c.p2.y); + res.p3.x = c.p3.x - 3*fRes[1]*(c.p3.y - c.p2.y); + + res.p0.y = c.p0.y + 3*fRes[0]*(c.p1.x - c.p0.x); + res.p1.y = c.p1.y + 2*fRes[0]*(c.p2.x - c.p1.x) + fRes[1]*(c.p1.x - c.p0.x); + res.p2.y = c.p2.y + fRes[0]*(c.p3.x - c.p2.x) + 2*fRes[1]*(c.p2.x - c.p1.x); + res.p3.y = c.p3.y + 3*fRes[1]*(c.p3.x - c.p2.x); +} + +bool Impl_calcSafeParams_focus( double& t1, + double& t2, + const Bezier& curve, + const Bezier& focus ) +{ + // now, we want to determine which normals of the original curve + // P(t) intersect with the focus curve F(t). The condition for + // this statement is P'(t)(P(t) - F) = 0, i.e. hodograph P'(t) and + // line through P(t) and F are perpendicular. + // If you expand this equation, you end up with something like + + // (\sum_{i=0}^n (P_i - F)B_i^n(t))^T (\sum_{j=0}^{n-1} n(P_{j+1} - P_j)B_j^{n-1}(t)) + + // Multiplying that out (as the scalar product is linear, we can + // extract some terms) yields: + + // (P_i - F)^T n(P_{j+1} - P_j) B_i^n(t)B_j^{n-1}(t) + ... + + // If we combine the B_i^n(t)B_j^{n-1}(t) product, we arrive at a + // Bernstein polynomial of degree 2n-1, as + + // \binom{n}{i}(1-t)^{n-i}t^i) \binom{n-1}{j}(1-t)^{n-1-j}t^j) = + // \binom{n}{i}\binom{n-1}{j}(1-t)^{2n-1-i-j}t^{i+j} + + // Thus, with the defining equation for a 2n-1 degree Bernstein + // polynomial + + // \sum_{i=0}^{2n-1} d_i B_i^{2n-1}(t) + + // the d_i are calculated as follows: + + // d_i = \sum_{j+k=i, j\in\{0,...,n\}, k\in\{0,...,n-1\}} \frac{\binom{n}{j}\binom{n-1}{k}}{\binom{2n-1}{i}} n (P_{k+1} - P_k)^T(P_j - F) + + // Okay, but F is now not a single point, but itself a curve + // F(u). Thus, for every value of u, we get a different 2n-1 + // bezier curve from the above equation. Therefore, we have a + // tensor product bezier patch, with the following defining + // equation: + + // d(t,u) = \sum_{i=0}^{2n-1} \sum_{j=0}^m B_i^{2n-1}(t) B_j^{m}(u) d_{ij}, where + // d_{ij} = \sum_{k+l=i, l\in\{0,...,n\}, k\in\{0,...,n-1\}} \frac{\binom{n}{l}\binom{n-1}{k}}{\binom{2n-1}{i}} n (P_{k+1} - P_k)^T(P_l - F_j) + + // as above, only that now F is one of the focus' control points. + + // Note the difference in the binomial coefficients to the + // reference paper, these formulas most probably contained a typo. + + // To determine, where D(t,u) is _not_ zero (these are the parts + // of the curve that don't share normals with the focus and can + // thus be safely clipped away), we project D(u,t) onto the + // (d(t,u), t) plane, determine the convex hull there and proceed + // as for the curve intersection part (projection is orthogonal to + // u axis, thus simply throw away u coordinate). + + // \fallfac are so-called falling factorials (see Concrete + // Mathematics, p. 47 for a definition). + + // now, for tensor product bezier curves, the convex hull property + // holds, too. Thus, we simply project the control points (t_{ij}, + // u_{ij}, d_{ij}) onto the (t,d) plane and calculate the + // intersections of the convex hull with the t axis, as for the + // bezier clipping case. + + // calc polygon of control points (t_{ij}, d_{ij}): + + const int n( 3 ); // cubic bezier curves, as a matter of fact + const int i_card( 2*n ); + const int j_card( n + 1 ); + const int k_max( n-1 ); + Polygon2D controlPolygon( i_card*j_card ); // vector of (t_{ij}, d_{ij}) in row-major order + + int i, j, k, l; // variable notation from formulas above and Sederberg article + Point2D::value_type d; + for( i=0; i<i_card; ++i ) + { + for( j=0; j<j_card; ++j ) + { + // calc single d_{ij} sum: + for( d=0.0, k=std::max(0,i-n); k<=k_max && k<=i; ++k ) + { + l = i - k; // invariant: k + l = i + assert(k>=0 && k<=n-1); // k \in {0,...,n-1} + assert(l>=0 && l<=n); // l \in {0,...,n} + + // TODO: find, document and assert proper limits for n and int's max_val. + // This becomes important should anybody wants to use + // this code for higher-than-cubic beziers + d += static_cast<double>(fallFac(n,l)*fallFac(n-1,k)*fac(i)) / + static_cast<double>(fac(l)*fac(k) * fallFac(2*n-1,i)) * n * + ( (curve[k+1].x - curve[k].x)*(curve[l].x - focus[j].x) + // dot product here + (curve[k+1].y - curve[k].y)*(curve[l].y - focus[j].y) ); + } + + // Note that the t_{ij} values are evenly spaced on the + // [0,1] interval, thus t_{ij}=i/(2n-1) + controlPolygon[ i*j_card + j ] = Point2D( i/(2.0*n-1.0), d ); + } + } + +#ifndef WITH_SAFEFOCUSPARAM_DETAILED_TEST + + // calc safe parameter range, to determine [0,t1] and [t2,1] where + // no zero crossing is guaranteed. + return Impl_calcSafeParams( t1, t2, controlPolygon, 0.0, 0.0 ); + +#else + bool bRet( Impl_calcSafeParams( t1, t2, controlPolygon, 0.0, 0.0 ) ); + + Polygon2D convHull( convexHull( controlPolygon ) ); + + std::cout << "# convex hull testing (focus)" << std::endl + << "plot [t=0:1] "; + std::cout << "'-' using ($1):($2) title \"control polygon\" with lp, " + << "'-' using ($1):($2) title \"convex hull\" with lp" << std::endl; + + unsigned int count; + for( count=0; count<controlPolygon.size(); ++count ) + { + std::cout << controlPolygon[count].x << " " << controlPolygon[count].y << std::endl; + } + std::cout << controlPolygon[0].x << " " << controlPolygon[0].y << std::endl; + std::cout << "e" << std::endl; + + for( count=0; count<convHull.size(); ++count ) + { + std::cout << convHull[count].x << " " << convHull[count].y << std::endl; + } + std::cout << convHull[0].x << " " << convHull[0].y << std::endl; + std::cout << "e" << std::endl; + + return bRet; +#endif +} + +/** Calc all values t_i on c1, for which safeRanges functor does not + give a safe range on c1 and c2. + + This method is the workhorse of the bezier clipping. Because c1 + and c2 must be alternatingly tested against each other (first + determine safe parameter interval on c1 with regard to c2, then + the other way around), we call this method recursively with c1 and + c2 swapped. + + @param result + Output iterator where the final t values are added to. If curves + don't intersect, nothing is added. + + @param delta + Maximal allowed distance to true critical point (measured in the + original curve's coordinate system) + + @param safeRangeFunctor + Functor object, that must provide the following operator(): + bool safeRangeFunctor( double& t1, + double& t2, + const Bezier& c1_orig, + const Bezier& c1_part, + const Bezier& c2_orig, + const Bezier& c2_part ); + This functor must calculate the safe ranges [0,t1] and [t2,1] on + c1_orig, where c1_orig is 'safe' from c2_part. If the whole + c1_orig is safe, false must be returned, true otherwise. + */ +template <class Functor> void Impl_applySafeRanges_rec( std::back_insert_iterator< std::vector< std::pair<double, double> > >& result, + double delta, + const Functor& safeRangeFunctor, + int recursionLevel, + const Bezier& c1_orig, + const Bezier& c1_part, + double last_t1_c1, + double last_t2_c1, + const Bezier& c2_orig, + const Bezier& c2_part, + double last_t1_c2, + double last_t2_c2 ) +{ + // check end condition + // =================== + + // TODO: tidy up recursion handling. maybe put everything in a + // struct and swap that here at method entry + + // TODO: Implement limit on recursion depth. Should that limit be + // reached, chances are that we're on a higher-order tangency. For + // this case, AW proposed to take the middle of the current + // interval, and to correct both curve's tangents at that new + // endpoint to be equal. That virtually generates a first-order + // tangency, and justifies to return a single intersection + // point. Otherwise, inside/outside test might fail here. + + for( int i=0; i<recursionLevel; ++i ) std::cerr << " "; + if( recursionLevel % 2 ) + { + std::cerr << std::endl << "level: " << recursionLevel + << " t: " + << last_t1_c2 + (last_t2_c2 - last_t1_c2)/2.0 + << ", c1: " << last_t1_c2 << " " << last_t2_c2 + << ", c2: " << last_t1_c1 << " " << last_t2_c1 + << std::endl; + } + else + { + std::cerr << std::endl << "level: " << recursionLevel + << " t: " + << last_t1_c1 + (last_t2_c1 - last_t1_c1)/2.0 + << ", c1: " << last_t1_c1 << " " << last_t2_c1 + << ", c2: " << last_t1_c2 << " " << last_t2_c2 + << std::endl; + } + + // refine solution + // =============== + + double t1_c1, t2_c1; + + // Note: we first perform the clipping and only test for precision + // sufficiency afterwards, since we want to exploit the fact that + // Impl_calcClipRange returns false if the curves don't + // intersect. We would have to check that separately for the end + // condition, otherwise. + + // determine safe range on c1_orig + if( safeRangeFunctor( t1_c1, t2_c1, c1_orig, c1_part, c2_orig, c2_part ) ) + { + // now, t1 and t2 are calculated on the original curve + // (but against a fat line calculated from the subdivided + // c2, namely c2_part). If the [t1,t2] range is outside + // our current [last_t1,last_t2] range, we're done in this + // branch - the curves no longer intersect. + if( tolLessEqual(t1_c1, last_t2_c1) && tolGreaterEqual(t2_c1, last_t1_c1) ) + { + // As noted above, t1 and t2 are calculated on the + // original curve, but against a fat line + // calculated from the subdivided c2, namely + // c2_part. Our domain to work on is + // [last_t1,last_t2], on the other hand, so values + // of [t1,t2] outside that range are irrelevant + // here. Clip range appropriately. + t1_c1 = std::max(t1_c1, last_t1_c1); + t2_c1 = std::min(t2_c1, last_t2_c1); + + // TODO: respect delta + // for now, end condition is just a fixed threshold on the t's + + // check end condition + // =================== + +#if 1 + if( fabs(last_t2_c1 - last_t1_c1) < 0.0001 && + fabs(last_t2_c2 - last_t1_c2) < 0.0001 ) +#else + if( fabs(last_t2_c1 - last_t1_c1) < 0.01 && + fabs(last_t2_c2 - last_t1_c2) < 0.01 ) +#endif + { + // done. Add to result + if( recursionLevel % 2 ) + { + // uneven level: have to swap the t's, since curves are swapped, too + *result++ = std::make_pair( last_t1_c2 + (last_t2_c2 - last_t1_c2)/2.0, + last_t1_c1 + (last_t2_c1 - last_t1_c1)/2.0 ); + } + else + { + *result++ = std::make_pair( last_t1_c1 + (last_t2_c1 - last_t1_c1)/2.0, + last_t1_c2 + (last_t2_c2 - last_t1_c2)/2.0 ); + } + +#if 0 + //printResultWithFinalCurves( c1_orig, c1_part, c2_orig, c2_part, last_t1_c1, last_t2_c1 ); + printResultWithFinalCurves( c1_orig, c1_part, c2_orig, c2_part, t1_c1, t2_c1 ); +#else + // calc focus curve of c2 + Bezier focus; + Impl_calcFocus(focus, c2_part); // need to use subdivided c2 + + safeRangeFunctor( t1_c1, t2_c1, c1_orig, c1_part, c2_orig, c2_part ); + + //printResultWithFinalCurves( c1_orig, c1_part, c2_orig, focus, t1_c1, t2_c1 ); + printResultWithFinalCurves( c1_orig, c1_part, c2_orig, focus, last_t1_c1, last_t2_c1 ); +#endif + } + else + { + // heuristic: if parameter range is not reduced by at least + // 20%, subdivide longest curve, and clip shortest against + // both parts of longest +// if( (last_t2_c1 - last_t1_c1 - t2_c1 + t1_c1) / (last_t2_c1 - last_t1_c1) < 0.2 ) + if( false ) + { + // subdivide and descend + // ===================== + + Bezier part1; + Bezier part2; + + double intervalMiddle; + + if( last_t2_c1 - last_t1_c1 > last_t2_c2 - last_t1_c2 ) + { + // subdivide c1 + // ============ + + intervalMiddle = last_t1_c1 + (last_t2_c1 - last_t1_c1)/2.0; + + // subdivide at the middle of the interval (as + // we're not subdividing on the original + // curve, this simply amounts to subdivision + // at 0.5) + Impl_deCasteljauAt( part1, part2, c1_part, 0.5 ); + + // and descend recursively with swapped curves + Impl_applySafeRanges_rec( result, delta, safeRangeFunctor, recursionLevel+1, + c2_orig, c2_part, last_t1_c2, last_t2_c2, + c1_orig, part1, last_t1_c1, intervalMiddle ); + + Impl_applySafeRanges_rec( result, delta, safeRangeFunctor, recursionLevel+1, + c2_orig, c2_part, last_t1_c2, last_t2_c2, + c1_orig, part2, intervalMiddle, last_t2_c1 ); + } + else + { + // subdivide c2 + // ============ + + intervalMiddle = last_t1_c2 + (last_t2_c2 - last_t1_c2)/2.0; + + // subdivide at the middle of the interval (as + // we're not subdividing on the original + // curve, this simply amounts to subdivision + // at 0.5) + Impl_deCasteljauAt( part1, part2, c2_part, 0.5 ); + + // and descend recursively with swapped curves + Impl_applySafeRanges_rec( result, delta, safeRangeFunctor, recursionLevel+1, + c2_orig, part1, last_t1_c2, intervalMiddle, + c1_orig, c1_part, last_t1_c1, last_t2_c1 ); + + Impl_applySafeRanges_rec( result, delta, safeRangeFunctor, recursionLevel+1, + c2_orig, part2, intervalMiddle, last_t2_c2, + c1_orig, c1_part, last_t1_c1, last_t2_c1 ); + } + } + else + { + // apply calculated clip + // ===================== + + // clip safe ranges off c1_orig + Bezier c1_part1; + Bezier c1_part2; + Bezier c1_part3; + + // subdivide at t1_c1 + Impl_deCasteljauAt( c1_part1, c1_part2, c1_orig, t1_c1 ); + + // subdivide at t2_c1. As we're working on + // c1_part2 now, we have to adapt t2_c1 since + // we're no longer in the original parameter + // interval. This is based on the following + // assumption: t2_new = (t2-t1)/(1-t1), which + // relates the t2 value into the new parameter + // range [0,1] of c1_part2. + Impl_deCasteljauAt( c1_part1, c1_part3, c1_part2, (t2_c1-t1_c1)/(1.0-t1_c1) ); + + // descend with swapped curves and c1_part1 as the + // remaining (middle) segment + Impl_applySafeRanges_rec( result, delta, safeRangeFunctor, recursionLevel+1, + c2_orig, c2_part, last_t1_c2, last_t2_c2, + c1_orig, c1_part1, t1_c1, t2_c1 ); + } + } + } + } +} + +struct ClipBezierFunctor +{ + bool operator()( double& t1_c1, + double& t2_c1, + const Bezier& c1_orig, + const Bezier& c1_part, + const Bezier& c2_orig, + const Bezier& c2_part ) const + { + return Impl_calcClipRange( t1_c1, t2_c1, c1_orig, c1_part, c2_orig, c2_part ); + } +}; + +struct BezierTangencyFunctor +{ + bool operator()( double& t1_c1, + double& t2_c1, + const Bezier& c1_orig, + const Bezier& c1_part, + const Bezier& c2_orig, + const Bezier& c2_part ) const + { + // calc focus curve of c2 + Bezier focus; + Impl_calcFocus(focus, c2_part); // need to use subdivided c2 + // here, as the whole curve is + // used for focus calculation + + // determine safe range on c1_orig + bool bRet( Impl_calcSafeParams_focus( t1_c1, t2_c1, + c1_orig, // use orig curve here, need t's on original curve + focus ) ); + + std::cerr << "range: " << t2_c1 - t1_c1 << ", ret: " << bRet << std::endl; + + return bRet; + } +}; + +/** Perform a bezier clip (curve against curve) + + @param result + Output iterator where the final t values are added to. This + iterator will remain empty, if there are no intersections. + + @param delta + Maximal allowed distance to true intersection (measured in the + original curve's coordinate system) + */ +void clipBezier( std::back_insert_iterator< std::vector< std::pair<double, double> > >& result, + double delta, + const Bezier& c1, + const Bezier& c2 ) +{ +#if 0 + // first of all, determine list of collinear normals. Collinear + // normals typically separate two intersections, thus, subdivide + // at all collinear normal's t values beforehand. This will cater + // for tangent intersections, where two or more intersections are + // infinitesimally close together. + + // TODO: evaluate effects of higher-than-second-order + // tangencies. Sederberg et al. state that collinear normal + // algorithm then degrades quickly. + + std::vector< std::pair<double,double> > results; + std::back_insert_iterator< std::vector< std::pair<double, double> > > ii(results); + + Impl_calcCollinearNormals( ii, delta, 0, c1, c1, 0.0, 1.0, c2, c2, 0.0, 1.0 ); + + // As Sederberg's collinear normal theorem is only sufficient, not + // necessary for two intersections left and right, we've to test + // all segments generated by the collinear normal algorithm + // against each other. In other words, if the two curves are both + // divided in a left and a right part, the collinear normal + // theorem does _not_ state that the left part of curve 1 does not + // e.g. intersect with the right part of curve 2. + + // divide c1 and c2 at collinear normal intersection points + std::vector< Bezier > c1_segments( results.size()+1 ); + std::vector< Bezier > c2_segments( results.size()+1 ); + Bezier c1_remainder( c1 ); + Bezier c2_remainder( c2 ); + unsigned int i; + for( i=0; i<results.size(); ++i ) + { + Bezier c1_part2; + Impl_deCasteljauAt( c1_segments[i], c1_part2, c1_remainder, results[i].first ); + c1_remainder = c1_part2; + + Bezier c2_part2; + Impl_deCasteljauAt( c2_segments[i], c2_part2, c2_remainder, results[i].second ); + c2_remainder = c2_part2; + } + c1_segments[i] = c1_remainder; + c2_segments[i] = c2_remainder; + + // now, c1/c2_segments contain all segments, then + // clip every resulting segment against every other + unsigned int c1_curr, c2_curr; + for( c1_curr=0; c1_curr<c1_segments.size(); ++c1_curr ) + { + for( c2_curr=0; c2_curr<c2_segments.size(); ++c2_curr ) + { + if( c1_curr != c2_curr ) + { + Impl_clipBezier_rec(result, delta, 0, + c1_segments[c1_curr], c1_segments[c1_curr], + 0.0, 1.0, + c2_segments[c2_curr], c2_segments[c2_curr], + 0.0, 1.0); + } + } + } +#else + Impl_applySafeRanges_rec( result, delta, BezierTangencyFunctor(), 0, c1, c1, 0.0, 1.0, c2, c2, 0.0, 1.0 ); + //Impl_applySafeRanges_rec( result, delta, ClipBezierFunctor(), 0, c1, c1, 0.0, 1.0, c2, c2, 0.0, 1.0 ); +#endif + // that's it, boys'n'girls! +} + +int main(int argc, const char *argv[]) +{ + double curr_Offset( 0 ); + unsigned int i,j,k; + + Bezier someCurves[] = + { +// {Point2D(0.0,0.0),Point2D(0.0,1.0),Point2D(1.0,1.0),Point2D(1.0,0.0)}, +// {Point2D(0.0,0.0),Point2D(0.0,1.0),Point2D(1.0,1.0),Point2D(1.0,0.5)}, +// {Point2D(1.0,0.0),Point2D(0.0,0.0),Point2D(0.0,1.0),Point2D(1.0,1.0)} +// {Point2D(0.25+1,0.5),Point2D(0.25+1,0.708333),Point2D(0.423611+1,0.916667),Point2D(0.770833+1,0.980324)}, +// {Point2D(0.0+1,0.0),Point2D(0.0+1,1.0),Point2D(1.0+1,1.0),Point2D(1.0+1,0.5)} + +// tangency1 +// {Point2D(0.627124+1,0.828427),Point2D(0.763048+1,0.828507),Point2D(0.885547+1,0.77312),Point2D(0.950692+1,0.67325)}, +// {Point2D(0.0,1.0),Point2D(0.1,1.0),Point2D(0.4,1.0),Point2D(0.5,1.0)} + +// {Point2D(0.0,0.0),Point2D(0.0,1.0),Point2D(1.0,1.0),Point2D(1.0,0.5)}, +// {Point2D(0.60114,0.933091),Point2D(0.69461,0.969419),Point2D(0.80676,0.992976),Point2D(0.93756,0.998663)} +// {Point2D(1.0,0.0),Point2D(0.0,0.0),Point2D(0.0,1.0),Point2D(1.0,1.0)}, +// {Point2D(0.62712,0.828427),Point2D(0.76305,0.828507),Point2D(0.88555,0.77312),Point2D(0.95069,0.67325)} + +// clipping1 +// {Point2D(0.0,0.0),Point2D(0.0,3.5),Point2D(1.0,-2.5),Point2D(1.0,1.0)}, +// {Point2D(0.0,1.0),Point2D(3.5,1.0),Point2D(-2.5,0.0),Point2D(1.0,0.0)} + +// tangency2 +// {Point2D(0.0,1.0),Point2D(3.5,1.0),Point2D(-2.5,0.0),Point2D(1.0,0.0)}, +// {Point2D(15.3621,0.00986464),Point2D(15.3683,0.0109389),Point2D(15.3682,0.0109315),Point2D(15.3621,0.00986464)} + +// tangency3 +// {Point2D(1.0,0.0),Point2D(0.0,0.0),Point2D(0.0,1.0),Point2D(1.0,1.0)}, +// {Point2D(-0.5,0.0),Point2D(0.5,0.0),Point2D(0.5,1.0),Point2D(-0.5,1.0)} + +// tangency4 +// {Point2D(-0.5,0.0),Point2D(0.5,0.0),Point2D(0.5,1.0),Point2D(-0.5,1.0)}, +// {Point2D(0.26,0.4),Point2D(0.25,0.5),Point2D(0.25,0.5),Point2D(0.26,0.6)} + +// tangency5 +// {Point2D(0.0,0.0),Point2D(0.0,3.5),Point2D(1.0,-2.5),Point2D(1.0,1.0)}, +// {Point2D(15.3621,0.00986464),Point2D(15.3683,0.0109389),Point2D(15.3682,0.0109315),Point2D(15.3621,0.00986464)} + +// tangency6 +// {Point2D(0.0,0.0),Point2D(0.0,3.5),Point2D(1.0,-2.5),Point2D(1.0,1.0)}, +// {Point2D(15.3621,10.00986464),Point2D(15.3683,10.0109389),Point2D(15.3682,10.0109315),Point2D(15.3621,10.00986464)} + +// tangency7 +// {Point2D(2.505,0.0),Point2D(2.505+4.915,4.300),Point2D(2.505+3.213,10.019),Point2D(2.505-2.505,10.255)}, +// {Point2D(15.3621,10.00986464),Point2D(15.3683,10.0109389),Point2D(15.3682,10.0109315),Point2D(15.3621,10.00986464)} + +// tangency Sederberg example + {Point2D(2.505,0.0),Point2D(2.505+4.915,4.300),Point2D(2.505+3.213,10.019),Point2D(2.505-2.505,10.255)}, + {Point2D(5.33+9.311,0.0),Point2D(5.33+9.311-13.279,4.205),Point2D(5.33+9.311-10.681,9.119),Point2D(5.33+9.311-2.603,10.254)} + +// clipping2 +// {Point2D(-0.5,0.0),Point2D(0.5,0.0),Point2D(0.5,1.0),Point2D(-0.5,1.0)}, +// {Point2D(0.2575,0.4),Point2D(0.2475,0.5),Point2D(0.2475,0.5),Point2D(0.2575,0.6)} + +// {Point2D(0.0,0.1),Point2D(0.2,3.5),Point2D(1.0,-2.5),Point2D(1.1,1.2)}, +// {Point2D(0.0,1.0),Point2D(3.5,0.9),Point2D(-2.5,0.1),Point2D(1.1,0.2)} +// {Point2D(0.0,0.1),Point2D(0.2,3.0),Point2D(1.0,-2.0),Point2D(1.1,1.2)}, +// {Point2D(0.627124+1,0.828427),Point2D(0.763048+1,0.828507),Point2D(0.885547+1,0.77312),Point2D(0.950692+1,0.67325)} +// {Point2D(0.0,1.0),Point2D(3.0,0.9),Point2D(-2.0,0.1),Point2D(1.1,0.2)} +// {Point2D(0.0,4.0),Point2D(0.1,5.0),Point2D(0.9,5.0),Point2D(1.0,4.0)}, +// {Point2D(0.0,0.0),Point2D(0.1,0.5),Point2D(0.9,0.5),Point2D(1.0,0.0)}, +// {Point2D(0.0,0.1),Point2D(0.1,1.5),Point2D(0.9,1.5),Point2D(1.0,0.1)}, +// {Point2D(0.0,-4.0),Point2D(0.1,-5.0),Point2D(0.9,-5.0),Point2D(1.0,-4.0)} + }; + + // output gnuplot setup + std::cout << "#!/usr/bin/gnuplot -persist" << std::endl + << "#" << std::endl + << "# automatically generated by bezierclip, don't change!" << std::endl + << "#" << std::endl + << "set parametric" << std::endl + << "bez(p,q,r,s,t) = p*(1-t)**3+q*3*(1-t)**2*t+r*3*(1-t)*t**2+s*t**3" << std::endl + << "bezd(p,q,r,s,t) = 3*(q-p)*(1-t)**2+6*(r-q)*(1-t)*t+3*(s-r)*t**2" << std::endl + << "pointmarkx(c,t) = c-0.03*t" << std::endl + << "pointmarky(c,t) = c+0.03*t" << std::endl + << "linex(a,b,c,t) = a*-c + t*-b" << std::endl + << "liney(a,b,c,t) = b*-c + t*a" << std::endl << std::endl + << "# end of setup" << std::endl << std::endl; + +#ifdef WITH_CONVEXHULL_TEST + // test convex hull algorithm + const double convHull_xOffset( curr_Offset ); + curr_Offset += 20; + std::cout << "# convex hull testing" << std::endl + << "plot [t=0:1] "; + for( i=0; i<sizeof(someCurves)/sizeof(Bezier); ++i ) + { + Polygon2D aTestPoly(4); + aTestPoly[0] = someCurves[i].p0; + aTestPoly[1] = someCurves[i].p1; + aTestPoly[2] = someCurves[i].p2; + aTestPoly[3] = someCurves[i].p3; + + aTestPoly[0].x += convHull_xOffset; + aTestPoly[1].x += convHull_xOffset; + aTestPoly[2].x += convHull_xOffset; + aTestPoly[3].x += convHull_xOffset; + + std::cout << " bez(" + << aTestPoly[0].x << "," + << aTestPoly[1].x << "," + << aTestPoly[2].x << "," + << aTestPoly[3].x << ",t),bez(" + << aTestPoly[0].y << "," + << aTestPoly[1].y << "," + << aTestPoly[2].y << "," + << aTestPoly[3].y << ",t), '-' using ($1):($2) title \"convex hull " << i << "\" with lp"; + + if( i+1<sizeof(someCurves)/sizeof(Bezier) ) + std::cout << ",\\" << std::endl; + else + std::cout << std::endl; + } + for( i=0; i<sizeof(someCurves)/sizeof(Bezier); ++i ) + { + Polygon2D aTestPoly(4); + aTestPoly[0] = someCurves[i].p0; + aTestPoly[1] = someCurves[i].p1; + aTestPoly[2] = someCurves[i].p2; + aTestPoly[3] = someCurves[i].p3; + + aTestPoly[0].x += convHull_xOffset; + aTestPoly[1].x += convHull_xOffset; + aTestPoly[2].x += convHull_xOffset; + aTestPoly[3].x += convHull_xOffset; + + Polygon2D convHull( convexHull(aTestPoly) ); + + for( k=0; k<convHull.size(); ++k ) + { + std::cout << convHull[k].x << " " << convHull[k].y << std::endl; + } + std::cout << convHull[0].x << " " << convHull[0].y << std::endl; + std::cout << "e" << std::endl; + } +#endif + +#ifdef WITH_MULTISUBDIVIDE_TEST + // test convex hull algorithm + const double multiSubdivide_xOffset( curr_Offset ); + curr_Offset += 20; + std::cout << "# multi subdivide testing" << std::endl + << "plot [t=0:1] "; + for( i=0; i<sizeof(someCurves)/sizeof(Bezier); ++i ) + { + Bezier c( someCurves[i] ); + Bezier c1_part1; + Bezier c1_part2; + Bezier c1_part3; + + c.p0.x += multiSubdivide_xOffset; + c.p1.x += multiSubdivide_xOffset; + c.p2.x += multiSubdivide_xOffset; + c.p3.x += multiSubdivide_xOffset; + + const double t1( 0.1+i/(3.0*sizeof(someCurves)/sizeof(Bezier)) ); + const double t2( 0.9-i/(3.0*sizeof(someCurves)/sizeof(Bezier)) ); + + // subdivide at t1 + Impl_deCasteljauAt( c1_part1, c1_part2, c, t1 ); + + // subdivide at t2_c1. As we're working on + // c1_part2 now, we have to adapt t2_c1 since + // we're no longer in the original parameter + // interval. This is based on the following + // assumption: t2_new = (t2-t1)/(1-t1), which + // relates the t2 value into the new parameter + // range [0,1] of c1_part2. + Impl_deCasteljauAt( c1_part1, c1_part3, c1_part2, (t2-t1)/(1.0-t1) ); + + // subdivide at t2 + Impl_deCasteljauAt( c1_part3, c1_part2, c, t2 ); + + std::cout << " bez(" + << c1_part1.p0.x << "," + << c1_part1.p1.x << "," + << c1_part1.p2.x << "," + << c1_part1.p3.x << ",t), bez(" + << c1_part1.p0.y+0.01 << "," + << c1_part1.p1.y+0.01 << "," + << c1_part1.p2.y+0.01 << "," + << c1_part1.p3.y+0.01 << ",t) title \"middle " << i << "\", " + << " bez(" + << c1_part2.p0.x << "," + << c1_part2.p1.x << "," + << c1_part2.p2.x << "," + << c1_part2.p3.x << ",t), bez(" + << c1_part2.p0.y << "," + << c1_part2.p1.y << "," + << c1_part2.p2.y << "," + << c1_part2.p3.y << ",t) title \"right " << i << "\", " + << " bez(" + << c1_part3.p0.x << "," + << c1_part3.p1.x << "," + << c1_part3.p2.x << "," + << c1_part3.p3.x << ",t), bez(" + << c1_part3.p0.y << "," + << c1_part3.p1.y << "," + << c1_part3.p2.y << "," + << c1_part3.p3.y << ",t) title \"left " << i << "\""; + + if( i+1<sizeof(someCurves)/sizeof(Bezier) ) + std::cout << ",\\" << std::endl; + else + std::cout << std::endl; + } +#endif + +#ifdef WITH_FATLINE_TEST + // test fatline algorithm + const double fatLine_xOffset( curr_Offset ); + curr_Offset += 20; + std::cout << "# fat line testing" << std::endl + << "plot [t=0:1] "; + for( i=0; i<sizeof(someCurves)/sizeof(Bezier); ++i ) + { + Bezier c( someCurves[i] ); + + c.p0.x += fatLine_xOffset; + c.p1.x += fatLine_xOffset; + c.p2.x += fatLine_xOffset; + c.p3.x += fatLine_xOffset; + + FatLine line; + + Impl_calcFatLine(line, c); + + std::cout << " bez(" + << c.p0.x << "," + << c.p1.x << "," + << c.p2.x << "," + << c.p3.x << ",t), bez(" + << c.p0.y << "," + << c.p1.y << "," + << c.p2.y << "," + << c.p3.y << ",t) title \"bezier " << i << "\", linex(" + << line.a << "," + << line.b << "," + << line.c << ",t), liney(" + << line.a << "," + << line.b << "," + << line.c << ",t) title \"fat line (center) on " << i << "\", linex(" + << line.a << "," + << line.b << "," + << line.c-line.dMin << ",t), liney(" + << line.a << "," + << line.b << "," + << line.c-line.dMin << ",t) title \"fat line (min) on " << i << "\", linex(" + << line.a << "," + << line.b << "," + << line.c-line.dMax << ",t), liney(" + << line.a << "," + << line.b << "," + << line.c-line.dMax << ",t) title \"fat line (max) on " << i << "\""; + + if( i+1<sizeof(someCurves)/sizeof(Bezier) ) + std::cout << ",\\" << std::endl; + else + std::cout << std::endl; + } +#endif + +#ifdef WITH_CALCFOCUS_TEST + // test focus curve algorithm + const double focus_xOffset( curr_Offset ); + curr_Offset += 20; + std::cout << "# focus line testing" << std::endl + << "plot [t=0:1] "; + for( i=0; i<sizeof(someCurves)/sizeof(Bezier); ++i ) + { + Bezier c( someCurves[i] ); + + c.p0.x += focus_xOffset; + c.p1.x += focus_xOffset; + c.p2.x += focus_xOffset; + c.p3.x += focus_xOffset; + + // calc focus curve + Bezier focus; + Impl_calcFocus(focus, c); + + std::cout << " bez(" + << c.p0.x << "," + << c.p1.x << "," + << c.p2.x << "," + << c.p3.x << ",t), bez(" + << c.p0.y << "," + << c.p1.y << "," + << c.p2.y << "," + << c.p3.y << ",t) title \"bezier " << i << "\", bez(" + << focus.p0.x << "," + << focus.p1.x << "," + << focus.p2.x << "," + << focus.p3.x << ",t), bez(" + << focus.p0.y << "," + << focus.p1.y << "," + << focus.p2.y << "," + << focus.p3.y << ",t) title \"focus " << i << "\""; + + if( i+1<sizeof(someCurves)/sizeof(Bezier) ) + std::cout << ",\\" << std::endl; + else + std::cout << std::endl; + } +#endif + +#ifdef WITH_SAFEPARAMBASE_TEST + // test safe params base method + double safeParamsBase_xOffset( curr_Offset ); + std::cout << "# safe param base method testing" << std::endl + << "plot [t=0:1] "; + for( i=0; i<sizeof(someCurves)/sizeof(Bezier); ++i ) + { + Bezier c( someCurves[i] ); + + c.p0.x += safeParamsBase_xOffset; + c.p1.x += safeParamsBase_xOffset; + c.p2.x += safeParamsBase_xOffset; + c.p3.x += safeParamsBase_xOffset; + + Polygon2D poly(4); + poly[0] = c.p0; + poly[1] = c.p1; + poly[2] = c.p2; + poly[3] = c.p3; + + double t1, t2; + + bool bRet( Impl_calcSafeParams( t1, t2, poly, 0, 1 ) ); + + Polygon2D convHull( convexHull( poly ) ); + + std::cout << " bez(" + << poly[0].x << "," + << poly[1].x << "," + << poly[2].x << "," + << poly[3].x << ",t),bez(" + << poly[0].y << "," + << poly[1].y << "," + << poly[2].y << "," + << poly[3].y << ",t), " + << "t+" << safeParamsBase_xOffset << ", 0, " + << "t+" << safeParamsBase_xOffset << ", 1, "; + if( bRet ) + { + std::cout << t1+safeParamsBase_xOffset << ", t, " + << t2+safeParamsBase_xOffset << ", t, "; + } + std::cout << "'-' using ($1):($2) title \"control polygon\" with lp, " + << "'-' using ($1):($2) title \"convex hull\" with lp"; + + if( i+1<sizeof(someCurves)/sizeof(Bezier) ) + std::cout << ",\\" << std::endl; + else + std::cout << std::endl; + + safeParamsBase_xOffset += 2; + } + + safeParamsBase_xOffset = curr_Offset; + for( i=0; i<sizeof(someCurves)/sizeof(Bezier); ++i ) + { + Bezier c( someCurves[i] ); + + c.p0.x += safeParamsBase_xOffset; + c.p1.x += safeParamsBase_xOffset; + c.p2.x += safeParamsBase_xOffset; + c.p3.x += safeParamsBase_xOffset; + + Polygon2D poly(4); + poly[0] = c.p0; + poly[1] = c.p1; + poly[2] = c.p2; + poly[3] = c.p3; + + double t1, t2; + + Impl_calcSafeParams( t1, t2, poly, 0, 1 ); + + Polygon2D convHull( convexHull( poly ) ); + + unsigned int k; + for( k=0; k<poly.size(); ++k ) + { + std::cout << poly[k].x << " " << poly[k].y << std::endl; + } + std::cout << poly[0].x << " " << poly[0].y << std::endl; + std::cout << "e" << std::endl; + + for( k=0; k<convHull.size(); ++k ) + { + std::cout << convHull[k].x << " " << convHull[k].y << std::endl; + } + std::cout << convHull[0].x << " " << convHull[0].y << std::endl; + std::cout << "e" << std::endl; + + safeParamsBase_xOffset += 2; + } + curr_Offset += 20; +#endif + +#ifdef WITH_SAFEPARAMS_TEST + // test safe parameter range algorithm + const double safeParams_xOffset( curr_Offset ); + curr_Offset += 20; + std::cout << "# safe param range testing" << std::endl + << "plot [t=0.0:1.0] "; + for( i=0; i<sizeof(someCurves)/sizeof(Bezier); ++i ) + { + for( j=i+1; j<sizeof(someCurves)/sizeof(Bezier); ++j ) + { + Bezier c1( someCurves[i] ); + Bezier c2( someCurves[j] ); + + c1.p0.x += safeParams_xOffset; + c1.p1.x += safeParams_xOffset; + c1.p2.x += safeParams_xOffset; + c1.p3.x += safeParams_xOffset; + c2.p0.x += safeParams_xOffset; + c2.p1.x += safeParams_xOffset; + c2.p2.x += safeParams_xOffset; + c2.p3.x += safeParams_xOffset; + + double t1, t2; + + if( Impl_calcClipRange(t1, t2, c1, c1, c2, c2) ) + { + // clip safe ranges off c1 + Bezier c1_part1; + Bezier c1_part2; + Bezier c1_part3; + + // subdivide at t1_c1 + Impl_deCasteljauAt( c1_part1, c1_part2, c1, t1 ); + // subdivide at t2_c1 + Impl_deCasteljauAt( c1_part1, c1_part3, c1_part2, (t2-t1)/(1.0-t1) ); + + // output remaining segment (c1_part1) + + std::cout << " bez(" + << c1.p0.x << "," + << c1.p1.x << "," + << c1.p2.x << "," + << c1.p3.x << ",t),bez(" + << c1.p0.y << "," + << c1.p1.y << "," + << c1.p2.y << "," + << c1.p3.y << ",t), bez(" + << c2.p0.x << "," + << c2.p1.x << "," + << c2.p2.x << "," + << c2.p3.x << ",t),bez(" + << c2.p0.y << "," + << c2.p1.y << "," + << c2.p2.y << "," + << c2.p3.y << ",t), bez(" + << c1_part1.p0.x << "," + << c1_part1.p1.x << "," + << c1_part1.p2.x << "," + << c1_part1.p3.x << ",t),bez(" + << c1_part1.p0.y << "," + << c1_part1.p1.y << "," + << c1_part1.p2.y << "," + << c1_part1.p3.y << ",t)"; + + if( i+2<sizeof(someCurves)/sizeof(Bezier) ) + std::cout << ",\\" << std::endl; + else + std::cout << std::endl; + } + } + } +#endif + +#ifdef WITH_SAFEPARAM_DETAILED_TEST + // test safe parameter range algorithm + const double safeParams2_xOffset( curr_Offset ); + curr_Offset += 20; + if( sizeof(someCurves)/sizeof(Bezier) > 1 ) + { + Bezier c1( someCurves[0] ); + Bezier c2( someCurves[1] ); + + c1.p0.x += safeParams2_xOffset; + c1.p1.x += safeParams2_xOffset; + c1.p2.x += safeParams2_xOffset; + c1.p3.x += safeParams2_xOffset; + c2.p0.x += safeParams2_xOffset; + c2.p1.x += safeParams2_xOffset; + c2.p2.x += safeParams2_xOffset; + c2.p3.x += safeParams2_xOffset; + + double t1, t2; + + // output happens here + Impl_calcClipRange(t1, t2, c1, c1, c2, c2); + } +#endif + +#ifdef WITH_SAFEFOCUSPARAM_TEST + // test safe parameter range from focus algorithm + const double safeParamsFocus_xOffset( curr_Offset ); + curr_Offset += 20; + std::cout << "# safe param range from focus testing" << std::endl + << "plot [t=0.0:1.0] "; + for( i=0; i<sizeof(someCurves)/sizeof(Bezier); ++i ) + { + for( j=i+1; j<sizeof(someCurves)/sizeof(Bezier); ++j ) + { + Bezier c1( someCurves[i] ); + Bezier c2( someCurves[j] ); + + c1.p0.x += safeParamsFocus_xOffset; + c1.p1.x += safeParamsFocus_xOffset; + c1.p2.x += safeParamsFocus_xOffset; + c1.p3.x += safeParamsFocus_xOffset; + c2.p0.x += safeParamsFocus_xOffset; + c2.p1.x += safeParamsFocus_xOffset; + c2.p2.x += safeParamsFocus_xOffset; + c2.p3.x += safeParamsFocus_xOffset; + + double t1, t2; + + Bezier focus; +#ifdef WITH_SAFEFOCUSPARAM_CALCFOCUS +#if 0 + { + // clip safe ranges off c1_orig + Bezier c1_part1; + Bezier c1_part2; + Bezier c1_part3; + + // subdivide at t1_c1 + Impl_deCasteljauAt( c1_part1, c1_part2, c2, 0.30204 ); + + // subdivide at t2_c1. As we're working on + // c1_part2 now, we have to adapt t2_c1 since + // we're no longer in the original parameter + // interval. This is based on the following + // assumption: t2_new = (t2-t1)/(1-t1), which + // relates the t2 value into the new parameter + // range [0,1] of c1_part2. + Impl_deCasteljauAt( c1_part1, c1_part3, c1_part2, (0.57151-0.30204)/(1.0-0.30204) ); + + c2 = c1_part1; + Impl_calcFocus( focus, c2 ); + } +#else + Impl_calcFocus( focus, c2 ); +#endif +#else + focus = c2; +#endif + // determine safe range on c1 + bool bRet( Impl_calcSafeParams_focus( t1, t2, + c1, focus ) ); + + std::cerr << "t1: " << t1 << ", t2: " << t2 << std::endl; + + // clip safe ranges off c1 + Bezier c1_part1; + Bezier c1_part2; + Bezier c1_part3; + + // subdivide at t1_c1 + Impl_deCasteljauAt( c1_part1, c1_part2, c1, t1 ); + // subdivide at t2_c1 + Impl_deCasteljauAt( c1_part1, c1_part3, c1_part2, (t2-t1)/(1.0-t1) ); + + // output remaining segment (c1_part1) + + std::cout << " bez(" + << c1.p0.x << "," + << c1.p1.x << "," + << c1.p2.x << "," + << c1.p3.x << ",t),bez(" + << c1.p0.y << "," + << c1.p1.y << "," + << c1.p2.y << "," + << c1.p3.y << ",t) title \"c1\", " +#ifdef WITH_SAFEFOCUSPARAM_CALCFOCUS + << "bez(" + << c2.p0.x << "," + << c2.p1.x << "," + << c2.p2.x << "," + << c2.p3.x << ",t),bez(" + << c2.p0.y << "," + << c2.p1.y << "," + << c2.p2.y << "," + << c2.p3.y << ",t) title \"c2\", " + << "bez(" + << focus.p0.x << "," + << focus.p1.x << "," + << focus.p2.x << "," + << focus.p3.x << ",t),bez(" + << focus.p0.y << "," + << focus.p1.y << "," + << focus.p2.y << "," + << focus.p3.y << ",t) title \"focus\""; +#else + << "bez(" + << c2.p0.x << "," + << c2.p1.x << "," + << c2.p2.x << "," + << c2.p3.x << ",t),bez(" + << c2.p0.y << "," + << c2.p1.y << "," + << c2.p2.y << "," + << c2.p3.y << ",t) title \"focus\""; +#endif + if( bRet ) + { + std::cout << ", bez(" + << c1_part1.p0.x << "," + << c1_part1.p1.x << "," + << c1_part1.p2.x << "," + << c1_part1.p3.x << ",t),bez(" + << c1_part1.p0.y+0.01 << "," + << c1_part1.p1.y+0.01 << "," + << c1_part1.p2.y+0.01 << "," + << c1_part1.p3.y+0.01 << ",t) title \"part\""; + } + + if( i+2<sizeof(someCurves)/sizeof(Bezier) ) + std::cout << ",\\" << std::endl; + else + std::cout << std::endl; + } + } +#endif + +#ifdef WITH_SAFEFOCUSPARAM_DETAILED_TEST + // test safe parameter range algorithm + const double safeParams3_xOffset( curr_Offset ); + curr_Offset += 20; + if( sizeof(someCurves)/sizeof(Bezier) > 1 ) + { + Bezier c1( someCurves[0] ); + Bezier c2( someCurves[1] ); + + c1.p0.x += safeParams3_xOffset; + c1.p1.x += safeParams3_xOffset; + c1.p2.x += safeParams3_xOffset; + c1.p3.x += safeParams3_xOffset; + c2.p0.x += safeParams3_xOffset; + c2.p1.x += safeParams3_xOffset; + c2.p2.x += safeParams3_xOffset; + c2.p3.x += safeParams3_xOffset; + + double t1, t2; + + Bezier focus; +#ifdef WITH_SAFEFOCUSPARAM_CALCFOCUS + Impl_calcFocus( focus, c2 ); +#else + focus = c2; +#endif + + // determine safe range on c1, output happens here + Impl_calcSafeParams_focus( t1, t2, + c1, focus ); + } +#endif + +#ifdef WITH_BEZIERCLIP_TEST + std::vector< std::pair<double, double> > result; + std::back_insert_iterator< std::vector< std::pair<double, double> > > ii(result); + + // test full bezier clipping + const double bezierClip_xOffset( curr_Offset ); + std::cout << std::endl << std::endl << "# bezier clip testing" << std::endl + << "plot [t=0:1] "; + for( i=0; i<sizeof(someCurves)/sizeof(Bezier); ++i ) + { + for( j=i+1; j<sizeof(someCurves)/sizeof(Bezier); ++j ) + { + Bezier c1( someCurves[i] ); + Bezier c2( someCurves[j] ); + + c1.p0.x += bezierClip_xOffset; + c1.p1.x += bezierClip_xOffset; + c1.p2.x += bezierClip_xOffset; + c1.p3.x += bezierClip_xOffset; + c2.p0.x += bezierClip_xOffset; + c2.p1.x += bezierClip_xOffset; + c2.p2.x += bezierClip_xOffset; + c2.p3.x += bezierClip_xOffset; + + std::cout << " bez(" + << c1.p0.x << "," + << c1.p1.x << "," + << c1.p2.x << "," + << c1.p3.x << ",t),bez(" + << c1.p0.y << "," + << c1.p1.y << "," + << c1.p2.y << "," + << c1.p3.y << ",t), bez(" + << c2.p0.x << "," + << c2.p1.x << "," + << c2.p2.x << "," + << c2.p3.x << ",t),bez(" + << c2.p0.y << "," + << c2.p1.y << "," + << c2.p2.y << "," + << c2.p3.y << ",t), '-' using (bez(" + << c1.p0.x << "," + << c1.p1.x << "," + << c1.p2.x << "," + << c1.p3.x + << ",$1)):(bez(" + << c1.p0.y << "," + << c1.p1.y << "," + << c1.p2.y << "," + << c1.p3.y << ",$1)) title \"bezier " << i << " clipped against " << j << " (t on " << i << ")\", " + << " '-' using (bez(" + << c2.p0.x << "," + << c2.p1.x << "," + << c2.p2.x << "," + << c2.p3.x + << ",$1)):(bez(" + << c2.p0.y << "," + << c2.p1.y << "," + << c2.p2.y << "," + << c2.p3.y << ",$1)) title \"bezier " << i << " clipped against " << j << " (t on " << j << ")\""; + + if( i+2<sizeof(someCurves)/sizeof(Bezier) ) + std::cout << ",\\" << std::endl; + else + std::cout << std::endl; + } + } + for( i=0; i<sizeof(someCurves)/sizeof(Bezier); ++i ) + { + for( j=i+1; j<sizeof(someCurves)/sizeof(Bezier); ++j ) + { + result.clear(); + Bezier c1( someCurves[i] ); + Bezier c2( someCurves[j] ); + + c1.p0.x += bezierClip_xOffset; + c1.p1.x += bezierClip_xOffset; + c1.p2.x += bezierClip_xOffset; + c1.p3.x += bezierClip_xOffset; + c2.p0.x += bezierClip_xOffset; + c2.p1.x += bezierClip_xOffset; + c2.p2.x += bezierClip_xOffset; + c2.p3.x += bezierClip_xOffset; + + clipBezier( ii, 0.00001, c1, c2 ); + + for( k=0; k<result.size(); ++k ) + { + std::cout << result[k].first << std::endl; + } + std::cout << "e" << std::endl; + + for( k=0; k<result.size(); ++k ) + { + std::cout << result[k].second << std::endl; + } + std::cout << "e" << std::endl; + } + } +#endif + + return 0; +} + +/* vim:set shiftwidth=4 softtabstop=4 expandtab: */ |