summaryrefslogtreecommitdiffstats
path: root/external/skia
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 09:06:44 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 09:06:44 +0000
commited5640d8b587fbcfed7dd7967f3de04b37a76f26 (patch)
tree7a5f7c6c9d02226d7471cb3cc8fbbf631b415303 /external/skia
parentInitial commit. (diff)
downloadlibreoffice-ed5640d8b587fbcfed7dd7967f3de04b37a76f26.tar.xz
libreoffice-ed5640d8b587fbcfed7dd7967f3de04b37a76f26.zip
Adding upstream version 4:7.4.7.upstream/4%7.4.7upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r--external/skia/Library_skia.mk1017
-rw-r--r--external/skia/Makefile7
-rw-r--r--external/skia/Module_skia.mk18
-rw-r--r--external/skia/README33
-rw-r--r--external/skia/UnpackedTarball_skia.mk53
-rw-r--r--external/skia/allow-no-es2restrictions.patch.113
-rw-r--r--external/skia/clang-attributes-warning.patch.131
-rw-r--r--external/skia/clang11-flax-vector-conversion.patch.011
-rw-r--r--external/skia/fast-png-write.patch.115
-rw-r--r--external/skia/fix-alpha-difference-copy.patch.113
-rw-r--r--external/skia/fix-ddi.patch9
-rw-r--r--external/skia/fix-graphite-ifdef.patch.148
-rw-r--r--external/skia/fix-pch.patch.1106
-rw-r--r--external/skia/fix-warnings.patch.139
-rw-r--r--external/skia/fix-windows-dwrite.patch.140
-rw-r--r--external/skia/fix-without-gl.patch.150
-rw-r--r--external/skia/fontconfig-get-typeface.patch.040
-rw-r--r--external/skia/inc/pch/precompiled_skia.cxx12
-rw-r--r--external/skia/inc/pch/precompiled_skia.hxx618
-rw-r--r--external/skia/inc/skia_compiler.hxx13
-rw-r--r--external/skia/inc/skia_opts.hxx28
-rw-r--r--external/skia/make-api-visible.patch.182
-rw-r--r--external/skia/missing-include.patch.020
-rw-r--r--external/skia/no-trace-resources-on-exit.patch.113
-rw-r--r--external/skia/share-grcontext.patch.1872
-rw-r--r--external/skia/skia_sk_cpu_sse_level_0_by_default.patch.115
-rw-r--r--external/skia/source/SkMemory_malloc.cxx68
-rw-r--r--external/skia/source/skia_compiler.cxx20
-rw-r--r--external/skia/source/skia_opts.cxx77
-rw-r--r--external/skia/source/skia_opts_internal.hxx81
-rw-r--r--external/skia/source/skia_opts_ssse3.cxx17
-rw-r--r--external/skia/swap-buffers-rect.patch.1153
-rw-r--r--external/skia/tdf148624.patch.160
-rw-r--r--external/skia/ubsan.patch.142
-rw-r--r--external/skia/vk_mem_alloc.patch.119639
-rw-r--r--external/skia/windows-do-not-modify-logfont.patch.029
-rw-r--r--external/skia/windows-force-unicode-api.patch.031
-rw-r--r--external/skia/windows-libraries-system32.patch.113
-rw-r--r--external/skia/windows-raster-surface-no-copies.patch.139
-rw-r--r--external/skia/windows-text-gamma.patch.070
-rw-r--r--external/skia/windows-typeface-directwrite.patch.048
41 files changed, 23603 insertions, 0 deletions
diff --git a/external/skia/Library_skia.mk b/external/skia/Library_skia.mk
new file mode 100644
index 000000000..14c59c99c
--- /dev/null
+++ b/external/skia/Library_skia.mk
@@ -0,0 +1,1017 @@
+# -*- Mode: makefile-gmake; tab-width: 4; indent-tabs-mode: t -*-
+#
+# This file is part of the LibreOffice project.
+#
+# This Source Code Form is subject to the terms of the Mozilla Public
+# License, v. 2.0. If a copy of the MPL was not distributed with this
+# file, You can obtain one at http://mozilla.org/MPL/2.0/.
+#
+
+$(eval $(call gb_Library_Library,skia))
+
+$(eval $(call gb_Library_set_warnings_disabled,skia))
+
+$(eval $(call gb_Library_use_unpacked,skia,skia))
+
+$(eval $(call gb_Library_use_clang,skia))
+$(eval $(call gb_Library_set_clang_precompiled_header,skia,external/skia/inc/pch/precompiled_skia))
+
+$(eval $(call gb_Library_add_defs,skia,\
+ -DSKIA_IMPLEMENTATION=1 \
+ -DSKIA_DLL \
+ -DSK_USER_CONFIG_HEADER="<$(BUILDDIR)/config_host/config_skia.h>" \
+))
+
+# SK_DEBUG controls runtime checks and is controlled by config_skia.h and depends on DBG_UTIL.
+# This controls whether to build with compiler optimizations, normally yes, --enable-skia=debug
+# allows to build non-optimized. We normally wouldn't debug a 3rd-party library, and Skia
+# performance is relatively important (it may be the drawing engine used in software mode).
+# Some code may be always built with optimizations, even with Skia debug enabled (see
+# $(gb_COMPILEROPTFLAGS) usage).
+ifeq ($(ENABLE_SKIA_DEBUG),)
+$(eval $(call gb_Library_add_cxxflags,skia, \
+ $(gb_COMPILEROPTFLAGS) \
+ $(PCH_NO_CODEGEN) \
+))
+endif
+
+ifeq ($(OS),WNT)
+# Skia can be built with or without UNICODE set, in LO sources we explicitly use the *W unicode
+# variants, so build Skia with UNICODE to make it also use the *W variants.
+$(eval $(call gb_Library_add_defs,skia,\
+ -DUNICODE -D_UNICODE \
+))
+ifneq ($(gb_ENABLE_PCH),)
+$(eval $(call gb_Library_add_cxxflags,skia, \
+ -FIsrc/utils/win/SkDWriteNTDDI_VERSION.h \
+))
+endif
+
+$(eval $(call gb_Library_use_system_win32_libs,skia,\
+ fontsub \
+ ole32 \
+ oleaut32 \
+ user32 \
+ usp10 \
+ gdi32 \
+))
+
+# cl.exe (and thus clang-cl) likes to emit copies of inline functions even when not needed,
+# which means that for e.g. AVX-compiled sources the .o may contain a copy of an inline
+# function built using AVX, and the linker may select that copy as the one to keep, thus
+# introducing AVX code into generic code. Avoid generating such inlines. The flag currently
+# cannot be used for the whole Skia, because code built without the flag cannot use
+# libraries built with the flag, so cl.exe-built VCL would have undefined references.
+ifeq ($(HAVE_LO_CLANG_DLLEXPORTINLINES),TRUE)
+LO_SKIA_AVOID_INLINE_COPIES := -Zc:dllexportInlines-
+endif
+
+else ifeq ($(OS),MACOSX)
+
+$(eval $(call gb_Library_use_system_darwin_frameworks,skia,\
+ Cocoa \
+ Metal \
+ QuartzCore \
+))
+
+ifneq ($(SKIA_DISABLE_VMA_USE_STL_SHARED_MUTEX),)
+# Disable std::shared_mutex usage on MacOSX < 10.12.
+$(eval $(call gb_Library_add_defs,skia,\
+ -DVMA_USE_STL_SHARED_MUTEX=0 \
+))
+endif
+
+else
+$(eval $(call gb_Library_use_externals,skia,\
+ freetype \
+ fontconfig \
+))
+endif
+
+# we don't enable jpeg for skia, but it has incorrect #ifdef's in places
+$(eval $(call gb_Library_use_externals,skia,\
+ zlib \
+ libjpeg \
+ libpng \
+))
+
+ifeq ($(OS),LINUX)
+$(eval $(call gb_Library_add_libs,skia,\
+ -lm \
+ -ldl \
+ -lX11-xcb \
+ -lX11 \
+))
+endif
+
+$(eval $(call gb_Library_use_libraries,skia,\
+ sal \
+))
+
+$(eval $(call gb_Library_set_include,skia,\
+ $$(INCLUDE) \
+ -I$(call gb_UnpackedTarball_get_dir,skia) \
+ -I$(call gb_UnpackedTarball_get_dir,skia)/include/third_party/skcms/ \
+ -I$(call gb_UnpackedTarball_get_dir,skia)/third_party/vulkanmemoryallocator/ \
+ -I$(call gb_UnpackedTarball_get_dir,skia)/include/third_party/vulkan/ \
+ -I$(SRCDIR)/external/skia/inc/ \
+))
+
+$(eval $(call gb_Library_add_exception_objects,skia,\
+ external/skia/source/SkMemory_malloc \
+ external/skia/source/skia_compiler \
+ external/skia/source/skia_opts \
+))
+
+$(eval $(call gb_Library_set_generated_cxx_suffix,skia,cpp))
+
+$(eval $(call gb_Library_add_generated_exception_objects,skia,\
+ UnpackedTarball/skia/src/codec/SkAndroidCodecAdapter \
+ UnpackedTarball/skia/src/codec/SkAndroidCodec \
+ UnpackedTarball/skia/src/codec/SkBmpBaseCodec \
+ UnpackedTarball/skia/src/codec/SkBmpCodec \
+ UnpackedTarball/skia/src/codec/SkBmpMaskCodec \
+ UnpackedTarball/skia/src/codec/SkBmpRLECodec \
+ UnpackedTarball/skia/src/codec/SkBmpStandardCodec \
+ UnpackedTarball/skia/src/codec/SkCodec \
+ UnpackedTarball/skia/src/codec/SkCodecImageGenerator \
+ UnpackedTarball/skia/src/codec/SkColorTable \
+ UnpackedTarball/skia/src/codec/SkEncodedInfo \
+ UnpackedTarball/skia/src/codec/SkIcoCodec \
+ UnpackedTarball/skia/src/codec/SkMasks \
+ UnpackedTarball/skia/src/codec/SkMaskSwizzler \
+ UnpackedTarball/skia/src/codec/SkParseEncodedOrigin \
+ UnpackedTarball/skia/src/codec/SkPngCodec \
+ UnpackedTarball/skia/src/codec/SkSampledCodec \
+ UnpackedTarball/skia/src/codec/SkSampler \
+ UnpackedTarball/skia/src/codec/SkStreamBuffer \
+ UnpackedTarball/skia/src/codec/SkSwizzler \
+ UnpackedTarball/skia/src/codec/SkWbmpCodec \
+ UnpackedTarball/skia/src/core/SkAAClip \
+ UnpackedTarball/skia/src/core/SkAlphaRuns \
+ UnpackedTarball/skia/src/core/SkAnalyticEdge \
+ UnpackedTarball/skia/src/core/SkAnnotation \
+ UnpackedTarball/skia/src/core/SkArenaAlloc \
+ UnpackedTarball/skia/src/core/SkATrace \
+ UnpackedTarball/skia/src/core/SkAutoPixmapStorage \
+ UnpackedTarball/skia/src/core/SkBBHFactory \
+ UnpackedTarball/skia/src/core/SkBigPicture \
+ UnpackedTarball/skia/src/core/SkBitmapCache \
+ UnpackedTarball/skia/src/core/SkBitmap \
+ UnpackedTarball/skia/src/core/SkBitmapDevice \
+ UnpackedTarball/skia/src/core/SkBitmapProcState \
+ UnpackedTarball/skia/src/core/SkBitmapProcState_matrixProcs \
+ UnpackedTarball/skia/src/core/SkBlendMode \
+ UnpackedTarball/skia/src/core/SkBlendModeBlender \
+ UnpackedTarball/skia/src/core/SkBlitRow_D32 \
+ UnpackedTarball/skia/src/core/SkBlitter_ARGB32 \
+ UnpackedTarball/skia/src/core/SkBlitter_A8 \
+ UnpackedTarball/skia/src/core/SkBlitter \
+ UnpackedTarball/skia/src/core/SkBlitter_RGB565 \
+ UnpackedTarball/skia/src/core/SkBlitter_Sprite \
+ UnpackedTarball/skia/src/core/SkBlockAllocator \
+ UnpackedTarball/skia/src/core/SkBlurMask \
+ UnpackedTarball/skia/src/core/SkBlurMF \
+ UnpackedTarball/skia/src/core/SkBuffer \
+ UnpackedTarball/skia/src/core/SkCachedData \
+ UnpackedTarball/skia/src/core/SkCanvas \
+ UnpackedTarball/skia/src/core/SkCanvasPriv \
+ UnpackedTarball/skia/src/core/SkChromeRemoteGlyphCache \
+ UnpackedTarball/skia/src/core/SkClipStack \
+ UnpackedTarball/skia/src/core/SkClipStackDevice \
+ UnpackedTarball/skia/src/core/SkColor \
+ UnpackedTarball/skia/src/core/SkColorFilter \
+ UnpackedTarball/skia/src/core/SkColorFilter_Matrix \
+ UnpackedTarball/skia/src/core/SkColorSpace \
+ UnpackedTarball/skia/src/core/SkColorSpaceXformSteps \
+ UnpackedTarball/skia/src/core/SkCompressedDataUtils \
+ UnpackedTarball/skia/src/core/SkContourMeasure \
+ UnpackedTarball/skia/src/core/SkConvertPixels \
+ UnpackedTarball/skia/src/core/SkCpu \
+ UnpackedTarball/skia/src/core/SkCubicClipper \
+ UnpackedTarball/skia/src/core/SkCubicMap \
+ UnpackedTarball/skia/src/core/SkData \
+ UnpackedTarball/skia/src/core/SkDataTable \
+ UnpackedTarball/skia/src/core/SkDebug \
+ UnpackedTarball/skia/src/core/SkDeferredDisplayList \
+ UnpackedTarball/skia/src/core/SkDeferredDisplayListRecorder \
+ UnpackedTarball/skia/src/core/SkDeque \
+ UnpackedTarball/skia/src/core/SkDescriptor \
+ UnpackedTarball/skia/src/core/SkDevice \
+ UnpackedTarball/skia/src/core/SkDistanceFieldGen \
+ UnpackedTarball/skia/src/core/SkDocument \
+ UnpackedTarball/skia/src/core/SkDrawable \
+ UnpackedTarball/skia/src/core/SkDraw \
+ UnpackedTarball/skia/src/core/SkDrawLooper \
+ UnpackedTarball/skia/src/core/SkDrawShadowInfo \
+ UnpackedTarball/skia/src/core/SkDraw_atlas \
+ UnpackedTarball/skia/src/core/SkDraw_text \
+ UnpackedTarball/skia/src/core/SkDraw_vertices \
+ UnpackedTarball/skia/src/core/SkEdgeBuilder \
+ UnpackedTarball/skia/src/core/SkEdgeClipper \
+ UnpackedTarball/skia/src/core/SkEdge \
+ UnpackedTarball/skia/src/core/SkExecutor \
+ UnpackedTarball/skia/src/core/SkFlattenable \
+ UnpackedTarball/skia/src/core/SkFont \
+ UnpackedTarball/skia/src/core/SkFont_serial \
+ UnpackedTarball/skia/src/core/SkFontDescriptor \
+ UnpackedTarball/skia/src/core/SkFontMgr \
+ UnpackedTarball/skia/src/core/SkFontStream \
+ UnpackedTarball/skia/src/core/SkGaussFilter \
+ UnpackedTarball/skia/src/core/SkGeometry \
+ UnpackedTarball/skia/src/core/SkIDChangeListener \
+ UnpackedTarball/skia/src/core/SkGlobalInitialization_core \
+ UnpackedTarball/skia/src/core/SkGlyph \
+ UnpackedTarball/skia/src/core/SkGlyphBuffer \
+ UnpackedTarball/skia/src/core/SkGlyphRun \
+ UnpackedTarball/skia/src/core/SkGlyphRunPainter \
+ UnpackedTarball/skia/src/core/SkGraphics \
+ UnpackedTarball/skia/src/core/SkHalf \
+ UnpackedTarball/skia/src/core/SkICC \
+ UnpackedTarball/skia/src/core/SkImageFilterCache \
+ UnpackedTarball/skia/src/core/SkImageFilterTypes \
+ UnpackedTarball/skia/src/core/SkImageFilter \
+ UnpackedTarball/skia/src/core/SkImageGenerator \
+ UnpackedTarball/skia/src/core/SkImageInfo \
+ UnpackedTarball/skia/src/core/SkKeyContext \
+ UnpackedTarball/skia/src/core/SkKeyHelpers \
+ UnpackedTarball/skia/src/core/SkLatticeIter \
+ UnpackedTarball/skia/src/core/SkLineClipper \
+ UnpackedTarball/skia/src/core/SkLocalMatrixImageFilter \
+ UnpackedTarball/skia/src/core/SkMalloc \
+ UnpackedTarball/skia/src/core/SkMallocPixelRef \
+ UnpackedTarball/skia/src/core/SkMaskBlurFilter \
+ UnpackedTarball/skia/src/core/SkMaskCache \
+ UnpackedTarball/skia/src/core/SkMask \
+ UnpackedTarball/skia/src/core/SkMaskFilter \
+ UnpackedTarball/skia/src/core/SkMaskGamma \
+ UnpackedTarball/skia/src/core/SkMath \
+ UnpackedTarball/skia/src/core/SkMatrix \
+ UnpackedTarball/skia/src/core/SkMatrixImageFilter \
+ UnpackedTarball/skia/src/core/SkMatrixInvert \
+ UnpackedTarball/skia/src/core/SkM44 \
+ UnpackedTarball/skia/src/core/SkMD5 \
+ UnpackedTarball/skia/src/core/SkMesh \
+ UnpackedTarball/skia/src/core/SkMiniRecorder \
+ UnpackedTarball/skia/src/core/SkMipmap \
+ UnpackedTarball/skia/src/core/SkMipmapAccessor \
+ UnpackedTarball/skia/src/core/SkModeColorFilter \
+ UnpackedTarball/skia/src/core/SkOpts \
+ UnpackedTarball/skia/src/core/SkOpts_erms \
+ UnpackedTarball/skia/src/core/SkOverdrawCanvas \
+ UnpackedTarball/skia/src/core/SkPaint \
+ UnpackedTarball/skia/src/core/SkPaintParamsKey \
+ UnpackedTarball/skia/src/core/SkPaintPriv \
+ UnpackedTarball/skia/src/core/SkPath \
+ UnpackedTarball/skia/src/core/SkPathBuilder \
+ UnpackedTarball/skia/src/core/SkPathEffect \
+ UnpackedTarball/skia/src/core/SkPathMeasure \
+ UnpackedTarball/skia/src/core/SkPathRef \
+ UnpackedTarball/skia/src/core/SkPath_serial \
+ UnpackedTarball/skia/src/core/SkPipelineData \
+ UnpackedTarball/skia/src/core/SkPicture \
+ UnpackedTarball/skia/src/core/SkPictureData \
+ UnpackedTarball/skia/src/core/SkPictureFlat \
+ UnpackedTarball/skia/src/core/SkPictureImageGenerator \
+ UnpackedTarball/skia/src/core/SkPicturePlayback \
+ UnpackedTarball/skia/src/core/SkPictureRecord \
+ UnpackedTarball/skia/src/core/SkPictureRecorder \
+ UnpackedTarball/skia/src/core/SkPixelRef \
+ UnpackedTarball/skia/src/core/SkPixmap \
+ UnpackedTarball/skia/src/core/SkPoint \
+ UnpackedTarball/skia/src/core/SkPoint3 \
+ UnpackedTarball/skia/src/core/SkPromiseImageTexture \
+ UnpackedTarball/skia/src/core/SkPtrRecorder \
+ UnpackedTarball/skia/src/core/SkQuadClipper \
+ UnpackedTarball/skia/src/core/SkRasterClip \
+ UnpackedTarball/skia/src/core/SkRasterPipelineBlitter \
+ UnpackedTarball/skia/src/core/SkRasterPipeline \
+ UnpackedTarball/skia/src/core/SkReadBuffer \
+ UnpackedTarball/skia/src/core/SkRecord \
+ UnpackedTarball/skia/src/core/SkRecordDraw \
+ UnpackedTarball/skia/src/core/SkRecordedDrawable \
+ UnpackedTarball/skia/src/core/SkRecorder \
+ UnpackedTarball/skia/src/core/SkRecordOpts \
+ UnpackedTarball/skia/src/core/SkRecords \
+ UnpackedTarball/skia/src/core/SkRect \
+ UnpackedTarball/skia/src/core/SkRegion \
+ UnpackedTarball/skia/src/core/SkRegion_path \
+ UnpackedTarball/skia/src/core/SkResourceCache \
+ UnpackedTarball/skia/src/core/SkRRect \
+ UnpackedTarball/skia/src/core/SkRTree \
+ UnpackedTarball/skia/src/core/SkRuntimeEffect \
+ UnpackedTarball/skia/src/core/SkScalar \
+ UnpackedTarball/skia/src/core/SkScalerCache \
+ UnpackedTarball/skia/src/core/SkScalerContext \
+ UnpackedTarball/skia/src/core/SkScan_AAAPath \
+ UnpackedTarball/skia/src/core/SkScan_Antihair \
+ UnpackedTarball/skia/src/core/SkScan_AntiPath \
+ UnpackedTarball/skia/src/core/SkScan \
+ UnpackedTarball/skia/src/core/SkScan_Hairline \
+ UnpackedTarball/skia/src/core/SkScan_Path \
+ UnpackedTarball/skia/src/core/SkSemaphore \
+ UnpackedTarball/skia/src/core/SkShaderCodeDictionary \
+ UnpackedTarball/skia/src/core/SkSharedMutex \
+ UnpackedTarball/skia/src/core/SkSpecialImage \
+ UnpackedTarball/skia/src/core/SkSpecialSurface \
+ UnpackedTarball/skia/src/core/SkSpinlock \
+ UnpackedTarball/skia/src/core/SkSpriteBlitter_ARGB32 \
+ UnpackedTarball/skia/src/core/SkSpriteBlitter_RGB565 \
+ UnpackedTarball/skia/src/core/SkStream \
+ UnpackedTarball/skia/src/core/SkStrikeCache \
+ UnpackedTarball/skia/src/core/SkStrikeForGPU \
+ UnpackedTarball/skia/src/core/SkStrikeSpec \
+ UnpackedTarball/skia/src/core/SkString \
+ UnpackedTarball/skia/src/core/SkStringUtils \
+ UnpackedTarball/skia/src/core/SkStroke \
+ UnpackedTarball/skia/src/core/SkStrokeRec \
+ UnpackedTarball/skia/src/core/SkStrokerPriv \
+ UnpackedTarball/skia/src/core/SkSurfaceCharacterization \
+ UnpackedTarball/skia/src/core/SkSwizzle \
+ UnpackedTarball/skia/src/core/SkTaskGroup \
+ UnpackedTarball/skia/src/core/SkTextBlob \
+ UnpackedTarball/skia/src/core/SkTextBlobTrace \
+ UnpackedTarball/skia/src/core/SkThreadID \
+ UnpackedTarball/skia/src/core/SkTime \
+ UnpackedTarball/skia/src/core/SkTSearch \
+ UnpackedTarball/skia/src/core/SkTypefaceCache \
+ UnpackedTarball/skia/src/core/SkTypeface \
+ UnpackedTarball/skia/src/core/SkTypeface_remote \
+ UnpackedTarball/skia/src/core/SkUnPreMultiply \
+ UnpackedTarball/skia/src/core/SkUtilsArm \
+ UnpackedTarball/skia/src/core/SkUtils \
+ UnpackedTarball/skia/src/core/SkVertices \
+ UnpackedTarball/skia/src/core/SkVertState \
+ UnpackedTarball/skia/src/core/SkVM \
+ UnpackedTarball/skia/src/core/SkVMBlitter \
+ UnpackedTarball/skia/src/core/SkWriteBuffer \
+ UnpackedTarball/skia/src/core/SkWriter32 \
+ UnpackedTarball/skia/src/core/SkXfermode \
+ UnpackedTarball/skia/src/core/SkXfermodeInterpretation \
+ UnpackedTarball/skia/src/core/SkYUVAInfo \
+ UnpackedTarball/skia/src/core/SkYUVAPixmaps \
+ UnpackedTarball/skia/src/core/SkYUVMath \
+ UnpackedTarball/skia/src/core/SkYUVPlanesCache \
+ UnpackedTarball/skia/src/c/sk_effects \
+ UnpackedTarball/skia/src/c/sk_imageinfo \
+ UnpackedTarball/skia/src/c/sk_paint \
+ UnpackedTarball/skia/src/c/sk_surface \
+ UnpackedTarball/skia/src/effects/imagefilters/SkAlphaThresholdImageFilter \
+ UnpackedTarball/skia/src/effects/imagefilters/SkArithmeticImageFilter \
+ UnpackedTarball/skia/src/effects/imagefilters/SkBlendImageFilter \
+ UnpackedTarball/skia/src/effects/imagefilters/SkBlurImageFilter \
+ UnpackedTarball/skia/src/effects/imagefilters/SkColorFilterImageFilter \
+ UnpackedTarball/skia/src/effects/imagefilters/SkComposeImageFilter \
+ UnpackedTarball/skia/src/effects/imagefilters/SkCropImageFilter \
+ UnpackedTarball/skia/src/effects/imagefilters/SkDisplacementMapImageFilter \
+ UnpackedTarball/skia/src/effects/imagefilters/SkDropShadowImageFilter \
+ UnpackedTarball/skia/src/effects/imagefilters/SkImageImageFilter \
+ UnpackedTarball/skia/src/effects/imagefilters/SkLightingImageFilter \
+ UnpackedTarball/skia/src/effects/imagefilters/SkMagnifierImageFilter \
+ UnpackedTarball/skia/src/effects/imagefilters/SkMatrixConvolutionImageFilter \
+ UnpackedTarball/skia/src/effects/imagefilters/SkMergeImageFilter \
+ UnpackedTarball/skia/src/effects/imagefilters/SkMorphologyImageFilter \
+ UnpackedTarball/skia/src/effects/imagefilters/SkOffsetImageFilter \
+ UnpackedTarball/skia/src/effects/imagefilters/SkPictureImageFilter \
+ UnpackedTarball/skia/src/effects/imagefilters/SkShaderImageFilter \
+ UnpackedTarball/skia/src/effects/imagefilters/SkRuntimeImageFilter \
+ UnpackedTarball/skia/src/effects/imagefilters/SkTileImageFilter \
+ UnpackedTarball/skia/src/effects/SkBlenders \
+ UnpackedTarball/skia/src/effects/SkColorMatrix \
+ UnpackedTarball/skia/src/effects/SkColorMatrixFilter \
+ UnpackedTarball/skia/src/effects/SkCornerPathEffect \
+ UnpackedTarball/skia/src/effects/SkDashPathEffect \
+ UnpackedTarball/skia/src/effects/SkDiscretePathEffect \
+ UnpackedTarball/skia/src/effects/SkEmbossMask \
+ UnpackedTarball/skia/src/effects/SkEmbossMaskFilter \
+ UnpackedTarball/skia/src/effects/SkHighContrastFilter \
+ UnpackedTarball/skia/src/effects/SkLayerDrawLooper \
+ UnpackedTarball/skia/src/effects/SkLumaColorFilter \
+ UnpackedTarball/skia/src/effects/SkOpPathEffect \
+ UnpackedTarball/skia/src/effects/SkOverdrawColorFilter \
+ UnpackedTarball/skia/src/effects/SkShaderMaskFilter \
+ UnpackedTarball/skia/src/effects/SkTableColorFilter \
+ UnpackedTarball/skia/src/effects/SkTableMaskFilter \
+ UnpackedTarball/skia/src/effects/SkTrimPathEffect \
+ UnpackedTarball/skia/src/effects/Sk1DPathEffect \
+ UnpackedTarball/skia/src/effects/Sk2DPathEffect \
+ UnpackedTarball/skia/src/fonts/SkRemotableFontMgr \
+ UnpackedTarball/skia/src/image/SkImage \
+ UnpackedTarball/skia/src/image/SkImage_Lazy \
+ UnpackedTarball/skia/src/image/SkImage_Raster \
+ UnpackedTarball/skia/src/image/SkRescaleAndReadPixels \
+ UnpackedTarball/skia/src/image/SkSurface \
+ UnpackedTarball/skia/src/image/SkSurface_Raster \
+ UnpackedTarball/skia/src/images/SkImageEncoder \
+ UnpackedTarball/skia/src/images/SkPngEncoder \
+ UnpackedTarball/skia/src/images/SkWebpEncoder \
+ UnpackedTarball/skia/src/lazy/SkDiscardableMemoryPool \
+ UnpackedTarball/skia/src/pathops/SkAddIntersections \
+ UnpackedTarball/skia/src/pathops/SkDConicLineIntersection \
+ UnpackedTarball/skia/src/pathops/SkDCubicLineIntersection \
+ UnpackedTarball/skia/src/pathops/SkDCubicToQuads \
+ UnpackedTarball/skia/src/pathops/SkDLineIntersection \
+ UnpackedTarball/skia/src/pathops/SkDQuadLineIntersection \
+ UnpackedTarball/skia/src/pathops/SkIntersections \
+ UnpackedTarball/skia/src/pathops/SkOpAngle \
+ UnpackedTarball/skia/src/pathops/SkOpBuilder \
+ UnpackedTarball/skia/src/pathops/SkOpCoincidence \
+ UnpackedTarball/skia/src/pathops/SkOpContour \
+ UnpackedTarball/skia/src/pathops/SkOpCubicHull \
+ UnpackedTarball/skia/src/pathops/SkOpEdgeBuilder \
+ UnpackedTarball/skia/src/pathops/SkOpSegment \
+ UnpackedTarball/skia/src/pathops/SkOpSpan \
+ UnpackedTarball/skia/src/pathops/SkPathOpsAsWinding \
+ UnpackedTarball/skia/src/pathops/SkPathOpsCommon \
+ UnpackedTarball/skia/src/pathops/SkPathOpsConic \
+ UnpackedTarball/skia/src/pathops/SkPathOpsCubic \
+ UnpackedTarball/skia/src/pathops/SkPathOpsCurve \
+ UnpackedTarball/skia/src/pathops/SkPathOpsDebug \
+ UnpackedTarball/skia/src/pathops/SkPathOpsLine \
+ UnpackedTarball/skia/src/pathops/SkPathOpsOp \
+ UnpackedTarball/skia/src/pathops/SkPathOpsQuad \
+ UnpackedTarball/skia/src/pathops/SkPathOpsRect \
+ UnpackedTarball/skia/src/pathops/SkPathOpsSimplify \
+ UnpackedTarball/skia/src/pathops/SkPathOpsTightBounds \
+ UnpackedTarball/skia/src/pathops/SkPathOpsTSect \
+ UnpackedTarball/skia/src/pathops/SkPathOpsTypes \
+ UnpackedTarball/skia/src/pathops/SkPathOpsWinding \
+ UnpackedTarball/skia/src/pathops/SkPathWriter \
+ UnpackedTarball/skia/src/pathops/SkReduceOrder \
+ UnpackedTarball/skia/src/sfnt/SkOTTable_name \
+ UnpackedTarball/skia/src/sfnt/SkOTUtils \
+ UnpackedTarball/skia/src/shaders/gradients/SkGradientShader \
+ UnpackedTarball/skia/src/shaders/gradients/SkLinearGradient \
+ UnpackedTarball/skia/src/shaders/gradients/SkRadialGradient \
+ UnpackedTarball/skia/src/shaders/gradients/SkSweepGradient \
+ UnpackedTarball/skia/src/shaders/gradients/SkTwoPointConicalGradient \
+ UnpackedTarball/skia/src/shaders/gradients/Sk4fGradientBase \
+ UnpackedTarball/skia/src/shaders/gradients/Sk4fLinearGradient \
+ UnpackedTarball/skia/src/shaders/SkBitmapProcShader \
+ UnpackedTarball/skia/src/shaders/SkColorFilterShader \
+ UnpackedTarball/skia/src/shaders/SkColorShader \
+ UnpackedTarball/skia/src/shaders/SkComposeShader \
+ UnpackedTarball/skia/src/shaders/SkImageShader \
+ UnpackedTarball/skia/src/shaders/SkLocalMatrixShader \
+ UnpackedTarball/skia/src/shaders/SkPerlinNoiseShader \
+ UnpackedTarball/skia/src/shaders/SkPictureShader \
+ UnpackedTarball/skia/src/shaders/SkShader \
+ UnpackedTarball/skia/src/shaders/SkTransformShader \
+ UnpackedTarball/skia/src/sksl/dsl/DSLBlock \
+ UnpackedTarball/skia/src/sksl/dsl/DSLCase \
+ UnpackedTarball/skia/src/sksl/dsl/DSLCore \
+ UnpackedTarball/skia/src/sksl/dsl/DSLExpression \
+ UnpackedTarball/skia/src/sksl/dsl/DSLFunction \
+ UnpackedTarball/skia/src/sksl/dsl/DSLLayout \
+ UnpackedTarball/skia/src/sksl/dsl/DSLRuntimeEffects \
+ UnpackedTarball/skia/src/sksl/dsl/DSLStatement \
+ UnpackedTarball/skia/src/sksl/dsl/DSLSymbols \
+ UnpackedTarball/skia/src/sksl/dsl/DSLType \
+ UnpackedTarball/skia/src/sksl/dsl/DSLVar \
+ UnpackedTarball/skia/src/sksl/dsl/priv/DSLFPs \
+ UnpackedTarball/skia/src/sksl/dsl/priv/DSLWriter \
+ UnpackedTarball/skia/src/sksl/ir/SkSLBinaryExpression \
+ UnpackedTarball/skia/src/sksl/ir/SkSLBlock \
+ UnpackedTarball/skia/src/sksl/ir/SkSLChildCall \
+ UnpackedTarball/skia/src/sksl/ir/SkSLConstructor \
+ UnpackedTarball/skia/src/sksl/ir/SkSLConstructorArray \
+ UnpackedTarball/skia/src/sksl/ir/SkSLConstructorArrayCast \
+ UnpackedTarball/skia/src/sksl/ir/SkSLConstructorCompound \
+ UnpackedTarball/skia/src/sksl/ir/SkSLConstructorCompoundCast \
+ UnpackedTarball/skia/src/sksl/ir/SkSLConstructorDiagonalMatrix \
+ UnpackedTarball/skia/src/sksl/ir/SkSLConstructorMatrixResize \
+ UnpackedTarball/skia/src/sksl/ir/SkSLConstructorScalarCast \
+ UnpackedTarball/skia/src/sksl/ir/SkSLConstructorSplat \
+ UnpackedTarball/skia/src/sksl/ir/SkSLConstructorStruct \
+ UnpackedTarball/skia/src/sksl/ir/SkSLDoStatement \
+ UnpackedTarball/skia/src/sksl/ir/SkSLExpression \
+ UnpackedTarball/skia/src/sksl/ir/SkSLExpressionStatement \
+ UnpackedTarball/skia/src/sksl/ir/SkSLFieldAccess \
+ UnpackedTarball/skia/src/sksl/ir/SkSLForStatement \
+ UnpackedTarball/skia/src/sksl/ir/SkSLFunctionCall \
+ UnpackedTarball/skia/src/sksl/ir/SkSLFunctionDeclaration \
+ UnpackedTarball/skia/src/sksl/ir/SkSLFunctionDefinition \
+ UnpackedTarball/skia/src/sksl/ir/SkSLIfStatement \
+ UnpackedTarball/skia/src/sksl/ir/SkSLIndexExpression \
+ UnpackedTarball/skia/src/sksl/ir/SkSLModifiers \
+ UnpackedTarball/skia/src/sksl/ir/SkSLPrefixExpression \
+ UnpackedTarball/skia/src/sksl/ir/SkSLPostfixExpression \
+ UnpackedTarball/skia/src/sksl/ir/SkSLSetting \
+ UnpackedTarball/skia/src/sksl/ir/SkSLSwitchStatement \
+ UnpackedTarball/skia/src/sksl/ir/SkSLSwizzle \
+ UnpackedTarball/skia/src/sksl/ir/SkSLSymbolTable \
+ UnpackedTarball/skia/src/sksl/ir/SkSLTernaryExpression \
+ UnpackedTarball/skia/src/sksl/ir/SkSLType \
+ UnpackedTarball/skia/src/sksl/ir/SkSLTypeReference \
+ UnpackedTarball/skia/src/sksl/ir/SkSLVarDeclarations \
+ UnpackedTarball/skia/src/sksl/ir/SkSLVariable \
+ UnpackedTarball/skia/src/sksl/ir/SkSLVariableReference \
+ UnpackedTarball/skia/src/sksl/SkSLAnalysis \
+ UnpackedTarball/skia/src/sksl/SkSLBuiltinMap \
+ UnpackedTarball/skia/src/sksl/SkSLBuiltinTypes \
+ UnpackedTarball/skia/src/sksl/SkSLCompiler \
+ UnpackedTarball/skia/src/sksl/SkSLConstantFolder \
+ UnpackedTarball/skia/src/sksl/SkSLContext \
+ UnpackedTarball/skia/src/sksl/SkSLDSLParser \
+ UnpackedTarball/skia/src/sksl/SkSLDehydrator \
+ UnpackedTarball/skia/src/sksl/SkSLErrorReporter \
+ UnpackedTarball/skia/src/sksl/SkSLInliner \
+ UnpackedTarball/skia/src/sksl/SkSLLexer \
+ UnpackedTarball/skia/src/sksl/SkSLMangler \
+ UnpackedTarball/skia/src/sksl/SkSLOperator \
+ UnpackedTarball/skia/src/sksl/SkSLOutputStream \
+ UnpackedTarball/skia/src/sksl/SkSLPool \
+ UnpackedTarball/skia/src/sksl/SkSLPosition \
+ UnpackedTarball/skia/src/sksl/SkSLRehydrator \
+ UnpackedTarball/skia/src/sksl/SkSLSampleUsage \
+ UnpackedTarball/skia/src/sksl/SkSLSharedCompiler \
+ UnpackedTarball/skia/src/sksl/SkSLString \
+ UnpackedTarball/skia/src/sksl/SkSLThreadContext \
+ UnpackedTarball/skia/src/sksl/SkSLUtil \
+ UnpackedTarball/skia/src/sksl/analysis/SkSLCanExitWithoutReturningValue \
+ UnpackedTarball/skia/src/sksl/analysis/SkSLCheckProgramStructure \
+ UnpackedTarball/skia/src/sksl/analysis/SkSLFinalizationChecks \
+ UnpackedTarball/skia/src/sksl/analysis/SkSLGetLoopUnrollInfo \
+ UnpackedTarball/skia/src/sksl/analysis/SkSLIsConstantExpression \
+ UnpackedTarball/skia/src/sksl/analysis/SkSLIsSameExpressionTree \
+ UnpackedTarball/skia/src/sksl/analysis/SkSLProgramUsage \
+ UnpackedTarball/skia/src/sksl/analysis/SkSLSwitchCaseContainsExit \
+ UnpackedTarball/skia/src/sksl/codegen/SkSLGLSLCodeGenerator \
+ UnpackedTarball/skia/src/sksl/codegen/SkSLMetalCodeGenerator \
+ UnpackedTarball/skia/src/sksl/codegen/SkSLPipelineStageCodeGenerator \
+ UnpackedTarball/skia/src/sksl/codegen/SkSLSPIRVCodeGenerator \
+ UnpackedTarball/skia/src/sksl/codegen/SkSLSPIRVtoHLSL \
+ UnpackedTarball/skia/src/sksl/codegen/SkSLVMCodeGenerator \
+ UnpackedTarball/skia/src/sksl/codegen/SkSLWGSLCodeGenerator \
+ UnpackedTarball/skia/src/sksl/tracing/SkVMDebugTrace \
+ UnpackedTarball/skia/src/sksl/transform/SkSLBuiltinVariableScanner \
+ UnpackedTarball/skia/src/sksl/transform/SkSLEliminateDeadFunctions \
+ UnpackedTarball/skia/src/sksl/transform/SkSLEliminateDeadGlobalVariables \
+ UnpackedTarball/skia/src/sksl/transform/SkSLEliminateDeadLocalVariables \
+ UnpackedTarball/skia/src/sksl/transform/SkSLEliminateUnreachableCode \
+ UnpackedTarball/skia/src/utils/SkBase64 \
+ UnpackedTarball/skia/src/utils/SkCamera \
+ UnpackedTarball/skia/src/utils/SkCanvasStack \
+ UnpackedTarball/skia/src/utils/SkCanvasStateUtils \
+ UnpackedTarball/skia/src/utils/SkDashPath \
+ UnpackedTarball/skia/src/utils/SkEventTracer \
+ UnpackedTarball/skia/src/utils/SkFloatToDecimal \
+ UnpackedTarball/skia/src/utils/SkCharToGlyphCache \
+ UnpackedTarball/skia/src/utils/SkClipStackUtils \
+ UnpackedTarball/skia/src/utils/SkCustomTypeface \
+ UnpackedTarball/skia/src/utils/SkJSON \
+ UnpackedTarball/skia/src/utils/SkJSONWriter \
+ UnpackedTarball/skia/src/utils/SkMatrix22 \
+ UnpackedTarball/skia/src/utils/SkMultiPictureDocument \
+ UnpackedTarball/skia/src/utils/SkNullCanvas \
+ UnpackedTarball/skia/src/utils/SkNWayCanvas \
+ UnpackedTarball/skia/src/utils/SkOSPath \
+ UnpackedTarball/skia/src/utils/SkOrderedFontMgr \
+ UnpackedTarball/skia/src/utils/SkPaintFilterCanvas \
+ UnpackedTarball/skia/src/utils/SkParseColor \
+ UnpackedTarball/skia/src/utils/SkParse \
+ UnpackedTarball/skia/src/utils/SkParsePath \
+ UnpackedTarball/skia/src/utils/SkPatchUtils \
+ UnpackedTarball/skia/src/utils/SkPolyUtils \
+ UnpackedTarball/skia/src/utils/SkShaderUtils \
+ UnpackedTarball/skia/src/utils/SkShadowTessellator \
+ UnpackedTarball/skia/src/utils/SkShadowUtils \
+ UnpackedTarball/skia/src/utils/SkShaperJSONWriter \
+ UnpackedTarball/skia/src/utils/SkTextUtils \
+ UnpackedTarball/skia/src/utils/SkThreadUtils_pthread \
+ UnpackedTarball/skia/src/utils/SkThreadUtils_win \
+ UnpackedTarball/skia/src/utils/SkUTF \
+ UnpackedTarball/skia/src/utils/SkVMVisualizer \
+ UnpackedTarball/skia/src/xps/SkXPSDevice \
+ UnpackedTarball/skia/src/xps/SkXPSDocument \
+))
+
+ifneq ($(SKIA_GPU),)
+$(eval $(call gb_Library_add_generated_exception_objects,skia,\
+ UnpackedTarball/skia/src/core/SkGpuBlurUtils \
+ UnpackedTarball/skia/src/gpu/AtlasTypes \
+ UnpackedTarball/skia/src/gpu/Blend \
+ UnpackedTarball/skia/src/gpu/RectanizerPow2 \
+ UnpackedTarball/skia/src/gpu/RectanizerSkyline \
+ UnpackedTarball/skia/src/gpu/ResourceKey \
+ UnpackedTarball/skia/src/gpu/ShaderErrorHandler \
+ UnpackedTarball/skia/src/gpu/Swizzle \
+ UnpackedTarball/skia/src/gpu/ganesh/effects/GrBezierEffect \
+ UnpackedTarball/skia/src/gpu/ganesh/effects/GrBicubicEffect \
+ UnpackedTarball/skia/src/gpu/ganesh/effects/GrBitmapTextGeoProc \
+ UnpackedTarball/skia/src/gpu/ganesh/effects/GrBlendFragmentProcessor \
+ UnpackedTarball/skia/src/gpu/ganesh/effects/GrConvexPolyEffect \
+ UnpackedTarball/skia/src/gpu/ganesh/effects/GrCoverageSetOpXP \
+ UnpackedTarball/skia/src/gpu/ganesh/effects/GrCustomXfermode \
+ UnpackedTarball/skia/src/gpu/ganesh/effects/GrDisableColorXP \
+ UnpackedTarball/skia/src/gpu/ganesh/effects/GrDistanceFieldGeoProc \
+ UnpackedTarball/skia/src/gpu/ganesh/effects/GrGaussianConvolutionFragmentProcessor \
+ UnpackedTarball/skia/src/gpu/ganesh/effects/GrMatrixConvolutionEffect \
+ UnpackedTarball/skia/src/gpu/ganesh/effects/GrMatrixEffect \
+ UnpackedTarball/skia/src/gpu/ganesh/effects/GrModulateAtlasCoverageEffect \
+ UnpackedTarball/skia/src/gpu/ganesh/effects/GrOvalEffect \
+ UnpackedTarball/skia/src/gpu/ganesh/effects/GrPorterDuffXferProcessor \
+ UnpackedTarball/skia/src/gpu/ganesh/effects/GrRRectEffect \
+ UnpackedTarball/skia/src/gpu/ganesh/effects/GrShadowGeoProc \
+ UnpackedTarball/skia/src/gpu/ganesh/effects/GrSkSLFP \
+ UnpackedTarball/skia/src/gpu/ganesh/effects/GrTextureEffect \
+ UnpackedTarball/skia/src/gpu/ganesh/effects/GrYUVtoRGBEffect \
+ UnpackedTarball/skia/src/gpu/ganesh/geometry/GrPathUtils \
+ UnpackedTarball/skia/src/gpu/ganesh/geometry/GrQuad \
+ UnpackedTarball/skia/src/gpu/ganesh/geometry/GrQuadUtils \
+ UnpackedTarball/skia/src/gpu/ganesh/geometry/GrShape \
+ UnpackedTarball/skia/src/gpu/ganesh/geometry/GrStyledShape \
+ UnpackedTarball/skia/src/gpu/ganesh/glsl/GrGLSLBlend \
+ UnpackedTarball/skia/src/gpu/ganesh/glsl/GrGLSL \
+ UnpackedTarball/skia/src/gpu/ganesh/glsl/GrGLSLFragmentShaderBuilder \
+ UnpackedTarball/skia/src/gpu/ganesh/glsl/GrGLSLProgramBuilder \
+ UnpackedTarball/skia/src/gpu/ganesh/glsl/GrGLSLProgramDataManager \
+ UnpackedTarball/skia/src/gpu/ganesh/glsl/GrGLSLShaderBuilder \
+ UnpackedTarball/skia/src/gpu/ganesh/glsl/GrGLSLUniformHandler \
+ UnpackedTarball/skia/src/gpu/ganesh/glsl/GrGLSLVarying \
+ UnpackedTarball/skia/src/gpu/ganesh/glsl/GrGLSLVertexGeoBuilder \
+ UnpackedTarball/skia/src/gpu/ganesh/gradients/GrGradientBitmapCache \
+ UnpackedTarball/skia/src/gpu/ganesh/gradients/GrGradientShader \
+ UnpackedTarball/skia/src/gpu/ganesh/GrAHardwareBufferImageGenerator \
+ UnpackedTarball/skia/src/gpu/ganesh/GrAHardwareBufferUtils \
+ UnpackedTarball/skia/src/gpu/ganesh/GrAttachment \
+ UnpackedTarball/skia/src/gpu/ganesh/GrBackendSemaphore \
+ UnpackedTarball/skia/src/gpu/ganesh/GrBackendSurfaceMutableState \
+ UnpackedTarball/skia/src/gpu/ganesh/GrBackendSurface \
+ UnpackedTarball/skia/src/gpu/ganesh/GrBackendTextureImageGenerator \
+ UnpackedTarball/skia/src/gpu/ganesh/GrBackendUtils \
+ UnpackedTarball/skia/src/gpu/ganesh/GrBufferAllocPool \
+ UnpackedTarball/skia/src/gpu/ganesh/GrCaps \
+ UnpackedTarball/skia/src/gpu/ganesh/GrClientMappedBufferManager \
+ UnpackedTarball/skia/src/gpu/ganesh/GrColorInfo \
+ UnpackedTarball/skia/src/gpu/ganesh/GrColorSpaceXform \
+ UnpackedTarball/skia/src/gpu/ganesh/GrContext_Base \
+ UnpackedTarball/skia/src/gpu/ganesh/GrContextThreadSafeProxy \
+ UnpackedTarball/skia/src/gpu/ganesh/GrCopyRenderTask \
+ UnpackedTarball/skia/src/gpu/ganesh/GrDataUtils \
+ UnpackedTarball/skia/src/gpu/ganesh/GrDDLContext \
+ UnpackedTarball/skia/src/gpu/ganesh/GrDDLTask \
+ UnpackedTarball/skia/src/gpu/ganesh/GrDefaultGeoProcFactory \
+ UnpackedTarball/skia/src/gpu/ganesh/GrDirectContext \
+ UnpackedTarball/skia/src/gpu/ganesh/GrDirectContextPriv \
+ UnpackedTarball/skia/src/gpu/ganesh/GrDistanceFieldGenFromVector \
+ UnpackedTarball/skia/src/gpu/ganesh/GrDrawingManager \
+ UnpackedTarball/skia/src/gpu/ganesh/GrDrawOpAtlas \
+ UnpackedTarball/skia/src/gpu/ganesh/GrDriverBugWorkarounds \
+ UnpackedTarball/skia/src/gpu/ganesh/GrDynamicAtlas \
+ UnpackedTarball/skia/src/gpu/ganesh/GrEagerVertexAllocator \
+ UnpackedTarball/skia/src/gpu/ganesh/GrFinishCallbacks \
+ UnpackedTarball/skia/src/gpu/ganesh/GrFixedClip \
+ UnpackedTarball/skia/src/gpu/ganesh/GrFragmentProcessor \
+ UnpackedTarball/skia/src/gpu/ganesh/GrGeometryProcessor \
+ UnpackedTarball/skia/src/gpu/ganesh/GrGpu \
+ UnpackedTarball/skia/src/gpu/ganesh/GrGpuBuffer \
+ UnpackedTarball/skia/src/gpu/ganesh/GrGpuResource \
+ UnpackedTarball/skia/src/gpu/ganesh/GrImageContext \
+ UnpackedTarball/skia/src/gpu/ganesh/GrImageInfo \
+ UnpackedTarball/skia/src/gpu/ganesh/GrManagedResource \
+ UnpackedTarball/skia/src/gpu/ganesh/GrMemoryPool \
+ UnpackedTarball/skia/src/gpu/ganesh/GrMeshDrawTarget \
+ UnpackedTarball/skia/src/gpu/ganesh/GrOnFlushResourceProvider \
+ UnpackedTarball/skia/src/gpu/ganesh/GrOpFlushState \
+ UnpackedTarball/skia/src/gpu/ganesh/GrOpsRenderPass \
+ UnpackedTarball/skia/src/gpu/ganesh/GrPaint \
+ UnpackedTarball/skia/src/gpu/ganesh/GrPersistentCacheUtils \
+ UnpackedTarball/skia/src/gpu/ganesh/GrPipeline \
+ UnpackedTarball/skia/src/gpu/ganesh/GrProcessorAnalysis \
+ UnpackedTarball/skia/src/gpu/ganesh/GrProcessor \
+ UnpackedTarball/skia/src/gpu/ganesh/GrProcessorSet \
+ UnpackedTarball/skia/src/gpu/ganesh/GrProcessorUnitTest \
+ UnpackedTarball/skia/src/gpu/ganesh/GrProgramDesc \
+ UnpackedTarball/skia/src/gpu/ganesh/GrProgramInfo \
+ UnpackedTarball/skia/src/gpu/ganesh/GrProxyProvider \
+ UnpackedTarball/skia/src/gpu/ganesh/GrRecordingContext \
+ UnpackedTarball/skia/src/gpu/ganesh/GrRecordingContextPriv \
+ UnpackedTarball/skia/src/gpu/ganesh/GrRenderTask \
+ UnpackedTarball/skia/src/gpu/ganesh/GrRenderTaskCluster \
+ UnpackedTarball/skia/src/gpu/ganesh/GrRenderTarget \
+ UnpackedTarball/skia/src/gpu/ganesh/GrRenderTargetProxy \
+ UnpackedTarball/skia/src/gpu/ganesh/GrResourceAllocator \
+ UnpackedTarball/skia/src/gpu/ganesh/GrResourceCache \
+ UnpackedTarball/skia/src/gpu/ganesh/GrResourceProvider \
+ UnpackedTarball/skia/src/gpu/ganesh/GrRingBuffer \
+ UnpackedTarball/skia/src/gpu/ganesh/GrShaderCaps \
+ UnpackedTarball/skia/src/gpu/ganesh/GrShaderVar \
+ UnpackedTarball/skia/src/gpu/ganesh/GrSPIRVUniformHandler \
+ UnpackedTarball/skia/src/gpu/ganesh/GrSPIRVVaryingHandler \
+ UnpackedTarball/skia/src/gpu/ganesh/GrStagingBufferManager \
+ UnpackedTarball/skia/src/gpu/ganesh/GrStencilSettings \
+ UnpackedTarball/skia/src/gpu/ganesh/GrStyle \
+ UnpackedTarball/skia/src/gpu/ganesh/GrSurface \
+ UnpackedTarball/skia/src/gpu/ganesh/GrSurfaceInfo \
+ UnpackedTarball/skia/src/gpu/ganesh/GrSurfaceProxy \
+ UnpackedTarball/skia/src/gpu/ganesh/GrSWMaskHelper \
+ UnpackedTarball/skia/src/gpu/ganesh/GrTestUtils \
+ UnpackedTarball/skia/src/gpu/ganesh/GrUniformDataManager \
+ UnpackedTarball/skia/src/gpu/ganesh/GrTexture \
+ UnpackedTarball/skia/src/gpu/ganesh/GrTextureProxy \
+ UnpackedTarball/skia/src/gpu/ganesh/GrTextureRenderTargetProxy \
+ UnpackedTarball/skia/src/gpu/ganesh/GrTextureResolveRenderTask \
+ UnpackedTarball/skia/src/gpu/ganesh/GrThreadSafeCache \
+ UnpackedTarball/skia/src/gpu/ganesh/GrThreadSafePipelineBuilder \
+ UnpackedTarball/skia/src/gpu/ganesh/GrTransferFromRenderTask \
+ UnpackedTarball/skia/src/gpu/ganesh/GrUtil \
+ UnpackedTarball/skia/src/gpu/ganesh/GrVertexChunkArray \
+ UnpackedTarball/skia/src/gpu/ganesh/GrWaitRenderTask \
+ UnpackedTarball/skia/src/gpu/ganesh/GrWritePixelsRenderTask \
+ UnpackedTarball/skia/src/gpu/ganesh/GrXferProcessor \
+ UnpackedTarball/skia/src/gpu/ganesh/GrYUVABackendTextures \
+ UnpackedTarball/skia/src/gpu/ganesh/GrYUVATextureProxies \
+ UnpackedTarball/skia/src/gpu/ganesh/geometry/GrAAConvexTessellator \
+ UnpackedTarball/skia/src/gpu/ganesh/geometry/GrAATriangulator \
+ UnpackedTarball/skia/src/gpu/ganesh/geometry/GrTriangulator \
+ UnpackedTarball/skia/src/gpu/ganesh/mock/GrMockCaps \
+ UnpackedTarball/skia/src/gpu/ganesh/mock/GrMockGpu \
+ UnpackedTarball/skia/src/gpu/ganesh/mock/GrMockTypes \
+ UnpackedTarball/skia/src/gpu/ganesh/BaseDevice \
+ UnpackedTarball/skia/src/gpu/ganesh/SkGr \
+ UnpackedTarball/skia/src/gpu/ganesh/SurfaceContext \
+ UnpackedTarball/skia/src/gpu/ganesh/SurfaceFillContext \
+ UnpackedTarball/skia/src/gpu/ganesh/tessellate/GrPathTessellationShader \
+ UnpackedTarball/skia/src/gpu/ganesh/tessellate/GrStrokeTessellationShader \
+ UnpackedTarball/skia/src/gpu/ganesh/tessellate/GrTessellationShader \
+ UnpackedTarball/skia/src/gpu/ganesh/tessellate/PathTessellator \
+ UnpackedTarball/skia/src/gpu/ganesh/tessellate/StrokeTessellator \
+ UnpackedTarball/skia/src/gpu/ganesh/text/GrAtlasManager \
+ UnpackedTarball/skia/src/gpu/ganesh/text/GrDistanceFieldAdjustTable \
+ UnpackedTarball/skia/src/gpu/ganesh/text/GrSDFMaskFilter \
+ UnpackedTarball/skia/src/gpu/ganesh/text/GrSDFTControl \
+ UnpackedTarball/skia/src/gpu/ganesh/text/GrSlug \
+ UnpackedTarball/skia/src/gpu/ganesh/text/GrTextBlob \
+ UnpackedTarball/skia/src/gpu/ganesh/text/GrTextBlobRedrawCoordinator \
+ UnpackedTarball/skia/src/gpu/tessellate/FixedCountBufferUtils \
+ UnpackedTarball/skia/src/gpu/tessellate/Tessellation \
+ UnpackedTarball/skia/src/image/SkImage_GpuBase \
+ UnpackedTarball/skia/src/image/SkImage_Gpu \
+ UnpackedTarball/skia/src/image/SkImage_GpuYUVA \
+ UnpackedTarball/skia/src/image/SkSurface_Gpu \
+ UnpackedTarball/skia/src/text/gpu/GlyphVector \
+ UnpackedTarball/skia/src/text/gpu/StrikeCache \
+ UnpackedTarball/skia/src/text/gpu/SubRunAllocator \
+))
+
+$(eval $(call gb_Library_add_generated_exception_objects,skia,\
+ UnpackedTarball/skia/src/gpu/ganesh/GrAuditTrail \
+ UnpackedTarball/skia/src/gpu/ganesh/GrBlurUtils \
+ UnpackedTarball/skia/src/gpu/ganesh/GrDrawOpTest \
+ UnpackedTarball/skia/src/gpu/ganesh/ops/AAConvexPathRenderer \
+ UnpackedTarball/skia/src/gpu/ganesh/ops/AAHairLinePathRenderer \
+ UnpackedTarball/skia/src/gpu/ganesh/ops/AALinearizingConvexPathRenderer \
+ UnpackedTarball/skia/src/gpu/ganesh/ops/AtlasInstancedHelper \
+ UnpackedTarball/skia/src/gpu/ganesh/ops/AtlasPathRenderer \
+ UnpackedTarball/skia/src/gpu/ganesh/ops/AtlasRenderTask \
+ UnpackedTarball/skia/src/gpu/ganesh/ops/AtlasTextOp \
+ UnpackedTarball/skia/src/gpu/ganesh/ops/ClearOp \
+ UnpackedTarball/skia/src/gpu/ganesh/ops/DashLinePathRenderer \
+ UnpackedTarball/skia/src/gpu/ganesh/ops/DashOp \
+ UnpackedTarball/skia/src/gpu/ganesh/ops/DefaultPathRenderer \
+ UnpackedTarball/skia/src/gpu/ganesh/ops/DrawAtlasOp \
+ UnpackedTarball/skia/src/gpu/ganesh/ops/DrawAtlasPathOp \
+ UnpackedTarball/skia/src/gpu/ganesh/ops/DrawMeshOp \
+ UnpackedTarball/skia/src/gpu/ganesh/ops/DrawableOp \
+ UnpackedTarball/skia/src/gpu/ganesh/ops/FillRRectOp \
+ UnpackedTarball/skia/src/gpu/ganesh/ops/FillRectOp \
+ UnpackedTarball/skia/src/gpu/ganesh/ops/GrMeshDrawOp \
+ UnpackedTarball/skia/src/gpu/ganesh/ops/GrOp \
+ UnpackedTarball/skia/src/gpu/ganesh/ops/GrOvalOpFactory \
+ UnpackedTarball/skia/src/gpu/ganesh/ops/GrSimpleMeshDrawOpHelper \
+ UnpackedTarball/skia/src/gpu/ganesh/ops/GrSimpleMeshDrawOpHelperWithStencil \
+ UnpackedTarball/skia/src/gpu/ganesh/ops/LatticeOp \
+ UnpackedTarball/skia/src/gpu/ganesh/ops/OpsTask \
+ UnpackedTarball/skia/src/gpu/ganesh/ops/PathInnerTriangulateOp \
+ UnpackedTarball/skia/src/gpu/ganesh/ops/PathStencilCoverOp \
+ UnpackedTarball/skia/src/gpu/ganesh/ops/PathTessellateOp \
+ UnpackedTarball/skia/src/gpu/ganesh/ops/QuadPerEdgeAA \
+ UnpackedTarball/skia/src/gpu/ganesh/ops/RegionOp \
+ UnpackedTarball/skia/src/gpu/ganesh/ops/ShadowRRectOp \
+ UnpackedTarball/skia/src/gpu/ganesh/ops/SmallPathAtlasMgr \
+ UnpackedTarball/skia/src/gpu/ganesh/ops/SmallPathRenderer \
+ UnpackedTarball/skia/src/gpu/ganesh/ops/SmallPathShapeData \
+ UnpackedTarball/skia/src/gpu/ganesh/ops/SoftwarePathRenderer \
+ UnpackedTarball/skia/src/gpu/ganesh/ops/StrokeRectOp \
+ UnpackedTarball/skia/src/gpu/ganesh/ops/StrokeTessellateOp \
+ UnpackedTarball/skia/src/gpu/ganesh/ops/TessellationPathRenderer \
+ UnpackedTarball/skia/src/gpu/ganesh/ops/TextureOp \
+ UnpackedTarball/skia/src/gpu/ganesh/ops/TriangulatingPathRenderer \
+ UnpackedTarball/skia/src/gpu/ganesh/v1/ClipStack \
+ UnpackedTarball/skia/src/gpu/ganesh/v1/Device \
+ UnpackedTarball/skia/src/gpu/ganesh/v1/Device_drawTexture \
+ UnpackedTarball/skia/src/gpu/ganesh/v1/PathRenderer \
+ UnpackedTarball/skia/src/gpu/ganesh/v1/PathRendererChain \
+ UnpackedTarball/skia/src/gpu/ganesh/v1/StencilMaskHelper \
+ UnpackedTarball/skia/src/gpu/ganesh/v1/SurfaceDrawContext \
+ UnpackedTarball/skia/src/gpu/ganesh/v1/SurfaceFillContext_v1 \
+))
+
+ifeq ($(SKIA_GPU),VULKAN)
+$(eval $(call gb_Library_add_generated_exception_objects,skia,\
+ UnpackedTarball/skia/src/gpu/ganesh/vk/GrVkAMDMemoryAllocator \
+ UnpackedTarball/skia/src/gpu/ganesh/vk/GrVkBuffer \
+ UnpackedTarball/skia/src/gpu/ganesh/vk/GrVkCaps \
+ UnpackedTarball/skia/src/gpu/ganesh/vk/GrVkCommandBuffer \
+ UnpackedTarball/skia/src/gpu/ganesh/vk/GrVkCommandPool \
+ UnpackedTarball/skia/src/gpu/ganesh/vk/GrVkDescriptorPool \
+ UnpackedTarball/skia/src/gpu/ganesh/vk/GrVkDescriptorSet \
+ UnpackedTarball/skia/src/gpu/ganesh/vk/GrVkDescriptorSetManager \
+ UnpackedTarball/skia/src/gpu/ganesh/vk/GrVkExtensions \
+ UnpackedTarball/skia/src/gpu/ganesh/vk/GrVkFramebuffer \
+ UnpackedTarball/skia/src/gpu/ganesh/vk/GrVkGpu \
+ UnpackedTarball/skia/src/gpu/ganesh/vk/GrVkImage \
+ UnpackedTarball/skia/src/gpu/ganesh/vk/GrVkImageView \
+ UnpackedTarball/skia/src/gpu/ganesh/vk/GrVkInterface \
+ UnpackedTarball/skia/src/gpu/ganesh/vk/GrVkMSAALoadManager \
+ UnpackedTarball/skia/src/gpu/ganesh/vk/GrVkMemory \
+ UnpackedTarball/skia/src/gpu/ganesh/vk/GrVkOpsRenderPass \
+ UnpackedTarball/skia/src/gpu/ganesh/vk/GrVkPipeline \
+ UnpackedTarball/skia/src/gpu/ganesh/vk/GrVkPipelineStateBuilder \
+ UnpackedTarball/skia/src/gpu/ganesh/vk/GrVkPipelineStateCache \
+ UnpackedTarball/skia/src/gpu/ganesh/vk/GrVkPipelineState \
+ UnpackedTarball/skia/src/gpu/ganesh/vk/GrVkPipelineStateDataManager \
+ UnpackedTarball/skia/src/gpu/ganesh/vk/GrVkRenderPass \
+ UnpackedTarball/skia/src/gpu/ganesh/vk/GrVkRenderTarget \
+ UnpackedTarball/skia/src/gpu/ganesh/vk/GrVkResourceProvider \
+ UnpackedTarball/skia/src/gpu/ganesh/vk/GrVkSampler \
+ UnpackedTarball/skia/src/gpu/ganesh/vk/GrVkSamplerYcbcrConversion \
+ UnpackedTarball/skia/src/gpu/ganesh/vk/GrVkSecondaryCBDrawContext \
+ UnpackedTarball/skia/src/gpu/ganesh/vk/GrVkSemaphore \
+ UnpackedTarball/skia/src/gpu/ganesh/vk/GrVkTexture \
+ UnpackedTarball/skia/src/gpu/ganesh/vk/GrVkTextureRenderTarget \
+ UnpackedTarball/skia/src/gpu/ganesh/vk/GrVkTypesPriv \
+ UnpackedTarball/skia/src/gpu/ganesh/vk/GrVkUniformHandler \
+ UnpackedTarball/skia/src/gpu/ganesh/vk/GrVkUtil \
+ UnpackedTarball/skia/src/gpu/ganesh/vk/GrVkVaryingHandler \
+))
+
+$(eval $(call gb_Library_add_generated_exception_objects,skia,\
+ UnpackedTarball/skia/tools/gpu/vk/VkTestUtils \
+ UnpackedTarball/skia/tools/sk_app/VulkanWindowContext \
+ UnpackedTarball/skia/third_party/vulkanmemoryallocator/GrVulkanMemoryAllocator \
+))
+
+endif
+endif
+
+$(eval $(call gb_Library_add_generated_exception_objects,skia,\
+ UnpackedTarball/skia/src/ports/SkGlobalInitialization_default \
+ UnpackedTarball/skia/src/ports/SkImageGenerator_none \
+ UnpackedTarball/skia/src/ports/SkOSFile_stdio \
+))
+
+$(eval $(call gb_Library_add_exception_objects,skia,\
+ external/skia/source/skia_opts_ssse3, $(CXXFLAGS_INTRINSICS_SSSE3) $(LO_CLANG_CXXFLAGS_INTRINSICS_SSSE3) \
+))
+
+$(eval $(call gb_Library_add_generated_exception_objects,skia,\
+ UnpackedTarball/skia/src/opts/SkOpts_avx, $(CXXFLAGS_INTRINSICS_AVX) $(LO_CLANG_CXXFLAGS_INTRINSICS_AVX) \
+ $(LO_SKIA_AVOID_INLINE_COPIES) \
+))
+$(eval $(call gb_Library_add_generated_exception_objects,skia,\
+ UnpackedTarball/skia/src/opts/SkOpts_hsw, \
+ $(CXXFLAGS_INTRINSICS_AVX2) $(CXXFLAGS_INTRINSICS_F16C) $(CXXFLAGS_INTRINSICS_FMA) \
+ $(LO_CLANG_CXXFLAGS_INTRINSICS_AVX2) $(LO_CLANG_CXXFLAGS_INTRINSICS_F16C) $(LO_CLANG_CXXFLAGS_INTRINSICS_FMA) \
+ $(LO_SKIA_AVOID_INLINE_COPIES) \
+))
+$(eval $(call gb_Library_add_generated_exception_objects,skia,\
+ UnpackedTarball/skia/src/opts/SkOpts_sse41, $(CXXFLAGS_INTRINSICS_SSE41) $(LO_CLANG_CXXFLAGS_INTRINSICS_SSE41) \
+ $(LO_SKIA_AVOID_INLINE_COPIES) \
+))
+$(eval $(call gb_Library_add_generated_exception_objects,skia,\
+ UnpackedTarball/skia/src/opts/SkOpts_sse42, $(CXXFLAGS_INTRINSICS_SSE42) $(LO_CLANG_CXXFLAGS_INTRINSICS_SSE42) \
+ $(LO_SKIA_AVOID_INLINE_COPIES) \
+))
+$(eval $(call gb_Library_add_generated_exception_objects,skia,\
+ UnpackedTarball/skia/src/opts/SkOpts_ssse3, $(CXXFLAGS_INTRINSICS_SSSE3) $(LO_CLANG_CXXFLAGS_INTRINSICS_SSSE3) \
+ $(LO_SKIA_AVOID_INLINE_COPIES) \
+))
+$(eval $(call gb_Library_add_generated_exception_objects,skia,\
+ UnpackedTarball/skia/src/opts/SkOpts_crc32 \
+))
+
+$(eval $(call gb_Library_add_generated_exception_objects,skia,\
+ UnpackedTarball/skia/src/opts/SkOpts_skx, $(CXXFLAGS_INTRINSICS_AVX512) $(LO_CLANG_CXXFLAGS_INTRINSICS_AVX512)\
+ $(LO_SKIA_AVOID_INLINE_COPIES) \
+))
+
+$(eval $(call gb_Library_add_generated_exception_objects,skia,\
+ UnpackedTarball/skia/tools/sk_app/WindowContext \
+))
+
+ifeq ($(OS),WNT)
+$(eval $(call gb_Library_add_generated_exception_objects,skia,\
+ UnpackedTarball/skia/src/ports/SkDebug_win \
+ UnpackedTarball/skia/src/ports/SkFontHost_win \
+ UnpackedTarball/skia/src/fonts/SkFontMgr_indirect \
+ UnpackedTarball/skia/src/ports/SkFontMgr_win_dw \
+ UnpackedTarball/skia/src/ports/SkFontMgr_win_dw_factory \
+ UnpackedTarball/skia/src/ports/SkOSFile_win \
+ UnpackedTarball/skia/src/ports/SkOSLibrary_win \
+ UnpackedTarball/skia/src/ports/SkScalerContext_win_dw \
+ UnpackedTarball/skia/src/ports/SkTypeface_win_dw \
+ UnpackedTarball/skia/src/utils/win/SkAutoCoInitialize \
+ UnpackedTarball/skia/src/utils/win/SkDWrite \
+ UnpackedTarball/skia/src/utils/win/SkDWriteFontFileStream \
+ UnpackedTarball/skia/src/utils/win/SkDWriteGeometrySink \
+ UnpackedTarball/skia/src/utils/win/SkHRESULT \
+ UnpackedTarball/skia/src/utils/win/SkIStream \
+))
+
+$(eval $(call gb_Library_add_generated_exception_objects,skia,\
+ UnpackedTarball/skia/tools/sk_app/win/RasterWindowContext_win \
+))
+
+ifeq ($(SKIA_GPU),VULKAN)
+$(eval $(call gb_Library_add_generated_exception_objects,skia,\
+ UnpackedTarball/skia/tools/sk_app/win/VulkanWindowContext_win \
+))
+endif
+
+else ifeq ($(OS),MACOSX)
+$(eval $(call gb_Library_add_generated_exception_objects,skia,\
+ UnpackedTarball/skia/src/ports/SkDebug_stdio \
+ UnpackedTarball/skia/src/ports/SkImageEncoder_CG \
+ UnpackedTarball/skia/src/ports/SkImageGeneratorCG \
+ UnpackedTarball/skia/src/ports/SkFontMgr_mac_ct \
+ UnpackedTarball/skia/src/ports/SkFontMgr_mac_ct_factory \
+ UnpackedTarball/skia/src/ports/SkScalerContext_mac_ct \
+ UnpackedTarball/skia/src/ports/SkTypeface_mac_ct \
+ UnpackedTarball/skia/src/ports/SkOSFile_posix \
+ UnpackedTarball/skia/src/ports/SkOSLibrary_posix \
+ UnpackedTarball/skia/src/utils/mac/SkCTFont \
+ UnpackedTarball/skia/src/utils/mac/SkCreateCGImageRef \
+))
+
+ifeq ($(SKIA_GPU),METAL)
+$(eval $(call gb_Library_add_generated_objcxxobjects,skia,\
+ UnpackedTarball/skia/tools/sk_app/MetalWindowContext \
+ UnpackedTarball/skia/tools/sk_app/mac/MetalWindowContext_mac \
+))
+
+# Not used, uses OpenGL - UnpackedTarball/skia/tools/sk_app/mac/RasterWindowContext_mac
+
+$(eval $(call gb_Library_add_generated_objcxxobjects,skia,\
+ UnpackedTarball/skia/src/gpu/ganesh/mtl/GrMtlAttachment \
+ UnpackedTarball/skia/src/gpu/ganesh/mtl/GrMtlBuffer \
+ UnpackedTarball/skia/src/gpu/ganesh/mtl/GrMtlCaps \
+ UnpackedTarball/skia/src/gpu/ganesh/mtl/GrMtlCommandBuffer \
+ UnpackedTarball/skia/src/gpu/ganesh/mtl/GrMtlDepthStencil \
+ UnpackedTarball/skia/src/gpu/ganesh/mtl/GrMtlFramebuffer \
+ UnpackedTarball/skia/src/gpu/ganesh/mtl/GrMtlGpu \
+ UnpackedTarball/skia/src/gpu/ganesh/mtl/GrMtlOpsRenderPass \
+ UnpackedTarball/skia/src/gpu/ganesh/mtl/GrMtlPipelineState \
+ UnpackedTarball/skia/src/gpu/ganesh/mtl/GrMtlPipelineStateBuilder \
+ UnpackedTarball/skia/src/gpu/ganesh/mtl/GrMtlPipelineStateDataManager \
+ UnpackedTarball/skia/src/gpu/ganesh/mtl/GrMtlRenderTarget \
+ UnpackedTarball/skia/src/gpu/ganesh/mtl/GrMtlResourceProvider \
+ UnpackedTarball/skia/src/gpu/ganesh/mtl/GrMtlSampler \
+ UnpackedTarball/skia/src/gpu/ganesh/mtl/GrMtlSemaphore \
+ UnpackedTarball/skia/src/gpu/ganesh/mtl/GrMtlTexture \
+ UnpackedTarball/skia/src/gpu/ganesh/mtl/GrMtlTextureRenderTarget \
+ UnpackedTarball/skia/src/gpu/ganesh/mtl/GrMtlTrampoline \
+ UnpackedTarball/skia/src/gpu/ganesh/mtl/GrMtlTypesPriv \
+ UnpackedTarball/skia/src/gpu/ganesh/mtl/GrMtlUniformHandler \
+ UnpackedTarball/skia/src/gpu/ganesh/mtl/GrMtlUtil \
+ UnpackedTarball/skia/src/gpu/ganesh/mtl/GrMtlVaryingHandler \
+ UnpackedTarball/skia/src/image/SkSurface_GpuMtl \
+ , -fobjc-arc \
+))
+endif
+
+else
+$(eval $(call gb_Library_add_generated_exception_objects,skia,\
+ UnpackedTarball/skia/src/ports/SkDebug_stdio \
+ UnpackedTarball/skia/src/ports/SkFontConfigInterface \
+ UnpackedTarball/skia/src/ports/SkFontConfigInterface_direct \
+ UnpackedTarball/skia/src/ports/SkFontConfigInterface_direct_factory \
+ UnpackedTarball/skia/src/ports/SkFontHost_FreeType_common \
+ UnpackedTarball/skia/src/ports/SkFontHost_FreeType \
+ UnpackedTarball/skia/src/ports/SkFontMgr_FontConfigInterface \
+ UnpackedTarball/skia/src/ports/SkFontMgr_fontconfig \
+ UnpackedTarball/skia/src/ports/SkFontMgr_fontconfig_factory \
+ UnpackedTarball/skia/src/ports/SkOSFile_posix \
+ UnpackedTarball/skia/src/ports/SkOSLibrary_posix \
+))
+
+$(eval $(call gb_Library_add_generated_exception_objects,skia,\
+ UnpackedTarball/skia/tools/sk_app/unix/RasterWindowContext_unix \
+))
+ifeq ($(SKIA_GPU),VULKAN)
+$(eval $(call gb_Library_add_generated_exception_objects,skia,\
+ UnpackedTarball/skia/tools/sk_app/unix/VulkanWindowContext_unix \
+))
+endif
+
+endif
+
+# Skcms code is used by png writer, which is used by SkiaHelper::dump(). Building
+# this without optimizations would mean having each pixel of saved images be
+# processed by unoptimized code.
+$(eval $(call gb_Library_add_generated_exception_objects,skia,\
+ UnpackedTarball/skia/third_party/skcms/skcms, $(gb_COMPILEROPTFLAGS) \
+))
+
+# vim: set noet sw=4 ts=4:
diff --git a/external/skia/Makefile b/external/skia/Makefile
new file mode 100644
index 000000000..e4968cf85
--- /dev/null
+++ b/external/skia/Makefile
@@ -0,0 +1,7 @@
+# -*- Mode: makefile-gmake; tab-width: 4; indent-tabs-mode: t -*-
+
+module_directory:=$(dir $(realpath $(firstword $(MAKEFILE_LIST))))
+
+include $(module_directory)/../../solenv/gbuild/partial_build.mk
+
+# vim: set noet sw=4 ts=4:
diff --git a/external/skia/Module_skia.mk b/external/skia/Module_skia.mk
new file mode 100644
index 000000000..4cb8b5157
--- /dev/null
+++ b/external/skia/Module_skia.mk
@@ -0,0 +1,18 @@
+# -*- Mode: makefile-gmake; tab-width: 4; indent-tabs-mode: t -*-
+#
+# This file is part of the LibreOffice project.
+#
+# This Source Code Form is subject to the terms of the Mozilla Public
+# License, v. 2.0. If a copy of the MPL was not distributed with this
+# file, You can obtain one at http://mozilla.org/MPL/2.0/.
+#
+
+$(eval $(call gb_Module_Module,skia))
+
+$(eval $(call gb_Module_add_targets,skia,\
+ UnpackedTarball_skia \
+ Library_skia \
+))
+
+
+# vim: set noet sw=4 ts=4:
diff --git a/external/skia/README b/external/skia/README
new file mode 100644
index 000000000..bf59a2384
--- /dev/null
+++ b/external/skia/README
@@ -0,0 +1,33 @@
+External package containing skia.
+
+https://skia.org/
+
+
+How to update the tarball:
+==========================
+
+git clone https://skia.googlesource.com/skia.git
+cd skia
+git checkout chrome/mXX
+id=$(git rev-parse chrome/mXX)
+git clean -idx
+rm -rf .git gitignore infra modules/canvaskit resources site
+cd ..
+tar cvJf skia-mXX-$id.tar.xz skia
+
+(where XX refers to the branch version)
+
+And review differences for BUILD.gn and relevant files in gn/ :
+git diff chrome/mYY..chrome/mXX ./BUILD.gn ./gn
+
+
+Debugging Skia:
+===============
+
+Note that Skia is always built optimized, unless you use --enable-skia=debug.
+
+
+GrContext sharing:
+==================
+
+For details about the share-grcontext patch, see vcl/skia/README.
diff --git a/external/skia/UnpackedTarball_skia.mk b/external/skia/UnpackedTarball_skia.mk
new file mode 100644
index 000000000..f88cb371d
--- /dev/null
+++ b/external/skia/UnpackedTarball_skia.mk
@@ -0,0 +1,53 @@
+# -*- Mode: makefile-gmake; tab-width: 4; indent-tabs-mode: t -*-
+#
+# This file is part of the LibreOffice project.
+#
+# This Source Code Form is subject to the terms of the Mozilla Public
+# License, v. 2.0. If a copy of the MPL was not distributed with this
+# file, You can obtain one at http://mozilla.org/MPL/2.0/.
+#
+
+$(eval $(call gb_UnpackedTarball_UnpackedTarball,skia))
+
+$(eval $(call gb_UnpackedTarball_set_tarball,skia,$(SKIA_TARBALL)))
+
+skia_patches := \
+ fix-pch.patch.1 \
+ fix-ddi.patch \
+ make-api-visible.patch.1 \
+ no-trace-resources-on-exit.patch.1 \
+ fix-alpha-difference-copy.patch.1 \
+ share-grcontext.patch.1 \
+ clang11-flax-vector-conversion.patch.0 \
+ clang-attributes-warning.patch.1 \
+ fontconfig-get-typeface.patch.0 \
+ windows-do-not-modify-logfont.patch.0 \
+ windows-text-gamma.patch.0 \
+ windows-force-unicode-api.patch.0 \
+ fix-without-gl.patch.1 \
+ windows-typeface-directwrite.patch.0 \
+ windows-raster-surface-no-copies.patch.1 \
+ fix-windows-dwrite.patch.1 \
+ swap-buffers-rect.patch.1 \
+ ubsan.patch.1 \
+ fast-png-write.patch.1 \
+ skia_sk_cpu_sse_level_0_by_default.patch.1 \
+ fix-warnings.patch.1 \
+ windows-libraries-system32.patch.1 \
+ fix-graphite-ifdef.patch.1 \
+ allow-no-es2restrictions.patch.1 \
+ vk_mem_alloc.patch.1 \
+ tdf148624.patch.1 \
+ missing-include.patch.0 \
+
+$(eval $(call gb_UnpackedTarball_set_patchlevel,skia,1))
+
+$(eval $(call gb_UnpackedTarball_add_patches,skia,\
+ $(foreach patch,$(skia_patches),external/skia/$(patch)) \
+))
+
+$(eval $(call gb_UnpackedTarball_set_post_action,skia,\
+ mv third_party/skcms/skcms.cc third_party/skcms/skcms.cpp \
+))
+
+# vim: set noet sw=4 ts=4:
diff --git a/external/skia/allow-no-es2restrictions.patch.1 b/external/skia/allow-no-es2restrictions.patch.1
new file mode 100644
index 000000000..ea2dd0219
--- /dev/null
+++ b/external/skia/allow-no-es2restrictions.patch.1
@@ -0,0 +1,13 @@
+diff --git a/include/effects/SkRuntimeEffect.h b/include/effects/SkRuntimeEffect.h
+index e424910b34..cee7794d3a 100644
+--- a/include/effects/SkRuntimeEffect.h
++++ b/include/effects/SkRuntimeEffect.h
+@@ -108,7 +108,7 @@ public:
+ // painted.)
+ bool forceUnoptimized = false;
+
+- private:
++// private:
+ friend class SkRuntimeEffect;
+ friend class SkRuntimeEffectPriv;
+
diff --git a/external/skia/clang-attributes-warning.patch.1 b/external/skia/clang-attributes-warning.patch.1
new file mode 100644
index 000000000..6384735e9
--- /dev/null
+++ b/external/skia/clang-attributes-warning.patch.1
@@ -0,0 +1,31 @@
+diff --git a/include/private/SkFloatingPoint.h b/include/private/SkFloatingPoint.h
+index 3c6d22c310..60500b2d2c 100644
+--- a/include/private/SkFloatingPoint.h
++++ b/include/private/SkFloatingPoint.h
+@@ -159,7 +159,9 @@ static inline int64_t sk_float_saturate2int64(float x) {
+ // Cast double to float, ignoring any warning about too-large finite values being cast to float.
+ // Clang thinks this is undefined, but it's actually implementation defined to return either
+ // the largest float or infinity (one of the two bracketing representable floats). Good enough!
++#if defined(__clang__)
+ SK_ATTRIBUTE(no_sanitize("float-cast-overflow"))
++#endif
+ static inline float sk_double_to_float(double x) {
+ return static_cast<float>(x);
+ }
+@@ -242,12 +244,16 @@ static inline int sk_float_nextlog2(float x) {
+ // IEEE defines how float divide behaves for non-finite values and zero-denoms, but C does not
+ // so we have a helper that suppresses the possible undefined-behavior warnings.
+
++#if defined(__clang__)
+ SK_ATTRIBUTE(no_sanitize("float-divide-by-zero"))
++#endif
+ static inline float sk_ieee_float_divide(float numer, float denom) {
+ return numer / denom;
+ }
+
++#if defined(__clang__)
+ SK_ATTRIBUTE(no_sanitize("float-divide-by-zero"))
++#endif
+ static inline double sk_ieee_double_divide(double numer, double denom) {
+ return numer / denom;
+ }
diff --git a/external/skia/clang11-flax-vector-conversion.patch.0 b/external/skia/clang11-flax-vector-conversion.patch.0
new file mode 100644
index 000000000..40cf4e0a4
--- /dev/null
+++ b/external/skia/clang11-flax-vector-conversion.patch.0
@@ -0,0 +1,11 @@
+--- src/opts/SkRasterPipeline_opts.h
++++ src/opts/SkRasterPipeline_opts.h
+@@ -68,7 +68,7 @@
+ };
+
+
+-#if !defined(__clang__)
++#if !defined(__clang__) || __clang_major__ >= 11
+ #define JUMPER_IS_SCALAR
+ #elif defined(SK_ARM_HAS_NEON)
+ #define JUMPER_IS_NEON
diff --git a/external/skia/fast-png-write.patch.1 b/external/skia/fast-png-write.patch.1
new file mode 100644
index 000000000..f47a2af70
--- /dev/null
+++ b/external/skia/fast-png-write.patch.1
@@ -0,0 +1,15 @@
+diff --git a/src/images/SkImageEncoder.cpp b/src/images/SkImageEncoder.cpp
+index a96a93e0fc..1c110afa58 100644
+--- a/src/images/SkImageEncoder.cpp
++++ b/src/images/SkImageEncoder.cpp
+@@ -46,6 +46,10 @@ bool SkEncodeImage(SkWStream* dst, const SkPixmap& src,
+ }
+ case SkEncodedImageFormat::kPNG: {
+ SkPngEncoder::Options opts;
++ if (quality == 1) {
++ opts.fFilterFlags = SkPngEncoder::FilterFlag::kNone;
++ opts.fZLibLevel = 1;
++ }
+ return SkPngEncoder::Encode(dst, src, opts);
+ }
+ case SkEncodedImageFormat::kWEBP: {
diff --git a/external/skia/fix-alpha-difference-copy.patch.1 b/external/skia/fix-alpha-difference-copy.patch.1
new file mode 100644
index 000000000..61a61e621
--- /dev/null
+++ b/external/skia/fix-alpha-difference-copy.patch.1
@@ -0,0 +1,13 @@
+diff --git a/src/core/SkBlitter_Sprite.cpp b/src/core/SkBlitter_Sprite.cpp
+index df7d9a7025..7f94c2a660 100644
+--- a/src/core/SkBlitter_Sprite.cpp
++++ b/src/core/SkBlitter_Sprite.cpp
+@@ -191,7 +191,7 @@ SkBlitter* SkBlitter::ChooseSprite(const SkPixmap& dst, const SkPaint& paint,
+ }
+
+ // TODO: in principle SkRasterPipelineSpriteBlitter could be made to handle this.
+- if (source.alphaType() == kUnpremul_SkAlphaType) {
++ if (source.alphaType() != dst.alphaType()) {
+ return nullptr;
+ }
+
diff --git a/external/skia/fix-ddi.patch b/external/skia/fix-ddi.patch
new file mode 100644
index 000000000..f827c1d69
--- /dev/null
+++ b/external/skia/fix-ddi.patch
@@ -0,0 +1,9 @@
+--- skia/src/utils/win/SkDWriteNTDDI_VERSION.h.sav 2019-08-15 21:59:46.000000000 +0200
++++ skia/src/utils/win/SkDWriteNTDDI_VERSION.h 2019-09-26 15:30:36.395622200 +0200
+@@ -28,4 +28,6 @@
+ # endif
+ #endif
+
++#define NTDDI_VERSION 0x0A000002 // NTDDI_WIN10_RS1
++
+ #endif
diff --git a/external/skia/fix-graphite-ifdef.patch.1 b/external/skia/fix-graphite-ifdef.patch.1
new file mode 100644
index 000000000..4ed2ff252
--- /dev/null
+++ b/external/skia/fix-graphite-ifdef.patch.1
@@ -0,0 +1,48 @@
+diff --git a/include/core/SkImage.h b/include/core/SkImage.h
+index 9ca9317408..fee18fe58c 100644
+--- a/include/core/SkImage.h
++++ b/include/core/SkImage.h
+@@ -17,7 +17,7 @@
+ #if SK_SUPPORT_GPU
+ #include "include/gpu/GrTypes.h"
+ #endif
+-#if SK_GRAPHITE_ENABLED
++#ifdef SK_GRAPHITE_ENABLED
+ #include "include/gpu/graphite/GraphiteTypes.h"
+ #endif
+ #include <functional> // std::function
+@@ -49,7 +49,7 @@ class SkYUVAPixmaps;
+
+ enum class SkEncodedImageFormat;
+
+-#if SK_GRAPHITE_ENABLED
++#ifdef SK_GRAPHITE_ENABLED
+ namespace skgpu::graphite {
+ class Recorder;
+ };
+diff --git a/include/core/SkTypes.h b/include/core/SkTypes.h
+index 5301361a2b..8adaf3ac09 100644
+--- a/include/core/SkTypes.h
++++ b/include/core/SkTypes.h
+@@ -236,7 +236,7 @@
+ # define SK_SUPPORT_GPU 1
+ #endif
+
+-#if SK_SUPPORT_GPU || SK_GRAPHITE_ENABLED
++#if SK_SUPPORT_GPU || defined(SK_GRAPHITE_ENABLED)
+ # if !defined(SK_ENABLE_SKSL)
+ # define SK_ENABLE_SKSL
+ # endif
+diff --git a/tools/sk_app/WindowContext.h b/tools/sk_app/WindowContext.h
+index 65ab8b9aa4..c1bc7fb03a 100644
+--- a/tools/sk_app/WindowContext.h
++++ b/tools/sk_app/WindowContext.h
+@@ -58,7 +58,7 @@ protected:
+ virtual bool isGpuContext() { return true; }
+
+ sk_sp<GrDirectContext> fContext;
+-#if SK_GRAPHITE_ENABLED
++#ifdef SK_GRAPHITE_ENABLED
+ std::unique_ptr<skgpu::graphite::Context> fGraphiteContext;
+ std::unique_ptr<skgpu::graphite::Recorder> fGraphiteRecorder;
+ #endif
diff --git a/external/skia/fix-pch.patch.1 b/external/skia/fix-pch.patch.1
new file mode 100644
index 000000000..a2fe81562
--- /dev/null
+++ b/external/skia/fix-pch.patch.1
@@ -0,0 +1,106 @@
+diff --git a/include/core/SkColor.h b/include/core/SkColor.h
+index a6e63def23..1c0655c3d7 100644
+--- a/include/core/SkColor.h
++++ b/include/core/SkColor.h
+@@ -420,6 +420,7 @@ using SkColor4f = SkRGBA4f<kUnpremul_SkAlphaType>;
+
+ template <> SK_API SkColor4f SkColor4f::FromColor(SkColor);
+ template <> SK_API SkColor SkColor4f::toSkColor() const;
++template <> uint32_t SkColor4f::toBytes_RGBA() const;
+
+ namespace SkColors {
+ constexpr SkColor4f kTransparent = {0, 0, 0, 0};
+diff --git a/include/private/SkColorData.h b/include/private/SkColorData.h
+index a59e7b0446..960b4c0313 100644
+--- a/include/private/SkColorData.h
++++ b/include/private/SkColorData.h
+@@ -438,4 +438,6 @@ constexpr SkPMColor4f SK_PMColor4fILLEGAL = { SK_FloatNegativeInfinity,
+ SK_FloatNegativeInfinity,
+ SK_FloatNegativeInfinity };
+
++template <> uint32_t SkPMColor4f::toBytes_RGBA() const;
++
+ #endif
+diff --git a/src/core/SkM44.cpp b/src/core/SkM44.cpp
+index 02b1741763..4cece999d2 100644
+--- a/src/core/SkM44.cpp
++++ b/src/core/SkM44.cpp
+@@ -341,6 +341,8 @@ SkM44 SkM44::LookAt(const SkV3& eye, const SkV3& center, const SkV3& up) {
+ return m;
+ }
+
++#undef near
++#undef far
+ SkM44 SkM44::Perspective(float near, float far, float angle) {
+ SkASSERT(far > near);
+
+diff --git a/src/gpu/ganesh/vk/GrVkSemaphore.cpp b/src/gpu/ganesh/vk/GrVkSemaphore.cpp
+index 70c7f0ea80..ab8319a447 100644
+--- a/src/gpu/ganesh/vk/GrVkSemaphore.cpp
++++ b/src/gpu/ganesh/vk/GrVkSemaphore.cpp
+@@ -10,6 +10,7 @@
+ #include "include/gpu/GrBackendSemaphore.h"
+ #include "src/gpu/ganesh/vk/GrVkGpu.h"
+ #include "src/gpu/ganesh/vk/GrVkUtil.h"
++#include "tools/gpu/vk/GrVulkanDefines.h"
+
+ #ifdef VK_USE_PLATFORM_WIN32_KHR
+ // windows wants to define this as CreateSemaphoreA or CreateSemaphoreW
+diff --git a/src/sksl/ir/SkSLPoison.h b/src/sksl/ir/SkSLPoison.h
+index 035f94e1f6..3cf12db902 100644
+--- a/src/sksl/ir/SkSLPoison.h
++++ b/src/sksl/ir/SkSLPoison.h
+@@ -5,6 +5,9 @@
+ * found in the LICENSE file.
+ */
+
++#ifndef SKSL_POISON
++#define SKSL_POISON
++
+ #include "src/sksl/SkSLCompiler.h"
+ #include "src/sksl/SkSLContext.h"
+
+@@ -38,3 +41,5 @@ private:
+ };
+
+ } // namespace SkSL
++
++#endif
+diff --git a/src/utils/win/SkDWriteGeometrySink.h b/src/utils/win/SkDWriteGeometrySink.h
+index af4909aaaf..825ec35c83 100644
+--- a/src/utils/win/SkDWriteGeometrySink.h
++++ b/src/utils/win/SkDWriteGeometrySink.h
+@@ -13,6 +13,8 @@
+
+ class SkPath;
+
++#define CONST const
++
+ #include <dwrite.h>
+ #include <d2d1.h>
+
+diff --git a/third_party/skcms/skcms.cc b/third_party/skcms/skcms.cc
+index 1b643f45cf..c1981110da 100644
+--- a/third_party/skcms/skcms.cc
++++ b/third_party/skcms/skcms.cc
+@@ -130,7 +130,8 @@ static float minus_1_ulp(float x) {
+ // Most transfer functions we work with are sRGBish.
+ // For exotic HDR transfer functions, we encode them using a tf.g that makes no sense,
+ // and repurpose the other fields to hold the parameters of the HDR functions.
+-enum TFKind { Bad, sRGBish, PQish, HLGish, HLGinvish };
++enum TFKind_skcms { Bad, sRGBish, PQish, HLGish, HLGinvish };
++#define TFKind TFKind_skcms
+ struct TF_PQish { float A,B,C,D,E,F; };
+ struct TF_HLGish { float R,G,a,b,c,K_minus_1; };
+ // We didn't originally support a scale factor K for HLG, and instead just stored 0 in
+@@ -2318,7 +2319,9 @@ typedef enum {
+ Op_store_hhhh,
+ Op_store_fff,
+ Op_store_ffff,
+-} Op;
++} Op_skcms;
++
++#define Op Op_skcms
+
+ #if defined(__clang__)
+ template <int N, typename T> using Vec = T __attribute__((ext_vector_type(N)));
diff --git a/external/skia/fix-warnings.patch.1 b/external/skia/fix-warnings.patch.1
new file mode 100644
index 000000000..2aefd91c5
--- /dev/null
+++ b/external/skia/fix-warnings.patch.1
@@ -0,0 +1,39 @@
+diff --git a/include/core/SkFontParameters.h b/include/core/SkFontParameters.h
+index ae4f1d68b6..71263da7c5 100644
+--- a/include/core/SkFontParameters.h
++++ b/include/core/SkFontParameters.h
+@@ -16,8 +16,8 @@ struct SkFontParameters {
+ // Parameters in a variation font axis.
+ struct Axis {
+ constexpr Axis() : tag(0), min(0), def(0), max(0), flags(0) {}
+- constexpr Axis(SkFourByteTag tag, float min, float def, float max, bool hidden) :
+- tag(tag), min(min), def(def), max(max), flags(hidden ? HIDDEN : 0) {}
++ constexpr Axis(SkFourByteTag _tag, float _min, float _def, float _max, bool hidden) :
++ tag(_tag), min(_min), def(_def), max(_max), flags(hidden ? HIDDEN : 0) {}
+
+ // Four character identifier of the font axis (weight, width, slant, italic...).
+ SkFourByteTag tag;
+diff --git a/tools/sk_app/WindowContext.h b/tools/sk_app/WindowContext.h
+index f143dab013..be3cde0f4f 100644
+--- a/tools/sk_app/WindowContext.h
++++ b/tools/sk_app/WindowContext.h
+@@ -31,7 +31,7 @@ public:
+
+ virtual void resize(int w, int h) = 0;
+
+- virtual void activate(bool isActive) {}
++ virtual void activate(bool /*isActive*/) {}
+
+ const DisplayParams& getDisplayParams() { return fDisplayParams; }
+ virtual void setDisplayParams(const DisplayParams& params) = 0;
+--- skia/include/core/SkSamplingOptions.h.orig 2022-05-22 12:25:06.112544528 +0200
++++ skia/include/core/SkSamplingOptions.h 2022-05-22 12:25:09.207636134 +0200
+@@ -97,7 +97,7 @@
+ bool isAniso() const { return maxAniso != 0; }
+
+ private:
+- SkSamplingOptions(int maxAniso) : maxAniso(maxAniso) {}
++ SkSamplingOptions(int maxAniso_) : maxAniso(maxAniso_) {}
+ };
+
+ #endif
diff --git a/external/skia/fix-windows-dwrite.patch.1 b/external/skia/fix-windows-dwrite.patch.1
new file mode 100644
index 000000000..b5f216a52
--- /dev/null
+++ b/external/skia/fix-windows-dwrite.patch.1
@@ -0,0 +1,40 @@
+diff --git a/src/ports/SkFontMgr_win_dw.cpp b/src/ports/SkFontMgr_win_dw.cpp
+index 6a4748f91c..50086a7780 100644
+--- a/src/ports/SkFontMgr_win_dw.cpp
++++ b/src/ports/SkFontMgr_win_dw.cpp
+@@ -361,6 +361,7 @@ static bool FindByDWriteFont(SkTypeface* cached, void* ctx) {
+ DWriteFontTypeface* cshFace = reinterpret_cast<DWriteFontTypeface*>(cached);
+ ProtoDWriteTypeface* ctxFace = reinterpret_cast<ProtoDWriteTypeface*>(ctx);
+
++#if defined(NTDDI_WIN10_RS3) && NTDDI_VERSION >= NTDDI_WIN10_RS3
+ // IDWriteFontFace5 introduced both Equals and HasVariations
+ SkTScopedComPtr<IDWriteFontFace5> cshFontFace5;
+ SkTScopedComPtr<IDWriteFontFace5> ctxFontFace5;
+@@ -369,6 +370,7 @@ static bool FindByDWriteFont(SkTypeface* cached, void* ctx) {
+ if (cshFontFace5 && ctxFontFace5) {
+ return cshFontFace5->Equals(ctxFontFace5.get());
+ }
++#endif
+
+ bool same;
+
+diff --git a/src/ports/SkScalerContext_win_dw.cpp b/src/ports/SkScalerContext_win_dw.cpp
+index b2df467b22..385094e506 100644
+--- a/src/ports/SkScalerContext_win_dw.cpp
++++ b/src/ports/SkScalerContext_win_dw.cpp
+@@ -778,6 +778,7 @@ void SkScalerContext_DW::generateFontMetrics(SkFontMetrics* metrics) {
+ metrics->fFlags |= SkFontMetrics::kStrikeoutThicknessIsValid_Flag;
+ metrics->fFlags |= SkFontMetrics::kStrikeoutPositionIsValid_Flag;
+
++#if defined(NTDDI_WIN10_RS3) && NTDDI_VERSION >= NTDDI_WIN10_RS3
+ SkTScopedComPtr<IDWriteFontFace5> fontFace5;
+ if (SUCCEEDED(this->getDWriteTypeface()->fDWriteFontFace->QueryInterface(&fontFace5))) {
+ if (fontFace5->HasVariations()) {
+@@ -785,6 +786,7 @@ void SkScalerContext_DW::generateFontMetrics(SkFontMetrics* metrics) {
+ metrics->fFlags |= SkFontMetrics::kBoundsInvalid_Flag;
+ }
+ }
++#endif
+
+ if (this->getDWriteTypeface()->fDWriteFontFace1.get()) {
+ DWRITE_FONT_METRICS1 dwfm1;
diff --git a/external/skia/fix-without-gl.patch.1 b/external/skia/fix-without-gl.patch.1
new file mode 100644
index 000000000..8735dc81d
--- /dev/null
+++ b/external/skia/fix-without-gl.patch.1
@@ -0,0 +1,50 @@
+diff --git a/include/gpu/gl/GrGLInterface.h b/include/gpu/gl/GrGLInterface.h
+index e10242b3b7..a1c0058caa 100644
+--- a/include/gpu/gl/GrGLInterface.h
++++ b/include/gpu/gl/GrGLInterface.h
+@@ -83,7 +83,9 @@ public:
+
+ GrGLExtensions fExtensions;
+
++#ifdef SK_GL
+ bool hasExtension(const char ext[]) const { return fExtensions.has(ext); }
++#endif
+
+ /**
+ * The function pointers are in a struct so that we can have a compiler generated assignment
+diff --git a/src/gpu/ganesh/gl/GrGLContext.h b/src/gpu/ganesh/gl/GrGLContext.h
+index d5424ca6cf..5b730fe176 100644
+--- a/src/gpu/ganesh/gl/GrGLContext.h
++++ b/src/gpu/ganesh/gl/GrGLContext.h
+@@ -64,9 +64,11 @@ public:
+ const GrGLCaps* caps() const { return fGLCaps.get(); }
+ GrGLCaps* caps() { return fGLCaps.get(); }
+
++#ifdef SK_GL
+ bool hasExtension(const char* ext) const {
+ return fInterface->hasExtension(ext);
+ }
++#endif
+
+ const GrGLExtensions& extensions() const { return fInterface->fExtensions; }
+
+diff --git a/src/gpu/ganesh/gl/GrGLGpu.h b/src/gpu/ganesh/gl/GrGLGpu.h
+index a3ac1ad25d..ffc18093e6 100644
+--- a/src/gpu/ganesh/gl/GrGLGpu.h
++++ b/src/gpu/ganesh/gl/GrGLGpu.h
+@@ -279,6 +279,7 @@ private:
+ // compatible stencil format, or negative if there is no compatible stencil format.
+ int getCompatibleStencilIndex(GrGLFormat format);
+
++#ifdef SK_GL
+ GrBackendFormat getPreferredStencilFormat(const GrBackendFormat& format) override {
+ int idx = this->getCompatibleStencilIndex(format.asGLFormat());
+ if (idx < 0) {
+@@ -287,6 +288,7 @@ private:
+ return GrBackendFormat::MakeGL(GrGLFormatToEnum(this->glCaps().stencilFormats()[idx]),
+ GR_GL_TEXTURE_NONE);
+ }
++#endif
+
+ void onFBOChanged();
+
diff --git a/external/skia/fontconfig-get-typeface.patch.0 b/external/skia/fontconfig-get-typeface.patch.0
new file mode 100644
index 000000000..20c3f5b9c
--- /dev/null
+++ b/external/skia/fontconfig-get-typeface.patch.0
@@ -0,0 +1,40 @@
+diff --git a/include/ports/SkFontMgr_fontconfig.h b/include/ports/SkFontMgr_fontconfig.h
+index 4b2bb2d297..2b82cbfedd 100644
+--- include/ports/SkFontMgr_fontconfig.h
++++ include/ports/SkFontMgr_fontconfig.h
+@@ -19,4 +19,9 @@ class SkFontMgr;
+ */
+ SK_API sk_sp<SkFontMgr> SkFontMgr_New_FontConfig(FcConfig* fc);
+
++struct _FcPattern;
++typedef struct _FcPattern FcPattern;
++class SkTypeface;
++SK_API sk_sp<SkTypeface> SkFontMgr_createTypefaceFromFcPattern(const sk_sp<SkFontMgr>& mgr, FcPattern* pattern);
++
+ #endif // #ifndef SkFontMgr_fontconfig_DEFINED
+diff --git a/src/ports/SkFontMgr_fontconfig.cpp b/src/ports/SkFontMgr_fontconfig.cpp
+index c2da39b28f..28483faf02 100644
+--- src/ports/SkFontMgr_fontconfig.cpp
++++ src/ports/SkFontMgr_fontconfig.cpp
+@@ -690,6 +690,7 @@ class SkFontMgr_fontconfig : public SkFontMgr {
+ /** Creates a typeface using a typeface cache.
+ * @param pattern a complete pattern from FcFontRenderPrepare.
+ */
++public:
+ sk_sp<SkTypeface> createTypefaceFromFcPattern(SkAutoFcPattern pattern) const {
+ if (!pattern) {
+ return nullptr;
+@@ -1043,3 +1044,13 @@ protected:
+ SK_API sk_sp<SkFontMgr> SkFontMgr_New_FontConfig(FcConfig* fc) {
+ return sk_make_sp<SkFontMgr_fontconfig>(fc);
+ }
++
++SK_API sk_sp<SkTypeface> SkFontMgr_createTypefaceFromFcPattern(const sk_sp<SkFontMgr>& mgr, FcPattern* pattern)
++{
++ SkAutoFcPattern p([pattern]() {
++ FCLocker lock;
++ FcPatternReference(pattern);
++ return pattern;
++ }());
++ return static_cast<SkFontMgr_fontconfig*>(mgr.get())->createTypefaceFromFcPattern(std::move(p));
++}
diff --git a/external/skia/inc/pch/precompiled_skia.cxx b/external/skia/inc/pch/precompiled_skia.cxx
new file mode 100644
index 000000000..8892e30fd
--- /dev/null
+++ b/external/skia/inc/pch/precompiled_skia.cxx
@@ -0,0 +1,12 @@
+/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
+/*
+ * This file is part of the LibreOffice project.
+ *
+ * This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/.
+ */
+
+#include "precompiled_skia.hxx"
+
+/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
diff --git a/external/skia/inc/pch/precompiled_skia.hxx b/external/skia/inc/pch/precompiled_skia.hxx
new file mode 100644
index 000000000..e9631b68d
--- /dev/null
+++ b/external/skia/inc/pch/precompiled_skia.hxx
@@ -0,0 +1,618 @@
+/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
+/*
+ * This file is part of the LibreOffice project.
+ *
+ * This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/.
+ */
+
+/*
+ This file has been autogenerated by update_pch.sh. It is possible to edit it
+ manually (such as when an include file has been moved/renamed/removed). All such
+ manual changes will be rewritten by the next run of update_pch.sh (which presumably
+ also fixes all possible problems, so it's usually better to use it).
+
+ Generated on 2022-05-20 16:24:18 using:
+ ./bin/update_pch external/skia skia --cutoff=1 --exclude:system --include:module --include:local
+
+ If after updating build fails, use the following command to locate conflicting headers:
+ ./bin/update_pch_bisect ./external/skia/inc/pch/precompiled_skia.hxx "make external/skia.build" --find-conflicts
+*/
+
+#include <sal/config.h>
+#if PCH_LEVEL >= 1
+#include <algorithm>
+#include <array>
+#include <atomic>
+#include <bitset>
+#include <cctype>
+#include <cfloat>
+#include <chrono>
+#include <cinttypes>
+#include <climits>
+#include <cmath>
+#include <cstddef>
+#include <cstdint>
+#include <cstdio>
+#include <cstring>
+#include <ctype.h>
+#include <deque>
+#include <errno.h>
+#include <forward_list>
+#include <functional>
+#include <initializer_list>
+#include <inttypes.h>
+#include <iterator>
+#include <limits.h>
+#include <limits>
+#include <locale>
+#include <map>
+#include <math.h>
+#include <memory>
+#include <new>
+#include <numeric>
+#include <optional>
+#include <png.h>
+#include <queue>
+#include <set>
+#include <sstream>
+#include <stdarg.h>
+#include <stddef.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <string>
+#include <string_view>
+#include <thread>
+#include <tuple>
+#include <type_traits>
+#include <unordered_map>
+#include <unordered_set>
+#include <utility>
+#include <vector>
+#endif // PCH_LEVEL >= 1
+#if PCH_LEVEL >= 2
+#include <rtl/alloc.h>
+#include <sal/log.hxx>
+#endif // PCH_LEVEL >= 2
+#if PCH_LEVEL >= 3
+#include <include/c/sk_canvas.h>
+#include <include/c/sk_colorspace.h>
+#include <include/c/sk_data.h>
+#include <include/c/sk_image.h>
+#include <include/c/sk_imageinfo.h>
+#include <include/c/sk_maskfilter.h>
+#include <include/c/sk_paint.h>
+#include <include/c/sk_path.h>
+#include <include/c/sk_picture.h>
+#include <include/c/sk_shader.h>
+#include <include/c/sk_surface.h>
+#include <include/codec/SkAndroidCodec.h>
+#include <include/codec/SkCodec.h>
+#include <include/core/SkAlphaType.h>
+#include <include/core/SkAnnotation.h>
+#include <include/core/SkBBHFactory.h>
+#include <include/core/SkBitmap.h>
+#include <include/core/SkBlendMode.h>
+#include <include/core/SkBlender.h>
+#include <include/core/SkBlurTypes.h>
+#include <include/core/SkCanvas.h>
+#include <include/core/SkClipOp.h>
+#include <include/core/SkColor.h>
+#include <include/core/SkColorFilter.h>
+#include <include/core/SkColorPriv.h>
+#include <include/core/SkColorSpace.h>
+#include <include/core/SkColorType.h>
+#include <include/core/SkContourMeasure.h>
+#include <include/core/SkCubicMap.h>
+#include <include/core/SkData.h>
+#include <include/core/SkDataTable.h>
+#include <include/core/SkDeferredDisplayList.h>
+#include <include/core/SkDeferredDisplayListRecorder.h>
+#include <include/core/SkDocument.h>
+#include <include/core/SkDrawable.h>
+#include <include/core/SkExecutor.h>
+#include <include/core/SkFlattenable.h>
+#include <include/core/SkFont.h>
+#include <include/core/SkFontArguments.h>
+#include <include/core/SkFontMetrics.h>
+#include <include/core/SkFontMgr.h>
+#include <include/core/SkFontParameters.h>
+#include <include/core/SkFontStyle.h>
+#include <include/core/SkFontTypes.h>
+#include <include/core/SkGraphics.h>
+#include <include/core/SkICC.h>
+#include <include/core/SkImage.h>
+#include <include/core/SkImageEncoder.h>
+#include <include/core/SkImageFilter.h>
+#include <include/core/SkImageGenerator.h>
+#include <include/core/SkImageInfo.h>
+#include <include/core/SkM44.h>
+#include <include/core/SkMallocPixelRef.h>
+#include <include/core/SkMaskFilter.h>
+#include <include/core/SkMath.h>
+#include <include/core/SkMatrix.h>
+#include <include/core/SkMesh.h>
+#include <include/core/SkOpenTypeSVGDecoder.h>
+#include <include/core/SkOverdrawCanvas.h>
+#include <include/core/SkPaint.h>
+#include <include/core/SkPath.h>
+#include <include/core/SkPathBuilder.h>
+#include <include/core/SkPathEffect.h>
+#include <include/core/SkPathMeasure.h>
+#include <include/core/SkPathTypes.h>
+#include <include/core/SkPicture.h>
+#include <include/core/SkPictureRecorder.h>
+#include <include/core/SkPixelRef.h>
+#include <include/core/SkPixmap.h>
+#include <include/core/SkPoint.h>
+#include <include/core/SkPoint3.h>
+#include <include/core/SkPromiseImageTexture.h>
+#include <include/core/SkRRect.h>
+#include <include/core/SkRSXform.h>
+#include <include/core/SkRasterHandleAllocator.h>
+#include <include/core/SkRect.h>
+#include <include/core/SkRefCnt.h>
+#include <include/core/SkRegion.h>
+#include <include/core/SkSamplingOptions.h>
+#include <include/core/SkScalar.h>
+#include <include/core/SkSerialProcs.h>
+#include <include/core/SkShader.h>
+#include <include/core/SkSize.h>
+#include <include/core/SkSpan.h>
+#include <include/core/SkStream.h>
+#include <include/core/SkString.h>
+#include <include/core/SkStrokeRec.h>
+#include <include/core/SkSurface.h>
+#include <include/core/SkSurfaceCharacterization.h>
+#include <include/core/SkSwizzle.h>
+#include <include/core/SkTextBlob.h>
+#include <include/core/SkTileMode.h>
+#include <include/core/SkTime.h>
+#include <include/core/SkTraceMemoryDump.h>
+#include <include/core/SkTypeface.h>
+#include <include/core/SkTypes.h>
+#include <include/core/SkUnPreMultiply.h>
+#include <include/core/SkVertices.h>
+#include <include/core/SkYUVAInfo.h>
+#include <include/core/SkYUVAPixmaps.h>
+#include <include/effects/Sk1DPathEffect.h>
+#include <include/effects/Sk2DPathEffect.h>
+#include <include/effects/SkBlenders.h>
+#include <include/effects/SkBlurMaskFilter.h>
+#include <include/effects/SkColorMatrix.h>
+#include <include/effects/SkColorMatrixFilter.h>
+#include <include/effects/SkCornerPathEffect.h>
+#include <include/effects/SkDashPathEffect.h>
+#include <include/effects/SkDiscretePathEffect.h>
+#include <include/effects/SkGradientShader.h>
+#include <include/effects/SkHighContrastFilter.h>
+#include <include/effects/SkImageFilters.h>
+#include <include/effects/SkLumaColorFilter.h>
+#include <include/effects/SkOpPathEffect.h>
+#include <include/effects/SkOverdrawColorFilter.h>
+#include <include/effects/SkPerlinNoiseShader.h>
+#include <include/effects/SkRuntimeEffect.h>
+#include <include/effects/SkShaderMaskFilter.h>
+#include <include/effects/SkStrokeAndFillPathEffect.h>
+#include <include/effects/SkTableColorFilter.h>
+#include <include/effects/SkTableMaskFilter.h>
+#include <include/effects/SkTrimPathEffect.h>
+#include <include/encode/SkJpegEncoder.h>
+#include <include/encode/SkPngEncoder.h>
+#include <include/encode/SkWebpEncoder.h>
+#include <include/gpu/GrBackendSurface.h>
+#include <include/gpu/GrContextOptions.h>
+#include <include/gpu/GrContextThreadSafeProxy.h>
+#include <include/gpu/GrDirectContext.h>
+#include <include/gpu/GrRecordingContext.h>
+#include <include/pathops/SkPathOps.h>
+#include <include/ports/SkRemotableFontMgr.h>
+#include <include/private/SkBitmaskEnum.h>
+#include <include/private/SkChecksum.h>
+#include <include/private/SkColorData.h>
+#include <include/private/SkDeque.h>
+#include <include/private/SkEncodedInfo.h>
+#include <include/private/SkFixed.h>
+#include <include/private/SkFloatBits.h>
+#include <include/private/SkFloatingPoint.h>
+#include <include/private/SkHalf.h>
+#include <include/private/SkIDChangeListener.h>
+#include <include/private/SkImageInfoPriv.h>
+#include <include/private/SkMacros.h>
+#include <include/private/SkMalloc.h>
+#include <include/private/SkMutex.h>
+#include <include/private/SkNx.h>
+#include <include/private/SkOnce.h>
+#include <include/private/SkOpts_spi.h>
+#include <include/private/SkPathRef.h>
+#include <include/private/SkSLDefines.h>
+#include <include/private/SkSLLayout.h>
+#include <include/private/SkSLModifiers.h>
+#include <include/private/SkSLProgramElement.h>
+#include <include/private/SkSLProgramKind.h>
+#include <include/private/SkSLSampleUsage.h>
+#include <include/private/SkSLStatement.h>
+#include <include/private/SkSLString.h>
+#include <include/private/SkSLSymbol.h>
+#include <include/private/SkSafe32.h>
+#include <include/private/SkSemaphore.h>
+#include <include/private/SkShadowFlags.h>
+#include <include/private/SkSpinlock.h>
+#include <include/private/SkStringView.h>
+#include <include/private/SkTArray.h>
+#include <include/private/SkTDArray.h>
+#include <include/private/SkTFitsIn.h>
+#include <include/private/SkTHash.h>
+#include <include/private/SkTPin.h>
+#include <include/private/SkTemplates.h>
+#include <include/private/SkThreadAnnotations.h>
+#include <include/private/SkThreadID.h>
+#include <include/private/SkTo.h>
+#include <include/private/SkVx.h>
+#include <include/private/chromium/GrSlug.h>
+#include <include/private/chromium/SkChromeRemoteGlyphCache.h>
+#include <include/private/gpu/ganesh/GrImageContext.h>
+#include <include/private/gpu/ganesh/GrTypesPriv.h>
+#include <include/third_party/skcms/skcms.h>
+#include <include/utils/SkBase64.h>
+#include <include/utils/SkCamera.h>
+#include <include/utils/SkCanvasStateUtils.h>
+#include <include/utils/SkCustomTypeface.h>
+#include <include/utils/SkEventTracer.h>
+#include <include/utils/SkNWayCanvas.h>
+#include <include/utils/SkNoDrawCanvas.h>
+#include <include/utils/SkNullCanvas.h>
+#include <include/utils/SkOrderedFontMgr.h>
+#include <include/utils/SkPaintFilterCanvas.h>
+#include <include/utils/SkParse.h>
+#include <include/utils/SkParsePath.h>
+#include <include/utils/SkRandom.h>
+#include <include/utils/SkShadowUtils.h>
+#include <include/utils/SkTextUtils.h>
+#include <src/codec/SkAndroidCodecAdapter.h>
+#include <src/codec/SkBmpBaseCodec.h>
+#include <src/codec/SkBmpCodec.h>
+#include <src/codec/SkBmpMaskCodec.h>
+#include <src/codec/SkBmpRLECodec.h>
+#include <src/codec/SkBmpStandardCodec.h>
+#include <src/codec/SkCodecImageGenerator.h>
+#include <src/codec/SkCodecPriv.h>
+#include <src/codec/SkColorTable.h>
+#include <src/codec/SkFrameHolder.h>
+#include <src/codec/SkIcoCodec.h>
+#include <src/codec/SkMaskSwizzler.h>
+#include <src/codec/SkMasks.h>
+#include <src/codec/SkPngCodec.h>
+#include <src/codec/SkPngPriv.h>
+#include <src/codec/SkSampledCodec.h>
+#include <src/codec/SkSampler.h>
+#include <src/codec/SkStreamBuffer.h>
+#include <src/codec/SkSwizzler.h>
+#include <src/codec/SkWbmpCodec.h>
+#include <src/core/SkAAClip.h>
+#include <src/core/SkATrace.h>
+#include <src/core/SkAdvancedTypefaceMetrics.h>
+#include <src/core/SkAnalyticEdge.h>
+#include <src/core/SkAnnotationKeys.h>
+#include <src/core/SkAntiRun.h>
+#include <src/core/SkArenaAlloc.h>
+#include <src/core/SkAutoBlitterChoose.h>
+#include <src/core/SkAutoMalloc.h>
+#include <src/core/SkAutoPixmapStorage.h>
+#include <src/core/SkBigPicture.h>
+#include <src/core/SkBitmapCache.h>
+#include <src/core/SkBitmapDevice.h>
+#include <src/core/SkBitmapProcState.h>
+#include <src/core/SkBlendModeBlender.h>
+#include <src/core/SkBlendModePriv.h>
+#include <src/core/SkBlenderBase.h>
+#include <src/core/SkBlitRow.h>
+#include <src/core/SkBlitter.h>
+#include <src/core/SkBlockAllocator.h>
+#include <src/core/SkBlurMask.h>
+#include <src/core/SkBuffer.h>
+#include <src/core/SkCachedData.h>
+#include <src/core/SkCanvasPriv.h>
+#include <src/core/SkClipStack.h>
+#include <src/core/SkClipStackDevice.h>
+#include <src/core/SkColorFilterBase.h>
+#include <src/core/SkColorFilterPriv.h>
+#include <src/core/SkColorFilter_Matrix.h>
+#include <src/core/SkColorSpacePriv.h>
+#include <src/core/SkColorSpaceXformSteps.h>
+#include <src/core/SkCompressedDataUtils.h>
+#include <src/core/SkConvertPixels.h>
+#include <src/core/SkCoreBlitters.h>
+#include <src/core/SkCpu.h>
+#include <src/core/SkCubicClipper.h>
+#include <src/core/SkDebugUtils.h>
+#include <src/core/SkDescriptor.h>
+#include <src/core/SkDevice.h>
+#include <src/core/SkDiscardableMemory.h>
+#include <src/core/SkDistanceFieldGen.h>
+#include <src/core/SkDraw.h>
+#include <src/core/SkDrawProcs.h>
+#include <src/core/SkDrawShadowInfo.h>
+#include <src/core/SkEdge.h>
+#include <src/core/SkEdgeBuilder.h>
+#include <src/core/SkEdgeClipper.h>
+#include <src/core/SkEffectPriv.h>
+#include <src/core/SkEndian.h>
+#include <src/core/SkEnumerate.h>
+#include <src/core/SkFDot6.h>
+#include <src/core/SkFontDescriptor.h>
+#include <src/core/SkFontPriv.h>
+#include <src/core/SkFontStream.h>
+#include <src/core/SkFuzzLogging.h>
+#include <src/core/SkGaussFilter.h>
+#include <src/core/SkGeometry.h>
+#include <src/core/SkGlyph.h>
+#include <src/core/SkGlyphBuffer.h>
+#include <src/core/SkGlyphRun.h>
+#include <src/core/SkGlyphRunPainter.h>
+#include <src/core/SkGpuBlurUtils.h>
+#include <src/core/SkICCPriv.h>
+#include <src/core/SkImageFilterCache.h>
+#include <src/core/SkImageFilterTypes.h>
+#include <src/core/SkImageFilter_Base.h>
+#include <src/core/SkImagePriv.h>
+#include <src/core/SkKeyContext.h>
+#include <src/core/SkKeyHelpers.h>
+#include <src/core/SkLRUCache.h>
+#include <src/core/SkLatticeIter.h>
+#include <src/core/SkLeanWindows.h>
+#include <src/core/SkLineClipper.h>
+#include <src/core/SkLocalMatrixImageFilter.h>
+#include <src/core/SkMD5.h>
+#include <src/core/SkMSAN.h>
+#include <src/core/SkMask.h>
+#include <src/core/SkMaskBlurFilter.h>
+#include <src/core/SkMaskCache.h>
+#include <src/core/SkMaskFilterBase.h>
+#include <src/core/SkMaskGamma.h>
+#include <src/core/SkMathPriv.h>
+#include <src/core/SkMatrixImageFilter.h>
+#include <src/core/SkMatrixInvert.h>
+#include <src/core/SkMatrixPriv.h>
+#include <src/core/SkMatrixProvider.h>
+#include <src/core/SkMatrixUtils.h>
+#include <src/core/SkMeshPriv.h>
+#include <src/core/SkMessageBus.h>
+#include <src/core/SkMiniRecorder.h>
+#include <src/core/SkMipmap.h>
+#include <src/core/SkMipmapAccessor.h>
+#include <src/core/SkMipmapBuilder.h>
+#include <src/core/SkModeColorFilter.h>
+#include <src/core/SkNextID.h>
+#include <src/core/SkOSFile.h>
+#include <src/core/SkOpts.h>
+#include <src/core/SkPaintDefaults.h>
+#include <src/core/SkPaintParamsKey.h>
+#include <src/core/SkPaintPriv.h>
+#include <src/core/SkPathEffectBase.h>
+#include <src/core/SkPathMakers.h>
+#include <src/core/SkPathMeasurePriv.h>
+#include <src/core/SkPathPriv.h>
+#include <src/core/SkPictureCommon.h>
+#include <src/core/SkPictureData.h>
+#include <src/core/SkPictureFlat.h>
+#include <src/core/SkPicturePlayback.h>
+#include <src/core/SkPicturePriv.h>
+#include <src/core/SkPictureRecord.h>
+#include <src/core/SkPipelineData.h>
+#include <src/core/SkPixelRefPriv.h>
+#include <src/core/SkPixmapPriv.h>
+#include <src/core/SkPointPriv.h>
+#include <src/core/SkPtrRecorder.h>
+#include <src/core/SkQuadClipper.h>
+#include <src/core/SkRRectPriv.h>
+#include <src/core/SkRTree.h>
+#include <src/core/SkRasterClip.h>
+#include <src/core/SkRasterPipeline.h>
+#include <src/core/SkReadBuffer.h>
+#include <src/core/SkRecord.h>
+#include <src/core/SkRecordDraw.h>
+#include <src/core/SkRecordOpts.h>
+#include <src/core/SkRecordPattern.h>
+#include <src/core/SkRecordedDrawable.h>
+#include <src/core/SkRecorder.h>
+#include <src/core/SkRecords.h>
+#include <src/core/SkRectPriv.h>
+#include <src/core/SkRegionPriv.h>
+#include <src/core/SkResourceCache.h>
+#include <src/core/SkRuntimeEffectPriv.h>
+#include <src/core/SkSLTypeShared.h>
+#include <src/core/SkSafeMath.h>
+#include <src/core/SkSafeRange.h>
+#include <src/core/SkSamplingPriv.h>
+#include <src/core/SkScaleToSides.h>
+#include <src/core/SkScalerCache.h>
+#include <src/core/SkScalerContext.h>
+#include <src/core/SkScan.h>
+#include <src/core/SkScanPriv.h>
+#include <src/core/SkScopeExit.h>
+#include <src/core/SkShaderCodeDictionary.h>
+#include <src/core/SkSharedMutex.h>
+#include <src/core/SkSpecialImage.h>
+#include <src/core/SkSpecialSurface.h>
+#include <src/core/SkSpriteBlitter.h>
+#include <src/core/SkStreamPriv.h>
+#include <src/core/SkStrikeCache.h>
+#include <src/core/SkStrikeForGPU.h>
+#include <src/core/SkStrikeSpec.h>
+#include <src/core/SkStringUtils.h>
+#include <src/core/SkStroke.h>
+#include <src/core/SkStrokerPriv.h>
+#include <src/core/SkSurfacePriv.h>
+#include <src/core/SkTDPQueue.h>
+#include <src/core/SkTDynamicHash.h>
+#include <src/core/SkTInternalLList.h>
+#include <src/core/SkTLazy.h>
+#include <src/core/SkTSearch.h>
+#include <src/core/SkTSort.h>
+#include <src/core/SkTaskGroup.h>
+#include <src/core/SkTextBlobPriv.h>
+#include <src/core/SkTextBlobTrace.h>
+#include <src/core/SkTextFormatParams.h>
+#include <src/core/SkTraceEvent.h>
+#include <src/core/SkTraceEventCommon.h>
+#include <src/core/SkTypefaceCache.h>
+#include <src/core/SkTypeface_remote.h>
+#include <src/core/SkUniform.h>
+#include <src/core/SkUtils.h>
+#include <src/core/SkVM.h>
+#include <src/core/SkVMBlitter.h>
+#include <src/core/SkValidationUtils.h>
+#include <src/core/SkVertState.h>
+#include <src/core/SkVerticesPriv.h>
+#include <src/core/SkWriteBuffer.h>
+#include <src/core/SkWritePixelsRec.h>
+#include <src/core/SkWriter32.h>
+#include <src/core/SkXfermodeInterpretation.h>
+#include <src/core/SkXfermodePriv.h>
+#include <src/core/SkYUVAInfoLocation.h>
+#include <src/core/SkYUVMath.h>
+#include <src/core/SkYUVPlanesCache.h>
+#include <src/effects/SkDashImpl.h>
+#include <src/effects/SkEmbossMask.h>
+#include <src/effects/SkEmbossMaskFilter.h>
+#include <src/effects/SkOpPE.h>
+#include <src/effects/SkTrimPE.h>
+#include <src/effects/imagefilters/SkCropImageFilter.h>
+#include <src/effects/imagefilters/SkRuntimeImageFilter.h>
+#include <src/gpu/Blend.h>
+#include <src/gpu/KeyBuilder.h>
+#include <src/gpu/ResourceKey.h>
+#include <src/gpu/ganesh/BaseDevice.h>
+#include <src/gpu/ganesh/GrCaps.h>
+#include <src/gpu/ganesh/GrColorInfo.h>
+#include <src/gpu/ganesh/GrColorSpaceXform.h>
+#include <src/gpu/ganesh/GrContextThreadSafeProxyPriv.h>
+#include <src/gpu/ganesh/GrDirectContextPriv.h>
+#include <src/gpu/ganesh/GrDrawOpAtlas.h>
+#include <src/gpu/ganesh/GrFPArgs.h>
+#include <src/gpu/ganesh/GrFragmentProcessor.h>
+#include <src/gpu/ganesh/GrGpuResourcePriv.h>
+#include <src/gpu/ganesh/GrImageContextPriv.h>
+#include <src/gpu/ganesh/GrImageInfo.h>
+#include <src/gpu/ganesh/GrMemoryPool.h>
+#include <src/gpu/ganesh/GrPaint.h>
+#include <src/gpu/ganesh/GrProxyProvider.h>
+#include <src/gpu/ganesh/GrRecordingContextPriv.h>
+#include <src/gpu/ganesh/GrRenderTask.h>
+#include <src/gpu/ganesh/GrResourceProvider.h>
+#include <src/gpu/ganesh/GrSamplerState.h>
+#include <src/gpu/ganesh/GrShaderCaps.h>
+#include <src/gpu/ganesh/GrStyle.h>
+#include <src/gpu/ganesh/GrSurfaceProxyView.h>
+#include <src/gpu/ganesh/GrTexture.h>
+#include <src/gpu/ganesh/GrTextureProxy.h>
+#include <src/gpu/ganesh/GrThreadSafeCache.h>
+#include <src/gpu/ganesh/GrYUVATextureProxies.h>
+#include <src/gpu/ganesh/SkGr.h>
+#include <src/gpu/ganesh/SurfaceFillContext.h>
+#include <src/gpu/ganesh/effects/GrBicubicEffect.h>
+#include <src/gpu/ganesh/effects/GrBlendFragmentProcessor.h>
+#include <src/gpu/ganesh/effects/GrCustomXfermode.h>
+#include <src/gpu/ganesh/effects/GrMatrixConvolutionEffect.h>
+#include <src/gpu/ganesh/effects/GrMatrixEffect.h>
+#include <src/gpu/ganesh/effects/GrPorterDuffXferProcessor.h>
+#include <src/gpu/ganesh/effects/GrSkSLFP.h>
+#include <src/gpu/ganesh/effects/GrTextureEffect.h>
+#include <src/gpu/ganesh/effects/GrYUVtoRGBEffect.h>
+#include <src/gpu/ganesh/geometry/GrPathUtils.h>
+#include <src/gpu/ganesh/geometry/GrStyledShape.h>
+#include <src/gpu/ganesh/glsl/GrGLSLFragmentShaderBuilder.h>
+#include <src/gpu/ganesh/glsl/GrGLSLProgramDataManager.h>
+#include <src/gpu/ganesh/glsl/GrGLSLUniformHandler.h>
+#include <src/gpu/ganesh/gradients/GrGradientShader.h>
+#include <src/gpu/ganesh/text/GrSDFMaskFilter.h>
+#include <src/gpu/ganesh/text/GrSDFTControl.h>
+#include <src/gpu/ganesh/text/GrTextBlob.h>
+#include <src/gpu/ganesh/text/GrTextBlobRedrawCoordinator.h>
+#include <src/gpu/ganesh/v1/SurfaceDrawContext_v1.h>
+#include <src/image/SkImage_Base.h>
+#include <src/image/SkImage_Gpu.h>
+#include <src/image/SkImage_Lazy.h>
+#include <src/image/SkReadPixelsRec.h>
+#include <src/image/SkRescaleAndReadPixels.h>
+#include <src/image/SkSurface_Base.h>
+#include <src/images/SkImageEncoderPriv.h>
+#include <src/lazy/SkDiscardableMemoryPool.h>
+#include <src/pathops/SkAddIntersections.h>
+#include <src/pathops/SkIntersectionHelper.h>
+#include <src/pathops/SkIntersections.h>
+#include <src/pathops/SkLineParameters.h>
+#include <src/pathops/SkOpAngle.h>
+#include <src/pathops/SkOpCoincidence.h>
+#include <src/pathops/SkOpContour.h>
+#include <src/pathops/SkOpEdgeBuilder.h>
+#include <src/pathops/SkOpSegment.h>
+#include <src/pathops/SkOpSpan.h>
+#include <src/pathops/SkPathOpsBounds.h>
+#include <src/pathops/SkPathOpsCommon.h>
+#include <src/pathops/SkPathOpsConic.h>
+#include <src/pathops/SkPathOpsCubic.h>
+#include <src/pathops/SkPathOpsCurve.h>
+#include <src/pathops/SkPathOpsDebug.h>
+#include <src/pathops/SkPathOpsLine.h>
+#include <src/pathops/SkPathOpsPoint.h>
+#include <src/pathops/SkPathOpsQuad.h>
+#include <src/pathops/SkPathOpsRect.h>
+#include <src/pathops/SkPathOpsTSect.h>
+#include <src/pathops/SkPathOpsTypes.h>
+#include <src/pathops/SkPathWriter.h>
+#include <src/pathops/SkReduceOrder.h>
+#include <src/sfnt/SkOTTableTypes.h>
+#include <src/sfnt/SkOTTable_OS_2.h>
+#include <src/sfnt/SkOTTable_head.h>
+#include <src/sfnt/SkOTTable_name.h>
+#include <src/sfnt/SkOTUtils.h>
+#include <src/shaders/SkBitmapProcShader.h>
+#include <src/shaders/SkColorFilterShader.h>
+#include <src/shaders/SkColorShader.h>
+#include <src/shaders/SkComposeShader.h>
+#include <src/shaders/SkEmptyShader.h>
+#include <src/shaders/SkImageShader.h>
+#include <src/shaders/SkLocalMatrixShader.h>
+#include <src/shaders/SkPictureShader.h>
+#include <src/shaders/SkShaderBase.h>
+#include <src/shaders/SkTransformShader.h>
+#include <src/shaders/gradients/Sk4fGradientBase.h>
+#include <src/shaders/gradients/Sk4fLinearGradient.h>
+#include <src/shaders/gradients/SkGradientShaderPriv.h>
+#include <src/shaders/gradients/SkLinearGradient.h>
+#include <src/shaders/gradients/SkRadialGradient.h>
+#include <src/shaders/gradients/SkSweepGradient.h>
+#include <src/shaders/gradients/SkTwoPointConicalGradient.h>
+#include <src/text/gpu/StrikeCache.h>
+#include <src/utils/SkBlitterTrace.h>
+#include <src/utils/SkCanvasStack.h>
+#include <src/utils/SkCharToGlyphCache.h>
+#include <src/utils/SkClipStackUtils.h>
+#include <src/utils/SkDashPathPriv.h>
+#include <src/utils/SkFloatToDecimal.h>
+#include <src/utils/SkJSON.h>
+#include <src/utils/SkJSONWriter.h>
+#include <src/utils/SkMatrix22.h>
+#include <src/utils/SkMultiPictureDocument.h>
+#include <src/utils/SkMultiPictureDocumentPriv.h>
+#include <src/utils/SkOSPath.h>
+#include <src/utils/SkPatchUtils.h>
+#include <src/utils/SkPolyUtils.h>
+#include <src/utils/SkShaderUtils.h>
+#include <src/utils/SkShadowTessellator.h>
+#include <src/utils/SkShaperJSONWriter.h>
+#include <src/utils/SkTestCanvas.h>
+#include <src/utils/SkUTF.h>
+#include <src/utils/SkVMVisualizer.h>
+#include <tools/sk_app/WindowContext.h>
+#endif // PCH_LEVEL >= 3
+#if PCH_LEVEL >= 4
+#include <skia_compiler.hxx>
+#include <skia_opts.hxx>
+#endif // PCH_LEVEL >= 4
+
+/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
diff --git a/external/skia/inc/skia_compiler.hxx b/external/skia/inc/skia_compiler.hxx
new file mode 100644
index 000000000..a26ec29bd
--- /dev/null
+++ b/external/skia/inc/skia_compiler.hxx
@@ -0,0 +1,13 @@
+/*
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#ifndef SKIA_COMPILER_H
+#define SKIA_COMPILER_H
+
+#include <include/core/SkTypes.h>
+
+SK_API const char* skia_compiler_name();
+
+#endif
diff --git a/external/skia/inc/skia_opts.hxx b/external/skia/inc/skia_opts.hxx
new file mode 100644
index 000000000..33f82f9d2
--- /dev/null
+++ b/external/skia/inc/skia_opts.hxx
@@ -0,0 +1,28 @@
+/*
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#ifndef SKIA_OPTS_H
+#define SKIA_OPTS_H
+
+#include <include/core/SkTypes.h>
+
+SK_API void SkConvertRGBToRGBA(uint32_t* dest, const uint8_t* src, int count);
+
+SK_API void SkConvertGrayToRGBA(uint32_t* dest, const uint8_t* src, int count);
+
+SK_API void SkConvertRGBAToRGB(uint8_t* dest, const uint32_t* src, int count);
+
+SK_API void SkConvertRGBAToR(uint8_t* dest, const uint32_t* src, int count);
+
+namespace SkLoOpts
+{
+SK_API void Init();
+
+typedef void (*Swizzle_u8_8888)(uint8_t*, const uint32_t*, int);
+extern Swizzle_u8_8888 RGB1_to_RGB, // i.e. remove an (opaque) alpha
+ RGB1_to_R; // i.e. copy one channel to the result
+}
+
+#endif
diff --git a/external/skia/make-api-visible.patch.1 b/external/skia/make-api-visible.patch.1
new file mode 100644
index 000000000..a90bd9943
--- /dev/null
+++ b/external/skia/make-api-visible.patch.1
@@ -0,0 +1,82 @@
+diff --git a/tools/sk_app/WindowContext.h b/tools/sk_app/WindowContext.h
+index 79f6d72f35..428d198159 100644
+--- a/tools/sk_app/WindowContext.h
++++ b/tools/sk_app/WindowContext.h
+@@ -22,7 +22,7 @@ class Context;
+
+ namespace sk_app {
+
+-class WindowContext {
++class SK_API WindowContext {
+ public:
+ WindowContext(const DisplayParams&);
+
+diff --git a/tools/sk_app/mac/WindowContextFactory_mac.h b/tools/sk_app/mac/WindowContextFactory_mac.h
+index 3e136a8f57..affb89e43e 100644
+--- a/tools/sk_app/mac/WindowContextFactory_mac.h
++++ b/tools/sk_app/mac/WindowContextFactory_mac.h
+@@ -52,7 +52,7 @@ std::unique_ptr<WindowContext> MakeDawnMTLForMac(const MacWindowInfo&, const Dis
+ #endif
+
+ #ifdef SK_METAL
+-std::unique_ptr<WindowContext> MakeMetalForMac(const MacWindowInfo&, const DisplayParams&);
++SK_API std::unique_ptr<WindowContext> MakeMetalForMac(const MacWindowInfo&, const DisplayParams&);
+ #ifdef SK_GRAPHITE_ENABLED
+ std::unique_ptr<WindowContext> MakeGraphiteMetalForMac(const MacWindowInfo&, const DisplayParams&);
+ #endif
+diff --git a/tools/sk_app/unix/WindowContextFactory_unix.h b/tools/sk_app/unix/WindowContextFactory_unix.h
+index 11bd2d2ac2..09c92dc417 100644
+--- a/tools/sk_app/unix/WindowContextFactory_unix.h
++++ b/tools/sk_app/unix/WindowContextFactory_unix.h
+@@ -36,15 +36,15 @@ struct XlibWindowInfo {
+ int fHeight;
+ };
+
+-std::unique_ptr<WindowContext> MakeVulkanForXlib(const XlibWindowInfo&, const DisplayParams&);
++SK_API std::unique_ptr<WindowContext> MakeVulkanForXlib(const XlibWindowInfo&, const DisplayParams&);
+
+-std::unique_ptr<WindowContext> MakeGLForXlib(const XlibWindowInfo&, const DisplayParams&);
++SK_API std::unique_ptr<WindowContext> MakeGLForXlib(const XlibWindowInfo&, const DisplayParams&);
+
+ #ifdef SK_DAWN
+-std::unique_ptr<WindowContext> MakeDawnVulkanForXlib(const XlibWindowInfo&, const DisplayParams&);
++SK_API std::unique_ptr<WindowContext> MakeDawnVulkanForXlib(const XlibWindowInfo&, const DisplayParams&);
+ #endif
+
+-std::unique_ptr<WindowContext> MakeRasterForXlib(const XlibWindowInfo&, const DisplayParams&);
++SK_API std::unique_ptr<WindowContext> MakeRasterForXlib(const XlibWindowInfo&, const DisplayParams&);
+
+ } // namespace window_context_factory
+
+diff --git a/tools/sk_app/win/WindowContextFactory_win.h b/tools/sk_app/win/WindowContextFactory_win.h
+index c05a4f0acf..fc27cd2afb 100644
+--- a/tools/sk_app/win/WindowContextFactory_win.h
++++ b/tools/sk_app/win/WindowContextFactory_win.h
+@@ -20,21 +20,21 @@ struct DisplayParams;
+
+ namespace window_context_factory {
+
+-std::unique_ptr<WindowContext> MakeVulkanForWin(HWND, const DisplayParams&);
++SK_API std::unique_ptr<WindowContext> MakeVulkanForWin(HWND, const DisplayParams&);
+
+-std::unique_ptr<WindowContext> MakeGLForWin(HWND, const DisplayParams&);
++SK_API std::unique_ptr<WindowContext> MakeGLForWin(HWND, const DisplayParams&);
+
+-std::unique_ptr<WindowContext> MakeANGLEForWin(HWND, const DisplayParams&);
++SK_API std::unique_ptr<WindowContext> MakeANGLEForWin(HWND, const DisplayParams&);
+
+ #ifdef SK_DIRECT3D
+-std::unique_ptr<WindowContext> MakeD3D12ForWin(HWND, const DisplayParams&);
++SK_API std::unique_ptr<WindowContext> MakeD3D12ForWin(HWND, const DisplayParams&);
+ #endif
+
+ #ifdef SK_DAWN
+-std::unique_ptr<WindowContext> MakeDawnD3D12ForWin(HWND, const DisplayParams&);
++SK_API std::unique_ptr<WindowContext> MakeDawnD3D12ForWin(HWND, const DisplayParams&);
+ #endif
+
+-std::unique_ptr<WindowContext> MakeRasterForWin(HWND, const DisplayParams&);
++SK_API std::unique_ptr<WindowContext> MakeRasterForWin(HWND, const DisplayParams&);
+
+ } // namespace window_context_factory
+
diff --git a/external/skia/missing-include.patch.0 b/external/skia/missing-include.patch.0
new file mode 100644
index 000000000..5d1d0609b
--- /dev/null
+++ b/external/skia/missing-include.patch.0
@@ -0,0 +1,20 @@
+--- src/core/SkShaderCodeDictionary.h
++++ src/core/SkShaderCodeDictionary.h
+@@ -9,6 +9,7 @@
+ #define SkShaderCodeDictionary_DEFINED
+
+ #include <array>
++#include <string>
+ #include <unordered_map>
+ #include <vector>
+ #include "include/core/SkSpan.h"
+--- third_party/vulkanmemoryallocator/include/vk_mem_alloc.h
++++ third_party/vulkanmemoryallocator/include/vk_mem_alloc.h
+@@ -2570,6 +2570,7 @@
+ #include <cstring>
+ #include <utility>
+ #include <type_traits>
++#include <stdio.h>
+
+ #ifdef _MSC_VER
+ #include <intrin.h> // For functions like __popcnt, _BitScanForward etc.
diff --git a/external/skia/no-trace-resources-on-exit.patch.1 b/external/skia/no-trace-resources-on-exit.patch.1
new file mode 100644
index 000000000..4d52a37dc
--- /dev/null
+++ b/external/skia/no-trace-resources-on-exit.patch.1
@@ -0,0 +1,13 @@
+diff --git a/src/gpu/vk/GrVkResource.h b/src/gpu/vk/GrVkResource.h
+index 7b9949ba1b..4e8fb48c7c 100644
+--- a/src/gpu/ganesh/GrManagedResource.h
++++ b/src/gpu/ganesh/GrManagedResource.h
+@@ -17,7 +17,7 @@ class GrVkGpu;
+
+ // uncomment to enable tracing of resource refs
+ #ifdef SK_DEBUG
+-#define SK_TRACE_MANAGED_RESOURCES
++//#define SK_TRACE_MANAGED_RESOURCES
+ #endif
+
+ /** \class GrManagedResource
diff --git a/external/skia/share-grcontext.patch.1 b/external/skia/share-grcontext.patch.1
new file mode 100644
index 000000000..2a957c284
--- /dev/null
+++ b/external/skia/share-grcontext.patch.1
@@ -0,0 +1,872 @@
+diff --git a/tools/sk_app/MetalWindowContext.h b/tools/sk_app/MetalWindowContext.h
+index 106d366415..08dc19b5c8 100644
+--- a/tools/sk_app/MetalWindowContext.h
++++ b/tools/sk_app/MetalWindowContext.h
+@@ -14,13 +14,18 @@
+
+ #include "tools/sk_app/WindowContext.h"
+
++#ifdef __OBJC__
+ #import <Metal/Metal.h>
+ #import <QuartzCore/CAMetalLayer.h>
++#endif
+
+ namespace sk_app {
+
++#ifdef __OBJC__
+ class MetalWindowContext : public WindowContext {
+ public:
++ static GrDirectContext* getSharedGrDirectContext() { return fGlobalShared ? fGlobalShared->fContext.get() : nullptr; }
++
+ sk_sp<SkSurface> getBackbufferSurface() override;
+
+ bool isValid() override { return fValid; }
+@@ -46,16 +51,34 @@ protected:
+ void destroyContext();
+ virtual void onDestroyContext() = 0;
+
++ static void checkDestroyShared();
++
+ bool fValid;
++
++ // We need to use just one GrDirectContext, so share all the relevant data.
++ struct Shared : public SkRefCnt
++ {
+ sk_cfp<id<MTLDevice>> fDevice;
+ sk_cfp<id<MTLCommandQueue>> fQueue;
+- CAMetalLayer* fMetalLayer;
+- GrMTLHandle fDrawableHandle;
+ #if GR_METAL_SDK_VERSION >= 230
+ // wrapping this in sk_cfp throws up an availability warning, so we'll track lifetime manually
+ id<MTLBinaryArchive> fPipelineArchive SK_API_AVAILABLE(macos(11.0), ios(14.0));
+ #endif
++
++ sk_sp<GrDirectContext> fContext;
++ };
++
++ sk_sp<Shared> fShared;
++
++ static sk_sp<Shared> fGlobalShared;
++
++ CAMetalLayer* fMetalLayer;
++ GrMTLHandle fDrawableHandle;
+ };
++#endif // __OBJC__
++
++// Access function when header is used from C++ code that wouldn't handle ObjC++ headers.
++extern "C" SK_API GrDirectContext* getMetalSharedGrDirectContext();
+
+ } // namespace sk_app
+
+diff --git a/tools/sk_app/MetalWindowContext.mm b/tools/sk_app/MetalWindowContext.mm
+index d972e321a6..9f576944b7 100644
+--- a/tools/sk_app/MetalWindowContext.mm
++++ b/tools/sk_app/MetalWindowContext.mm
+@@ -37,24 +37,30 @@ NSURL* MetalWindowContext::CacheURL() {
+ }
+
+ void MetalWindowContext::initializeContext() {
++ fShared = fGlobalShared;
++ if( !fShared )
++ {
++ // TODO do we need a mutex?
++
++ fGlobalShared = sk_make_sp<Shared>();
++ Shared* d = fGlobalShared.get(); // shorter variable name
++
+ SkASSERT(!fContext);
+
+- fDevice.reset(MTLCreateSystemDefaultDevice());
+- fQueue.reset([*fDevice newCommandQueue]);
++ d->fDevice.reset(MTLCreateSystemDefaultDevice());
++ d->fQueue.reset([*d->fDevice newCommandQueue]);
+
+ if (fDisplayParams.fMSAASampleCount > 1) {
+ if (@available(macOS 10.11, iOS 9.0, *)) {
+- if (![*fDevice supportsTextureSampleCount:fDisplayParams.fMSAASampleCount]) {
++ if (![*d->fDevice supportsTextureSampleCount:fDisplayParams.fMSAASampleCount]) {
++ fGlobalShared.reset();
+ return;
+ }
+ } else {
++ fGlobalShared.reset();
+ return;
+ }
+ }
+- fSampleCount = fDisplayParams.fMSAASampleCount;
+- fStencilBits = 8;
+-
+- fValid = this->onInitializeContext();
+
+ #if GR_METAL_SDK_VERSION >= 230
+ if (fDisplayParams.fEnableBinaryArchive) {
+@@ -62,11 +68,11 @@ void MetalWindowContext::initializeContext() {
+ sk_cfp<MTLBinaryArchiveDescriptor*> desc([MTLBinaryArchiveDescriptor new]);
+ (*desc).url = CacheURL(); // try to load
+ NSError* error;
+- fPipelineArchive = [*fDevice newBinaryArchiveWithDescriptor:*desc error:&error];
+- if (!fPipelineArchive) {
++ d->fPipelineArchive = [*d->fDevice newBinaryArchiveWithDescriptor:*desc error:&error];
++ if (!d->fPipelineArchive) {
+ (*desc).url = nil; // create new
+- fPipelineArchive = [*fDevice newBinaryArchiveWithDescriptor:*desc error:&error];
+- if (!fPipelineArchive) {
++ d->fPipelineArchive = [*d->fDevice newBinaryArchiveWithDescriptor:*desc error:&error];
++ if (!d->fPipelineArchive) {
+ SkDebugf("Error creating MTLBinaryArchive:\n%s\n",
+ error.debugDescription.UTF8String);
+ }
+@@ -74,46 +80,75 @@ void MetalWindowContext::initializeContext() {
+ }
+ } else {
+ if (@available(macOS 11.0, iOS 14.0, *)) {
+- fPipelineArchive = nil;
++ d->fPipelineArchive = nil;
+ }
+ }
+ #endif
+
+ GrMtlBackendContext backendContext = {};
+- backendContext.fDevice.retain((GrMTLHandle)fDevice.get());
+- backendContext.fQueue.retain((GrMTLHandle)fQueue.get());
++ backendContext.fDevice.retain((GrMTLHandle)d->fDevice.get());
++ backendContext.fQueue.retain((GrMTLHandle)d->fQueue.get());
+ #if GR_METAL_SDK_VERSION >= 230
+ if (@available(macOS 11.0, iOS 14.0, *)) {
+- backendContext.fBinaryArchive.retain((__bridge GrMTLHandle)fPipelineArchive);
++ backendContext.fBinaryArchive.retain((__bridge GrMTLHandle)d->fPipelineArchive);
+ }
+ #endif
+- fContext = GrDirectContext::MakeMetal(backendContext, fDisplayParams.fGrContextOptions);
+- if (!fContext && fDisplayParams.fMSAASampleCount > 1) {
++ d->fContext = GrDirectContext::MakeMetal(backendContext, fDisplayParams.fGrContextOptions);
++ if (!d->fContext && fDisplayParams.fMSAASampleCount > 1) {
+ fDisplayParams.fMSAASampleCount /= 2;
++ fGlobalShared.reset();
+ this->initializeContext();
+ return;
+ }
++
++ fShared = fGlobalShared;
++ } // if( !fShared )
++
++ fContext = fShared->fContext;
++
++ fSampleCount = fDisplayParams.fMSAASampleCount;
++ fStencilBits = 8;
++
++ fValid = this->onInitializeContext();
+ }
+
+ void MetalWindowContext::destroyContext() {
+- if (fContext) {
+- // in case we have outstanding refs to this (lua?)
+- fContext->abandonContext();
+- fContext.reset();
+- }
+-
+ this->onDestroyContext();
+
+ fMetalLayer = nil;
+ fValid = false;
+
++ fContext.reset();
++ fShared.reset();
++
++ checkDestroyShared();
++}
++
++void MetalWindowContext::checkDestroyShared()
++{
++ if(!fGlobalShared || !fGlobalShared->unique()) // TODO mutex?
++ return;
++#ifndef SK_TRACE_VK_RESOURCES
++ if(!fGlobalShared->fContext->unique())
++ return;
++#endif
++ SkASSERT(fGlobalShared->fContext->unique());
++
++ if (fGlobalShared->fContext) {
++ // in case we have outstanding refs to this (lua?)
++ fGlobalShared->fContext->abandonContext();
++ fGlobalShared->fContext.reset();
++ }
++
+ #if GR_METAL_SDK_VERSION >= 230
+ if (@available(macOS 11.0, iOS 14.0, *)) {
+- [fPipelineArchive release];
++ [fGlobalShared->fPipelineArchive release];
+ }
+ #endif
+- fQueue.reset();
+- fDevice.reset();
++ fGlobalShared->fQueue.reset();
++ fGlobalShared->fDevice.reset();
++
++ fGlobalShared.reset();
+ }
+
+ sk_sp<SkSurface> MetalWindowContext::getBackbufferSurface() {
+@@ -154,7 +189,7 @@ sk_sp<SkSurface> MetalWindowContext::getBackbufferSurface() {
+ void MetalWindowContext::swapBuffers() {
+ id<CAMetalDrawable> currentDrawable = (id<CAMetalDrawable>)fDrawableHandle;
+
+- id<MTLCommandBuffer> commandBuffer([*fQueue commandBuffer]);
++ id<MTLCommandBuffer> commandBuffer([*fShared->fQueue commandBuffer]);
+ commandBuffer.label = @"Present";
+
+ [commandBuffer presentDrawable:currentDrawable];
+@@ -175,9 +210,9 @@ void MetalWindowContext::activate(bool isActive) {
+ if (!isActive) {
+ #if GR_METAL_SDK_VERSION >= 230
+ if (@available(macOS 11.0, iOS 14.0, *)) {
+- if (fPipelineArchive) {
++ if (fShared->fPipelineArchive) {
+ NSError* error;
+- [fPipelineArchive serializeToURL:CacheURL() error:&error];
++ [fShared->fPipelineArchive serializeToURL:CacheURL() error:&error];
+ if (error) {
+ SkDebugf("Error storing MTLBinaryArchive:\n%s\n",
+ error.debugDescription.UTF8String);
+@@ -188,4 +223,11 @@ void MetalWindowContext::activate(bool isActive) {
+ }
+ }
+
++SK_API sk_sp<MetalWindowContext::Shared> MetalWindowContext::fGlobalShared;
++
++GrDirectContext* getMetalSharedGrDirectContext()
++{
++ return MetalWindowContext::getSharedGrDirectContext();
++}
++
+ } //namespace sk_app
+diff --git a/tools/sk_app/VulkanWindowContext.cpp b/tools/sk_app/VulkanWindowContext.cpp
+index c9db528ca4..634034da5a 100644
+--- a/tools/sk_app/VulkanWindowContext.cpp
++++ b/tools/sk_app/VulkanWindowContext.cpp
+@@ -25,9 +25,13 @@
+ #endif
+
+ #define GET_PROC(F) f ## F = \
+- (PFN_vk ## F) backendContext.fGetProc("vk" #F, fInstance, VK_NULL_HANDLE)
++ (PFN_vk ## F) fGlobalShared->backendContext.fGetProc("vk" #F, fShared->fInstance, VK_NULL_HANDLE)
+ #define GET_DEV_PROC(F) f ## F = \
+- (PFN_vk ## F) backendContext.fGetProc("vk" #F, VK_NULL_HANDLE, fDevice)
++ (PFN_vk ## F) fGlobalShared->backendContext.fGetProc("vk" #F, VK_NULL_HANDLE, fShared->fDevice)
++#define GET_PROC_GLOBAL(F) fGlobalShared->f ## F = \
++ (PFN_vk ## F) fGlobalShared->backendContext.fGetProc("vk" #F, fGlobalShared->fInstance, VK_NULL_HANDLE)
++#define GET_DEV_PROC_GLOBAL(F) fGlobalShared->f ## F = \
++ (PFN_vk ## F) fGlobalShared->backendContext.fGetProc("vk" #F, VK_NULL_HANDLE, fGlobalShared->fDevice)
+
+ namespace sk_app {
+
+@@ -49,31 +53,39 @@ VulkanWindowContext::VulkanWindowContext(const DisplayParams& params,
+ }
+
+ void VulkanWindowContext::initializeContext() {
++ fShared = fGlobalShared;
++ if( !fShared )
++ {
++ // TODO do we need a mutex?
++
++ fGlobalShared = sk_make_sp<Shared>();
++ Shared* d = fGlobalShared.get(); // shorter variable name
++
+ SkASSERT(!fContext);
+ // any config code here (particularly for msaa)?
+
+ PFN_vkGetInstanceProcAddr getInstanceProc = fGetInstanceProcAddr;
+- GrVkBackendContext backendContext;
++ GrVkBackendContext& backendContext = fGlobalShared->backendContext;
+ GrVkExtensions extensions;
+- VkPhysicalDeviceFeatures2 features;
+- if (!sk_gpu_test::CreateVkBackendContext(getInstanceProc, &backendContext, &extensions,
+- &features, &fDebugCallback, &fPresentQueueIndex,
+- fCanPresentFn)) {
+- sk_gpu_test::FreeVulkanFeaturesStructs(&features);
++ if (!sk_gpu_test::CreateVkBackendContext(getInstanceProc, &backendContext, &extensions, &d->features,
++ &d->fDebugCallback, &d->fPresentQueueIndex, fCanPresentFn)) {
++ sk_gpu_test::FreeVulkanFeaturesStructs(&d->features);
++ fGlobalShared.reset();
+ return;
+ }
+
+ if (!extensions.hasExtension(VK_KHR_SURFACE_EXTENSION_NAME, 25) ||
+ !extensions.hasExtension(VK_KHR_SWAPCHAIN_EXTENSION_NAME, 68)) {
+- sk_gpu_test::FreeVulkanFeaturesStructs(&features);
++ sk_gpu_test::FreeVulkanFeaturesStructs(&d->features);
++ fGlobalShared.reset();
+ return;
+ }
+
+- fInstance = backendContext.fInstance;
+- fPhysicalDevice = backendContext.fPhysicalDevice;
+- fDevice = backendContext.fDevice;
+- fGraphicsQueueIndex = backendContext.fGraphicsQueueIndex;
+- fGraphicsQueue = backendContext.fQueue;
++ d->fInstance = backendContext.fInstance;
++ d->fPhysicalDevice = backendContext.fPhysicalDevice;
++ d->fDevice = backendContext.fDevice;
++ d->fGraphicsQueueIndex = backendContext.fGraphicsQueueIndex;
++ d->fGraphicsQueue = backendContext.fQueue;
+
+ PFN_vkGetPhysicalDeviceProperties localGetPhysicalDeviceProperties =
+ reinterpret_cast<PFN_vkGetPhysicalDeviceProperties>(
+@@ -81,21 +93,30 @@ void VulkanWindowContext::initializeContext() {
+ backendContext.fInstance,
+ VK_NULL_HANDLE));
+ if (!localGetPhysicalDeviceProperties) {
+- sk_gpu_test::FreeVulkanFeaturesStructs(&features);
++ sk_gpu_test::FreeVulkanFeaturesStructs(&d->features);
++ fGlobalShared.reset();
+ return;
+ }
+- VkPhysicalDeviceProperties physDeviceProperties;
+- localGetPhysicalDeviceProperties(backendContext.fPhysicalDevice, &physDeviceProperties);
+- uint32_t physDevVersion = physDeviceProperties.apiVersion;
++ localGetPhysicalDeviceProperties(backendContext.fPhysicalDevice, &d->physDeviceProperties);
++ uint32_t physDevVersion = d->physDeviceProperties.apiVersion;
+
+- fInterface.reset(new GrVkInterface(backendContext.fGetProc, fInstance, fDevice,
++ d->fInterface.reset(new GrVkInterface(backendContext.fGetProc, d->fInstance, d->fDevice,
+ backendContext.fInstanceVersion, physDevVersion,
+ &extensions));
+
+- GET_PROC(DestroyInstance);
+- if (fDebugCallback != VK_NULL_HANDLE) {
+- GET_PROC(DestroyDebugReportCallbackEXT);
++ d->fContext = GrDirectContext::MakeVulkan(backendContext, fDisplayParams.fGrContextOptions);
++
++ GET_PROC_GLOBAL(DestroyInstance);
++ GET_DEV_PROC_GLOBAL(DestroyDevice);
++ if (fGlobalShared->fDebugCallback != VK_NULL_HANDLE) {
++ GET_PROC_GLOBAL(DestroyDebugReportCallbackEXT);
+ }
++
++ fShared = fGlobalShared;
++ } // if( !fShared )
++
++ fContext = fShared->fContext;
++
+ GET_PROC(DestroySurfaceKHR);
+ GET_PROC(GetPhysicalDeviceSurfaceSupportKHR);
+ GET_PROC(GetPhysicalDeviceSurfaceCapabilitiesKHR);
+@@ -103,7 +124,6 @@ void VulkanWindowContext::initializeContext() {
+ GET_PROC(GetPhysicalDeviceSurfacePresentModesKHR);
+ GET_DEV_PROC(DeviceWaitIdle);
+ GET_DEV_PROC(QueueWaitIdle);
+- GET_DEV_PROC(DestroyDevice);
+ GET_DEV_PROC(CreateSwapchainKHR);
+ GET_DEV_PROC(DestroySwapchainKHR);
+ GET_DEV_PROC(GetSwapchainImagesKHR);
+@@ -111,46 +131,44 @@ void VulkanWindowContext::initializeContext() {
+ GET_DEV_PROC(QueuePresentKHR);
+ GET_DEV_PROC(GetDeviceQueue);
+
+- fContext = GrDirectContext::MakeVulkan(backendContext, fDisplayParams.fGrContextOptions);
++ // No actual window, used just to create the shared GrContext.
++ if(fCreateVkSurfaceFn == nullptr)
++ return;
+
+- fSurface = fCreateVkSurfaceFn(fInstance);
++ fSurface = fCreateVkSurfaceFn(fShared->fInstance);
+ if (VK_NULL_HANDLE == fSurface) {
+ this->destroyContext();
+- sk_gpu_test::FreeVulkanFeaturesStructs(&features);
+ return;
+ }
+
++ // create presentQueue
++ fGetDeviceQueue(fShared->fDevice, fShared->fPresentQueueIndex, 0, &fPresentQueue);
++
+ VkBool32 supported;
+- VkResult res = fGetPhysicalDeviceSurfaceSupportKHR(fPhysicalDevice, fPresentQueueIndex,
++ VkResult res = fGetPhysicalDeviceSurfaceSupportKHR(fShared->fPhysicalDevice, fShared->fPresentQueueIndex,
+ fSurface, &supported);
+ if (VK_SUCCESS != res) {
+ this->destroyContext();
+- sk_gpu_test::FreeVulkanFeaturesStructs(&features);
+ return;
+ }
+
+ if (!this->createSwapchain(-1, -1, fDisplayParams)) {
+ this->destroyContext();
+- sk_gpu_test::FreeVulkanFeaturesStructs(&features);
+ return;
+ }
+-
+- // create presentQueue
+- fGetDeviceQueue(fDevice, fPresentQueueIndex, 0, &fPresentQueue);
+- sk_gpu_test::FreeVulkanFeaturesStructs(&features);
+ }
+
+ bool VulkanWindowContext::createSwapchain(int width, int height,
+ const DisplayParams& params) {
+ // check for capabilities
+ VkSurfaceCapabilitiesKHR caps;
+- VkResult res = fGetPhysicalDeviceSurfaceCapabilitiesKHR(fPhysicalDevice, fSurface, &caps);
++ VkResult res = fGetPhysicalDeviceSurfaceCapabilitiesKHR(fShared->fPhysicalDevice, fSurface, &caps);
+ if (VK_SUCCESS != res) {
+ return false;
+ }
+
+ uint32_t surfaceFormatCount;
+- res = fGetPhysicalDeviceSurfaceFormatsKHR(fPhysicalDevice, fSurface, &surfaceFormatCount,
++ res = fGetPhysicalDeviceSurfaceFormatsKHR(fShared->fPhysicalDevice, fSurface, &surfaceFormatCount,
+ nullptr);
+ if (VK_SUCCESS != res) {
+ return false;
+@@ -158,14 +176,14 @@ bool VulkanWindowContext::createSwapchain(int width, int height,
+
+ SkAutoMalloc surfaceFormatAlloc(surfaceFormatCount * sizeof(VkSurfaceFormatKHR));
+ VkSurfaceFormatKHR* surfaceFormats = (VkSurfaceFormatKHR*)surfaceFormatAlloc.get();
+- res = fGetPhysicalDeviceSurfaceFormatsKHR(fPhysicalDevice, fSurface, &surfaceFormatCount,
++ res = fGetPhysicalDeviceSurfaceFormatsKHR(fShared->fPhysicalDevice, fSurface, &surfaceFormatCount,
+ surfaceFormats);
+ if (VK_SUCCESS != res) {
+ return false;
+ }
+
+ uint32_t presentModeCount;
+- res = fGetPhysicalDeviceSurfacePresentModesKHR(fPhysicalDevice, fSurface, &presentModeCount,
++ res = fGetPhysicalDeviceSurfacePresentModesKHR(fShared->fPhysicalDevice, fSurface, &presentModeCount,
+ nullptr);
+ if (VK_SUCCESS != res) {
+ return false;
+@@ -173,7 +191,7 @@ bool VulkanWindowContext::createSwapchain(int width, int height,
+
+ SkAutoMalloc presentModeAlloc(presentModeCount * sizeof(VkPresentModeKHR));
+ VkPresentModeKHR* presentModes = (VkPresentModeKHR*)presentModeAlloc.get();
+- res = fGetPhysicalDeviceSurfacePresentModesKHR(fPhysicalDevice, fSurface, &presentModeCount,
++ res = fGetPhysicalDeviceSurfacePresentModesKHR(fShared->fPhysicalDevice, fSurface, &presentModeCount,
+ presentModes);
+ if (VK_SUCCESS != res) {
+ return false;
+@@ -286,8 +304,8 @@ bool VulkanWindowContext::createSwapchain(int width, int height,
+ swapchainCreateInfo.imageArrayLayers = 1;
+ swapchainCreateInfo.imageUsage = usageFlags;
+
+- uint32_t queueFamilies[] = { fGraphicsQueueIndex, fPresentQueueIndex };
+- if (fGraphicsQueueIndex != fPresentQueueIndex) {
++ uint32_t queueFamilies[] = { fShared->fGraphicsQueueIndex, fShared->fPresentQueueIndex };
++ if (fShared->fGraphicsQueueIndex != fShared->fPresentQueueIndex) {
+ swapchainCreateInfo.imageSharingMode = VK_SHARING_MODE_CONCURRENT;
+ swapchainCreateInfo.queueFamilyIndexCount = 2;
+ swapchainCreateInfo.pQueueFamilyIndices = queueFamilies;
+@@ -303,27 +321,27 @@ bool VulkanWindowContext::createSwapchain(int width, int height,
+ swapchainCreateInfo.clipped = true;
+ swapchainCreateInfo.oldSwapchain = fSwapchain;
+
+- res = fCreateSwapchainKHR(fDevice, &swapchainCreateInfo, nullptr, &fSwapchain);
++ res = fCreateSwapchainKHR(fShared->fDevice, &swapchainCreateInfo, nullptr, &fSwapchain);
+ if (VK_SUCCESS != res) {
+ return false;
+ }
+
+ // destroy the old swapchain
+ if (swapchainCreateInfo.oldSwapchain != VK_NULL_HANDLE) {
+- fDeviceWaitIdle(fDevice);
++ fDeviceWaitIdle(fShared->fDevice);
+
+ this->destroyBuffers();
+
+- fDestroySwapchainKHR(fDevice, swapchainCreateInfo.oldSwapchain, nullptr);
++ fDestroySwapchainKHR(fShared->fDevice, swapchainCreateInfo.oldSwapchain, nullptr);
+ }
+
+ if (!this->createBuffers(swapchainCreateInfo.imageFormat, usageFlags, colorType,
+ swapchainCreateInfo.imageSharingMode)) {
+- fDeviceWaitIdle(fDevice);
++ fDeviceWaitIdle(fShared->fDevice);
+
+ this->destroyBuffers();
+
+- fDestroySwapchainKHR(fDevice, swapchainCreateInfo.oldSwapchain, nullptr);
++ fDestroySwapchainKHR(fShared->fDevice, swapchainCreateInfo.oldSwapchain, nullptr);
+ }
+
+ return true;
+@@ -332,10 +350,10 @@ bool VulkanWindowContext::createSwapchain(int width, int height,
+ bool VulkanWindowContext::createBuffers(VkFormat format, VkImageUsageFlags usageFlags,
+ SkColorType colorType,
+ VkSharingMode sharingMode) {
+- fGetSwapchainImagesKHR(fDevice, fSwapchain, &fImageCount, nullptr);
++ fGetSwapchainImagesKHR(fShared->fDevice, fSwapchain, &fImageCount, nullptr);
+ SkASSERT(fImageCount);
+ fImages = new VkImage[fImageCount];
+- fGetSwapchainImagesKHR(fDevice, fSwapchain, &fImageCount, fImages);
++ fGetSwapchainImagesKHR(fShared->fDevice, fSwapchain, &fImageCount, fImages);
+
+ // set up initial image layouts and create surfaces
+ fImageLayouts = new VkImageLayout[fImageCount];
+@@ -351,7 +369,7 @@ bool VulkanWindowContext::createBuffers(VkFormat format, VkImageUsageFlags usage
+ info.fFormat = format;
+ info.fImageUsageFlags = usageFlags;
+ info.fLevelCount = 1;
+- info.fCurrentQueueFamily = fPresentQueueIndex;
++ info.fCurrentQueueFamily = fShared->fPresentQueueIndex;
+ info.fSharingMode = sharingMode;
+
+ if (usageFlags & VK_IMAGE_USAGE_SAMPLED_BIT) {
+@@ -387,8 +405,8 @@ bool VulkanWindowContext::createBuffers(VkFormat format, VkImageUsageFlags usage
+ fBackbuffers = new BackbufferInfo[fImageCount + 1];
+ for (uint32_t i = 0; i < fImageCount + 1; ++i) {
+ fBackbuffers[i].fImageIndex = -1;
+- SkDEBUGCODE(VkResult result = )GR_VK_CALL(fInterface,
+- CreateSemaphore(fDevice, &semaphoreInfo, nullptr,
++ SkDEBUGCODE(VkResult result = )GR_VK_CALL(fShared->fInterface,
++ CreateSemaphore(fShared->fDevice, &semaphoreInfo, nullptr,
+ &fBackbuffers[i].fRenderSemaphore));
+ SkASSERT(result == VK_SUCCESS);
+ }
+@@ -401,8 +419,8 @@ void VulkanWindowContext::destroyBuffers() {
+ if (fBackbuffers) {
+ for (uint32_t i = 0; i < fImageCount + 1; ++i) {
+ fBackbuffers[i].fImageIndex = -1;
+- GR_VK_CALL(fInterface,
+- DestroySemaphore(fDevice,
++ GR_VK_CALL(fShared->fInterface,
++ DestroySemaphore(fShared->fDevice,
+ fBackbuffers[i].fRenderSemaphore,
+ nullptr));
+ }
+@@ -427,42 +445,59 @@ VulkanWindowContext::~VulkanWindowContext() {
+ void VulkanWindowContext::destroyContext() {
+ if (this->isValid()) {
+ fQueueWaitIdle(fPresentQueue);
+- fDeviceWaitIdle(fDevice);
++ fDeviceWaitIdle(fShared->fDevice);
+
+ this->destroyBuffers();
+
+ if (VK_NULL_HANDLE != fSwapchain) {
+- fDestroySwapchainKHR(fDevice, fSwapchain, nullptr);
++ fDestroySwapchainKHR(fShared->fDevice, fSwapchain, nullptr);
+ fSwapchain = VK_NULL_HANDLE;
+ }
+
+ if (VK_NULL_HANDLE != fSurface) {
+- fDestroySurfaceKHR(fInstance, fSurface, nullptr);
++ fDestroySurfaceKHR(fShared->fInstance, fSurface, nullptr);
+ fSurface = VK_NULL_HANDLE;
+ }
+ }
+
+- SkASSERT(fContext->unique());
+ fContext.reset();
+- fInterface.reset();
++ fShared.reset();
++
++ checkDestroyShared();
++}
++
++void VulkanWindowContext::checkDestroyShared()
++{
++ if(!fGlobalShared || !fGlobalShared->unique()) // TODO mutex?
++ return;
++#ifndef SK_TRACE_VK_RESOURCES
++ if(!fGlobalShared->fContext->unique())
++ return;
++#endif
++ SkASSERT(fGlobalShared->fContext->unique());
++ fGlobalShared->fContext.reset();
++ fGlobalShared->fInterface.reset();
+
+- if (VK_NULL_HANDLE != fDevice) {
+- fDestroyDevice(fDevice, nullptr);
+- fDevice = VK_NULL_HANDLE;
++ if (VK_NULL_HANDLE != fGlobalShared->fDevice) {
++ fGlobalShared->fDestroyDevice(fGlobalShared->fDevice, nullptr);
++ fGlobalShared->fDevice = VK_NULL_HANDLE;
+ }
+
+ #ifdef SK_ENABLE_VK_LAYERS
+- if (fDebugCallback != VK_NULL_HANDLE) {
+- fDestroyDebugReportCallbackEXT(fInstance, fDebugCallback, nullptr);
++ if (fGlobalShared->fDebugCallback != VK_NULL_HANDLE) {
++ fGlobalShared->fDestroyDebugReportCallbackEXT(fGlobalShared->fInstance, fDebugCallback, nullptr);
+ }
+ #endif
+
+- fPhysicalDevice = VK_NULL_HANDLE;
++ fGlobalShared->fPhysicalDevice = VK_NULL_HANDLE;
+
+- if (VK_NULL_HANDLE != fInstance) {
+- fDestroyInstance(fInstance, nullptr);
+- fInstance = VK_NULL_HANDLE;
++ if (VK_NULL_HANDLE != fGlobalShared->fInstance) {
++ fGlobalShared->fDestroyInstance(fGlobalShared->fInstance, nullptr);
++ fGlobalShared->fInstance = VK_NULL_HANDLE;
+ }
++
++ sk_gpu_test::FreeVulkanFeaturesStructs(&fGlobalShared->features);
++ fGlobalShared.reset();
+ }
+
+ VulkanWindowContext::BackbufferInfo* VulkanWindowContext::getAvailableBackbuffer() {
+@@ -488,35 +523,35 @@ sk_sp<SkSurface> VulkanWindowContext::getBackbufferSurface() {
+ semaphoreInfo.pNext = nullptr;
+ semaphoreInfo.flags = 0;
+ VkSemaphore semaphore;
+- SkDEBUGCODE(VkResult result = )GR_VK_CALL(fInterface, CreateSemaphore(fDevice, &semaphoreInfo,
++ SkDEBUGCODE(VkResult result = )GR_VK_CALL(fShared->fInterface, CreateSemaphore(fShared->fDevice, &semaphoreInfo,
+ nullptr, &semaphore));
+ SkASSERT(result == VK_SUCCESS);
+
+ // acquire the image
+- VkResult res = fAcquireNextImageKHR(fDevice, fSwapchain, UINT64_MAX,
++ VkResult res = fAcquireNextImageKHR(fShared->fDevice, fSwapchain, UINT64_MAX,
+ semaphore, VK_NULL_HANDLE,
+ &backbuffer->fImageIndex);
+ if (VK_ERROR_SURFACE_LOST_KHR == res) {
+ // need to figure out how to create a new vkSurface without the platformData*
+ // maybe use attach somehow? but need a Window
+- GR_VK_CALL(fInterface, DestroySemaphore(fDevice, semaphore, nullptr));
++ GR_VK_CALL(fShared->fInterface, DestroySemaphore(fShared->fDevice, semaphore, nullptr));
+ return nullptr;
+ }
+ if (VK_ERROR_OUT_OF_DATE_KHR == res) {
+ // tear swapchain down and try again
+ if (!this->createSwapchain(-1, -1, fDisplayParams)) {
+- GR_VK_CALL(fInterface, DestroySemaphore(fDevice, semaphore, nullptr));
++ GR_VK_CALL(fShared->fInterface, DestroySemaphore(fShared->fDevice, semaphore, nullptr));
+ return nullptr;
+ }
+ backbuffer = this->getAvailableBackbuffer();
+
+ // acquire the image
+- res = fAcquireNextImageKHR(fDevice, fSwapchain, UINT64_MAX,
++ res = fAcquireNextImageKHR(fShared->fDevice, fSwapchain, UINT64_MAX,
+ semaphore, VK_NULL_HANDLE,
+ &backbuffer->fImageIndex);
+
+ if (VK_SUCCESS != res) {
+- GR_VK_CALL(fInterface, DestroySemaphore(fDevice, semaphore, nullptr));
++ GR_VK_CALL(fShared->fInterface, DestroySemaphore(fShared->fDevice, semaphore, nullptr));
+ return nullptr;
+ }
+ }
+@@ -542,7 +577,7 @@ void VulkanWindowContext::swapBuffers() {
+ GrFlushInfo info;
+ info.fNumSemaphores = 1;
+ info.fSignalSemaphores = &beSemaphore;
+- GrBackendSurfaceMutableState presentState(VK_IMAGE_LAYOUT_PRESENT_SRC_KHR, fPresentQueueIndex);
++ GrBackendSurfaceMutableState presentState(VK_IMAGE_LAYOUT_PRESENT_SRC_KHR, fShared->fPresentQueueIndex);
+ surface->flush(info, &presentState);
+ surface->recordingContext()->asDirectContext()->submit();
+
+@@ -562,4 +597,6 @@ void VulkanWindowContext::swapBuffers() {
+ fQueuePresentKHR(fPresentQueue, &presentInfo);
+ }
+
++SK_API sk_sp<VulkanWindowContext::Shared> VulkanWindowContext::fGlobalShared;
++
+ } //namespace sk_app
+diff --git a/tools/sk_app/VulkanWindowContext.h b/tools/sk_app/VulkanWindowContext.h
+index 7e1fdd9af5..946bca7522 100644
+--- a/tools/sk_app/VulkanWindowContext.h
++++ b/tools/sk_app/VulkanWindowContext.h
+@@ -19,18 +19,22 @@
+ #include "tools/gpu/vk/VkTestUtils.h"
+ #include "tools/sk_app/WindowContext.h"
+
++#include <cassert>
++
+ class GrRenderTarget;
+
+ namespace sk_app {
+
+-class VulkanWindowContext : public WindowContext {
++class SK_API VulkanWindowContext : public WindowContext {
+ public:
+ ~VulkanWindowContext() override;
+
++ static GrDirectContext* getSharedGrDirectContext() { return fGlobalShared ? fGlobalShared->fContext.get() : nullptr; }
++
+ sk_sp<SkSurface> getBackbufferSurface() override;
+ void swapBuffers() override;
+
+- bool isValid() override { return fDevice != VK_NULL_HANDLE; }
++ bool isValid() override { return fSurface != VK_NULL_HANDLE; }
+
+ void resize(int w, int h) override {
+ this->createSwapchain(w, h, fDisplayParams);
+@@ -50,9 +54,15 @@ public:
+ VulkanWindowContext(const DisplayParams&, CreateVkSurfaceFn, CanPresentFn,
+ PFN_vkGetInstanceProcAddr);
+
++ static const VkPhysicalDeviceProperties& getPhysDeviceProperties() {
++ assert( fGlobalShared != nullptr );
++ return fGlobalShared->physDeviceProperties;
++ }
++
+ private:
+ void initializeContext();
+ void destroyContext();
++ static void checkDestroyShared();
+
+ struct BackbufferInfo {
+ uint32_t fImageIndex; // image this is associated with
+@@ -64,11 +74,6 @@ private:
+ bool createBuffers(VkFormat format, VkImageUsageFlags, SkColorType colorType, VkSharingMode);
+ void destroyBuffers();
+
+- VkInstance fInstance = VK_NULL_HANDLE;
+- VkPhysicalDevice fPhysicalDevice = VK_NULL_HANDLE;
+- VkDevice fDevice = VK_NULL_HANDLE;
+- VkDebugReportCallbackEXT fDebugCallback = VK_NULL_HANDLE;
+-
+ // Create functions
+ CreateVkSurfaceFn fCreateVkSurfaceFn;
+ CanPresentFn fCanPresentFn;
+@@ -88,20 +93,46 @@ private:
+ PFN_vkAcquireNextImageKHR fAcquireNextImageKHR = nullptr;
+ PFN_vkQueuePresentKHR fQueuePresentKHR = nullptr;
+
+- PFN_vkDestroyInstance fDestroyInstance = nullptr;
+ PFN_vkDeviceWaitIdle fDeviceWaitIdle = nullptr;
+- PFN_vkDestroyDebugReportCallbackEXT fDestroyDebugReportCallbackEXT = nullptr;
+ PFN_vkQueueWaitIdle fQueueWaitIdle = nullptr;
+- PFN_vkDestroyDevice fDestroyDevice = nullptr;
+ PFN_vkGetDeviceQueue fGetDeviceQueue = nullptr;
+
++ // We need to use just one GrDirectContext, so share all the relevant data.
++ struct Shared : public SkRefCnt
++ {
++ PFN_vkDestroyInstance fDestroyInstance = nullptr;
++ PFN_vkDestroyDevice fDestroyDevice = nullptr;
++ PFN_vkDestroyDebugReportCallbackEXT fDestroyDebugReportCallbackEXT = nullptr;
++
++ VkInstance fInstance = VK_NULL_HANDLE;
++ VkPhysicalDevice fPhysicalDevice = VK_NULL_HANDLE;
++ VkDevice fDevice = VK_NULL_HANDLE;
++ VkDebugReportCallbackEXT fDebugCallback = VK_NULL_HANDLE;
++
+ sk_sp<const GrVkInterface> fInterface;
+
+- VkSurfaceKHR fSurface;
+- VkSwapchainKHR fSwapchain;
++ // Original code had this as a function-local variable, but that seems wrong.
++ // It should exist as long as the context exists.
++ VkPhysicalDeviceFeatures2 features;
++
++ // Store this to make it accessible.
++ VkPhysicalDeviceProperties physDeviceProperties;
++
++ GrVkBackendContext backendContext;
++
+ uint32_t fGraphicsQueueIndex;
+ VkQueue fGraphicsQueue;
+ uint32_t fPresentQueueIndex;
++
++ sk_sp<GrDirectContext> fContext;
++ };
++
++ sk_sp<Shared> fShared;
++
++ static sk_sp<Shared> fGlobalShared;
++
++ VkSurfaceKHR fSurface;
++ VkSwapchainKHR fSwapchain;
+ VkQueue fPresentQueue;
+
+ uint32_t fImageCount;
+diff --git a/tools/sk_app/WindowContext.h b/tools/sk_app/WindowContext.h
+index 65ab8b9aa4..2d222385a3 100644
+--- a/tools/sk_app/WindowContext.h
++++ b/tools/sk_app/WindowContext.h
+@@ -10,9 +10,9 @@
+ #include "include/core/SkRefCnt.h"
+ #include "include/core/SkSurfaceProps.h"
+ #include "include/gpu/GrTypes.h"
++#include "include/gpu/GrDirectContext.h"
+ #include "tools/sk_app/DisplayParams.h"
+
+-class GrDirectContext;
+ class SkSurface;
+ #ifdef SK_GRAPHITE_ENABLED
+ namespace skgpu::graphite {
+diff --git a/tools/sk_app/mac/MetalWindowContext_mac.mm b/tools/sk_app/mac/MetalWindowContext_mac.mm
+index 5bea8578fa..f7df061af0 100644
+--- a/tools/sk_app/mac/MetalWindowContext_mac.mm
++++ b/tools/sk_app/mac/MetalWindowContext_mac.mm
+@@ -49,10 +49,14 @@ MetalWindowContext_mac::~MetalWindowContext_mac() {
+ }
+
+ bool MetalWindowContext_mac::onInitializeContext() {
++ // Allow creating just the shared context, without an associated window.
++ if(fMainView == nil)
++ return true;
++
+ SkASSERT(nil != fMainView);
+
+ fMetalLayer = [CAMetalLayer layer];
+- fMetalLayer.device = fDevice.get();
++ fMetalLayer.device = fShared->fDevice.get();
+ fMetalLayer.pixelFormat = MTLPixelFormatBGRA8Unorm;
+
+ // resize ignores the passed values and uses the fMainView directly.
+diff --git a/tools/sk_app/unix/VulkanWindowContext_unix.cpp b/tools/sk_app/unix/VulkanWindowContext_unix.cpp
+index 2b31fedc19..0c05fbfc92 100644
+--- a/tools/sk_app/unix/VulkanWindowContext_unix.cpp
++++ b/tools/sk_app/unix/VulkanWindowContext_unix.cpp
+@@ -30,7 +30,7 @@ std::unique_ptr<WindowContext> MakeVulkanForXlib(const XlibWindowInfo& info,
+ return nullptr;
+ }
+
+- auto createVkSurface = [&info, instProc](VkInstance instance) -> VkSurfaceKHR {
++ VulkanWindowContext::CreateVkSurfaceFn createVkSurface = [&info, instProc](VkInstance instance) -> VkSurfaceKHR {
+ static PFN_vkCreateXcbSurfaceKHR createXcbSurfaceKHR = nullptr;
+ if (!createXcbSurfaceKHR) {
+ createXcbSurfaceKHR =
+@@ -54,6 +54,9 @@ std::unique_ptr<WindowContext> MakeVulkanForXlib(const XlibWindowInfo& info,
+
+ return surface;
+ };
++ // Allow creating just the shared context, without an associated window.
++ if(info.fWindow == None)
++ createVkSurface = nullptr;
+
+ auto canPresent = [&info, instProc](VkInstance instance, VkPhysicalDevice physDev,
+ uint32_t queueFamilyIndex) {
+@@ -76,7 +79,7 @@ std::unique_ptr<WindowContext> MakeVulkanForXlib(const XlibWindowInfo& info,
+ };
+ std::unique_ptr<WindowContext> ctx(
+ new VulkanWindowContext(displayParams, createVkSurface, canPresent, instProc));
+- if (!ctx->isValid()) {
++ if (!ctx->isValid() && createVkSurface != nullptr) {
+ return nullptr;
+ }
+ return ctx;
+diff --git a/tools/sk_app/win/VulkanWindowContext_win.cpp b/tools/sk_app/win/VulkanWindowContext_win.cpp
+index 976c42556e..c8f6b162bf 100644
+--- a/tools/sk_app/win/VulkanWindowContext_win.cpp
++++ b/tools/sk_app/win/VulkanWindowContext_win.cpp
+@@ -29,7 +29,7 @@ std::unique_ptr<WindowContext> MakeVulkanForWin(HWND hwnd, const DisplayParams&
+ return nullptr;
+ }
+
+- auto createVkSurface = [hwnd, instProc] (VkInstance instance) -> VkSurfaceKHR {
++ VulkanWindowContext::CreateVkSurfaceFn createVkSurface = [hwnd, instProc] (VkInstance instance) -> VkSurfaceKHR {
+ static PFN_vkCreateWin32SurfaceKHR createWin32SurfaceKHR = nullptr;
+ if (!createWin32SurfaceKHR) {
+ createWin32SurfaceKHR = (PFN_vkCreateWin32SurfaceKHR)
+@@ -53,6 +53,9 @@ std::unique_ptr<WindowContext> MakeVulkanForWin(HWND hwnd, const DisplayParams&
+
+ return surface;
+ };
++ // Allow creating just the shared context, without an associated window.
++ if(hwnd == nullptr)
++ createVkSurface = nullptr;
+
+ auto canPresent = [instProc] (VkInstance instance, VkPhysicalDevice physDev,
+ uint32_t queueFamilyIndex) {
+@@ -70,7 +73,7 @@ std::unique_ptr<WindowContext> MakeVulkanForWin(HWND hwnd, const DisplayParams&
+
+ std::unique_ptr<WindowContext> ctx(
+ new VulkanWindowContext(params, createVkSurface, canPresent, instProc));
+- if (!ctx->isValid()) {
++ if (!ctx->isValid() && createVkSurface != nullptr) {
+ return nullptr;
+ }
+ return ctx;
diff --git a/external/skia/skia_sk_cpu_sse_level_0_by_default.patch.1 b/external/skia/skia_sk_cpu_sse_level_0_by_default.patch.1
new file mode 100644
index 000000000..f2259a318
--- /dev/null
+++ b/external/skia/skia_sk_cpu_sse_level_0_by_default.patch.1
@@ -0,0 +1,15 @@
+diff -ur skia.org/include/core/SkTypes.h skia/include/core/SkTypes.h
+--- skia.org/include/core/SkTypes.h 2021-01-10 12:37:19.016176437 +0100
++++ skia/include/core/SkTypes.h 2021-01-10 12:43:29.155312067 +0100
+@@ -153,6 +153,11 @@
+ #endif
+ #endif
+
++// So let's initialize SK_CPU_SSE_LEVEL to 0 by default
++#ifndef SK_CPU_SSE_LEVEL
++ #define SK_CPU_SSE_LEVEL 0
++#endif
++
+ // ARM defines
+ #if defined(__arm__) && (!defined(__APPLE__) || !TARGET_IPHONE_SIMULATOR)
+ #define SK_CPU_ARM32
diff --git a/external/skia/source/SkMemory_malloc.cxx b/external/skia/source/SkMemory_malloc.cxx
new file mode 100644
index 000000000..9e2da3c20
--- /dev/null
+++ b/external/skia/source/SkMemory_malloc.cxx
@@ -0,0 +1,68 @@
+/*
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#include "include/core/SkTypes.h"
+#include "include/private/SkMalloc.h"
+
+#include <sal/log.hxx>
+#include <rtl/alloc.h>
+
+// Based on SkMemory_malloc.cpp :
+
+static inline void sk_out_of_memory(size_t size)
+{
+ SAL_WARN("skia", "sk_out_of_memory (asked for " << size << " bytes)");
+ abort();
+}
+
+static inline void* throw_on_failure(size_t size, void* p)
+{
+ if (size > 0 && p == nullptr)
+ {
+ // If we've got a nullptr here, the only reason we should have failed is running out of RAM.
+ sk_out_of_memory(size);
+ }
+ return p;
+}
+
+void sk_abort_no_print()
+{
+ SAL_WARN("skia", "sk_abort_no_print");
+ abort();
+}
+
+void sk_out_of_memory(void)
+{
+ SAL_WARN("skia", "sk_out_of_memory");
+ abort();
+}
+
+void* sk_realloc_throw(void* addr, size_t size)
+{
+ return throw_on_failure(size, rtl_reallocateMemory(addr, size));
+}
+
+void sk_free(void* p) { rtl_freeMemory(p); }
+
+void* sk_malloc_flags(size_t size, unsigned flags)
+{
+ void* p;
+ if (flags & SK_MALLOC_ZERO_INITIALIZE)
+ {
+ p = rtl_allocateZeroMemory(size);
+ }
+ else
+ {
+ p = rtl_allocateMemory(size);
+ }
+ if (flags & SK_MALLOC_THROW)
+ {
+ return throw_on_failure(size, p);
+ }
+ else
+ {
+ return p;
+ }
+}
diff --git a/external/skia/source/skia_compiler.cxx b/external/skia/source/skia_compiler.cxx
new file mode 100644
index 000000000..6339a4a4f
--- /dev/null
+++ b/external/skia/source/skia_compiler.cxx
@@ -0,0 +1,20 @@
+/*
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#include <skia_compiler.hxx>
+
+// Get the type of compiler that Skia is compiled with.
+const char* skia_compiler_name()
+{
+#if defined __clang__
+ return "Clang";
+#elif defined __GNUC__
+ return "GCC";
+#elif defined _MSC_VER
+ return "MSVC";
+#else
+ return "?";
+#endif
+}
diff --git a/external/skia/source/skia_opts.cxx b/external/skia/source/skia_opts.cxx
new file mode 100644
index 000000000..be728d600
--- /dev/null
+++ b/external/skia/source/skia_opts.cxx
@@ -0,0 +1,77 @@
+/*
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#include <skia_opts.hxx>
+
+#include "include/private/SkOnce.h"
+
+#if defined __GNUC__
+#pragma GCC diagnostic push
+#pragma GCC diagnostic ignored "-Wshadow"
+#endif
+#include "src/core/SkCpu.h"
+#include "src/core/SkOpts.h"
+#if defined __GNUC__
+#pragma GCC diagnostic pop
+#endif
+
+void SkConvertRGBToRGBA(uint32_t* dest, const uint8_t* src, int count)
+{
+ SkOpts::RGB_to_RGB1(dest, src, count);
+}
+
+void SkConvertGrayToRGBA(uint32_t* dest, const uint8_t* src, int count)
+{
+ SkOpts::gray_to_RGB1(dest, src, count);
+}
+
+void SkConvertRGBAToRGB(uint8_t* dest, const uint32_t* src, int count)
+{
+ SkLoOpts::RGB1_to_RGB(dest, src, count);
+}
+
+void SkConvertRGBAToR(uint8_t* dest, const uint32_t* src, int count)
+{
+ SkLoOpts::RGB1_to_R(dest, src, count);
+}
+
+// The rest is mostly based on Skia's SkOpts.cpp, reduced to only SSSE3 so far.
+
+#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSSE3
+ #define SK_OPTS_NS ssse3
+#else
+ #define SK_OPTS_NS portable
+#endif
+
+#include "skia_opts_internal.hxx"
+
+namespace SkLoOpts {
+ // Define default function pointer values here...
+ // If our global compile options are set high enough, these defaults might even be
+ // CPU-specialized, e.g. a typical x86-64 machine might start with SSE2 defaults.
+ // They'll still get a chance to be replaced with even better ones, e.g. using SSE4.1.
+#define DEFINE_DEFAULT(name) decltype(name) name = SK_OPTS_NS::name
+ DEFINE_DEFAULT(RGB1_to_RGB);
+ DEFINE_DEFAULT(RGB1_to_R);
+#undef DEFINE_DEFAULT
+
+ // Each Init_foo() is defined in its own file.
+ void Init_ssse3();
+
+ static void init() {
+#if !defined(SK_BUILD_NO_OPTS)
+ #if defined(SK_CPU_X86)
+ #if SK_CPU_SSE_LEVEL < SK_CPU_SSE_LEVEL_SSSE3
+ if (SkCpu::Supports(SkCpu::SSSE3)) { Init_ssse3(); }
+ #endif
+ #endif
+#endif
+ }
+
+ void Init() {
+ static SkOnce once;
+ once(init);
+ }
+} // namespace SkLoOpts
diff --git a/external/skia/source/skia_opts_internal.hxx b/external/skia/source/skia_opts_internal.hxx
new file mode 100644
index 000000000..0ca6a0435
--- /dev/null
+++ b/external/skia/source/skia_opts_internal.hxx
@@ -0,0 +1,81 @@
+/*
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#ifndef SKIA_OPTS_INTERNAL_H
+#define SKIA_OPTS_INTERNAL_H
+
+#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSSE3
+ #include <immintrin.h>
+#endif
+
+namespace SK_OPTS_NS {
+
+static void RGB1_to_RGB_portable(uint8_t dst[], const uint32_t* src, int count) {
+ for (int i = 0; i < count; i++) {
+ dst[0] = src[i] >> 0;
+ dst[1] = src[i] >> 8;
+ dst[2] = src[i] >> 16;
+ dst += 3;
+ }
+}
+static void RGB1_to_R_portable(uint8_t dst[], const uint32_t* src, int count) {
+ for (int i = 0; i < count; i++) {
+ dst[i] = src[i] & 0xFF;
+ }
+}
+
+#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSSE3
+inline void RGB1_to_RGB(uint8_t dst[], const uint32_t* src, int count) {
+ const uint8_t X = 0xFF; // Used a placeholder. The value of X is irrelevant.
+ __m128i pack = _mm_setr_epi8(0,1,2, 4,5,6, 8,9,10, 12,13,14, X,X,X,X);
+
+// Storing 4 pixels should store 12 bytes, but here it stores 16, so test count >= 6
+// in order to not overrun the output buffer.
+ while (count >= 6) {
+ __m128i rgba = _mm_loadu_si128((const __m128i*) src);
+
+ __m128i rgb = _mm_shuffle_epi8(rgba, pack);
+
+ // Store 4 pixels.
+ _mm_storeu_si128((__m128i*) dst, rgb);
+
+ src += 4;
+ dst += 4*3;
+ count -= 4;
+ }
+ RGB1_to_RGB_portable(dst, src, count);
+}
+
+inline void RGB1_to_R(uint8_t dst[], const uint32_t* src, int count) {
+ const uint8_t X = 0xFF; // Used a placeholder. The value of X is irrelevant.
+ __m128i pack = _mm_setr_epi8(0,4,8,12, X,X,X,X,X,X,X,X,X,X,X,X);
+
+ while (count >= 4) {
+ __m128i rgba = _mm_loadu_si128((const __m128i*) src);
+
+ __m128i rgb = _mm_shuffle_epi8(rgba, pack);
+
+ // Store 4 pixels.
+ *((uint32_t*)dst) = _mm_cvtsi128_si32(rgb);
+
+ src += 4;
+ dst += 4;
+ count -= 4;
+ }
+ RGB1_to_R_portable(dst, src, count);
+}
+
+#else
+inline void RGB1_to_RGB(uint8_t dst[], const uint32_t* src, int count) {
+ RGB1_to_RGB_portable(dst, src, count);
+}
+inline void RGB1_to_R(uint8_t dst[], const uint32_t* src, int count) {
+ RGB1_to_R_portable(dst, src, count);
+}
+#endif
+
+} // namespace
+
+#endif
diff --git a/external/skia/source/skia_opts_ssse3.cxx b/external/skia/source/skia_opts_ssse3.cxx
new file mode 100644
index 000000000..31a446c99
--- /dev/null
+++ b/external/skia/source/skia_opts_ssse3.cxx
@@ -0,0 +1,17 @@
+/*
+ * Copyright 2015 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#include <skia_opts.hxx>
+#define SK_OPTS_NS ssse3
+#include "skia_opts_internal.hxx"
+
+namespace SkLoOpts {
+ void Init_ssse3() {
+ RGB1_to_RGB = ssse3::RGB1_to_RGB;
+ RGB1_to_R = ssse3::RGB1_to_R;
+ }
+}
diff --git a/external/skia/swap-buffers-rect.patch.1 b/external/skia/swap-buffers-rect.patch.1
new file mode 100644
index 000000000..628a7e26c
--- /dev/null
+++ b/external/skia/swap-buffers-rect.patch.1
@@ -0,0 +1,153 @@
+diff --git a/tools/sk_app/GLWindowContext.h b/tools/sk_app/GLWindowContext.h
+index c519903006..5dc5bcd180 100644
+--- a/tools/sk_app/GLWindowContext.h
++++ b/tools/sk_app/GLWindowContext.h
+@@ -25,7 +25,7 @@ public:
+ bool isValid() override { return SkToBool(fBackendContext.get()); }
+
+ void resize(int w, int h) override;
+- void swapBuffers() override;
++ void swapBuffers(const SkIRect* rect = nullptr) override;
+
+ void setDisplayParams(const DisplayParams& params) override;
+
+diff --git a/tools/sk_app/MetalWindowContext.h b/tools/sk_app/MetalWindowContext.h
+index fbf35c3c2b..2194277922 100644
+--- a/tools/sk_app/MetalWindowContext.h
++++ b/tools/sk_app/MetalWindowContext.h
+@@ -29,7 +29,7 @@ public:
+
+ bool isValid() override { return fValid; }
+
+- void swapBuffers() override;
++ void swapBuffers(const SkIRect* rect = nullptr) override;
+
+ void setDisplayParams(const DisplayParams& params) override;
+
+diff --git a/tools/sk_app/MetalWindowContext.mm b/tools/sk_app/MetalWindowContext.mm
+index 49dc77b74d..ca1d74dc6c 100644
+--- a/tools/sk_app/MetalWindowContext.mm
++++ b/tools/sk_app/MetalWindowContext.mm
+@@ -187,7 +187,7 @@ GrBackendRenderTarget backendRT(fWidth,
+ return surface;
+ }
+
+-void MetalWindowContext::swapBuffers() {
++void MetalWindowContext::swapBuffers(const SkIRect*) {
+ id<CAMetalDrawable> currentDrawable = (id<CAMetalDrawable>)fDrawableHandle;
+
+ id<MTLCommandBuffer> commandBuffer([*fShared->fQueue commandBuffer]);
+diff --git a/tools/sk_app/VulkanWindowContext.cpp b/tools/sk_app/VulkanWindowContext.cpp
+index 2b36d60076..d73978c9e4 100644
+--- a/tools/sk_app/VulkanWindowContext.cpp
++++ b/tools/sk_app/VulkanWindowContext.cpp
+@@ -572,7 +572,7 @@ sk_sp<SkSurface> VulkanWindowContext::getBackbufferSurface() {
+ return sk_ref_sp(surface);
+ }
+
+-void VulkanWindowContext::swapBuffers() {
++void VulkanWindowContext::swapBuffers(const SkIRect*) {
+
+ BackbufferInfo* backbuffer = fBackbuffers + fCurrentBackbufferIndex;
+ SkSurface* surface = fSurfaces[backbuffer->fImageIndex].get();
+diff --git a/tools/sk_app/VulkanWindowContext.h b/tools/sk_app/VulkanWindowContext.h
+index 92bfba6dff..46f7fd97bd 100644
+--- a/tools/sk_app/VulkanWindowContext.h
++++ b/tools/sk_app/VulkanWindowContext.h
+@@ -32,7 +32,7 @@ public:
+ static GrDirectContext* getSharedGrDirectContext() { return fGlobalShared ? fGlobalShared->fContext.get() : nullptr; }
+
+ sk_sp<SkSurface> getBackbufferSurface() override;
+- void swapBuffers() override;
++ void swapBuffers(const SkIRect* rect = nullptr) override;
+
+ bool isValid() override { return fSurface != VK_NULL_HANDLE; }
+
+diff --git a/tools/sk_app/WindowContext.h b/tools/sk_app/WindowContext.h
+index 68bb84b988..e15c1a3cf3 100644
+--- a/tools/sk_app/WindowContext.h
++++ b/tools/sk_app/WindowContext.h
+@@ -8,6 +8,7 @@
+ #define WindowContext_DEFINED
+
+ #include "include/core/SkRefCnt.h"
++#include "include/core/SkRect.h"
+ #include "include/core/SkSurfaceProps.h"
+ #include "include/gpu/GrTypes.h"
+ #include "include/gpu/GrDirectContext.h"
+@@ -25,7 +26,7 @@ public:
+
+ virtual sk_sp<SkSurface> getBackbufferSurface() = 0;
+
+- virtual void swapBuffers() = 0;
++ virtual void swapBuffers(const SkIRect* rect = nullptr) = 0;
+
+ virtual bool isValid() = 0;
+
+diff --git a/tools/sk_app/unix/RasterWindowContext_unix.cpp b/tools/sk_app/unix/RasterWindowContext_unix.cpp
+index 6ac20962b7..2ea9e07588 100644
+--- a/tools/sk_app/unix/RasterWindowContext_unix.cpp
++++ b/tools/sk_app/unix/RasterWindowContext_unix.cpp
+@@ -19,7 +19,7 @@ public:
+ RasterWindowContext_xlib(Display*, XWindow, int width, int height, const DisplayParams&);
+
+ sk_sp<SkSurface> getBackbufferSurface() override;
+- void swapBuffers() override;
++ void swapBuffers(const SkIRect* rect) override;
+ bool isValid() override { return SkToBool(fWindow); }
+ void resize(int w, int h) override;
+ void setDisplayParams(const DisplayParams& params) override;
+@@ -60,7 +60,7 @@ void RasterWindowContext_xlib::resize(int w, int h) {
+
+ sk_sp<SkSurface> RasterWindowContext_xlib::getBackbufferSurface() { return fBackbufferSurface; }
+
+-void RasterWindowContext_xlib::swapBuffers() {
++void RasterWindowContext_xlib::swapBuffers(const SkIRect* rect) {
+ SkPixmap pm;
+ if (!fBackbufferSurface->peekPixels(&pm)) {
+ return;
+@@ -82,7 +82,9 @@ void RasterWindowContext_xlib::swapBuffers() {
+ if (!XInitImage(&image)) {
+ return;
+ }
+- XPutImage(fDisplay, fWindow, fGC, &image, 0, 0, 0, 0, pm.width(), pm.height());
++ SkIRect update = rect ? *rect : SkIRect::MakeWH( pm.width(), pm.height());
++ XPutImage(fDisplay, fWindow, fGC, &image, update.x(), update.y(),
++ update.x(), update.y(), update.width(), update.height());
+ }
+
+ } // anonymous namespace
+diff --git a/tools/sk_app/win/RasterWindowContext_win.cpp b/tools/sk_app/win/RasterWindowContext_win.cpp
+index d80c6fbeec..72df8d5170 100644
+--- a/tools/sk_app/win/RasterWindowContext_win.cpp
++++ b/tools/sk_app/win/RasterWindowContext_win.cpp
+@@ -22,7 +22,7 @@ public:
+ RasterWindowContext_win(HWND, const DisplayParams&);
+
+ sk_sp<SkSurface> getBackbufferSurface() override;
+- void swapBuffers() override;
++ void swapBuffers(const SkIRect* rect) override;
+ bool isValid() override { return SkToBool(fWnd); }
+ void resize(int w, int h) override;
+ void setDisplayParams(const DisplayParams& params) override;
+@@ -75,13 +75,17 @@ void RasterWindowContext_win::resize(int w, int h) {
+
+ sk_sp<SkSurface> RasterWindowContext_win::getBackbufferSurface() { return fBackbufferSurface; }
+
+-void RasterWindowContext_win::swapBuffers() {
++void RasterWindowContext_win::swapBuffers(const SkIRect* rect) {
+ BITMAPINFO* bmpInfo = reinterpret_cast<BITMAPINFO*>(fSurfaceMemory.get());
+ HDC dc = GetDC(fWnd);
+ SkPixmap pixmap;
+ fBackbufferSurface->peekPixels(&pixmap);
+- StretchDIBits(dc, 0, 0, fWidth, fHeight, 0, 0, fWidth, fHeight, pixmap.addr(), bmpInfo,
+- DIB_RGB_COLORS, SRCCOPY);
++ SkIRect update = rect ? *rect : SkIRect::MakeWH( fWidth, fHeight );
++ // It appears that y-axis handling is broken if it doesn't match the window size.
++ update = SkIRect::MakeXYWH( update.x(), 0, update.width(), fHeight );
++ StretchDIBits(dc, update.x(), update.y(), update.width(), update.height(),
++ update.x(), update.y(), update.width(), update.height(),
++ pixmap.addr(), bmpInfo, DIB_RGB_COLORS, SRCCOPY);
+ ReleaseDC(fWnd, dc);
+ }
+
diff --git a/external/skia/tdf148624.patch.1 b/external/skia/tdf148624.patch.1
new file mode 100644
index 000000000..c42beca22
--- /dev/null
+++ b/external/skia/tdf148624.patch.1
@@ -0,0 +1,60 @@
+commit b2cecde549c76cbd1c8b7d0cee2c6799936c1e7a
+Author: Greg Daniel <egdaniel@google.com>
+Date: Thu Jun 16 11:29:08 2022 -0400
+
+ Fix not using texture barrier on StrokeTessOp.
+
+ Previously we were overwriting the renderpassXferBarriers flag on
+ ProgramInfo to set it to kNone. This flag is meant to say whether or not
+ the entire render pass uses barriers or not. This is needed in Vulkan
+ because all pipelines in a render pass that has an input attachment
+ must bind the input attachment regardless if it is used or not. So the
+ pipeline must be created with a layout for an input attachment
+ descriptor set.
+
+ This change just removes to performance optimization to only use the
+ barrier on the stencil and not fill draw. This use case shouldn't
+ come up too often and also shouldn't be a big perf hit regardless.
+ The way GrAppliedClip is created/used it is hard for us to create
+ multiple different Pipeline objects: one for stencil and one for the
+ fill.
+
+ Bug: skia:13402
+ Change-Id: I15ce74b4d41b90d3dd4169a1f4fb77ed87c8b26d
+ Reviewed-on: https://skia-review.googlesource.com/c/skia/+/549898
+ Reviewed-by: Michael Ludwig <michaelludwig@google.com>
+ Commit-Queue: Greg Daniel <egdaniel@google.com>
+
+diff --git a/src/gpu/ganesh/ops/StrokeTessellateOp.cpp b/src/gpu/ganesh/ops/StrokeTessellateOp.cpp
+index 8f47441eb9..de8153cd0f 100644
+--- a/src/gpu/ganesh/ops/StrokeTessellateOp.cpp
++++ b/src/gpu/ganesh/ops/StrokeTessellateOp.cpp
+@@ -179,7 +179,12 @@ void StrokeTessellateOp::prePrepareTessellator(GrTessellationShader::ProgramArgs
+ fStencilProgram = GrTessellationShader::MakeProgram(args, fTessellationShader, pipeline,
+ &kMarkStencil);
+ fillStencil = &kTestAndResetStencil;
+- args.fXferBarrierFlags = GrXferBarrierFlags::kNone;
++ // TODO: Currently if we have a texture barrier for a dst read it will get put in before
++ // both the stencil draw and the fill draw. In reality we only really need the barrier
++ // once to guard the reads of the color buffer in the fill from the previous writes. Maybe
++ // we can investigate how to remove one of these barriers but it is probably not something
++ // that is required a lot and thus the extra barrier shouldn't be too much of a perf hit to
++ // general Skia use.
+ }
+
+ fFillProgram = GrTessellationShader::MakeProgram(args, fTessellationShader, pipeline,
+diff --git a/src/gpu/ganesh/vk/GrVkPipelineStateBuilder.cpp b/src/gpu/ganesh/vk/GrVkPipelineStateBuilder.cpp
+index 54bc7f857a..0d61b8c4cb 100644
+--- a/src/gpu/ganesh/vk/GrVkPipelineStateBuilder.cpp
++++ b/src/gpu/ganesh/vk/GrVkPipelineStateBuilder.cpp
+@@ -279,6 +279,10 @@ GrVkPipelineState* GrVkPipelineStateBuilder::finalize(const GrProgramDesc& desc,
+ }
+ }
+
++ // The vulkan spec says that if a subpass has an input attachment, then the input attachment
++ // descriptor set must be bound to all pipelines in that subpass. This includes pipelines that
++ // don't actually use the input attachment. Thus we look at the renderPassBarriers and not just
++ // the DstProxyView barrier flags to determine if we use the input attachment.
+ bool usesInput = SkToBool(fProgramInfo.renderPassBarriers() & GrXferBarrierFlags::kTexture);
+ uint32_t layoutCount =
+ usesInput ? GrVkUniformHandler::kDescSetCount : (GrVkUniformHandler::kDescSetCount - 1);
diff --git a/external/skia/ubsan.patch.1 b/external/skia/ubsan.patch.1
new file mode 100644
index 000000000..005fdfebf
--- /dev/null
+++ b/external/skia/ubsan.patch.1
@@ -0,0 +1,42 @@
+diff --git a/include/private/gpu/ganesh/GrContext_Base.h b/include/private/gpu/ganesh/GrContext_Base.h
+index 847e76f232..e27d9454f8 100644
+--- a/include/private/gpu/ganesh/GrContext_Base.h
++++ b/include/private/gpu/ganesh/GrContext_Base.h
+@@ -20,7 +20,7 @@ class GrDirectContext;
+ class GrImageContext;
+ class GrRecordingContext;
+
+-class GrContext_Base : public SkRefCnt {
++class SK_API GrContext_Base : public SkRefCnt {
+ public:
+ ~GrContext_Base() override;
+
+@@ -32,7 +32,7 @@ public:
+ /*
+ * The 3D API backing this context
+ */
+- SK_API GrBackendApi backend() const;
++ GrBackendApi backend() const;
+
+ /*
+ * Retrieve the default GrBackendFormat for a given SkColorType and renderability.
+@@ -41,16 +41,16 @@ public:
+ *
+ * The caller should check that the returned format is valid.
+ */
+- SK_API GrBackendFormat defaultBackendFormat(SkColorType, GrRenderable) const;
++ GrBackendFormat defaultBackendFormat(SkColorType, GrRenderable) const;
+
+- SK_API GrBackendFormat compressedBackendFormat(SkImage::CompressionType) const;
++ GrBackendFormat compressedBackendFormat(SkImage::CompressionType) const;
+
+ /**
+ * Gets the maximum supported sample count for a color type. 1 is returned if only non-MSAA
+ * rendering is supported for the color type. 0 is returned if rendering to this color type
+ * is not supported at all.
+ */
+- SK_API int maxSurfaceSampleCountForColorType(SkColorType colorType) const;
++ int maxSurfaceSampleCountForColorType(SkColorType colorType) const;
+
+ // TODO: When the public version is gone, rename to refThreadSafeProxy and add raw ptr ver.
+ sk_sp<GrContextThreadSafeProxy> threadSafeProxy();
diff --git a/external/skia/vk_mem_alloc.patch.1 b/external/skia/vk_mem_alloc.patch.1
new file mode 100644
index 000000000..94f2504cb
--- /dev/null
+++ b/external/skia/vk_mem_alloc.patch.1
@@ -0,0 +1,19639 @@
+diff --git a/third_party/vulkanmemoryallocator/GrVulkanMemoryAllocator.h b/third_party/vulkanmemoryallocator/GrVulkanMemoryAllocator.h
+index 1c6212bd47..756175b4e7 100644
+--- a/third_party/vulkanmemoryallocator/GrVulkanMemoryAllocator.h
++++ b/third_party/vulkanmemoryallocator/GrVulkanMemoryAllocator.h
+@@ -32,7 +32,7 @@
+ #define VULKAN_H_
+ #define GR_NEEDED_TO_DEFINE_VULKAN_H
+ #endif
+-#include "vk_mem_alloc.h"
++#include "include/vk_mem_alloc.h"
+ #ifdef GR_NEEDED_TO_DEFINE_VULKAN_H
+ #undef VULKAN_H_
+ #endif
+diff --git a/third_party/vulkanmemoryallocator/include/LICENSE.txt b/third_party/vulkanmemoryallocator/include/LICENSE.txt
+new file mode 100644
+index 0000000000..dbfe253391
+--- /dev/null
++++ b/third_party/vulkanmemoryallocator/include/LICENSE.txt
+@@ -0,0 +1,19 @@
++Copyright (c) 2017-2018 Advanced Micro Devices, Inc. All rights reserved.
++
++Permission is hereby granted, free of charge, to any person obtaining a copy
++of this software and associated documentation files (the "Software"), to deal
++in the Software without restriction, including without limitation the rights
++to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
++copies of the Software, and to permit persons to whom the Software is
++furnished to do so, subject to the following conditions:
++
++The above copyright notice and this permission notice shall be included in
++all copies or substantial portions of the Software.
++
++THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
++IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
++FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
++AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
++LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
++OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
++THE SOFTWARE.
+diff --git a/third_party/vulkanmemoryallocator/include/vk_mem_alloc.h b/third_party/vulkanmemoryallocator/include/vk_mem_alloc.h
+new file mode 100644
+index 0000000000..90410b56af
+--- /dev/null
++++ b/third_party/vulkanmemoryallocator/include/vk_mem_alloc.h
+@@ -0,0 +1,19595 @@
++//
++// Copyright (c) 2017-2022 Advanced Micro Devices, Inc. All rights reserved.
++//
++// Permission is hereby granted, free of charge, to any person obtaining a copy
++// of this software and associated documentation files (the "Software"), to deal
++// in the Software without restriction, including without limitation the rights
++// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
++// copies of the Software, and to permit persons to whom the Software is
++// furnished to do so, subject to the following conditions:
++//
++// The above copyright notice and this permission notice shall be included in
++// all copies or substantial portions of the Software.
++//
++// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
++// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
++// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
++// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
++// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
++// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
++// THE SOFTWARE.
++//
++
++#ifndef AMD_VULKAN_MEMORY_ALLOCATOR_H
++#define AMD_VULKAN_MEMORY_ALLOCATOR_H
++
++/** \mainpage Vulkan Memory Allocator
++
++<b>Version 3.0.1-development (2022-03-28)</b>
++
++Copyright (c) 2017-2022 Advanced Micro Devices, Inc. All rights reserved. \n
++License: MIT
++
++<b>API documentation divided into groups:</b> [Modules](modules.html)
++
++\section main_table_of_contents Table of contents
++
++- <b>User guide</b>
++ - \subpage quick_start
++ - [Project setup](@ref quick_start_project_setup)
++ - [Initialization](@ref quick_start_initialization)
++ - [Resource allocation](@ref quick_start_resource_allocation)
++ - \subpage choosing_memory_type
++ - [Usage](@ref choosing_memory_type_usage)
++ - [Required and preferred flags](@ref choosing_memory_type_required_preferred_flags)
++ - [Explicit memory types](@ref choosing_memory_type_explicit_memory_types)
++ - [Custom memory pools](@ref choosing_memory_type_custom_memory_pools)
++ - [Dedicated allocations](@ref choosing_memory_type_dedicated_allocations)
++ - \subpage memory_mapping
++ - [Mapping functions](@ref memory_mapping_mapping_functions)
++ - [Persistently mapped memory](@ref memory_mapping_persistently_mapped_memory)
++ - [Cache flush and invalidate](@ref memory_mapping_cache_control)
++ - \subpage staying_within_budget
++ - [Querying for budget](@ref staying_within_budget_querying_for_budget)
++ - [Controlling memory usage](@ref staying_within_budget_controlling_memory_usage)
++ - \subpage resource_aliasing
++ - \subpage custom_memory_pools
++ - [Choosing memory type index](@ref custom_memory_pools_MemTypeIndex)
++ - [Linear allocation algorithm](@ref linear_algorithm)
++ - [Free-at-once](@ref linear_algorithm_free_at_once)
++ - [Stack](@ref linear_algorithm_stack)
++ - [Double stack](@ref linear_algorithm_double_stack)
++ - [Ring buffer](@ref linear_algorithm_ring_buffer)
++ - \subpage defragmentation
++ - \subpage statistics
++ - [Numeric statistics](@ref statistics_numeric_statistics)
++ - [JSON dump](@ref statistics_json_dump)
++ - \subpage allocation_annotation
++ - [Allocation user data](@ref allocation_user_data)
++ - [Allocation names](@ref allocation_names)
++ - \subpage virtual_allocator
++ - \subpage debugging_memory_usage
++ - [Memory initialization](@ref debugging_memory_usage_initialization)
++ - [Margins](@ref debugging_memory_usage_margins)
++ - [Corruption detection](@ref debugging_memory_usage_corruption_detection)
++ - \subpage opengl_interop
++- \subpage usage_patterns
++ - [GPU-only resource](@ref usage_patterns_gpu_only)
++ - [Staging copy for upload](@ref usage_patterns_staging_copy_upload)
++ - [Readback](@ref usage_patterns_readback)
++ - [Advanced data uploading](@ref usage_patterns_advanced_data_uploading)
++ - [Other use cases](@ref usage_patterns_other_use_cases)
++- \subpage configuration
++ - [Pointers to Vulkan functions](@ref config_Vulkan_functions)
++ - [Custom host memory allocator](@ref custom_memory_allocator)
++ - [Device memory allocation callbacks](@ref allocation_callbacks)
++ - [Device heap memory limit](@ref heap_memory_limit)
++- <b>Extension support</b>
++ - \subpage vk_khr_dedicated_allocation
++ - \subpage enabling_buffer_device_address
++ - \subpage vk_ext_memory_priority
++ - \subpage vk_amd_device_coherent_memory
++- \subpage general_considerations
++ - [Thread safety](@ref general_considerations_thread_safety)
++ - [Versioning and compatibility](@ref general_considerations_versioning_and_compatibility)
++ - [Validation layer warnings](@ref general_considerations_validation_layer_warnings)
++ - [Allocation algorithm](@ref general_considerations_allocation_algorithm)
++ - [Features not supported](@ref general_considerations_features_not_supported)
++
++\section main_see_also See also
++
++- [**Product page on GPUOpen**](https://gpuopen.com/gaming-product/vulkan-memory-allocator/)
++- [**Source repository on GitHub**](https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator)
++
++\defgroup group_init Library initialization
++
++\brief API elements related to the initialization and management of the entire library, especially #VmaAllocator object.
++
++\defgroup group_alloc Memory allocation
++
++\brief API elements related to the allocation, deallocation, and management of Vulkan memory, buffers, images.
++Most basic ones being: vmaCreateBuffer(), vmaCreateImage().
++
++\defgroup group_virtual Virtual allocator
++
++\brief API elements related to the mechanism of \ref virtual_allocator - using the core allocation algorithm
++for user-defined purpose without allocating any real GPU memory.
++
++\defgroup group_stats Statistics
++
++\brief API elements that query current status of the allocator, from memory usage, budget, to full dump of the internal state in JSON format.
++See documentation chapter: \ref statistics.
++*/
++
++
++#ifdef __cplusplus
++extern "C" {
++#endif
++
++#ifndef VULKAN_H_
++ #include <vulkan/vulkan.h>
++#endif
++
++// Define this macro to declare maximum supported Vulkan version in format AAABBBCCC,
++// where AAA = major, BBB = minor, CCC = patch.
++// If you want to use version > 1.0, it still needs to be enabled via VmaAllocatorCreateInfo::vulkanApiVersion.
++#if !defined(VMA_VULKAN_VERSION)
++ #if defined(VK_VERSION_1_3)
++ #define VMA_VULKAN_VERSION 1003000
++ #elif defined(VK_VERSION_1_2)
++ #define VMA_VULKAN_VERSION 1002000
++ #elif defined(VK_VERSION_1_1)
++ #define VMA_VULKAN_VERSION 1001000
++ #else
++ #define VMA_VULKAN_VERSION 1000000
++ #endif
++#endif
++
++#if defined(__ANDROID__) && defined(VK_NO_PROTOTYPES) && VMA_STATIC_VULKAN_FUNCTIONS
++ extern PFN_vkGetInstanceProcAddr vkGetInstanceProcAddr;
++ extern PFN_vkGetDeviceProcAddr vkGetDeviceProcAddr;
++ extern PFN_vkGetPhysicalDeviceProperties vkGetPhysicalDeviceProperties;
++ extern PFN_vkGetPhysicalDeviceMemoryProperties vkGetPhysicalDeviceMemoryProperties;
++ extern PFN_vkAllocateMemory vkAllocateMemory;
++ extern PFN_vkFreeMemory vkFreeMemory;
++ extern PFN_vkMapMemory vkMapMemory;
++ extern PFN_vkUnmapMemory vkUnmapMemory;
++ extern PFN_vkFlushMappedMemoryRanges vkFlushMappedMemoryRanges;
++ extern PFN_vkInvalidateMappedMemoryRanges vkInvalidateMappedMemoryRanges;
++ extern PFN_vkBindBufferMemory vkBindBufferMemory;
++ extern PFN_vkBindImageMemory vkBindImageMemory;
++ extern PFN_vkGetBufferMemoryRequirements vkGetBufferMemoryRequirements;
++ extern PFN_vkGetImageMemoryRequirements vkGetImageMemoryRequirements;
++ extern PFN_vkCreateBuffer vkCreateBuffer;
++ extern PFN_vkDestroyBuffer vkDestroyBuffer;
++ extern PFN_vkCreateImage vkCreateImage;
++ extern PFN_vkDestroyImage vkDestroyImage;
++ extern PFN_vkCmdCopyBuffer vkCmdCopyBuffer;
++ #if VMA_VULKAN_VERSION >= 1001000
++ extern PFN_vkGetBufferMemoryRequirements2 vkGetBufferMemoryRequirements2;
++ extern PFN_vkGetImageMemoryRequirements2 vkGetImageMemoryRequirements2;
++ extern PFN_vkBindBufferMemory2 vkBindBufferMemory2;
++ extern PFN_vkBindImageMemory2 vkBindImageMemory2;
++ extern PFN_vkGetPhysicalDeviceMemoryProperties2 vkGetPhysicalDeviceMemoryProperties2;
++ #endif // #if VMA_VULKAN_VERSION >= 1001000
++#endif // #if defined(__ANDROID__) && VMA_STATIC_VULKAN_FUNCTIONS && VK_NO_PROTOTYPES
++
++#if !defined(VMA_DEDICATED_ALLOCATION)
++ #if VK_KHR_get_memory_requirements2 && VK_KHR_dedicated_allocation
++ #define VMA_DEDICATED_ALLOCATION 1
++ #else
++ #define VMA_DEDICATED_ALLOCATION 0
++ #endif
++#endif
++
++#if !defined(VMA_BIND_MEMORY2)
++ #if VK_KHR_bind_memory2
++ #define VMA_BIND_MEMORY2 1
++ #else
++ #define VMA_BIND_MEMORY2 0
++ #endif
++#endif
++
++#if !defined(VMA_MEMORY_BUDGET)
++ #if VK_EXT_memory_budget && (VK_KHR_get_physical_device_properties2 || VMA_VULKAN_VERSION >= 1001000)
++ #define VMA_MEMORY_BUDGET 1
++ #else
++ #define VMA_MEMORY_BUDGET 0
++ #endif
++#endif
++
++// Defined to 1 when VK_KHR_buffer_device_address device extension or equivalent core Vulkan 1.2 feature is defined in its headers.
++#if !defined(VMA_BUFFER_DEVICE_ADDRESS)
++ #if VK_KHR_buffer_device_address || VMA_VULKAN_VERSION >= 1002000
++ #define VMA_BUFFER_DEVICE_ADDRESS 1
++ #else
++ #define VMA_BUFFER_DEVICE_ADDRESS 0
++ #endif
++#endif
++
++// Defined to 1 when VK_EXT_memory_priority device extension is defined in Vulkan headers.
++#if !defined(VMA_MEMORY_PRIORITY)
++ #if VK_EXT_memory_priority
++ #define VMA_MEMORY_PRIORITY 1
++ #else
++ #define VMA_MEMORY_PRIORITY 0
++ #endif
++#endif
++
++// Defined to 1 when VK_KHR_external_memory device extension is defined in Vulkan headers.
++#if !defined(VMA_EXTERNAL_MEMORY)
++ #if VK_KHR_external_memory
++ #define VMA_EXTERNAL_MEMORY 1
++ #else
++ #define VMA_EXTERNAL_MEMORY 0
++ #endif
++#endif
++
++// Define these macros to decorate all public functions with additional code,
++// before and after returned type, appropriately. This may be useful for
++// exporting the functions when compiling VMA as a separate library. Example:
++// #define VMA_CALL_PRE __declspec(dllexport)
++// #define VMA_CALL_POST __cdecl
++#ifndef VMA_CALL_PRE
++ #define VMA_CALL_PRE
++#endif
++#ifndef VMA_CALL_POST
++ #define VMA_CALL_POST
++#endif
++
++// Define this macro to decorate pointers with an attribute specifying the
++// length of the array they point to if they are not null.
++//
++// The length may be one of
++// - The name of another parameter in the argument list where the pointer is declared
++// - The name of another member in the struct where the pointer is declared
++// - The name of a member of a struct type, meaning the value of that member in
++// the context of the call. For example
++// VMA_LEN_IF_NOT_NULL("VkPhysicalDeviceMemoryProperties::memoryHeapCount"),
++// this means the number of memory heaps available in the device associated
++// with the VmaAllocator being dealt with.
++#ifndef VMA_LEN_IF_NOT_NULL
++ #define VMA_LEN_IF_NOT_NULL(len)
++#endif
++
++// The VMA_NULLABLE macro is defined to be _Nullable when compiling with Clang.
++// see: https://clang.llvm.org/docs/AttributeReference.html#nullable
++#ifndef VMA_NULLABLE
++ #ifdef __clang__
++ #define VMA_NULLABLE _Nullable
++ #else
++ #define VMA_NULLABLE
++ #endif
++#endif
++
++// The VMA_NOT_NULL macro is defined to be _Nonnull when compiling with Clang.
++// see: https://clang.llvm.org/docs/AttributeReference.html#nonnull
++#ifndef VMA_NOT_NULL
++ #ifdef __clang__
++ #define VMA_NOT_NULL _Nonnull
++ #else
++ #define VMA_NOT_NULL
++ #endif
++#endif
++
++// If non-dispatchable handles are represented as pointers then we can give
++// then nullability annotations
++#ifndef VMA_NOT_NULL_NON_DISPATCHABLE
++ #if defined(__LP64__) || defined(_WIN64) || (defined(__x86_64__) && !defined(__ILP32__) ) || defined(_M_X64) || defined(__ia64) || defined (_M_IA64) || defined(__aarch64__) || defined(__powerpc64__)
++ #define VMA_NOT_NULL_NON_DISPATCHABLE VMA_NOT_NULL
++ #else
++ #define VMA_NOT_NULL_NON_DISPATCHABLE
++ #endif
++#endif
++
++#ifndef VMA_NULLABLE_NON_DISPATCHABLE
++ #if defined(__LP64__) || defined(_WIN64) || (defined(__x86_64__) && !defined(__ILP32__) ) || defined(_M_X64) || defined(__ia64) || defined (_M_IA64) || defined(__aarch64__) || defined(__powerpc64__)
++ #define VMA_NULLABLE_NON_DISPATCHABLE VMA_NULLABLE
++ #else
++ #define VMA_NULLABLE_NON_DISPATCHABLE
++ #endif
++#endif
++
++#ifndef VMA_STATS_STRING_ENABLED
++ #define VMA_STATS_STRING_ENABLED 1
++#endif
++
++////////////////////////////////////////////////////////////////////////////////
++////////////////////////////////////////////////////////////////////////////////
++//
++// INTERFACE
++//
++////////////////////////////////////////////////////////////////////////////////
++////////////////////////////////////////////////////////////////////////////////
++
++// Sections for managing code placement in file, only for development purposes e.g. for convenient folding inside an IDE.
++#ifndef _VMA_ENUM_DECLARATIONS
++
++/**
++\addtogroup group_init
++@{
++*/
++
++/// Flags for created #VmaAllocator.
++typedef enum VmaAllocatorCreateFlagBits
++{
++ /** \brief Allocator and all objects created from it will not be synchronized internally, so you must guarantee they are used from only one thread at a time or synchronized externally by you.
++
++ Using this flag may increase performance because internal mutexes are not used.
++ */
++ VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT = 0x00000001,
++ /** \brief Enables usage of VK_KHR_dedicated_allocation extension.
++
++ The flag works only if VmaAllocatorCreateInfo::vulkanApiVersion `== VK_API_VERSION_1_0`.
++ When it is `VK_API_VERSION_1_1`, the flag is ignored because the extension has been promoted to Vulkan 1.1.
++
++ Using this extension will automatically allocate dedicated blocks of memory for
++ some buffers and images instead of suballocating place for them out of bigger
++ memory blocks (as if you explicitly used #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT
++ flag) when it is recommended by the driver. It may improve performance on some
++ GPUs.
++
++ You may set this flag only if you found out that following device extensions are
++ supported, you enabled them while creating Vulkan device passed as
++ VmaAllocatorCreateInfo::device, and you want them to be used internally by this
++ library:
++
++ - VK_KHR_get_memory_requirements2 (device extension)
++ - VK_KHR_dedicated_allocation (device extension)
++
++ When this flag is set, you can experience following warnings reported by Vulkan
++ validation layer. You can ignore them.
++
++ > vkBindBufferMemory(): Binding memory to buffer 0x2d but vkGetBufferMemoryRequirements() has not been called on that buffer.
++ */
++ VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT = 0x00000002,
++ /**
++ Enables usage of VK_KHR_bind_memory2 extension.
++
++ The flag works only if VmaAllocatorCreateInfo::vulkanApiVersion `== VK_API_VERSION_1_0`.
++ When it is `VK_API_VERSION_1_1`, the flag is ignored because the extension has been promoted to Vulkan 1.1.
++
++ You may set this flag only if you found out that this device extension is supported,
++ you enabled it while creating Vulkan device passed as VmaAllocatorCreateInfo::device,
++ and you want it to be used internally by this library.
++
++ The extension provides functions `vkBindBufferMemory2KHR` and `vkBindImageMemory2KHR`,
++ which allow to pass a chain of `pNext` structures while binding.
++ This flag is required if you use `pNext` parameter in vmaBindBufferMemory2() or vmaBindImageMemory2().
++ */
++ VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT = 0x00000004,
++ /**
++ Enables usage of VK_EXT_memory_budget extension.
++
++ You may set this flag only if you found out that this device extension is supported,
++ you enabled it while creating Vulkan device passed as VmaAllocatorCreateInfo::device,
++ and you want it to be used internally by this library, along with another instance extension
++ VK_KHR_get_physical_device_properties2, which is required by it (or Vulkan 1.1, where this extension is promoted).
++
++ The extension provides query for current memory usage and budget, which will probably
++ be more accurate than an estimation used by the library otherwise.
++ */
++ VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT = 0x00000008,
++ /**
++ Enables usage of VK_AMD_device_coherent_memory extension.
++
++ You may set this flag only if you:
++
++ - found out that this device extension is supported and enabled it while creating Vulkan device passed as VmaAllocatorCreateInfo::device,
++ - checked that `VkPhysicalDeviceCoherentMemoryFeaturesAMD::deviceCoherentMemory` is true and set it while creating the Vulkan device,
++ - want it to be used internally by this library.
++
++ The extension and accompanying device feature provide access to memory types with
++ `VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD` and `VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD` flags.
++ They are useful mostly for writing breadcrumb markers - a common method for debugging GPU crash/hang/TDR.
++
++ When the extension is not enabled, such memory types are still enumerated, but their usage is illegal.
++ To protect from this error, if you don't create the allocator with this flag, it will refuse to allocate any memory or create a custom pool in such memory type,
++ returning `VK_ERROR_FEATURE_NOT_PRESENT`.
++ */
++ VMA_ALLOCATOR_CREATE_AMD_DEVICE_COHERENT_MEMORY_BIT = 0x00000010,
++ /**
++ Enables usage of "buffer device address" feature, which allows you to use function
++ `vkGetBufferDeviceAddress*` to get raw GPU pointer to a buffer and pass it for usage inside a shader.
++
++ You may set this flag only if you:
++
++ 1. (For Vulkan version < 1.2) Found as available and enabled device extension
++ VK_KHR_buffer_device_address.
++ This extension is promoted to core Vulkan 1.2.
++ 2. Found as available and enabled device feature `VkPhysicalDeviceBufferDeviceAddressFeatures::bufferDeviceAddress`.
++
++ When this flag is set, you can create buffers with `VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT` using VMA.
++ The library automatically adds `VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT` to
++ allocated memory blocks wherever it might be needed.
++
++ For more information, see documentation chapter \ref enabling_buffer_device_address.
++ */
++ VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT = 0x00000020,
++ /**
++ Enables usage of VK_EXT_memory_priority extension in the library.
++
++ You may set this flag only if you found available and enabled this device extension,
++ along with `VkPhysicalDeviceMemoryPriorityFeaturesEXT::memoryPriority == VK_TRUE`,
++ while creating Vulkan device passed as VmaAllocatorCreateInfo::device.
++
++ When this flag is used, VmaAllocationCreateInfo::priority and VmaPoolCreateInfo::priority
++ are used to set priorities of allocated Vulkan memory. Without it, these variables are ignored.
++
++ A priority must be a floating-point value between 0 and 1, indicating the priority of the allocation relative to other memory allocations.
++ Larger values are higher priority. The granularity of the priorities is implementation-dependent.
++ It is automatically passed to every call to `vkAllocateMemory` done by the library using structure `VkMemoryPriorityAllocateInfoEXT`.
++ The value to be used for default priority is 0.5.
++ For more details, see the documentation of the VK_EXT_memory_priority extension.
++ */
++ VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT = 0x00000040,
++
++ VMA_ALLOCATOR_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
++} VmaAllocatorCreateFlagBits;
++/// See #VmaAllocatorCreateFlagBits.
++typedef VkFlags VmaAllocatorCreateFlags;
++
++/** @} */
++
++/**
++\addtogroup group_alloc
++@{
++*/
++
++/// \brief Intended usage of the allocated memory.
++typedef enum VmaMemoryUsage
++{
++ /** No intended memory usage specified.
++ Use other members of VmaAllocationCreateInfo to specify your requirements.
++ */
++ VMA_MEMORY_USAGE_UNKNOWN = 0,
++ /**
++ \deprecated Obsolete, preserved for backward compatibility.
++ Prefers `VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT`.
++ */
++ VMA_MEMORY_USAGE_GPU_ONLY = 1,
++ /**
++ \deprecated Obsolete, preserved for backward compatibility.
++ Guarantees `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` and `VK_MEMORY_PROPERTY_HOST_COHERENT_BIT`.
++ */
++ VMA_MEMORY_USAGE_CPU_ONLY = 2,
++ /**
++ \deprecated Obsolete, preserved for backward compatibility.
++ Guarantees `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT`, prefers `VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT`.
++ */
++ VMA_MEMORY_USAGE_CPU_TO_GPU = 3,
++ /**
++ \deprecated Obsolete, preserved for backward compatibility.
++ Guarantees `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT`, prefers `VK_MEMORY_PROPERTY_HOST_CACHED_BIT`.
++ */
++ VMA_MEMORY_USAGE_GPU_TO_CPU = 4,
++ /**
++ \deprecated Obsolete, preserved for backward compatibility.
++ Prefers not `VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT`.
++ */
++ VMA_MEMORY_USAGE_CPU_COPY = 5,
++ /**
++ Lazily allocated GPU memory having `VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT`.
++ Exists mostly on mobile platforms. Using it on desktop PC or other GPUs with no such memory type present will fail the allocation.
++
++ Usage: Memory for transient attachment images (color attachments, depth attachments etc.), created with `VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT`.
++
++ Allocations with this usage are always created as dedicated - it implies #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT.
++ */
++ VMA_MEMORY_USAGE_GPU_LAZILY_ALLOCATED = 6,
++ /**
++ Selects best memory type automatically.
++ This flag is recommended for most common use cases.
++
++ When using this flag, if you want to map the allocation (using vmaMapMemory() or #VMA_ALLOCATION_CREATE_MAPPED_BIT),
++ you must pass one of the flags: #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT
++ in VmaAllocationCreateInfo::flags.
++
++ It can be used only with functions that let the library know `VkBufferCreateInfo` or `VkImageCreateInfo`, e.g.
++ vmaCreateBuffer(), vmaCreateImage(), vmaFindMemoryTypeIndexForBufferInfo(), vmaFindMemoryTypeIndexForImageInfo()
++ and not with generic memory allocation functions.
++ */
++ VMA_MEMORY_USAGE_AUTO = 7,
++ /**
++ Selects best memory type automatically with preference for GPU (device) memory.
++
++ When using this flag, if you want to map the allocation (using vmaMapMemory() or #VMA_ALLOCATION_CREATE_MAPPED_BIT),
++ you must pass one of the flags: #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT
++ in VmaAllocationCreateInfo::flags.
++
++ It can be used only with functions that let the library know `VkBufferCreateInfo` or `VkImageCreateInfo`, e.g.
++ vmaCreateBuffer(), vmaCreateImage(), vmaFindMemoryTypeIndexForBufferInfo(), vmaFindMemoryTypeIndexForImageInfo()
++ and not with generic memory allocation functions.
++ */
++ VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE = 8,
++ /**
++ Selects best memory type automatically with preference for CPU (host) memory.
++
++ When using this flag, if you want to map the allocation (using vmaMapMemory() or #VMA_ALLOCATION_CREATE_MAPPED_BIT),
++ you must pass one of the flags: #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT
++ in VmaAllocationCreateInfo::flags.
++
++ It can be used only with functions that let the library know `VkBufferCreateInfo` or `VkImageCreateInfo`, e.g.
++ vmaCreateBuffer(), vmaCreateImage(), vmaFindMemoryTypeIndexForBufferInfo(), vmaFindMemoryTypeIndexForImageInfo()
++ and not with generic memory allocation functions.
++ */
++ VMA_MEMORY_USAGE_AUTO_PREFER_HOST = 9,
++
++ VMA_MEMORY_USAGE_MAX_ENUM = 0x7FFFFFFF
++} VmaMemoryUsage;
++
++/// Flags to be passed as VmaAllocationCreateInfo::flags.
++typedef enum VmaAllocationCreateFlagBits
++{
++ /** \brief Set this flag if the allocation should have its own memory block.
++
++ Use it for special, big resources, like fullscreen images used as attachments.
++ */
++ VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT = 0x00000001,
++
++ /** \brief Set this flag to only try to allocate from existing `VkDeviceMemory` blocks and never create new such block.
++
++ If new allocation cannot be placed in any of the existing blocks, allocation
++ fails with `VK_ERROR_OUT_OF_DEVICE_MEMORY` error.
++
++ You should not use #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT and
++ #VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT at the same time. It makes no sense.
++ */
++ VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT = 0x00000002,
++ /** \brief Set this flag to use a memory that will be persistently mapped and retrieve pointer to it.
++
++ Pointer to mapped memory will be returned through VmaAllocationInfo::pMappedData.
++
++ It is valid to use this flag for allocation made from memory type that is not
++ `HOST_VISIBLE`. This flag is then ignored and memory is not mapped. This is
++ useful if you need an allocation that is efficient to use on GPU
++ (`DEVICE_LOCAL`) and still want to map it directly if possible on platforms that
++ support it (e.g. Intel GPU).
++ */
++ VMA_ALLOCATION_CREATE_MAPPED_BIT = 0x00000004,
++ /** \deprecated Preserved for backward compatibility. Consider using vmaSetAllocationName() instead.
++
++ Set this flag to treat VmaAllocationCreateInfo::pUserData as pointer to a
++ null-terminated string. Instead of copying pointer value, a local copy of the
++ string is made and stored in allocation's `pName`. The string is automatically
++ freed together with the allocation. It is also used in vmaBuildStatsString().
++ */
++ VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT = 0x00000020,
++ /** Allocation will be created from upper stack in a double stack pool.
++
++ This flag is only allowed for custom pools created with #VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT flag.
++ */
++ VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT = 0x00000040,
++ /** Create both buffer/image and allocation, but don't bind them together.
++ It is useful when you want to bind yourself to do some more advanced binding, e.g. using some extensions.
++ The flag is meaningful only with functions that bind by default: vmaCreateBuffer(), vmaCreateImage().
++ Otherwise it is ignored.
++
++ If you want to make sure the new buffer/image is not tied to the new memory allocation
++ through `VkMemoryDedicatedAllocateInfoKHR` structure in case the allocation ends up in its own memory block,
++ use also flag #VMA_ALLOCATION_CREATE_CAN_ALIAS_BIT.
++ */
++ VMA_ALLOCATION_CREATE_DONT_BIND_BIT = 0x00000080,
++ /** Create allocation only if additional device memory required for it, if any, won't exceed
++ memory budget. Otherwise return `VK_ERROR_OUT_OF_DEVICE_MEMORY`.
++ */
++ VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT = 0x00000100,
++ /** \brief Set this flag if the allocated memory will have aliasing resources.
++
++ Usage of this flag prevents supplying `VkMemoryDedicatedAllocateInfoKHR` when #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT is specified.
++ Otherwise created dedicated memory will not be suitable for aliasing resources, resulting in Vulkan Validation Layer errors.
++ */
++ VMA_ALLOCATION_CREATE_CAN_ALIAS_BIT = 0x00000200,
++ /**
++ Requests possibility to map the allocation (using vmaMapMemory() or #VMA_ALLOCATION_CREATE_MAPPED_BIT).
++
++ - If you use #VMA_MEMORY_USAGE_AUTO or other `VMA_MEMORY_USAGE_AUTO*` value,
++ you must use this flag to be able to map the allocation. Otherwise, mapping is incorrect.
++ - If you use other value of #VmaMemoryUsage, this flag is ignored and mapping is always possible in memory types that are `HOST_VISIBLE`.
++ This includes allocations created in \ref custom_memory_pools.
++
++ Declares that mapped memory will only be written sequentially, e.g. using `memcpy()` or a loop writing number-by-number,
++ never read or accessed randomly, so a memory type can be selected that is uncached and write-combined.
++
++ \warning Violating this declaration may work correctly, but will likely be very slow.
++ Watch out for implicit reads introduced by doing e.g. `pMappedData[i] += x;`
++ Better prepare your data in a local variable and `memcpy()` it to the mapped pointer all at once.
++ */
++ VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT = 0x00000400,
++ /**
++ Requests possibility to map the allocation (using vmaMapMemory() or #VMA_ALLOCATION_CREATE_MAPPED_BIT).
++
++ - If you use #VMA_MEMORY_USAGE_AUTO or other `VMA_MEMORY_USAGE_AUTO*` value,
++ you must use this flag to be able to map the allocation. Otherwise, mapping is incorrect.
++ - If you use other value of #VmaMemoryUsage, this flag is ignored and mapping is always possible in memory types that are `HOST_VISIBLE`.
++ This includes allocations created in \ref custom_memory_pools.
++
++ Declares that mapped memory can be read, written, and accessed in random order,
++ so a `HOST_CACHED` memory type is required.
++ */
++ VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT = 0x00000800,
++ /**
++ Together with #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT,
++ it says that despite request for host access, a not-`HOST_VISIBLE` memory type can be selected
++ if it may improve performance.
++
++ By using this flag, you declare that you will check if the allocation ended up in a `HOST_VISIBLE` memory type
++ (e.g. using vmaGetAllocationMemoryProperties()) and if not, you will create some "staging" buffer and
++ issue an explicit transfer to write/read your data.
++ To prepare for this possibility, don't forget to add appropriate flags like
++ `VK_BUFFER_USAGE_TRANSFER_DST_BIT`, `VK_BUFFER_USAGE_TRANSFER_SRC_BIT` to the parameters of created buffer or image.
++ */
++ VMA_ALLOCATION_CREATE_HOST_ACCESS_ALLOW_TRANSFER_INSTEAD_BIT = 0x00001000,
++ /** Allocation strategy that chooses smallest possible free range for the allocation
++ to minimize memory usage and fragmentation, possibly at the expense of allocation time.
++ */
++ VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT = 0x00010000,
++ /** Allocation strategy that chooses first suitable free range for the allocation -
++ not necessarily in terms of the smallest offset but the one that is easiest and fastest to find
++ to minimize allocation time, possibly at the expense of allocation quality.
++ */
++ VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT = 0x00020000,
++ /** Allocation strategy that chooses always the lowest offset in available space.
++ This is not the most efficient strategy but achieves highly packed data.
++ Used internally by defragmentation, not recomended in typical usage.
++ */
++ VMA_ALLOCATION_CREATE_STRATEGY_MIN_OFFSET_BIT = 0x00040000,
++ /** Alias to #VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT.
++ */
++ VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT = VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT,
++ /** Alias to #VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT.
++ */
++ VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT = VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT,
++ /** A bit mask to extract only `STRATEGY` bits from entire set of flags.
++ */
++ VMA_ALLOCATION_CREATE_STRATEGY_MASK =
++ VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT |
++ VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT |
++ VMA_ALLOCATION_CREATE_STRATEGY_MIN_OFFSET_BIT,
++
++ VMA_ALLOCATION_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
++} VmaAllocationCreateFlagBits;
++/// See #VmaAllocationCreateFlagBits.
++typedef VkFlags VmaAllocationCreateFlags;
++
++/// Flags to be passed as VmaPoolCreateInfo::flags.
++typedef enum VmaPoolCreateFlagBits
++{
++ /** \brief Use this flag if you always allocate only buffers and linear images or only optimal images out of this pool and so Buffer-Image Granularity can be ignored.
++
++ This is an optional optimization flag.
++
++ If you always allocate using vmaCreateBuffer(), vmaCreateImage(),
++ vmaAllocateMemoryForBuffer(), then you don't need to use it because allocator
++ knows exact type of your allocations so it can handle Buffer-Image Granularity
++ in the optimal way.
++
++ If you also allocate using vmaAllocateMemoryForImage() or vmaAllocateMemory(),
++ exact type of such allocations is not known, so allocator must be conservative
++ in handling Buffer-Image Granularity, which can lead to suboptimal allocation
++ (wasted memory). In that case, if you can make sure you always allocate only
++ buffers and linear images or only optimal images out of this pool, use this flag
++ to make allocator disregard Buffer-Image Granularity and so make allocations
++ faster and more optimal.
++ */
++ VMA_POOL_CREATE_IGNORE_BUFFER_IMAGE_GRANULARITY_BIT = 0x00000002,
++
++ /** \brief Enables alternative, linear allocation algorithm in this pool.
++
++ Specify this flag to enable linear allocation algorithm, which always creates
++ new allocations after last one and doesn't reuse space from allocations freed in
++ between. It trades memory consumption for simplified algorithm and data
++ structure, which has better performance and uses less memory for metadata.
++
++ By using this flag, you can achieve behavior of free-at-once, stack,
++ ring buffer, and double stack.
++ For details, see documentation chapter \ref linear_algorithm.
++ */
++ VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT = 0x00000004,
++
++ /** Bit mask to extract only `ALGORITHM` bits from entire set of flags.
++ */
++ VMA_POOL_CREATE_ALGORITHM_MASK =
++ VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT,
++
++ VMA_POOL_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
++} VmaPoolCreateFlagBits;
++/// Flags to be passed as VmaPoolCreateInfo::flags. See #VmaPoolCreateFlagBits.
++typedef VkFlags VmaPoolCreateFlags;
++
++/// Flags to be passed as VmaDefragmentationInfo::flags.
++typedef enum VmaDefragmentationFlagBits
++{
++ /* \brief Use simple but fast algorithm for defragmentation.
++ May not achieve best results but will require least time to compute and least allocations to copy.
++ */
++ VMA_DEFRAGMENTATION_FLAG_ALGORITHM_FAST_BIT = 0x1,
++ /* \brief Default defragmentation algorithm, applied also when no `ALGORITHM` flag is specified.
++ Offers a balance between defragmentation quality and the amount of allocations and bytes that need to be moved.
++ */
++ VMA_DEFRAGMENTATION_FLAG_ALGORITHM_BALANCED_BIT = 0x2,
++ /* \brief Perform full defragmentation of memory.
++ Can result in notably more time to compute and allocations to copy, but will achieve best memory packing.
++ */
++ VMA_DEFRAGMENTATION_FLAG_ALGORITHM_FULL_BIT = 0x4,
++ /** \brief Use the most roboust algorithm at the cost of time to compute and number of copies to make.
++ Only available when bufferImageGranularity is greater than 1, since it aims to reduce
++ alignment issues between different types of resources.
++ Otherwise falls back to same behavior as #VMA_DEFRAGMENTATION_FLAG_ALGORITHM_FULL_BIT.
++ */
++ VMA_DEFRAGMENTATION_FLAG_ALGORITHM_EXTENSIVE_BIT = 0x8,
++
++ /// A bit mask to extract only `ALGORITHM` bits from entire set of flags.
++ VMA_DEFRAGMENTATION_FLAG_ALGORITHM_MASK =
++ VMA_DEFRAGMENTATION_FLAG_ALGORITHM_FAST_BIT |
++ VMA_DEFRAGMENTATION_FLAG_ALGORITHM_BALANCED_BIT |
++ VMA_DEFRAGMENTATION_FLAG_ALGORITHM_FULL_BIT |
++ VMA_DEFRAGMENTATION_FLAG_ALGORITHM_EXTENSIVE_BIT,
++
++ VMA_DEFRAGMENTATION_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
++} VmaDefragmentationFlagBits;
++/// See #VmaDefragmentationFlagBits.
++typedef VkFlags VmaDefragmentationFlags;
++
++/// Operation performed on single defragmentation move. See structure #VmaDefragmentationMove.
++typedef enum VmaDefragmentationMoveOperation
++{
++ /// Buffer/image has been recreated at `dstTmpAllocation`, data has been copied, old buffer/image has been destroyed. `srcAllocation` should be changed to point to the new place. This is the default value set by vmaBeginDefragmentationPass().
++ VMA_DEFRAGMENTATION_MOVE_OPERATION_COPY = 0,
++ /// Set this value if you cannot move the allocation. New place reserved at `dstTmpAllocation` will be freed. `srcAllocation` will remain unchanged.
++ VMA_DEFRAGMENTATION_MOVE_OPERATION_IGNORE = 1,
++ /// Set this value if you decide to abandon the allocation and you destroyed the buffer/image. New place reserved at `dstTmpAllocation` will be freed, along with `srcAllocation`, which will be destroyed.
++ VMA_DEFRAGMENTATION_MOVE_OPERATION_DESTROY = 2,
++} VmaDefragmentationMoveOperation;
++
++/** @} */
++
++/**
++\addtogroup group_virtual
++@{
++*/
++
++/// Flags to be passed as VmaVirtualBlockCreateInfo::flags.
++typedef enum VmaVirtualBlockCreateFlagBits
++{
++ /** \brief Enables alternative, linear allocation algorithm in this virtual block.
++
++ Specify this flag to enable linear allocation algorithm, which always creates
++ new allocations after last one and doesn't reuse space from allocations freed in
++ between. It trades memory consumption for simplified algorithm and data
++ structure, which has better performance and uses less memory for metadata.
++
++ By using this flag, you can achieve behavior of free-at-once, stack,
++ ring buffer, and double stack.
++ For details, see documentation chapter \ref linear_algorithm.
++ */
++ VMA_VIRTUAL_BLOCK_CREATE_LINEAR_ALGORITHM_BIT = 0x00000001,
++
++ /** \brief Bit mask to extract only `ALGORITHM` bits from entire set of flags.
++ */
++ VMA_VIRTUAL_BLOCK_CREATE_ALGORITHM_MASK =
++ VMA_VIRTUAL_BLOCK_CREATE_LINEAR_ALGORITHM_BIT,
++
++ VMA_VIRTUAL_BLOCK_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
++} VmaVirtualBlockCreateFlagBits;
++/// Flags to be passed as VmaVirtualBlockCreateInfo::flags. See #VmaVirtualBlockCreateFlagBits.
++typedef VkFlags VmaVirtualBlockCreateFlags;
++
++/// Flags to be passed as VmaVirtualAllocationCreateInfo::flags.
++typedef enum VmaVirtualAllocationCreateFlagBits
++{
++ /** \brief Allocation will be created from upper stack in a double stack pool.
++
++ This flag is only allowed for virtual blocks created with #VMA_VIRTUAL_BLOCK_CREATE_LINEAR_ALGORITHM_BIT flag.
++ */
++ VMA_VIRTUAL_ALLOCATION_CREATE_UPPER_ADDRESS_BIT = VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT,
++ /** \brief Allocation strategy that tries to minimize memory usage.
++ */
++ VMA_VIRTUAL_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT = VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT,
++ /** \brief Allocation strategy that tries to minimize allocation time.
++ */
++ VMA_VIRTUAL_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT = VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT,
++ /** Allocation strategy that chooses always the lowest offset in available space.
++ This is not the most efficient strategy but achieves highly packed data.
++ */
++ VMA_VIRTUAL_ALLOCATION_CREATE_STRATEGY_MIN_OFFSET_BIT = VMA_ALLOCATION_CREATE_STRATEGY_MIN_OFFSET_BIT,
++ /** \brief A bit mask to extract only `STRATEGY` bits from entire set of flags.
++
++ These strategy flags are binary compatible with equivalent flags in #VmaAllocationCreateFlagBits.
++ */
++ VMA_VIRTUAL_ALLOCATION_CREATE_STRATEGY_MASK = VMA_ALLOCATION_CREATE_STRATEGY_MASK,
++
++ VMA_VIRTUAL_ALLOCATION_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
++} VmaVirtualAllocationCreateFlagBits;
++/// Flags to be passed as VmaVirtualAllocationCreateInfo::flags. See #VmaVirtualAllocationCreateFlagBits.
++typedef VkFlags VmaVirtualAllocationCreateFlags;
++
++/** @} */
++
++#endif // _VMA_ENUM_DECLARATIONS
++
++#ifndef _VMA_DATA_TYPES_DECLARATIONS
++
++/**
++\addtogroup group_init
++@{ */
++
++/** \struct VmaAllocator
++\brief Represents main object of this library initialized.
++
++Fill structure #VmaAllocatorCreateInfo and call function vmaCreateAllocator() to create it.
++Call function vmaDestroyAllocator() to destroy it.
++
++It is recommended to create just one object of this type per `VkDevice` object,
++right after Vulkan is initialized and keep it alive until before Vulkan device is destroyed.
++*/
++VK_DEFINE_HANDLE(VmaAllocator)
++
++/** @} */
++
++/**
++\addtogroup group_alloc
++@{
++*/
++
++/** \struct VmaPool
++\brief Represents custom memory pool
++
++Fill structure VmaPoolCreateInfo and call function vmaCreatePool() to create it.
++Call function vmaDestroyPool() to destroy it.
++
++For more information see [Custom memory pools](@ref choosing_memory_type_custom_memory_pools).
++*/
++VK_DEFINE_HANDLE(VmaPool)
++
++/** \struct VmaAllocation
++\brief Represents single memory allocation.
++
++It may be either dedicated block of `VkDeviceMemory` or a specific region of a bigger block of this type
++plus unique offset.
++
++There are multiple ways to create such object.
++You need to fill structure VmaAllocationCreateInfo.
++For more information see [Choosing memory type](@ref choosing_memory_type).
++
++Although the library provides convenience functions that create Vulkan buffer or image,
++allocate memory for it and bind them together,
++binding of the allocation to a buffer or an image is out of scope of the allocation itself.
++Allocation object can exist without buffer/image bound,
++binding can be done manually by the user, and destruction of it can be done
++independently of destruction of the allocation.
++
++The object also remembers its size and some other information.
++To retrieve this information, use function vmaGetAllocationInfo() and inspect
++returned structure VmaAllocationInfo.
++*/
++VK_DEFINE_HANDLE(VmaAllocation)
++
++/** \struct VmaDefragmentationContext
++\brief An opaque object that represents started defragmentation process.
++
++Fill structure #VmaDefragmentationInfo and call function vmaBeginDefragmentation() to create it.
++Call function vmaEndDefragmentation() to destroy it.
++*/
++VK_DEFINE_HANDLE(VmaDefragmentationContext)
++
++/** @} */
++
++/**
++\addtogroup group_virtual
++@{
++*/
++
++/** \struct VmaVirtualAllocation
++\brief Represents single memory allocation done inside VmaVirtualBlock.
++
++Use it as a unique identifier to virtual allocation within the single block.
++
++Use value `VK_NULL_HANDLE` to represent a null/invalid allocation.
++*/
++VK_DEFINE_NON_DISPATCHABLE_HANDLE(VmaVirtualAllocation);
++
++/** @} */
++
++/**
++\addtogroup group_virtual
++@{
++*/
++
++/** \struct VmaVirtualBlock
++\brief Handle to a virtual block object that allows to use core allocation algorithm without allocating any real GPU memory.
++
++Fill in #VmaVirtualBlockCreateInfo structure and use vmaCreateVirtualBlock() to create it. Use vmaDestroyVirtualBlock() to destroy it.
++For more information, see documentation chapter \ref virtual_allocator.
++
++This object is not thread-safe - should not be used from multiple threads simultaneously, must be synchronized externally.
++*/
++VK_DEFINE_HANDLE(VmaVirtualBlock)
++
++/** @} */
++
++/**
++\addtogroup group_init
++@{
++*/
++
++/// Callback function called after successful vkAllocateMemory.
++typedef void (VKAPI_PTR* PFN_vmaAllocateDeviceMemoryFunction)(
++ VmaAllocator VMA_NOT_NULL allocator,
++ uint32_t memoryType,
++ VkDeviceMemory VMA_NOT_NULL_NON_DISPATCHABLE memory,
++ VkDeviceSize size,
++ void* VMA_NULLABLE pUserData);
++
++/// Callback function called before vkFreeMemory.
++typedef void (VKAPI_PTR* PFN_vmaFreeDeviceMemoryFunction)(
++ VmaAllocator VMA_NOT_NULL allocator,
++ uint32_t memoryType,
++ VkDeviceMemory VMA_NOT_NULL_NON_DISPATCHABLE memory,
++ VkDeviceSize size,
++ void* VMA_NULLABLE pUserData);
++
++/** \brief Set of callbacks that the library will call for `vkAllocateMemory` and `vkFreeMemory`.
++
++Provided for informative purpose, e.g. to gather statistics about number of
++allocations or total amount of memory allocated in Vulkan.
++
++Used in VmaAllocatorCreateInfo::pDeviceMemoryCallbacks.
++*/
++typedef struct VmaDeviceMemoryCallbacks
++{
++ /// Optional, can be null.
++ PFN_vmaAllocateDeviceMemoryFunction VMA_NULLABLE pfnAllocate;
++ /// Optional, can be null.
++ PFN_vmaFreeDeviceMemoryFunction VMA_NULLABLE pfnFree;
++ /// Optional, can be null.
++ void* VMA_NULLABLE pUserData;
++} VmaDeviceMemoryCallbacks;
++
++/** \brief Pointers to some Vulkan functions - a subset used by the library.
++
++Used in VmaAllocatorCreateInfo::pVulkanFunctions.
++*/
++typedef struct VmaVulkanFunctions
++{
++ /// Required when using VMA_DYNAMIC_VULKAN_FUNCTIONS.
++ PFN_vkGetInstanceProcAddr VMA_NULLABLE vkGetInstanceProcAddr;
++ /// Required when using VMA_DYNAMIC_VULKAN_FUNCTIONS.
++ PFN_vkGetDeviceProcAddr VMA_NULLABLE vkGetDeviceProcAddr;
++ PFN_vkGetPhysicalDeviceProperties VMA_NULLABLE vkGetPhysicalDeviceProperties;
++ PFN_vkGetPhysicalDeviceMemoryProperties VMA_NULLABLE vkGetPhysicalDeviceMemoryProperties;
++ PFN_vkAllocateMemory VMA_NULLABLE vkAllocateMemory;
++ PFN_vkFreeMemory VMA_NULLABLE vkFreeMemory;
++ PFN_vkMapMemory VMA_NULLABLE vkMapMemory;
++ PFN_vkUnmapMemory VMA_NULLABLE vkUnmapMemory;
++ PFN_vkFlushMappedMemoryRanges VMA_NULLABLE vkFlushMappedMemoryRanges;
++ PFN_vkInvalidateMappedMemoryRanges VMA_NULLABLE vkInvalidateMappedMemoryRanges;
++ PFN_vkBindBufferMemory VMA_NULLABLE vkBindBufferMemory;
++ PFN_vkBindImageMemory VMA_NULLABLE vkBindImageMemory;
++ PFN_vkGetBufferMemoryRequirements VMA_NULLABLE vkGetBufferMemoryRequirements;
++ PFN_vkGetImageMemoryRequirements VMA_NULLABLE vkGetImageMemoryRequirements;
++ PFN_vkCreateBuffer VMA_NULLABLE vkCreateBuffer;
++ PFN_vkDestroyBuffer VMA_NULLABLE vkDestroyBuffer;
++ PFN_vkCreateImage VMA_NULLABLE vkCreateImage;
++ PFN_vkDestroyImage VMA_NULLABLE vkDestroyImage;
++ PFN_vkCmdCopyBuffer VMA_NULLABLE vkCmdCopyBuffer;
++#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
++ /// Fetch "vkGetBufferMemoryRequirements2" on Vulkan >= 1.1, fetch "vkGetBufferMemoryRequirements2KHR" when using VK_KHR_dedicated_allocation extension.
++ PFN_vkGetBufferMemoryRequirements2KHR VMA_NULLABLE vkGetBufferMemoryRequirements2KHR;
++ /// Fetch "vkGetImageMemoryRequirements 2" on Vulkan >= 1.1, fetch "vkGetImageMemoryRequirements2KHR" when using VK_KHR_dedicated_allocation extension.
++ PFN_vkGetImageMemoryRequirements2KHR VMA_NULLABLE vkGetImageMemoryRequirements2KHR;
++#endif
++#if VMA_BIND_MEMORY2 || VMA_VULKAN_VERSION >= 1001000
++ /// Fetch "vkBindBufferMemory2" on Vulkan >= 1.1, fetch "vkBindBufferMemory2KHR" when using VK_KHR_bind_memory2 extension.
++ PFN_vkBindBufferMemory2KHR VMA_NULLABLE vkBindBufferMemory2KHR;
++ /// Fetch "vkBindImageMemory2" on Vulkan >= 1.1, fetch "vkBindImageMemory2KHR" when using VK_KHR_bind_memory2 extension.
++ PFN_vkBindImageMemory2KHR VMA_NULLABLE vkBindImageMemory2KHR;
++#endif
++#if VMA_MEMORY_BUDGET || VMA_VULKAN_VERSION >= 1001000
++ PFN_vkGetPhysicalDeviceMemoryProperties2KHR VMA_NULLABLE vkGetPhysicalDeviceMemoryProperties2KHR;
++#endif
++#if VMA_VULKAN_VERSION >= 1003000
++ /// Fetch from "vkGetDeviceBufferMemoryRequirements" on Vulkan >= 1.3, but you can also fetch it from "vkGetDeviceBufferMemoryRequirementsKHR" if you enabled extension VK_KHR_maintenance4.
++ PFN_vkGetDeviceBufferMemoryRequirements VMA_NULLABLE vkGetDeviceBufferMemoryRequirements;
++ /// Fetch from "vkGetDeviceImageMemoryRequirements" on Vulkan >= 1.3, but you can also fetch it from "vkGetDeviceImageMemoryRequirementsKHR" if you enabled extension VK_KHR_maintenance4.
++ PFN_vkGetDeviceImageMemoryRequirements VMA_NULLABLE vkGetDeviceImageMemoryRequirements;
++#endif
++} VmaVulkanFunctions;
++
++/// Description of a Allocator to be created.
++typedef struct VmaAllocatorCreateInfo
++{
++ /// Flags for created allocator. Use #VmaAllocatorCreateFlagBits enum.
++ VmaAllocatorCreateFlags flags;
++ /// Vulkan physical device.
++ /** It must be valid throughout whole lifetime of created allocator. */
++ VkPhysicalDevice VMA_NOT_NULL physicalDevice;
++ /// Vulkan device.
++ /** It must be valid throughout whole lifetime of created allocator. */
++ VkDevice VMA_NOT_NULL device;
++ /// Preferred size of a single `VkDeviceMemory` block to be allocated from large heaps > 1 GiB. Optional.
++ /** Set to 0 to use default, which is currently 256 MiB. */
++ VkDeviceSize preferredLargeHeapBlockSize;
++ /// Custom CPU memory allocation callbacks. Optional.
++ /** Optional, can be null. When specified, will also be used for all CPU-side memory allocations. */
++ const VkAllocationCallbacks* VMA_NULLABLE pAllocationCallbacks;
++ /// Informative callbacks for `vkAllocateMemory`, `vkFreeMemory`. Optional.
++ /** Optional, can be null. */
++ const VmaDeviceMemoryCallbacks* VMA_NULLABLE pDeviceMemoryCallbacks;
++ /** \brief Either null or a pointer to an array of limits on maximum number of bytes that can be allocated out of particular Vulkan memory heap.
++
++ If not NULL, it must be a pointer to an array of
++ `VkPhysicalDeviceMemoryProperties::memoryHeapCount` elements, defining limit on
++ maximum number of bytes that can be allocated out of particular Vulkan memory
++ heap.
++
++ Any of the elements may be equal to `VK_WHOLE_SIZE`, which means no limit on that
++ heap. This is also the default in case of `pHeapSizeLimit` = NULL.
++
++ If there is a limit defined for a heap:
++
++ - If user tries to allocate more memory from that heap using this allocator,
++ the allocation fails with `VK_ERROR_OUT_OF_DEVICE_MEMORY`.
++ - If the limit is smaller than heap size reported in `VkMemoryHeap::size`, the
++ value of this limit will be reported instead when using vmaGetMemoryProperties().
++
++ Warning! Using this feature may not be equivalent to installing a GPU with
++ smaller amount of memory, because graphics driver doesn't necessary fail new
++ allocations with `VK_ERROR_OUT_OF_DEVICE_MEMORY` result when memory capacity is
++ exceeded. It may return success and just silently migrate some device memory
++ blocks to system RAM. This driver behavior can also be controlled using
++ VK_AMD_memory_overallocation_behavior extension.
++ */
++ const VkDeviceSize* VMA_NULLABLE VMA_LEN_IF_NOT_NULL("VkPhysicalDeviceMemoryProperties::memoryHeapCount") pHeapSizeLimit;
++
++ /** \brief Pointers to Vulkan functions. Can be null.
++
++ For details see [Pointers to Vulkan functions](@ref config_Vulkan_functions).
++ */
++ const VmaVulkanFunctions* VMA_NULLABLE pVulkanFunctions;
++ /** \brief Handle to Vulkan instance object.
++
++ Starting from version 3.0.0 this member is no longer optional, it must be set!
++ */
++ VkInstance VMA_NOT_NULL instance;
++ /** \brief Optional. The highest version of Vulkan that the application is designed to use.
++
++ It must be a value in the format as created by macro `VK_MAKE_VERSION` or a constant like: `VK_API_VERSION_1_1`, `VK_API_VERSION_1_0`.
++ The patch version number specified is ignored. Only the major and minor versions are considered.
++ It must be less or equal (preferably equal) to value as passed to `vkCreateInstance` as `VkApplicationInfo::apiVersion`.
++ Only versions 1.0, 1.1, 1.2, 1.3 are supported by the current implementation.
++ Leaving it initialized to zero is equivalent to `VK_API_VERSION_1_0`.
++ */
++ uint32_t vulkanApiVersion;
++#if VMA_EXTERNAL_MEMORY
++ /** \brief Either null or a pointer to an array of external memory handle types for each Vulkan memory type.
++
++ If not NULL, it must be a pointer to an array of `VkPhysicalDeviceMemoryProperties::memoryTypeCount`
++ elements, defining external memory handle types of particular Vulkan memory type,
++ to be passed using `VkExportMemoryAllocateInfoKHR`.
++
++ Any of the elements may be equal to 0, which means not to use `VkExportMemoryAllocateInfoKHR` on this memory type.
++ This is also the default in case of `pTypeExternalMemoryHandleTypes` = NULL.
++ */
++ const VkExternalMemoryHandleTypeFlagsKHR* VMA_NULLABLE VMA_LEN_IF_NOT_NULL("VkPhysicalDeviceMemoryProperties::memoryTypeCount") pTypeExternalMemoryHandleTypes;
++#endif // #if VMA_EXTERNAL_MEMORY
++} VmaAllocatorCreateInfo;
++
++/// Information about existing #VmaAllocator object.
++typedef struct VmaAllocatorInfo
++{
++ /** \brief Handle to Vulkan instance object.
++
++ This is the same value as has been passed through VmaAllocatorCreateInfo::instance.
++ */
++ VkInstance VMA_NOT_NULL instance;
++ /** \brief Handle to Vulkan physical device object.
++
++ This is the same value as has been passed through VmaAllocatorCreateInfo::physicalDevice.
++ */
++ VkPhysicalDevice VMA_NOT_NULL physicalDevice;
++ /** \brief Handle to Vulkan device object.
++
++ This is the same value as has been passed through VmaAllocatorCreateInfo::device.
++ */
++ VkDevice VMA_NOT_NULL device;
++} VmaAllocatorInfo;
++
++/** @} */
++
++/**
++\addtogroup group_stats
++@{
++*/
++
++/** \brief Calculated statistics of memory usage e.g. in a specific memory type, heap, custom pool, or total.
++
++These are fast to calculate.
++See functions: vmaGetHeapBudgets(), vmaGetPoolStatistics().
++*/
++typedef struct VmaStatistics
++{
++ /** \brief Number of `VkDeviceMemory` objects - Vulkan memory blocks allocated.
++ */
++ uint32_t blockCount;
++ /** \brief Number of #VmaAllocation objects allocated.
++
++ Dedicated allocations have their own blocks, so each one adds 1 to `allocationCount` as well as `blockCount`.
++ */
++ uint32_t allocationCount;
++ /** \brief Number of bytes allocated in `VkDeviceMemory` blocks.
++
++ \note To avoid confusion, please be aware that what Vulkan calls an "allocation" - a whole `VkDeviceMemory` object
++ (e.g. as in `VkPhysicalDeviceLimits::maxMemoryAllocationCount`) is called a "block" in VMA, while VMA calls
++ "allocation" a #VmaAllocation object that represents a memory region sub-allocated from such block, usually for a single buffer or image.
++ */
++ VkDeviceSize blockBytes;
++ /** \brief Total number of bytes occupied by all #VmaAllocation objects.
++
++ Always less or equal than `blockBytes`.
++ Difference `(blockBytes - allocationBytes)` is the amount of memory allocated from Vulkan
++ but unused by any #VmaAllocation.
++ */
++ VkDeviceSize allocationBytes;
++} VmaStatistics;
++
++/** \brief More detailed statistics than #VmaStatistics.
++
++These are slower to calculate. Use for debugging purposes.
++See functions: vmaCalculateStatistics(), vmaCalculatePoolStatistics().
++
++Previous version of the statistics API provided averages, but they have been removed
++because they can be easily calculated as:
++
++\code
++VkDeviceSize allocationSizeAvg = detailedStats.statistics.allocationBytes / detailedStats.statistics.allocationCount;
++VkDeviceSize unusedBytes = detailedStats.statistics.blockBytes - detailedStats.statistics.allocationBytes;
++VkDeviceSize unusedRangeSizeAvg = unusedBytes / detailedStats.unusedRangeCount;
++\endcode
++*/
++typedef struct VmaDetailedStatistics
++{
++ /// Basic statistics.
++ VmaStatistics statistics;
++ /// Number of free ranges of memory between allocations.
++ uint32_t unusedRangeCount;
++ /// Smallest allocation size. `VK_WHOLE_SIZE` if there are 0 allocations.
++ VkDeviceSize allocationSizeMin;
++ /// Largest allocation size. 0 if there are 0 allocations.
++ VkDeviceSize allocationSizeMax;
++ /// Smallest empty range size. `VK_WHOLE_SIZE` if there are 0 empty ranges.
++ VkDeviceSize unusedRangeSizeMin;
++ /// Largest empty range size. 0 if there are 0 empty ranges.
++ VkDeviceSize unusedRangeSizeMax;
++} VmaDetailedStatistics;
++
++/** \brief General statistics from current state of the Allocator -
++total memory usage across all memory heaps and types.
++
++These are slower to calculate. Use for debugging purposes.
++See function vmaCalculateStatistics().
++*/
++typedef struct VmaTotalStatistics
++{
++ VmaDetailedStatistics memoryType[VK_MAX_MEMORY_TYPES];
++ VmaDetailedStatistics memoryHeap[VK_MAX_MEMORY_HEAPS];
++ VmaDetailedStatistics total;
++} VmaTotalStatistics;
++
++/** \brief Statistics of current memory usage and available budget for a specific memory heap.
++
++These are fast to calculate.
++See function vmaGetHeapBudgets().
++*/
++typedef struct VmaBudget
++{
++ /** \brief Statistics fetched from the library.
++ */
++ VmaStatistics statistics;
++ /** \brief Estimated current memory usage of the program, in bytes.
++
++ Fetched from system using VK_EXT_memory_budget extension if enabled.
++
++ It might be different than `statistics.blockBytes` (usually higher) due to additional implicit objects
++ also occupying the memory, like swapchain, pipelines, descriptor heaps, command buffers, or
++ `VkDeviceMemory` blocks allocated outside of this library, if any.
++ */
++ VkDeviceSize usage;
++ /** \brief Estimated amount of memory available to the program, in bytes.
++
++ Fetched from system using VK_EXT_memory_budget extension if enabled.
++
++ It might be different (most probably smaller) than `VkMemoryHeap::size[heapIndex]` due to factors
++ external to the program, decided by the operating system.
++ Difference `budget - usage` is the amount of additional memory that can probably
++ be allocated without problems. Exceeding the budget may result in various problems.
++ */
++ VkDeviceSize budget;
++} VmaBudget;
++
++/** @} */
++
++/**
++\addtogroup group_alloc
++@{
++*/
++
++/** \brief Parameters of new #VmaAllocation.
++
++To be used with functions like vmaCreateBuffer(), vmaCreateImage(), and many others.
++*/
++typedef struct VmaAllocationCreateInfo
++{
++ /// Use #VmaAllocationCreateFlagBits enum.
++ VmaAllocationCreateFlags flags;
++ /** \brief Intended usage of memory.
++
++ You can leave #VMA_MEMORY_USAGE_UNKNOWN if you specify memory requirements in other way. \n
++ If `pool` is not null, this member is ignored.
++ */
++ VmaMemoryUsage usage;
++ /** \brief Flags that must be set in a Memory Type chosen for an allocation.
++
++ Leave 0 if you specify memory requirements in other way. \n
++ If `pool` is not null, this member is ignored.*/
++ VkMemoryPropertyFlags requiredFlags;
++ /** \brief Flags that preferably should be set in a memory type chosen for an allocation.
++
++ Set to 0 if no additional flags are preferred. \n
++ If `pool` is not null, this member is ignored. */
++ VkMemoryPropertyFlags preferredFlags;
++ /** \brief Bitmask containing one bit set for every memory type acceptable for this allocation.
++
++ Value 0 is equivalent to `UINT32_MAX` - it means any memory type is accepted if
++ it meets other requirements specified by this structure, with no further
++ restrictions on memory type index. \n
++ If `pool` is not null, this member is ignored.
++ */
++ uint32_t memoryTypeBits;
++ /** \brief Pool that this allocation should be created in.
++
++ Leave `VK_NULL_HANDLE` to allocate from default pool. If not null, members:
++ `usage`, `requiredFlags`, `preferredFlags`, `memoryTypeBits` are ignored.
++ */
++ VmaPool VMA_NULLABLE pool;
++ /** \brief Custom general-purpose pointer that will be stored in #VmaAllocation, can be read as VmaAllocationInfo::pUserData and changed using vmaSetAllocationUserData().
++
++ If #VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT is used, it must be either
++ null or pointer to a null-terminated string. The string will be then copied to
++ internal buffer, so it doesn't need to be valid after allocation call.
++ */
++ void* VMA_NULLABLE pUserData;
++ /** \brief A floating-point value between 0 and 1, indicating the priority of the allocation relative to other memory allocations.
++
++ It is used only when #VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT flag was used during creation of the #VmaAllocator object
++ and this allocation ends up as dedicated or is explicitly forced as dedicated using #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT.
++ Otherwise, it has the priority of a memory block where it is placed and this variable is ignored.
++ */
++ float priority;
++} VmaAllocationCreateInfo;
++
++/// Describes parameter of created #VmaPool.
++typedef struct VmaPoolCreateInfo
++{
++ /** \brief Vulkan memory type index to allocate this pool from.
++ */
++ uint32_t memoryTypeIndex;
++ /** \brief Use combination of #VmaPoolCreateFlagBits.
++ */
++ VmaPoolCreateFlags flags;
++ /** \brief Size of a single `VkDeviceMemory` block to be allocated as part of this pool, in bytes. Optional.
++
++ Specify nonzero to set explicit, constant size of memory blocks used by this
++ pool.
++
++ Leave 0 to use default and let the library manage block sizes automatically.
++ Sizes of particular blocks may vary.
++ In this case, the pool will also support dedicated allocations.
++ */
++ VkDeviceSize blockSize;
++ /** \brief Minimum number of blocks to be always allocated in this pool, even if they stay empty.
++
++ Set to 0 to have no preallocated blocks and allow the pool be completely empty.
++ */
++ size_t minBlockCount;
++ /** \brief Maximum number of blocks that can be allocated in this pool. Optional.
++
++ Set to 0 to use default, which is `SIZE_MAX`, which means no limit.
++
++ Set to same value as VmaPoolCreateInfo::minBlockCount to have fixed amount of memory allocated
++ throughout whole lifetime of this pool.
++ */
++ size_t maxBlockCount;
++ /** \brief A floating-point value between 0 and 1, indicating the priority of the allocations in this pool relative to other memory allocations.
++
++ It is used only when #VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT flag was used during creation of the #VmaAllocator object.
++ Otherwise, this variable is ignored.
++ */
++ float priority;
++ /** \brief Additional minimum alignment to be used for all allocations created from this pool. Can be 0.
++
++ Leave 0 (default) not to impose any additional alignment. If not 0, it must be a power of two.
++ It can be useful in cases where alignment returned by Vulkan by functions like `vkGetBufferMemoryRequirements` is not enough,
++ e.g. when doing interop with OpenGL.
++ */
++ VkDeviceSize minAllocationAlignment;
++ /** \brief Additional `pNext` chain to be attached to `VkMemoryAllocateInfo` used for every allocation made by this pool. Optional.
++
++ Optional, can be null. If not null, it must point to a `pNext` chain of structures that can be attached to `VkMemoryAllocateInfo`.
++ It can be useful for special needs such as adding `VkExportMemoryAllocateInfoKHR`.
++ Structures pointed by this member must remain alive and unchanged for the whole lifetime of the custom pool.
++
++ Please note that some structures, e.g. `VkMemoryPriorityAllocateInfoEXT`, `VkMemoryDedicatedAllocateInfoKHR`,
++ can be attached automatically by this library when using other, more convenient of its features.
++ */
++ void* VMA_NULLABLE pMemoryAllocateNext;
++} VmaPoolCreateInfo;
++
++/** @} */
++
++/**
++\addtogroup group_alloc
++@{
++*/
++
++/// Parameters of #VmaAllocation objects, that can be retrieved using function vmaGetAllocationInfo().
++typedef struct VmaAllocationInfo
++{
++ /** \brief Memory type index that this allocation was allocated from.
++
++ It never changes.
++ */
++ uint32_t memoryType;
++ /** \brief Handle to Vulkan memory object.
++
++ Same memory object can be shared by multiple allocations.
++
++ It can change after the allocation is moved during \ref defragmentation.
++ */
++ VkDeviceMemory VMA_NULLABLE_NON_DISPATCHABLE deviceMemory;
++ /** \brief Offset in `VkDeviceMemory` object to the beginning of this allocation, in bytes. `(deviceMemory, offset)` pair is unique to this allocation.
++
++ You usually don't need to use this offset. If you create a buffer or an image together with the allocation using e.g. function
++ vmaCreateBuffer(), vmaCreateImage(), functions that operate on these resources refer to the beginning of the buffer or image,
++ not entire device memory block. Functions like vmaMapMemory(), vmaBindBufferMemory() also refer to the beginning of the allocation
++ and apply this offset automatically.
++
++ It can change after the allocation is moved during \ref defragmentation.
++ */
++ VkDeviceSize offset;
++ /** \brief Size of this allocation, in bytes.
++
++ It never changes.
++
++ \note Allocation size returned in this variable may be greater than the size
++ requested for the resource e.g. as `VkBufferCreateInfo::size`. Whole size of the
++ allocation is accessible for operations on memory e.g. using a pointer after
++ mapping with vmaMapMemory(), but operations on the resource e.g. using
++ `vkCmdCopyBuffer` must be limited to the size of the resource.
++ */
++ VkDeviceSize size;
++ /** \brief Pointer to the beginning of this allocation as mapped data.
++
++ If the allocation hasn't been mapped using vmaMapMemory() and hasn't been
++ created with #VMA_ALLOCATION_CREATE_MAPPED_BIT flag, this value is null.
++
++ It can change after call to vmaMapMemory(), vmaUnmapMemory().
++ It can also change after the allocation is moved during \ref defragmentation.
++ */
++ void* VMA_NULLABLE pMappedData;
++ /** \brief Custom general-purpose pointer that was passed as VmaAllocationCreateInfo::pUserData or set using vmaSetAllocationUserData().
++
++ It can change after call to vmaSetAllocationUserData() for this allocation.
++ */
++ void* VMA_NULLABLE pUserData;
++ /** \brief Custom allocation name that was set with vmaSetAllocationName().
++
++ It can change after call to vmaSetAllocationName() for this allocation.
++
++ Another way to set custom name is to pass it in VmaAllocationCreateInfo::pUserData with
++ additional flag #VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT set [DEPRECATED].
++ */
++ const char* VMA_NULLABLE pName;
++} VmaAllocationInfo;
++
++/** \brief Parameters for defragmentation.
++
++To be used with function vmaBeginDefragmentation().
++*/
++typedef struct VmaDefragmentationInfo
++{
++ /// \brief Use combination of #VmaDefragmentationFlagBits.
++ VmaDefragmentationFlags flags;
++ /** \brief Custom pool to be defragmented.
++
++ If null then default pools will undergo defragmentation process.
++ */
++ VmaPool VMA_NULLABLE pool;
++ /** \brief Maximum numbers of bytes that can be copied during single pass, while moving allocations to different places.
++
++ `0` means no limit.
++ */
++ VkDeviceSize maxBytesPerPass;
++ /** \brief Maximum number of allocations that can be moved during single pass to a different place.
++
++ `0` means no limit.
++ */
++ uint32_t maxAllocationsPerPass;
++} VmaDefragmentationInfo;
++
++/// Single move of an allocation to be done for defragmentation.
++typedef struct VmaDefragmentationMove
++{
++ /// Operation to be performed on the allocation by vmaEndDefragmentationPass(). Default value is #VMA_DEFRAGMENTATION_MOVE_OPERATION_COPY. You can modify it.
++ VmaDefragmentationMoveOperation operation;
++ /// Allocation that should be moved.
++ VmaAllocation VMA_NOT_NULL srcAllocation;
++ /** \brief Temporary allocation pointing to destination memory that will replace `srcAllocation`.
++
++ \warning Do not store this allocation in your data structures! It exists only temporarily, for the duration of the defragmentation pass,
++ to be used for binding new buffer/image to the destination memory using e.g. vmaBindBufferMemory().
++ vmaEndDefragmentationPass() will destroy it and make `srcAllocation` point to this memory.
++ */
++ VmaAllocation VMA_NOT_NULL dstTmpAllocation;
++} VmaDefragmentationMove;
++
++/** \brief Parameters for incremental defragmentation steps.
++
++To be used with function vmaBeginDefragmentationPass().
++*/
++typedef struct VmaDefragmentationPassMoveInfo
++{
++ /// Number of elements in the `pMoves` array.
++ uint32_t moveCount;
++ /** \brief Array of moves to be performed by the user in the current defragmentation pass.
++
++ Pointer to an array of `moveCount` elements, owned by VMA, created in vmaBeginDefragmentationPass(), destroyed in vmaEndDefragmentationPass().
++
++ For each element, you should:
++
++ 1. Create a new buffer/image in the place pointed by VmaDefragmentationMove::dstMemory + VmaDefragmentationMove::dstOffset.
++ 2. Copy data from the VmaDefragmentationMove::srcAllocation e.g. using `vkCmdCopyBuffer`, `vkCmdCopyImage`.
++ 3. Make sure these commands finished executing on the GPU.
++ 4. Destroy the old buffer/image.
++
++ Only then you can finish defragmentation pass by calling vmaEndDefragmentationPass().
++ After this call, the allocation will point to the new place in memory.
++
++ Alternatively, if you cannot move specific allocation, you can set VmaDefragmentationMove::operation to #VMA_DEFRAGMENTATION_MOVE_OPERATION_IGNORE.
++
++ Alternatively, if you decide you want to completely remove the allocation:
++
++ 1. Destroy its buffer/image.
++ 2. Set VmaDefragmentationMove::operation to #VMA_DEFRAGMENTATION_MOVE_OPERATION_DESTROY.
++
++ Then, after vmaEndDefragmentationPass() the allocation will be freed.
++ */
++ VmaDefragmentationMove* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(moveCount) pMoves;
++} VmaDefragmentationPassMoveInfo;
++
++/// Statistics returned for defragmentation process in function vmaEndDefragmentation().
++typedef struct VmaDefragmentationStats
++{
++ /// Total number of bytes that have been copied while moving allocations to different places.
++ VkDeviceSize bytesMoved;
++ /// Total number of bytes that have been released to the system by freeing empty `VkDeviceMemory` objects.
++ VkDeviceSize bytesFreed;
++ /// Number of allocations that have been moved to different places.
++ uint32_t allocationsMoved;
++ /// Number of empty `VkDeviceMemory` objects that have been released to the system.
++ uint32_t deviceMemoryBlocksFreed;
++} VmaDefragmentationStats;
++
++/** @} */
++
++/**
++\addtogroup group_virtual
++@{
++*/
++
++/// Parameters of created #VmaVirtualBlock object to be passed to vmaCreateVirtualBlock().
++typedef struct VmaVirtualBlockCreateInfo
++{
++ /** \brief Total size of the virtual block.
++
++ Sizes can be expressed in bytes or any units you want as long as you are consistent in using them.
++ For example, if you allocate from some array of structures, 1 can mean single instance of entire structure.
++ */
++ VkDeviceSize size;
++
++ /** \brief Use combination of #VmaVirtualBlockCreateFlagBits.
++ */
++ VmaVirtualBlockCreateFlags flags;
++
++ /** \brief Custom CPU memory allocation callbacks. Optional.
++
++ Optional, can be null. When specified, they will be used for all CPU-side memory allocations.
++ */
++ const VkAllocationCallbacks* VMA_NULLABLE pAllocationCallbacks;
++} VmaVirtualBlockCreateInfo;
++
++/// Parameters of created virtual allocation to be passed to vmaVirtualAllocate().
++typedef struct VmaVirtualAllocationCreateInfo
++{
++ /** \brief Size of the allocation.
++
++ Cannot be zero.
++ */
++ VkDeviceSize size;
++ /** \brief Required alignment of the allocation. Optional.
++
++ Must be power of two. Special value 0 has the same meaning as 1 - means no special alignment is required, so allocation can start at any offset.
++ */
++ VkDeviceSize alignment;
++ /** \brief Use combination of #VmaVirtualAllocationCreateFlagBits.
++ */
++ VmaVirtualAllocationCreateFlags flags;
++ /** \brief Custom pointer to be associated with the allocation. Optional.
++
++ It can be any value and can be used for user-defined purposes. It can be fetched or changed later.
++ */
++ void* VMA_NULLABLE pUserData;
++} VmaVirtualAllocationCreateInfo;
++
++/// Parameters of an existing virtual allocation, returned by vmaGetVirtualAllocationInfo().
++typedef struct VmaVirtualAllocationInfo
++{
++ /** \brief Offset of the allocation.
++
++ Offset at which the allocation was made.
++ */
++ VkDeviceSize offset;
++ /** \brief Size of the allocation.
++
++ Same value as passed in VmaVirtualAllocationCreateInfo::size.
++ */
++ VkDeviceSize size;
++ /** \brief Custom pointer associated with the allocation.
++
++ Same value as passed in VmaVirtualAllocationCreateInfo::pUserData or to vmaSetVirtualAllocationUserData().
++ */
++ void* VMA_NULLABLE pUserData;
++} VmaVirtualAllocationInfo;
++
++/** @} */
++
++#endif // _VMA_DATA_TYPES_DECLARATIONS
++
++#ifndef _VMA_FUNCTION_HEADERS
++
++/**
++\addtogroup group_init
++@{
++*/
++
++/// Creates #VmaAllocator object.
++VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAllocator(
++ const VmaAllocatorCreateInfo* VMA_NOT_NULL pCreateInfo,
++ VmaAllocator VMA_NULLABLE* VMA_NOT_NULL pAllocator);
++
++/// Destroys allocator object.
++VMA_CALL_PRE void VMA_CALL_POST vmaDestroyAllocator(
++ VmaAllocator VMA_NULLABLE allocator);
++
++/** \brief Returns information about existing #VmaAllocator object - handle to Vulkan device etc.
++
++It might be useful if you want to keep just the #VmaAllocator handle and fetch other required handles to
++`VkPhysicalDevice`, `VkDevice` etc. every time using this function.
++*/
++VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocatorInfo(
++ VmaAllocator VMA_NOT_NULL allocator,
++ VmaAllocatorInfo* VMA_NOT_NULL pAllocatorInfo);
++
++/**
++PhysicalDeviceProperties are fetched from physicalDevice by the allocator.
++You can access it here, without fetching it again on your own.
++*/
++VMA_CALL_PRE void VMA_CALL_POST vmaGetPhysicalDeviceProperties(
++ VmaAllocator VMA_NOT_NULL allocator,
++ const VkPhysicalDeviceProperties* VMA_NULLABLE* VMA_NOT_NULL ppPhysicalDeviceProperties);
++
++/**
++PhysicalDeviceMemoryProperties are fetched from physicalDevice by the allocator.
++You can access it here, without fetching it again on your own.
++*/
++VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryProperties(
++ VmaAllocator VMA_NOT_NULL allocator,
++ const VkPhysicalDeviceMemoryProperties* VMA_NULLABLE* VMA_NOT_NULL ppPhysicalDeviceMemoryProperties);
++
++/**
++\brief Given Memory Type Index, returns Property Flags of this memory type.
++
++This is just a convenience function. Same information can be obtained using
++vmaGetMemoryProperties().
++*/
++VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryTypeProperties(
++ VmaAllocator VMA_NOT_NULL allocator,
++ uint32_t memoryTypeIndex,
++ VkMemoryPropertyFlags* VMA_NOT_NULL pFlags);
++
++/** \brief Sets index of the current frame.
++*/
++VMA_CALL_PRE void VMA_CALL_POST vmaSetCurrentFrameIndex(
++ VmaAllocator VMA_NOT_NULL allocator,
++ uint32_t frameIndex);
++
++/** @} */
++
++/**
++\addtogroup group_stats
++@{
++*/
++
++/** \brief Retrieves statistics from current state of the Allocator.
++
++This function is called "calculate" not "get" because it has to traverse all
++internal data structures, so it may be quite slow. Use it for debugging purposes.
++For faster but more brief statistics suitable to be called every frame or every allocation,
++use vmaGetHeapBudgets().
++
++Note that when using allocator from multiple threads, returned information may immediately
++become outdated.
++*/
++VMA_CALL_PRE void VMA_CALL_POST vmaCalculateStatistics(
++ VmaAllocator VMA_NOT_NULL allocator,
++ VmaTotalStatistics* VMA_NOT_NULL pStats);
++
++/** \brief Retrieves information about current memory usage and budget for all memory heaps.
++
++\param allocator
++\param[out] pBudgets Must point to array with number of elements at least equal to number of memory heaps in physical device used.
++
++This function is called "get" not "calculate" because it is very fast, suitable to be called
++every frame or every allocation. For more detailed statistics use vmaCalculateStatistics().
++
++Note that when using allocator from multiple threads, returned information may immediately
++become outdated.
++*/
++VMA_CALL_PRE void VMA_CALL_POST vmaGetHeapBudgets(
++ VmaAllocator VMA_NOT_NULL allocator,
++ VmaBudget* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL("VkPhysicalDeviceMemoryProperties::memoryHeapCount") pBudgets);
++
++/** @} */
++
++/**
++\addtogroup group_alloc
++@{
++*/
++
++/**
++\brief Helps to find memoryTypeIndex, given memoryTypeBits and VmaAllocationCreateInfo.
++
++This algorithm tries to find a memory type that:
++
++- Is allowed by memoryTypeBits.
++- Contains all the flags from pAllocationCreateInfo->requiredFlags.
++- Matches intended usage.
++- Has as many flags from pAllocationCreateInfo->preferredFlags as possible.
++
++\return Returns VK_ERROR_FEATURE_NOT_PRESENT if not found. Receiving such result
++from this function or any other allocating function probably means that your
++device doesn't support any memory type with requested features for the specific
++type of resource you want to use it for. Please check parameters of your
++resource, like image layout (OPTIMAL versus LINEAR) or mip level count.
++*/
++VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndex(
++ VmaAllocator VMA_NOT_NULL allocator,
++ uint32_t memoryTypeBits,
++ const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo,
++ uint32_t* VMA_NOT_NULL pMemoryTypeIndex);
++
++/**
++\brief Helps to find memoryTypeIndex, given VkBufferCreateInfo and VmaAllocationCreateInfo.
++
++It can be useful e.g. to determine value to be used as VmaPoolCreateInfo::memoryTypeIndex.
++It internally creates a temporary, dummy buffer that never has memory bound.
++*/
++VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForBufferInfo(
++ VmaAllocator VMA_NOT_NULL allocator,
++ const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo,
++ const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo,
++ uint32_t* VMA_NOT_NULL pMemoryTypeIndex);
++
++/**
++\brief Helps to find memoryTypeIndex, given VkImageCreateInfo and VmaAllocationCreateInfo.
++
++It can be useful e.g. to determine value to be used as VmaPoolCreateInfo::memoryTypeIndex.
++It internally creates a temporary, dummy image that never has memory bound.
++*/
++VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForImageInfo(
++ VmaAllocator VMA_NOT_NULL allocator,
++ const VkImageCreateInfo* VMA_NOT_NULL pImageCreateInfo,
++ const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo,
++ uint32_t* VMA_NOT_NULL pMemoryTypeIndex);
++
++/** \brief Allocates Vulkan device memory and creates #VmaPool object.
++
++\param allocator Allocator object.
++\param pCreateInfo Parameters of pool to create.
++\param[out] pPool Handle to created pool.
++*/
++VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreatePool(
++ VmaAllocator VMA_NOT_NULL allocator,
++ const VmaPoolCreateInfo* VMA_NOT_NULL pCreateInfo,
++ VmaPool VMA_NULLABLE* VMA_NOT_NULL pPool);
++
++/** \brief Destroys #VmaPool object and frees Vulkan device memory.
++*/
++VMA_CALL_PRE void VMA_CALL_POST vmaDestroyPool(
++ VmaAllocator VMA_NOT_NULL allocator,
++ VmaPool VMA_NULLABLE pool);
++
++/** @} */
++
++/**
++\addtogroup group_stats
++@{
++*/
++
++/** \brief Retrieves statistics of existing #VmaPool object.
++
++\param allocator Allocator object.
++\param pool Pool object.
++\param[out] pPoolStats Statistics of specified pool.
++*/
++VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolStatistics(
++ VmaAllocator VMA_NOT_NULL allocator,
++ VmaPool VMA_NOT_NULL pool,
++ VmaStatistics* VMA_NOT_NULL pPoolStats);
++
++/** \brief Retrieves detailed statistics of existing #VmaPool object.
++
++\param allocator Allocator object.
++\param pool Pool object.
++\param[out] pPoolStats Statistics of specified pool.
++*/
++VMA_CALL_PRE void VMA_CALL_POST vmaCalculatePoolStatistics(
++ VmaAllocator VMA_NOT_NULL allocator,
++ VmaPool VMA_NOT_NULL pool,
++ VmaDetailedStatistics* VMA_NOT_NULL pPoolStats);
++
++/** @} */
++
++/**
++\addtogroup group_alloc
++@{
++*/
++
++/** \brief Checks magic number in margins around all allocations in given memory pool in search for corruptions.
++
++Corruption detection is enabled only when `VMA_DEBUG_DETECT_CORRUPTION` macro is defined to nonzero,
++`VMA_DEBUG_MARGIN` is defined to nonzero and the pool is created in memory type that is
++`HOST_VISIBLE` and `HOST_COHERENT`. For more information, see [Corruption detection](@ref debugging_memory_usage_corruption_detection).
++
++Possible return values:
++
++- `VK_ERROR_FEATURE_NOT_PRESENT` - corruption detection is not enabled for specified pool.
++- `VK_SUCCESS` - corruption detection has been performed and succeeded.
++- `VK_ERROR_UNKNOWN` - corruption detection has been performed and found memory corruptions around one of the allocations.
++ `VMA_ASSERT` is also fired in that case.
++- Other value: Error returned by Vulkan, e.g. memory mapping failure.
++*/
++VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckPoolCorruption(
++ VmaAllocator VMA_NOT_NULL allocator,
++ VmaPool VMA_NOT_NULL pool);
++
++/** \brief Retrieves name of a custom pool.
++
++After the call `ppName` is either null or points to an internally-owned null-terminated string
++containing name of the pool that was previously set. The pointer becomes invalid when the pool is
++destroyed or its name is changed using vmaSetPoolName().
++*/
++VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolName(
++ VmaAllocator VMA_NOT_NULL allocator,
++ VmaPool VMA_NOT_NULL pool,
++ const char* VMA_NULLABLE* VMA_NOT_NULL ppName);
++
++/** \brief Sets name of a custom pool.
++
++`pName` can be either null or pointer to a null-terminated string with new name for the pool.
++Function makes internal copy of the string, so it can be changed or freed immediately after this call.
++*/
++VMA_CALL_PRE void VMA_CALL_POST vmaSetPoolName(
++ VmaAllocator VMA_NOT_NULL allocator,
++ VmaPool VMA_NOT_NULL pool,
++ const char* VMA_NULLABLE pName);
++
++/** \brief General purpose memory allocation.
++
++\param allocator
++\param pVkMemoryRequirements
++\param pCreateInfo
++\param[out] pAllocation Handle to allocated memory.
++\param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo().
++
++You should free the memory using vmaFreeMemory() or vmaFreeMemoryPages().
++
++It is recommended to use vmaAllocateMemoryForBuffer(), vmaAllocateMemoryForImage(),
++vmaCreateBuffer(), vmaCreateImage() instead whenever possible.
++*/
++VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemory(
++ VmaAllocator VMA_NOT_NULL allocator,
++ const VkMemoryRequirements* VMA_NOT_NULL pVkMemoryRequirements,
++ const VmaAllocationCreateInfo* VMA_NOT_NULL pCreateInfo,
++ VmaAllocation VMA_NULLABLE* VMA_NOT_NULL pAllocation,
++ VmaAllocationInfo* VMA_NULLABLE pAllocationInfo);
++
++/** \brief General purpose memory allocation for multiple allocation objects at once.
++
++\param allocator Allocator object.
++\param pVkMemoryRequirements Memory requirements for each allocation.
++\param pCreateInfo Creation parameters for each allocation.
++\param allocationCount Number of allocations to make.
++\param[out] pAllocations Pointer to array that will be filled with handles to created allocations.
++\param[out] pAllocationInfo Optional. Pointer to array that will be filled with parameters of created allocations.
++
++You should free the memory using vmaFreeMemory() or vmaFreeMemoryPages().
++
++Word "pages" is just a suggestion to use this function to allocate pieces of memory needed for sparse binding.
++It is just a general purpose allocation function able to make multiple allocations at once.
++It may be internally optimized to be more efficient than calling vmaAllocateMemory() `allocationCount` times.
++
++All allocations are made using same parameters. All of them are created out of the same memory pool and type.
++If any allocation fails, all allocations already made within this function call are also freed, so that when
++returned result is not `VK_SUCCESS`, `pAllocation` array is always entirely filled with `VK_NULL_HANDLE`.
++*/
++VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryPages(
++ VmaAllocator VMA_NOT_NULL allocator,
++ const VkMemoryRequirements* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(allocationCount) pVkMemoryRequirements,
++ const VmaAllocationCreateInfo* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(allocationCount) pCreateInfo,
++ size_t allocationCount,
++ VmaAllocation VMA_NULLABLE* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(allocationCount) pAllocations,
++ VmaAllocationInfo* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) pAllocationInfo);
++
++/** \brief Allocates memory suitable for given `VkBuffer`.
++
++\param allocator
++\param buffer
++\param pCreateInfo
++\param[out] pAllocation Handle to allocated memory.
++\param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo().
++
++It only creates #VmaAllocation. To bind the memory to the buffer, use vmaBindBufferMemory().
++
++This is a special-purpose function. In most cases you should use vmaCreateBuffer().
++
++You must free the allocation using vmaFreeMemory() when no longer needed.
++*/
++VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForBuffer(
++ VmaAllocator VMA_NOT_NULL allocator,
++ VkBuffer VMA_NOT_NULL_NON_DISPATCHABLE buffer,
++ const VmaAllocationCreateInfo* VMA_NOT_NULL pCreateInfo,
++ VmaAllocation VMA_NULLABLE* VMA_NOT_NULL pAllocation,
++ VmaAllocationInfo* VMA_NULLABLE pAllocationInfo);
++
++/** \brief Allocates memory suitable for given `VkImage`.
++
++\param allocator
++\param image
++\param pCreateInfo
++\param[out] pAllocation Handle to allocated memory.
++\param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo().
++
++It only creates #VmaAllocation. To bind the memory to the buffer, use vmaBindImageMemory().
++
++This is a special-purpose function. In most cases you should use vmaCreateImage().
++
++You must free the allocation using vmaFreeMemory() when no longer needed.
++*/
++VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForImage(
++ VmaAllocator VMA_NOT_NULL allocator,
++ VkImage VMA_NOT_NULL_NON_DISPATCHABLE image,
++ const VmaAllocationCreateInfo* VMA_NOT_NULL pCreateInfo,
++ VmaAllocation VMA_NULLABLE* VMA_NOT_NULL pAllocation,
++ VmaAllocationInfo* VMA_NULLABLE pAllocationInfo);
++
++/** \brief Frees memory previously allocated using vmaAllocateMemory(), vmaAllocateMemoryForBuffer(), or vmaAllocateMemoryForImage().
++
++Passing `VK_NULL_HANDLE` as `allocation` is valid. Such function call is just skipped.
++*/
++VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemory(
++ VmaAllocator VMA_NOT_NULL allocator,
++ const VmaAllocation VMA_NULLABLE allocation);
++
++/** \brief Frees memory and destroys multiple allocations.
++
++Word "pages" is just a suggestion to use this function to free pieces of memory used for sparse binding.
++It is just a general purpose function to free memory and destroy allocations made using e.g. vmaAllocateMemory(),
++vmaAllocateMemoryPages() and other functions.
++It may be internally optimized to be more efficient than calling vmaFreeMemory() `allocationCount` times.
++
++Allocations in `pAllocations` array can come from any memory pools and types.
++Passing `VK_NULL_HANDLE` as elements of `pAllocations` array is valid. Such entries are just skipped.
++*/
++VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemoryPages(
++ VmaAllocator VMA_NOT_NULL allocator,
++ size_t allocationCount,
++ const VmaAllocation VMA_NULLABLE* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(allocationCount) pAllocations);
++
++/** \brief Returns current information about specified allocation.
++
++Current paramteres of given allocation are returned in `pAllocationInfo`.
++
++Although this function doesn't lock any mutex, so it should be quite efficient,
++you should avoid calling it too often.
++You can retrieve same VmaAllocationInfo structure while creating your resource, from function
++vmaCreateBuffer(), vmaCreateImage(). You can remember it if you are sure parameters don't change
++(e.g. due to defragmentation).
++*/
++VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocationInfo(
++ VmaAllocator VMA_NOT_NULL allocator,
++ VmaAllocation VMA_NOT_NULL allocation,
++ VmaAllocationInfo* VMA_NOT_NULL pAllocationInfo);
++
++/** \brief Sets pUserData in given allocation to new value.
++
++The value of pointer `pUserData` is copied to allocation's `pUserData`.
++It is opaque, so you can use it however you want - e.g.
++as a pointer, ordinal number or some handle to you own data.
++*/
++VMA_CALL_PRE void VMA_CALL_POST vmaSetAllocationUserData(
++ VmaAllocator VMA_NOT_NULL allocator,
++ VmaAllocation VMA_NOT_NULL allocation,
++ void* VMA_NULLABLE pUserData);
++
++/** \brief Sets pName in given allocation to new value.
++
++`pName` must be either null, or pointer to a null-terminated string. The function
++makes local copy of the string and sets it as allocation's `pName`. String
++passed as pName doesn't need to be valid for whole lifetime of the allocation -
++you can free it after this call. String previously pointed by allocation's
++`pName` is freed from memory.
++*/
++VMA_CALL_PRE void VMA_CALL_POST vmaSetAllocationName(
++ VmaAllocator VMA_NOT_NULL allocator,
++ VmaAllocation VMA_NOT_NULL allocation,
++ const char* VMA_NULLABLE pName);
++
++/**
++\brief Given an allocation, returns Property Flags of its memory type.
++
++This is just a convenience function. Same information can be obtained using
++vmaGetAllocationInfo() + vmaGetMemoryProperties().
++*/
++VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocationMemoryProperties(
++ VmaAllocator VMA_NOT_NULL allocator,
++ VmaAllocation VMA_NOT_NULL allocation,
++ VkMemoryPropertyFlags* VMA_NOT_NULL pFlags);
++
++/** \brief Maps memory represented by given allocation and returns pointer to it.
++
++Maps memory represented by given allocation to make it accessible to CPU code.
++When succeeded, `*ppData` contains pointer to first byte of this memory.
++
++\warning
++If the allocation is part of a bigger `VkDeviceMemory` block, returned pointer is
++correctly offsetted to the beginning of region assigned to this particular allocation.
++Unlike the result of `vkMapMemory`, it points to the allocation, not to the beginning of the whole block.
++You should not add VmaAllocationInfo::offset to it!
++
++Mapping is internally reference-counted and synchronized, so despite raw Vulkan
++function `vkMapMemory()` cannot be used to map same block of `VkDeviceMemory`
++multiple times simultaneously, it is safe to call this function on allocations
++assigned to the same memory block. Actual Vulkan memory will be mapped on first
++mapping and unmapped on last unmapping.
++
++If the function succeeded, you must call vmaUnmapMemory() to unmap the
++allocation when mapping is no longer needed or before freeing the allocation, at
++the latest.
++
++It also safe to call this function multiple times on the same allocation. You
++must call vmaUnmapMemory() same number of times as you called vmaMapMemory().
++
++It is also safe to call this function on allocation created with
++#VMA_ALLOCATION_CREATE_MAPPED_BIT flag. Its memory stays mapped all the time.
++You must still call vmaUnmapMemory() same number of times as you called
++vmaMapMemory(). You must not call vmaUnmapMemory() additional time to free the
++"0-th" mapping made automatically due to #VMA_ALLOCATION_CREATE_MAPPED_BIT flag.
++
++This function fails when used on allocation made in memory type that is not
++`HOST_VISIBLE`.
++
++This function doesn't automatically flush or invalidate caches.
++If the allocation is made from a memory types that is not `HOST_COHERENT`,
++you also need to use vmaInvalidateAllocation() / vmaFlushAllocation(), as required by Vulkan specification.
++*/
++VMA_CALL_PRE VkResult VMA_CALL_POST vmaMapMemory(
++ VmaAllocator VMA_NOT_NULL allocator,
++ VmaAllocation VMA_NOT_NULL allocation,
++ void* VMA_NULLABLE* VMA_NOT_NULL ppData);
++
++/** \brief Unmaps memory represented by given allocation, mapped previously using vmaMapMemory().
++
++For details, see description of vmaMapMemory().
++
++This function doesn't automatically flush or invalidate caches.
++If the allocation is made from a memory types that is not `HOST_COHERENT`,
++you also need to use vmaInvalidateAllocation() / vmaFlushAllocation(), as required by Vulkan specification.
++*/
++VMA_CALL_PRE void VMA_CALL_POST vmaUnmapMemory(
++ VmaAllocator VMA_NOT_NULL allocator,
++ VmaAllocation VMA_NOT_NULL allocation);
++
++/** \brief Flushes memory of given allocation.
++
++Calls `vkFlushMappedMemoryRanges()` for memory associated with given range of given allocation.
++It needs to be called after writing to a mapped memory for memory types that are not `HOST_COHERENT`.
++Unmap operation doesn't do that automatically.
++
++- `offset` must be relative to the beginning of allocation.
++- `size` can be `VK_WHOLE_SIZE`. It means all memory from `offset` the the end of given allocation.
++- `offset` and `size` don't have to be aligned.
++ They are internally rounded down/up to multiply of `nonCoherentAtomSize`.
++- If `size` is 0, this call is ignored.
++- If memory type that the `allocation` belongs to is not `HOST_VISIBLE` or it is `HOST_COHERENT`,
++ this call is ignored.
++
++Warning! `offset` and `size` are relative to the contents of given `allocation`.
++If you mean whole allocation, you can pass 0 and `VK_WHOLE_SIZE`, respectively.
++Do not pass allocation's offset as `offset`!!!
++
++This function returns the `VkResult` from `vkFlushMappedMemoryRanges` if it is
++called, otherwise `VK_SUCCESS`.
++*/
++VMA_CALL_PRE VkResult VMA_CALL_POST vmaFlushAllocation(
++ VmaAllocator VMA_NOT_NULL allocator,
++ VmaAllocation VMA_NOT_NULL allocation,
++ VkDeviceSize offset,
++ VkDeviceSize size);
++
++/** \brief Invalidates memory of given allocation.
++
++Calls `vkInvalidateMappedMemoryRanges()` for memory associated with given range of given allocation.
++It needs to be called before reading from a mapped memory for memory types that are not `HOST_COHERENT`.
++Map operation doesn't do that automatically.
++
++- `offset` must be relative to the beginning of allocation.
++- `size` can be `VK_WHOLE_SIZE`. It means all memory from `offset` the the end of given allocation.
++- `offset` and `size` don't have to be aligned.
++ They are internally rounded down/up to multiply of `nonCoherentAtomSize`.
++- If `size` is 0, this call is ignored.
++- If memory type that the `allocation` belongs to is not `HOST_VISIBLE` or it is `HOST_COHERENT`,
++ this call is ignored.
++
++Warning! `offset` and `size` are relative to the contents of given `allocation`.
++If you mean whole allocation, you can pass 0 and `VK_WHOLE_SIZE`, respectively.
++Do not pass allocation's offset as `offset`!!!
++
++This function returns the `VkResult` from `vkInvalidateMappedMemoryRanges` if
++it is called, otherwise `VK_SUCCESS`.
++*/
++VMA_CALL_PRE VkResult VMA_CALL_POST vmaInvalidateAllocation(
++ VmaAllocator VMA_NOT_NULL allocator,
++ VmaAllocation VMA_NOT_NULL allocation,
++ VkDeviceSize offset,
++ VkDeviceSize size);
++
++/** \brief Flushes memory of given set of allocations.
++
++Calls `vkFlushMappedMemoryRanges()` for memory associated with given ranges of given allocations.
++For more information, see documentation of vmaFlushAllocation().
++
++\param allocator
++\param allocationCount
++\param allocations
++\param offsets If not null, it must point to an array of offsets of regions to flush, relative to the beginning of respective allocations. Null means all ofsets are zero.
++\param sizes If not null, it must point to an array of sizes of regions to flush in respective allocations. Null means `VK_WHOLE_SIZE` for all allocations.
++
++This function returns the `VkResult` from `vkFlushMappedMemoryRanges` if it is
++called, otherwise `VK_SUCCESS`.
++*/
++VMA_CALL_PRE VkResult VMA_CALL_POST vmaFlushAllocations(
++ VmaAllocator VMA_NOT_NULL allocator,
++ uint32_t allocationCount,
++ const VmaAllocation VMA_NOT_NULL* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) allocations,
++ const VkDeviceSize* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) offsets,
++ const VkDeviceSize* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) sizes);
++
++/** \brief Invalidates memory of given set of allocations.
++
++Calls `vkInvalidateMappedMemoryRanges()` for memory associated with given ranges of given allocations.
++For more information, see documentation of vmaInvalidateAllocation().
++
++\param allocator
++\param allocationCount
++\param allocations
++\param offsets If not null, it must point to an array of offsets of regions to flush, relative to the beginning of respective allocations. Null means all ofsets are zero.
++\param sizes If not null, it must point to an array of sizes of regions to flush in respective allocations. Null means `VK_WHOLE_SIZE` for all allocations.
++
++This function returns the `VkResult` from `vkInvalidateMappedMemoryRanges` if it is
++called, otherwise `VK_SUCCESS`.
++*/
++VMA_CALL_PRE VkResult VMA_CALL_POST vmaInvalidateAllocations(
++ VmaAllocator VMA_NOT_NULL allocator,
++ uint32_t allocationCount,
++ const VmaAllocation VMA_NOT_NULL* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) allocations,
++ const VkDeviceSize* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) offsets,
++ const VkDeviceSize* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) sizes);
++
++/** \brief Checks magic number in margins around all allocations in given memory types (in both default and custom pools) in search for corruptions.
++
++\param allocator
++\param memoryTypeBits Bit mask, where each bit set means that a memory type with that index should be checked.
++
++Corruption detection is enabled only when `VMA_DEBUG_DETECT_CORRUPTION` macro is defined to nonzero,
++`VMA_DEBUG_MARGIN` is defined to nonzero and only for memory types that are
++`HOST_VISIBLE` and `HOST_COHERENT`. For more information, see [Corruption detection](@ref debugging_memory_usage_corruption_detection).
++
++Possible return values:
++
++- `VK_ERROR_FEATURE_NOT_PRESENT` - corruption detection is not enabled for any of specified memory types.
++- `VK_SUCCESS` - corruption detection has been performed and succeeded.
++- `VK_ERROR_UNKNOWN` - corruption detection has been performed and found memory corruptions around one of the allocations.
++ `VMA_ASSERT` is also fired in that case.
++- Other value: Error returned by Vulkan, e.g. memory mapping failure.
++*/
++VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckCorruption(
++ VmaAllocator VMA_NOT_NULL allocator,
++ uint32_t memoryTypeBits);
++
++/** \brief Begins defragmentation process.
++
++\param allocator Allocator object.
++\param pInfo Structure filled with parameters of defragmentation.
++\param[out] pContext Context object that must be passed to vmaEndDefragmentation() to finish defragmentation.
++\returns
++- `VK_SUCCESS` if defragmentation can begin.
++- `VK_ERROR_FEATURE_NOT_PRESENT` if defragmentation is not supported.
++
++For more information about defragmentation, see documentation chapter:
++[Defragmentation](@ref defragmentation).
++*/
++VMA_CALL_PRE VkResult VMA_CALL_POST vmaBeginDefragmentation(
++ VmaAllocator VMA_NOT_NULL allocator,
++ const VmaDefragmentationInfo* VMA_NOT_NULL pInfo,
++ VmaDefragmentationContext VMA_NULLABLE* VMA_NOT_NULL pContext);
++
++/** \brief Ends defragmentation process.
++
++\param allocator Allocator object.
++\param context Context object that has been created by vmaBeginDefragmentation().
++\param[out] pStats Optional stats for the defragmentation. Can be null.
++
++Use this function to finish defragmentation started by vmaBeginDefragmentation().
++*/
++VMA_CALL_PRE void VMA_CALL_POST vmaEndDefragmentation(
++ VmaAllocator VMA_NOT_NULL allocator,
++ VmaDefragmentationContext VMA_NOT_NULL context,
++ VmaDefragmentationStats* VMA_NULLABLE pStats);
++
++/** \brief Starts single defragmentation pass.
++
++\param allocator Allocator object.
++\param context Context object that has been created by vmaBeginDefragmentation().
++\param[out] pPassInfo Computed informations for current pass.
++\returns
++- `VK_SUCCESS` if no more moves are possible. Then you can omit call to vmaEndDefragmentationPass() and simply end whole defragmentation.
++- `VK_INCOMPLETE` if there are pending moves returned in `pPassInfo`. You need to perform them, call vmaEndDefragmentationPass(),
++ and then preferably try another pass with vmaBeginDefragmentationPass().
++*/
++VMA_CALL_PRE VkResult VMA_CALL_POST vmaBeginDefragmentationPass(
++ VmaAllocator VMA_NOT_NULL allocator,
++ VmaDefragmentationContext VMA_NOT_NULL context,
++ VmaDefragmentationPassMoveInfo* VMA_NOT_NULL pPassInfo);
++
++/** \brief Ends single defragmentation pass.
++
++\param allocator Allocator object.
++\param context Context object that has been created by vmaBeginDefragmentation().
++\param pPassInfo Computed informations for current pass filled by vmaBeginDefragmentationPass() and possibly modified by you.
++
++Returns `VK_SUCCESS` if no more moves are possible or `VK_INCOMPLETE` if more defragmentations are possible.
++
++Ends incremental defragmentation pass and commits all defragmentation moves from `pPassInfo`.
++After this call:
++
++- Allocations at `pPassInfo[i].srcAllocation` that had `pPassInfo[i].operation ==` #VMA_DEFRAGMENTATION_MOVE_OPERATION_COPY
++ (which is the default) will be pointing to the new destination place.
++- Allocation at `pPassInfo[i].srcAllocation` that had `pPassInfo[i].operation ==` #VMA_DEFRAGMENTATION_MOVE_OPERATION_DESTROY
++ will be freed.
++
++If no more moves are possible you can end whole defragmentation.
++*/
++VMA_CALL_PRE VkResult VMA_CALL_POST vmaEndDefragmentationPass(
++ VmaAllocator VMA_NOT_NULL allocator,
++ VmaDefragmentationContext VMA_NOT_NULL context,
++ VmaDefragmentationPassMoveInfo* VMA_NOT_NULL pPassInfo);
++
++/** \brief Binds buffer to allocation.
++
++Binds specified buffer to region of memory represented by specified allocation.
++Gets `VkDeviceMemory` handle and offset from the allocation.
++If you want to create a buffer, allocate memory for it and bind them together separately,
++you should use this function for binding instead of standard `vkBindBufferMemory()`,
++because it ensures proper synchronization so that when a `VkDeviceMemory` object is used by multiple
++allocations, calls to `vkBind*Memory()` or `vkMapMemory()` won't happen from multiple threads simultaneously
++(which is illegal in Vulkan).
++
++It is recommended to use function vmaCreateBuffer() instead of this one.
++*/
++VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory(
++ VmaAllocator VMA_NOT_NULL allocator,
++ VmaAllocation VMA_NOT_NULL allocation,
++ VkBuffer VMA_NOT_NULL_NON_DISPATCHABLE buffer);
++
++/** \brief Binds buffer to allocation with additional parameters.
++
++\param allocator
++\param allocation
++\param allocationLocalOffset Additional offset to be added while binding, relative to the beginning of the `allocation`. Normally it should be 0.
++\param buffer
++\param pNext A chain of structures to be attached to `VkBindBufferMemoryInfoKHR` structure used internally. Normally it should be null.
++
++This function is similar to vmaBindBufferMemory(), but it provides additional parameters.
++
++If `pNext` is not null, #VmaAllocator object must have been created with #VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT flag
++or with VmaAllocatorCreateInfo::vulkanApiVersion `>= VK_API_VERSION_1_1`. Otherwise the call fails.
++*/
++VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory2(
++ VmaAllocator VMA_NOT_NULL allocator,
++ VmaAllocation VMA_NOT_NULL allocation,
++ VkDeviceSize allocationLocalOffset,
++ VkBuffer VMA_NOT_NULL_NON_DISPATCHABLE buffer,
++ const void* VMA_NULLABLE pNext);
++
++/** \brief Binds image to allocation.
++
++Binds specified image to region of memory represented by specified allocation.
++Gets `VkDeviceMemory` handle and offset from the allocation.
++If you want to create an image, allocate memory for it and bind them together separately,
++you should use this function for binding instead of standard `vkBindImageMemory()`,
++because it ensures proper synchronization so that when a `VkDeviceMemory` object is used by multiple
++allocations, calls to `vkBind*Memory()` or `vkMapMemory()` won't happen from multiple threads simultaneously
++(which is illegal in Vulkan).
++
++It is recommended to use function vmaCreateImage() instead of this one.
++*/
++VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory(
++ VmaAllocator VMA_NOT_NULL allocator,
++ VmaAllocation VMA_NOT_NULL allocation,
++ VkImage VMA_NOT_NULL_NON_DISPATCHABLE image);
++
++/** \brief Binds image to allocation with additional parameters.
++
++\param allocator
++\param allocation
++\param allocationLocalOffset Additional offset to be added while binding, relative to the beginning of the `allocation`. Normally it should be 0.
++\param image
++\param pNext A chain of structures to be attached to `VkBindImageMemoryInfoKHR` structure used internally. Normally it should be null.
++
++This function is similar to vmaBindImageMemory(), but it provides additional parameters.
++
++If `pNext` is not null, #VmaAllocator object must have been created with #VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT flag
++or with VmaAllocatorCreateInfo::vulkanApiVersion `>= VK_API_VERSION_1_1`. Otherwise the call fails.
++*/
++VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory2(
++ VmaAllocator VMA_NOT_NULL allocator,
++ VmaAllocation VMA_NOT_NULL allocation,
++ VkDeviceSize allocationLocalOffset,
++ VkImage VMA_NOT_NULL_NON_DISPATCHABLE image,
++ const void* VMA_NULLABLE pNext);
++
++/** \brief Creates a new `VkBuffer`, allocates and binds memory for it.
++
++\param allocator
++\param pBufferCreateInfo
++\param pAllocationCreateInfo
++\param[out] pBuffer Buffer that was created.
++\param[out] pAllocation Allocation that was created.
++\param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo().
++
++This function automatically:
++
++-# Creates buffer.
++-# Allocates appropriate memory for it.
++-# Binds the buffer with the memory.
++
++If any of these operations fail, buffer and allocation are not created,
++returned value is negative error code, `*pBuffer` and `*pAllocation` are null.
++
++If the function succeeded, you must destroy both buffer and allocation when you
++no longer need them using either convenience function vmaDestroyBuffer() or
++separately, using `vkDestroyBuffer()` and vmaFreeMemory().
++
++If #VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT flag was used,
++VK_KHR_dedicated_allocation extension is used internally to query driver whether
++it requires or prefers the new buffer to have dedicated allocation. If yes,
++and if dedicated allocation is possible
++(#VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT is not used), it creates dedicated
++allocation for this buffer, just like when using
++#VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT.
++
++\note This function creates a new `VkBuffer`. Sub-allocation of parts of one large buffer,
++although recommended as a good practice, is out of scope of this library and could be implemented
++by the user as a higher-level logic on top of VMA.
++*/
++VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateBuffer(
++ VmaAllocator VMA_NOT_NULL allocator,
++ const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo,
++ const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo,
++ VkBuffer VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pBuffer,
++ VmaAllocation VMA_NULLABLE* VMA_NOT_NULL pAllocation,
++ VmaAllocationInfo* VMA_NULLABLE pAllocationInfo);
++
++/** \brief Creates a buffer with additional minimum alignment.
++
++Similar to vmaCreateBuffer() but provides additional parameter `minAlignment` which allows to specify custom,
++minimum alignment to be used when placing the buffer inside a larger memory block, which may be needed e.g.
++for interop with OpenGL.
++*/
++VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateBufferWithAlignment(
++ VmaAllocator VMA_NOT_NULL allocator,
++ const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo,
++ const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo,
++ VkDeviceSize minAlignment,
++ VkBuffer VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pBuffer,
++ VmaAllocation VMA_NULLABLE* VMA_NOT_NULL pAllocation,
++ VmaAllocationInfo* VMA_NULLABLE pAllocationInfo);
++
++/** \brief Creates a new `VkBuffer`, binds already created memory for it.
++
++\param allocator
++\param allocation Allocation that provides memory to be used for binding new buffer to it.
++\param pBufferCreateInfo
++\param[out] pBuffer Buffer that was created.
++
++This function automatically:
++
++-# Creates buffer.
++-# Binds the buffer with the supplied memory.
++
++If any of these operations fail, buffer is not created,
++returned value is negative error code and `*pBuffer` is null.
++
++If the function succeeded, you must destroy the buffer when you
++no longer need it using `vkDestroyBuffer()`. If you want to also destroy the corresponding
++allocation you can use convenience function vmaDestroyBuffer().
++*/
++VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAliasingBuffer(
++ VmaAllocator VMA_NOT_NULL allocator,
++ VmaAllocation VMA_NOT_NULL allocation,
++ const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo,
++ VkBuffer VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pBuffer);
++
++/** \brief Destroys Vulkan buffer and frees allocated memory.
++
++This is just a convenience function equivalent to:
++
++\code
++vkDestroyBuffer(device, buffer, allocationCallbacks);
++vmaFreeMemory(allocator, allocation);
++\endcode
++
++It it safe to pass null as buffer and/or allocation.
++*/
++VMA_CALL_PRE void VMA_CALL_POST vmaDestroyBuffer(
++ VmaAllocator VMA_NOT_NULL allocator,
++ VkBuffer VMA_NULLABLE_NON_DISPATCHABLE buffer,
++ VmaAllocation VMA_NULLABLE allocation);
++
++/// Function similar to vmaCreateBuffer().
++VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateImage(
++ VmaAllocator VMA_NOT_NULL allocator,
++ const VkImageCreateInfo* VMA_NOT_NULL pImageCreateInfo,
++ const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo,
++ VkImage VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pImage,
++ VmaAllocation VMA_NULLABLE* VMA_NOT_NULL pAllocation,
++ VmaAllocationInfo* VMA_NULLABLE pAllocationInfo);
++
++/// Function similar to vmaCreateAliasingBuffer().
++VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAliasingImage(
++ VmaAllocator VMA_NOT_NULL allocator,
++ VmaAllocation VMA_NOT_NULL allocation,
++ const VkImageCreateInfo* VMA_NOT_NULL pImageCreateInfo,
++ VkImage VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pImage);
++
++/** \brief Destroys Vulkan image and frees allocated memory.
++
++This is just a convenience function equivalent to:
++
++\code
++vkDestroyImage(device, image, allocationCallbacks);
++vmaFreeMemory(allocator, allocation);
++\endcode
++
++It it safe to pass null as image and/or allocation.
++*/
++VMA_CALL_PRE void VMA_CALL_POST vmaDestroyImage(
++ VmaAllocator VMA_NOT_NULL allocator,
++ VkImage VMA_NULLABLE_NON_DISPATCHABLE image,
++ VmaAllocation VMA_NULLABLE allocation);
++
++/** @} */
++
++/**
++\addtogroup group_virtual
++@{
++*/
++
++/** \brief Creates new #VmaVirtualBlock object.
++
++\param pCreateInfo Parameters for creation.
++\param[out] pVirtualBlock Returned virtual block object or `VMA_NULL` if creation failed.
++*/
++VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateVirtualBlock(
++ const VmaVirtualBlockCreateInfo* VMA_NOT_NULL pCreateInfo,
++ VmaVirtualBlock VMA_NULLABLE* VMA_NOT_NULL pVirtualBlock);
++
++/** \brief Destroys #VmaVirtualBlock object.
++
++Please note that you should consciously handle virtual allocations that could remain unfreed in the block.
++You should either free them individually using vmaVirtualFree() or call vmaClearVirtualBlock()
++if you are sure this is what you want. If you do neither, an assert is called.
++
++If you keep pointers to some additional metadata associated with your virtual allocations in their `pUserData`,
++don't forget to free them.
++*/
++VMA_CALL_PRE void VMA_CALL_POST vmaDestroyVirtualBlock(
++ VmaVirtualBlock VMA_NULLABLE virtualBlock);
++
++/** \brief Returns true of the #VmaVirtualBlock is empty - contains 0 virtual allocations and has all its space available for new allocations.
++*/
++VMA_CALL_PRE VkBool32 VMA_CALL_POST vmaIsVirtualBlockEmpty(
++ VmaVirtualBlock VMA_NOT_NULL virtualBlock);
++
++/** \brief Returns information about a specific virtual allocation within a virtual block, like its size and `pUserData` pointer.
++*/
++VMA_CALL_PRE void VMA_CALL_POST vmaGetVirtualAllocationInfo(
++ VmaVirtualBlock VMA_NOT_NULL virtualBlock,
++ VmaVirtualAllocation VMA_NOT_NULL_NON_DISPATCHABLE allocation, VmaVirtualAllocationInfo* VMA_NOT_NULL pVirtualAllocInfo);
++
++/** \brief Allocates new virtual allocation inside given #VmaVirtualBlock.
++
++If the allocation fails due to not enough free space available, `VK_ERROR_OUT_OF_DEVICE_MEMORY` is returned
++(despite the function doesn't ever allocate actual GPU memory).
++`pAllocation` is then set to `VK_NULL_HANDLE` and `pOffset`, if not null, it set to `UINT64_MAX`.
++
++\param virtualBlock Virtual block
++\param pCreateInfo Parameters for the allocation
++\param[out] pAllocation Returned handle of the new allocation
++\param[out] pOffset Returned offset of the new allocation. Optional, can be null.
++*/
++VMA_CALL_PRE VkResult VMA_CALL_POST vmaVirtualAllocate(
++ VmaVirtualBlock VMA_NOT_NULL virtualBlock,
++ const VmaVirtualAllocationCreateInfo* VMA_NOT_NULL pCreateInfo,
++ VmaVirtualAllocation VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pAllocation,
++ VkDeviceSize* VMA_NULLABLE pOffset);
++
++/** \brief Frees virtual allocation inside given #VmaVirtualBlock.
++
++It is correct to call this function with `allocation == VK_NULL_HANDLE` - it does nothing.
++*/
++VMA_CALL_PRE void VMA_CALL_POST vmaVirtualFree(
++ VmaVirtualBlock VMA_NOT_NULL virtualBlock,
++ VmaVirtualAllocation VMA_NULLABLE_NON_DISPATCHABLE allocation);
++
++/** \brief Frees all virtual allocations inside given #VmaVirtualBlock.
++
++You must either call this function or free each virtual allocation individually with vmaVirtualFree()
++before destroying a virtual block. Otherwise, an assert is called.
++
++If you keep pointer to some additional metadata associated with your virtual allocation in its `pUserData`,
++don't forget to free it as well.
++*/
++VMA_CALL_PRE void VMA_CALL_POST vmaClearVirtualBlock(
++ VmaVirtualBlock VMA_NOT_NULL virtualBlock);
++
++/** \brief Changes custom pointer associated with given virtual allocation.
++*/
++VMA_CALL_PRE void VMA_CALL_POST vmaSetVirtualAllocationUserData(
++ VmaVirtualBlock VMA_NOT_NULL virtualBlock,
++ VmaVirtualAllocation VMA_NOT_NULL_NON_DISPATCHABLE allocation,
++ void* VMA_NULLABLE pUserData);
++
++/** \brief Calculates and returns statistics about virtual allocations and memory usage in given #VmaVirtualBlock.
++
++This function is fast to call. For more detailed statistics, see vmaCalculateVirtualBlockStatistics().
++*/
++VMA_CALL_PRE void VMA_CALL_POST vmaGetVirtualBlockStatistics(
++ VmaVirtualBlock VMA_NOT_NULL virtualBlock,
++ VmaStatistics* VMA_NOT_NULL pStats);
++
++/** \brief Calculates and returns detailed statistics about virtual allocations and memory usage in given #VmaVirtualBlock.
++
++This function is slow to call. Use for debugging purposes.
++For less detailed statistics, see vmaGetVirtualBlockStatistics().
++*/
++VMA_CALL_PRE void VMA_CALL_POST vmaCalculateVirtualBlockStatistics(
++ VmaVirtualBlock VMA_NOT_NULL virtualBlock,
++ VmaDetailedStatistics* VMA_NOT_NULL pStats);
++
++/** @} */
++
++#if VMA_STATS_STRING_ENABLED
++/**
++\addtogroup group_stats
++@{
++*/
++
++/** \brief Builds and returns a null-terminated string in JSON format with information about given #VmaVirtualBlock.
++\param virtualBlock Virtual block.
++\param[out] ppStatsString Returned string.
++\param detailedMap Pass `VK_FALSE` to only obtain statistics as returned by vmaCalculateVirtualBlockStatistics(). Pass `VK_TRUE` to also obtain full list of allocations and free spaces.
++
++Returned string must be freed using vmaFreeVirtualBlockStatsString().
++*/
++VMA_CALL_PRE void VMA_CALL_POST vmaBuildVirtualBlockStatsString(
++ VmaVirtualBlock VMA_NOT_NULL virtualBlock,
++ char* VMA_NULLABLE* VMA_NOT_NULL ppStatsString,
++ VkBool32 detailedMap);
++
++/// Frees a string returned by vmaBuildVirtualBlockStatsString().
++VMA_CALL_PRE void VMA_CALL_POST vmaFreeVirtualBlockStatsString(
++ VmaVirtualBlock VMA_NOT_NULL virtualBlock,
++ char* VMA_NULLABLE pStatsString);
++
++/** \brief Builds and returns statistics as a null-terminated string in JSON format.
++\param allocator
++\param[out] ppStatsString Must be freed using vmaFreeStatsString() function.
++\param detailedMap
++*/
++VMA_CALL_PRE void VMA_CALL_POST vmaBuildStatsString(
++ VmaAllocator VMA_NOT_NULL allocator,
++ char* VMA_NULLABLE* VMA_NOT_NULL ppStatsString,
++ VkBool32 detailedMap);
++
++VMA_CALL_PRE void VMA_CALL_POST vmaFreeStatsString(
++ VmaAllocator VMA_NOT_NULL allocator,
++ char* VMA_NULLABLE pStatsString);
++
++/** @} */
++
++#endif // VMA_STATS_STRING_ENABLED
++
++#endif // _VMA_FUNCTION_HEADERS
++
++#ifdef __cplusplus
++}
++#endif
++
++#endif // AMD_VULKAN_MEMORY_ALLOCATOR_H
++
++////////////////////////////////////////////////////////////////////////////////
++////////////////////////////////////////////////////////////////////////////////
++//
++// IMPLEMENTATION
++//
++////////////////////////////////////////////////////////////////////////////////
++////////////////////////////////////////////////////////////////////////////////
++
++// For Visual Studio IntelliSense.
++#if defined(__cplusplus) && defined(__INTELLISENSE__)
++#define VMA_IMPLEMENTATION
++#endif
++
++#ifdef VMA_IMPLEMENTATION
++#undef VMA_IMPLEMENTATION
++
++#include <cstdint>
++#include <cstdlib>
++#include <cstring>
++#include <utility>
++#include <type_traits>
++
++#ifdef _MSC_VER
++ #include <intrin.h> // For functions like __popcnt, _BitScanForward etc.
++#endif
++#if __cplusplus >= 202002L || _MSVC_LANG >= 202002L // C++20
++ #include <bit> // For std::popcount
++#endif
++
++/*******************************************************************************
++CONFIGURATION SECTION
++
++Define some of these macros before each #include of this header or change them
++here if you need other then default behavior depending on your environment.
++*/
++#ifndef _VMA_CONFIGURATION
++
++/*
++Define this macro to 1 to make the library fetch pointers to Vulkan functions
++internally, like:
++
++ vulkanFunctions.vkAllocateMemory = &vkAllocateMemory;
++*/
++#if !defined(VMA_STATIC_VULKAN_FUNCTIONS) && !defined(VK_NO_PROTOTYPES)
++ #define VMA_STATIC_VULKAN_FUNCTIONS 1
++#endif
++
++/*
++Define this macro to 1 to make the library fetch pointers to Vulkan functions
++internally, like:
++
++ vulkanFunctions.vkAllocateMemory = (PFN_vkAllocateMemory)vkGetDeviceProcAddr(device, "vkAllocateMemory");
++
++To use this feature in new versions of VMA you now have to pass
++VmaVulkanFunctions::vkGetInstanceProcAddr and vkGetDeviceProcAddr as
++VmaAllocatorCreateInfo::pVulkanFunctions. Other members can be null.
++*/
++#if !defined(VMA_DYNAMIC_VULKAN_FUNCTIONS)
++ #define VMA_DYNAMIC_VULKAN_FUNCTIONS 1
++#endif
++
++#ifndef VMA_USE_STL_SHARED_MUTEX
++ // Compiler conforms to C++17.
++ #if __cplusplus >= 201703L
++ #define VMA_USE_STL_SHARED_MUTEX 1
++ // Visual studio defines __cplusplus properly only when passed additional parameter: /Zc:__cplusplus
++ // Otherwise it is always 199711L, despite shared_mutex works since Visual Studio 2015 Update 2.
++ #elif defined(_MSC_FULL_VER) && _MSC_FULL_VER >= 190023918 && __cplusplus == 199711L && _MSVC_LANG >= 201703L
++ #define VMA_USE_STL_SHARED_MUTEX 1
++ #else
++ #define VMA_USE_STL_SHARED_MUTEX 0
++ #endif
++#endif
++
++/*
++Define this macro to include custom header files without having to edit this file directly, e.g.:
++
++ // Inside of "my_vma_configuration_user_includes.h":
++
++ #include "my_custom_assert.h" // for MY_CUSTOM_ASSERT
++ #include "my_custom_min.h" // for my_custom_min
++ #include <algorithm>
++ #include <mutex>
++
++ // Inside a different file, which includes "vk_mem_alloc.h":
++
++ #define VMA_CONFIGURATION_USER_INCLUDES_H "my_vma_configuration_user_includes.h"
++ #define VMA_ASSERT(expr) MY_CUSTOM_ASSERT(expr)
++ #define VMA_MIN(v1, v2) (my_custom_min(v1, v2))
++ #include "vk_mem_alloc.h"
++ ...
++
++The following headers are used in this CONFIGURATION section only, so feel free to
++remove them if not needed.
++*/
++#if !defined(VMA_CONFIGURATION_USER_INCLUDES_H)
++ #include <cassert> // for assert
++ #include <algorithm> // for min, max
++ #include <mutex>
++#else
++ #include VMA_CONFIGURATION_USER_INCLUDES_H
++#endif
++
++#ifndef VMA_NULL
++ // Value used as null pointer. Define it to e.g.: nullptr, NULL, 0, (void*)0.
++ #define VMA_NULL nullptr
++#endif
++
++#if defined(__ANDROID_API__) && (__ANDROID_API__ < 16)
++#include <cstdlib>
++static void* vma_aligned_alloc(size_t alignment, size_t size)
++{
++ // alignment must be >= sizeof(void*)
++ if(alignment < sizeof(void*))
++ {
++ alignment = sizeof(void*);
++ }
++
++ return memalign(alignment, size);
++}
++#elif defined(__APPLE__) || defined(__ANDROID__) || (defined(__linux__) && defined(__GLIBCXX__) && !defined(_GLIBCXX_HAVE_ALIGNED_ALLOC))
++#include <cstdlib>
++
++#if defined(__APPLE__)
++#include <AvailabilityMacros.h>
++#endif
++
++static void* vma_aligned_alloc(size_t alignment, size_t size)
++{
++ // Unfortunately, aligned_alloc causes VMA to crash due to it returning null pointers. (At least under 11.4)
++ // Therefore, for now disable this specific exception until a proper solution is found.
++ //#if defined(__APPLE__) && (defined(MAC_OS_X_VERSION_10_16) || defined(__IPHONE_14_0))
++ //#if MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_16 || __IPHONE_OS_VERSION_MAX_ALLOWED >= __IPHONE_14_0
++ // // For C++14, usr/include/malloc/_malloc.h declares aligned_alloc()) only
++ // // with the MacOSX11.0 SDK in Xcode 12 (which is what adds
++ // // MAC_OS_X_VERSION_10_16), even though the function is marked
++ // // availabe for 10.15. That is why the preprocessor checks for 10.16 but
++ // // the __builtin_available checks for 10.15.
++ // // People who use C++17 could call aligned_alloc with the 10.15 SDK already.
++ // if (__builtin_available(macOS 10.15, iOS 13, *))
++ // return aligned_alloc(alignment, size);
++ //#endif
++ //#endif
++
++ // alignment must be >= sizeof(void*)
++ if(alignment < sizeof(void*))
++ {
++ alignment = sizeof(void*);
++ }
++
++ void *pointer;
++ if(posix_memalign(&pointer, alignment, size) == 0)
++ return pointer;
++ return VMA_NULL;
++}
++#elif defined(_WIN32)
++static void* vma_aligned_alloc(size_t alignment, size_t size)
++{
++ return _aligned_malloc(size, alignment);
++}
++#else
++static void* vma_aligned_alloc(size_t alignment, size_t size)
++{
++ return aligned_alloc(alignment, size);
++}
++#endif
++
++#if defined(_WIN32)
++static void vma_aligned_free(void* ptr)
++{
++ _aligned_free(ptr);
++}
++#else
++static void vma_aligned_free(void* VMA_NULLABLE ptr)
++{
++ free(ptr);
++}
++#endif
++
++// If your compiler is not compatible with C++11 and definition of
++// aligned_alloc() function is missing, uncommeting following line may help:
++
++//#include <malloc.h>
++
++// Normal assert to check for programmer's errors, especially in Debug configuration.
++#ifndef VMA_ASSERT
++ #ifdef NDEBUG
++ #define VMA_ASSERT(expr)
++ #else
++ #define VMA_ASSERT(expr) assert(expr)
++ #endif
++#endif
++
++// Assert that will be called very often, like inside data structures e.g. operator[].
++// Making it non-empty can make program slow.
++#ifndef VMA_HEAVY_ASSERT
++ #ifdef NDEBUG
++ #define VMA_HEAVY_ASSERT(expr)
++ #else
++ #define VMA_HEAVY_ASSERT(expr) //VMA_ASSERT(expr)
++ #endif
++#endif
++
++#ifndef VMA_ALIGN_OF
++ #define VMA_ALIGN_OF(type) (__alignof(type))
++#endif
++
++#ifndef VMA_SYSTEM_ALIGNED_MALLOC
++ #define VMA_SYSTEM_ALIGNED_MALLOC(size, alignment) vma_aligned_alloc((alignment), (size))
++#endif
++
++#ifndef VMA_SYSTEM_ALIGNED_FREE
++ // VMA_SYSTEM_FREE is the old name, but might have been defined by the user
++ #if defined(VMA_SYSTEM_FREE)
++ #define VMA_SYSTEM_ALIGNED_FREE(ptr) VMA_SYSTEM_FREE(ptr)
++ #else
++ #define VMA_SYSTEM_ALIGNED_FREE(ptr) vma_aligned_free(ptr)
++ #endif
++#endif
++
++#ifndef VMA_COUNT_BITS_SET
++ // Returns number of bits set to 1 in (v)
++ #define VMA_COUNT_BITS_SET(v) VmaCountBitsSet(v)
++#endif
++
++#ifndef VMA_BITSCAN_LSB
++ // Scans integer for index of first nonzero value from the Least Significant Bit (LSB). If mask is 0 then returns UINT8_MAX
++ #define VMA_BITSCAN_LSB(mask) VmaBitScanLSB(mask)
++#endif
++
++#ifndef VMA_BITSCAN_MSB
++ // Scans integer for index of first nonzero value from the Most Significant Bit (MSB). If mask is 0 then returns UINT8_MAX
++ #define VMA_BITSCAN_MSB(mask) VmaBitScanMSB(mask)
++#endif
++
++#ifndef VMA_MIN
++ #define VMA_MIN(v1, v2) ((std::min)((v1), (v2)))
++#endif
++
++#ifndef VMA_MAX
++ #define VMA_MAX(v1, v2) ((std::max)((v1), (v2)))
++#endif
++
++#ifndef VMA_SWAP
++ #define VMA_SWAP(v1, v2) std::swap((v1), (v2))
++#endif
++
++#ifndef VMA_SORT
++ #define VMA_SORT(beg, end, cmp) std::sort(beg, end, cmp)
++#endif
++
++#ifndef VMA_DEBUG_LOG
++ #define VMA_DEBUG_LOG(format, ...)
++ /*
++ #define VMA_DEBUG_LOG(format, ...) do { \
++ printf(format, __VA_ARGS__); \
++ printf("\n"); \
++ } while(false)
++ */
++#endif
++
++// Define this macro to 1 to enable functions: vmaBuildStatsString, vmaFreeStatsString.
++#if VMA_STATS_STRING_ENABLED
++ static inline void VmaUint32ToStr(char* VMA_NOT_NULL outStr, size_t strLen, uint32_t num)
++ {
++ snprintf(outStr, strLen, "%u", static_cast<unsigned int>(num));
++ }
++ static inline void VmaUint64ToStr(char* VMA_NOT_NULL outStr, size_t strLen, uint64_t num)
++ {
++ snprintf(outStr, strLen, "%llu", static_cast<unsigned long long>(num));
++ }
++ static inline void VmaPtrToStr(char* VMA_NOT_NULL outStr, size_t strLen, const void* ptr)
++ {
++ snprintf(outStr, strLen, "%p", ptr);
++ }
++#endif
++
++#ifndef VMA_MUTEX
++ class VmaMutex
++ {
++ public:
++ void Lock() { m_Mutex.lock(); }
++ void Unlock() { m_Mutex.unlock(); }
++ bool TryLock() { return m_Mutex.try_lock(); }
++ private:
++ std::mutex m_Mutex;
++ };
++ #define VMA_MUTEX VmaMutex
++#endif
++
++// Read-write mutex, where "read" is shared access, "write" is exclusive access.
++#ifndef VMA_RW_MUTEX
++ #if VMA_USE_STL_SHARED_MUTEX
++ // Use std::shared_mutex from C++17.
++ #include <shared_mutex>
++ class VmaRWMutex
++ {
++ public:
++ void LockRead() { m_Mutex.lock_shared(); }
++ void UnlockRead() { m_Mutex.unlock_shared(); }
++ bool TryLockRead() { return m_Mutex.try_lock_shared(); }
++ void LockWrite() { m_Mutex.lock(); }
++ void UnlockWrite() { m_Mutex.unlock(); }
++ bool TryLockWrite() { return m_Mutex.try_lock(); }
++ private:
++ std::shared_mutex m_Mutex;
++ };
++ #define VMA_RW_MUTEX VmaRWMutex
++ #elif defined(_WIN32) && defined(WINVER) && WINVER >= 0x0600
++ // Use SRWLOCK from WinAPI.
++ // Minimum supported client = Windows Vista, server = Windows Server 2008.
++ class VmaRWMutex
++ {
++ public:
++ VmaRWMutex() { InitializeSRWLock(&m_Lock); }
++ void LockRead() { AcquireSRWLockShared(&m_Lock); }
++ void UnlockRead() { ReleaseSRWLockShared(&m_Lock); }
++ bool TryLockRead() { return TryAcquireSRWLockShared(&m_Lock) != FALSE; }
++ void LockWrite() { AcquireSRWLockExclusive(&m_Lock); }
++ void UnlockWrite() { ReleaseSRWLockExclusive(&m_Lock); }
++ bool TryLockWrite() { return TryAcquireSRWLockExclusive(&m_Lock) != FALSE; }
++ private:
++ SRWLOCK m_Lock;
++ };
++ #define VMA_RW_MUTEX VmaRWMutex
++ #else
++ // Less efficient fallback: Use normal mutex.
++ class VmaRWMutex
++ {
++ public:
++ void LockRead() { m_Mutex.Lock(); }
++ void UnlockRead() { m_Mutex.Unlock(); }
++ bool TryLockRead() { return m_Mutex.TryLock(); }
++ void LockWrite() { m_Mutex.Lock(); }
++ void UnlockWrite() { m_Mutex.Unlock(); }
++ bool TryLockWrite() { return m_Mutex.TryLock(); }
++ private:
++ VMA_MUTEX m_Mutex;
++ };
++ #define VMA_RW_MUTEX VmaRWMutex
++ #endif // #if VMA_USE_STL_SHARED_MUTEX
++#endif // #ifndef VMA_RW_MUTEX
++
++/*
++If providing your own implementation, you need to implement a subset of std::atomic.
++*/
++#ifndef VMA_ATOMIC_UINT32
++ #include <atomic>
++ #define VMA_ATOMIC_UINT32 std::atomic<uint32_t>
++#endif
++
++#ifndef VMA_ATOMIC_UINT64
++ #include <atomic>
++ #define VMA_ATOMIC_UINT64 std::atomic<uint64_t>
++#endif
++
++#ifndef VMA_DEBUG_ALWAYS_DEDICATED_MEMORY
++ /**
++ Every allocation will have its own memory block.
++ Define to 1 for debugging purposes only.
++ */
++ #define VMA_DEBUG_ALWAYS_DEDICATED_MEMORY (0)
++#endif
++
++#ifndef VMA_MIN_ALIGNMENT
++ /**
++ Minimum alignment of all allocations, in bytes.
++ Set to more than 1 for debugging purposes. Must be power of two.
++ */
++ #ifdef VMA_DEBUG_ALIGNMENT // Old name
++ #define VMA_MIN_ALIGNMENT VMA_DEBUG_ALIGNMENT
++ #else
++ #define VMA_MIN_ALIGNMENT (1)
++ #endif
++#endif
++
++#ifndef VMA_DEBUG_MARGIN
++ /**
++ Minimum margin after every allocation, in bytes.
++ Set nonzero for debugging purposes only.
++ */
++ #define VMA_DEBUG_MARGIN (0)
++#endif
++
++#ifndef VMA_DEBUG_INITIALIZE_ALLOCATIONS
++ /**
++ Define this macro to 1 to automatically fill new allocations and destroyed
++ allocations with some bit pattern.
++ */
++ #define VMA_DEBUG_INITIALIZE_ALLOCATIONS (0)
++#endif
++
++#ifndef VMA_DEBUG_DETECT_CORRUPTION
++ /**
++ Define this macro to 1 together with non-zero value of VMA_DEBUG_MARGIN to
++ enable writing magic value to the margin after every allocation and
++ validating it, so that memory corruptions (out-of-bounds writes) are detected.
++ */
++ #define VMA_DEBUG_DETECT_CORRUPTION (0)
++#endif
++
++#ifndef VMA_DEBUG_GLOBAL_MUTEX
++ /**
++ Set this to 1 for debugging purposes only, to enable single mutex protecting all
++ entry calls to the library. Can be useful for debugging multithreading issues.
++ */
++ #define VMA_DEBUG_GLOBAL_MUTEX (0)
++#endif
++
++#ifndef VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY
++ /**
++ Minimum value for VkPhysicalDeviceLimits::bufferImageGranularity.
++ Set to more than 1 for debugging purposes only. Must be power of two.
++ */
++ #define VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY (1)
++#endif
++
++#ifndef VMA_DEBUG_DONT_EXCEED_MAX_MEMORY_ALLOCATION_COUNT
++ /*
++ Set this to 1 to make VMA never exceed VkPhysicalDeviceLimits::maxMemoryAllocationCount
++ and return error instead of leaving up to Vulkan implementation what to do in such cases.
++ */
++ #define VMA_DEBUG_DONT_EXCEED_MAX_MEMORY_ALLOCATION_COUNT (0)
++#endif
++
++#ifndef VMA_SMALL_HEAP_MAX_SIZE
++ /// Maximum size of a memory heap in Vulkan to consider it "small".
++ #define VMA_SMALL_HEAP_MAX_SIZE (1024ull * 1024 * 1024)
++#endif
++
++#ifndef VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE
++ /// Default size of a block allocated as single VkDeviceMemory from a "large" heap.
++ #define VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE (256ull * 1024 * 1024)
++#endif
++
++/*
++Mapping hysteresis is a logic that launches when vmaMapMemory/vmaUnmapMemory is called
++or a persistently mapped allocation is created and destroyed several times in a row.
++It keeps additional +1 mapping of a device memory block to prevent calling actual
++vkMapMemory/vkUnmapMemory too many times, which may improve performance and help
++tools like RenderDOc.
++*/
++#ifndef VMA_MAPPING_HYSTERESIS_ENABLED
++ #define VMA_MAPPING_HYSTERESIS_ENABLED 1
++#endif
++
++#ifndef VMA_CLASS_NO_COPY
++ #define VMA_CLASS_NO_COPY(className) \
++ private: \
++ className(const className&) = delete; \
++ className& operator=(const className&) = delete;
++#endif
++
++#define VMA_VALIDATE(cond) do { if(!(cond)) { \
++ VMA_ASSERT(0 && "Validation failed: " #cond); \
++ return false; \
++ } } while(false)
++
++/*******************************************************************************
++END OF CONFIGURATION
++*/
++#endif // _VMA_CONFIGURATION
++
++
++static const uint8_t VMA_ALLOCATION_FILL_PATTERN_CREATED = 0xDC;
++static const uint8_t VMA_ALLOCATION_FILL_PATTERN_DESTROYED = 0xEF;
++// Decimal 2139416166, float NaN, little-endian binary 66 E6 84 7F.
++static const uint32_t VMA_CORRUPTION_DETECTION_MAGIC_VALUE = 0x7F84E666;
++
++// Copy of some Vulkan definitions so we don't need to check their existence just to handle few constants.
++static const uint32_t VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY = 0x00000040;
++static const uint32_t VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD_COPY = 0x00000080;
++static const uint32_t VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_COPY = 0x00020000;
++static const uint32_t VK_IMAGE_CREATE_DISJOINT_BIT_COPY = 0x00000200;
++static const int32_t VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT_COPY = 1000158000;
++static const uint32_t VMA_ALLOCATION_INTERNAL_STRATEGY_MIN_OFFSET = 0x10000000u;
++static const uint32_t VMA_ALLOCATION_TRY_COUNT = 32;
++static const uint32_t VMA_VENDOR_ID_AMD = 4098;
++
++// This one is tricky. Vulkan specification defines this code as available since
++// Vulkan 1.0, but doesn't actually define it in Vulkan SDK earlier than 1.2.131.
++// See pull request #207.
++#define VK_ERROR_UNKNOWN_COPY ((VkResult)-13)
++
++
++#if VMA_STATS_STRING_ENABLED
++// Correspond to values of enum VmaSuballocationType.
++static const char* VMA_SUBALLOCATION_TYPE_NAMES[] =
++{
++ "FREE",
++ "UNKNOWN",
++ "BUFFER",
++ "IMAGE_UNKNOWN",
++ "IMAGE_LINEAR",
++ "IMAGE_OPTIMAL",
++};
++#endif
++
++static VkAllocationCallbacks VmaEmptyAllocationCallbacks =
++ { VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL };
++
++
++#ifndef _VMA_ENUM_DECLARATIONS
++
++enum VmaSuballocationType
++{
++ VMA_SUBALLOCATION_TYPE_FREE = 0,
++ VMA_SUBALLOCATION_TYPE_UNKNOWN = 1,
++ VMA_SUBALLOCATION_TYPE_BUFFER = 2,
++ VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN = 3,
++ VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR = 4,
++ VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL = 5,
++ VMA_SUBALLOCATION_TYPE_MAX_ENUM = 0x7FFFFFFF
++};
++
++enum VMA_CACHE_OPERATION
++{
++ VMA_CACHE_FLUSH,
++ VMA_CACHE_INVALIDATE
++};
++
++enum class VmaAllocationRequestType
++{
++ Normal,
++ TLSF,
++ // Used by "Linear" algorithm.
++ UpperAddress,
++ EndOf1st,
++ EndOf2nd,
++};
++
++#endif // _VMA_ENUM_DECLARATIONS
++
++#ifndef _VMA_FORWARD_DECLARATIONS
++// Opaque handle used by allocation algorithms to identify single allocation in any conforming way.
++VK_DEFINE_NON_DISPATCHABLE_HANDLE(VmaAllocHandle);
++
++struct VmaMutexLock;
++struct VmaMutexLockRead;
++struct VmaMutexLockWrite;
++
++template<typename T>
++struct AtomicTransactionalIncrement;
++
++template<typename T>
++struct VmaStlAllocator;
++
++template<typename T, typename AllocatorT>
++class VmaVector;
++
++template<typename T, typename AllocatorT, size_t N>
++class VmaSmallVector;
++
++template<typename T>
++class VmaPoolAllocator;
++
++template<typename T>
++struct VmaListItem;
++
++template<typename T>
++class VmaRawList;
++
++template<typename T, typename AllocatorT>
++class VmaList;
++
++template<typename ItemTypeTraits>
++class VmaIntrusiveLinkedList;
++
++// Unused in this version
++#if 0
++template<typename T1, typename T2>
++struct VmaPair;
++template<typename FirstT, typename SecondT>
++struct VmaPairFirstLess;
++
++template<typename KeyT, typename ValueT>
++class VmaMap;
++#endif
++
++#if VMA_STATS_STRING_ENABLED
++class VmaStringBuilder;
++class VmaJsonWriter;
++#endif
++
++class VmaDeviceMemoryBlock;
++
++struct VmaDedicatedAllocationListItemTraits;
++class VmaDedicatedAllocationList;
++
++struct VmaSuballocation;
++struct VmaSuballocationOffsetLess;
++struct VmaSuballocationOffsetGreater;
++struct VmaSuballocationItemSizeLess;
++
++typedef VmaList<VmaSuballocation, VmaStlAllocator<VmaSuballocation>> VmaSuballocationList;
++
++struct VmaAllocationRequest;
++
++class VmaBlockMetadata;
++class VmaBlockMetadata_Linear;
++class VmaBlockMetadata_TLSF;
++
++class VmaBlockVector;
++
++struct VmaPoolListItemTraits;
++
++struct VmaCurrentBudgetData;
++
++class VmaAllocationObjectAllocator;
++
++#endif // _VMA_FORWARD_DECLARATIONS
++
++
++#ifndef _VMA_FUNCTIONS
++
++/*
++Returns number of bits set to 1 in (v).
++
++On specific platforms and compilers you can use instrinsics like:
++
++Visual Studio:
++ return __popcnt(v);
++GCC, Clang:
++ return static_cast<uint32_t>(__builtin_popcount(v));
++
++Define macro VMA_COUNT_BITS_SET to provide your optimized implementation.
++But you need to check in runtime whether user's CPU supports these, as some old processors don't.
++*/
++static inline uint32_t VmaCountBitsSet(uint32_t v)
++{
++#if __cplusplus >= 202002L || _MSVC_LANG >= 202002L // C++20
++ return std::popcount(v);
++#else
++ uint32_t c = v - ((v >> 1) & 0x55555555);
++ c = ((c >> 2) & 0x33333333) + (c & 0x33333333);
++ c = ((c >> 4) + c) & 0x0F0F0F0F;
++ c = ((c >> 8) + c) & 0x00FF00FF;
++ c = ((c >> 16) + c) & 0x0000FFFF;
++ return c;
++#endif
++}
++
++static inline uint8_t VmaBitScanLSB(uint64_t mask)
++{
++#if defined(_MSC_VER) && defined(_WIN64)
++ unsigned long pos;
++ if (_BitScanForward64(&pos, mask))
++ return static_cast<uint8_t>(pos);
++ return UINT8_MAX;
++#elif defined __GNUC__ || defined __clang__
++ return static_cast<uint8_t>(__builtin_ffsll(mask)) - 1U;
++#else
++ uint8_t pos = 0;
++ uint64_t bit = 1;
++ do
++ {
++ if (mask & bit)
++ return pos;
++ bit <<= 1;
++ } while (pos++ < 63);
++ return UINT8_MAX;
++#endif
++}
++
++static inline uint8_t VmaBitScanLSB(uint32_t mask)
++{
++#ifdef _MSC_VER
++ unsigned long pos;
++ if (_BitScanForward(&pos, mask))
++ return static_cast<uint8_t>(pos);
++ return UINT8_MAX;
++#elif defined __GNUC__ || defined __clang__
++ return static_cast<uint8_t>(__builtin_ffs(mask)) - 1U;
++#else
++ uint8_t pos = 0;
++ uint32_t bit = 1;
++ do
++ {
++ if (mask & bit)
++ return pos;
++ bit <<= 1;
++ } while (pos++ < 31);
++ return UINT8_MAX;
++#endif
++}
++
++static inline uint8_t VmaBitScanMSB(uint64_t mask)
++{
++#if defined(_MSC_VER) && defined(_WIN64)
++ unsigned long pos;
++ if (_BitScanReverse64(&pos, mask))
++ return static_cast<uint8_t>(pos);
++#elif defined __GNUC__ || defined __clang__
++ if (mask)
++ return 63 - static_cast<uint8_t>(__builtin_clzll(mask));
++#else
++ uint8_t pos = 63;
++ uint64_t bit = 1ULL << 63;
++ do
++ {
++ if (mask & bit)
++ return pos;
++ bit >>= 1;
++ } while (pos-- > 0);
++#endif
++ return UINT8_MAX;
++}
++
++static inline uint8_t VmaBitScanMSB(uint32_t mask)
++{
++#ifdef _MSC_VER
++ unsigned long pos;
++ if (_BitScanReverse(&pos, mask))
++ return static_cast<uint8_t>(pos);
++#elif defined __GNUC__ || defined __clang__
++ if (mask)
++ return 31 - static_cast<uint8_t>(__builtin_clz(mask));
++#else
++ uint8_t pos = 31;
++ uint32_t bit = 1UL << 31;
++ do
++ {
++ if (mask & bit)
++ return pos;
++ bit >>= 1;
++ } while (pos-- > 0);
++#endif
++ return UINT8_MAX;
++}
++
++/*
++Returns true if given number is a power of two.
++T must be unsigned integer number or signed integer but always nonnegative.
++For 0 returns true.
++*/
++template <typename T>
++inline bool VmaIsPow2(T x)
++{
++ return (x & (x - 1)) == 0;
++}
++
++// Aligns given value up to nearest multiply of align value. For example: VmaAlignUp(11, 8) = 16.
++// Use types like uint32_t, uint64_t as T.
++template <typename T>
++static inline T VmaAlignUp(T val, T alignment)
++{
++ VMA_HEAVY_ASSERT(VmaIsPow2(alignment));
++ return (val + alignment - 1) & ~(alignment - 1);
++}
++
++// Aligns given value down to nearest multiply of align value. For example: VmaAlignUp(11, 8) = 8.
++// Use types like uint32_t, uint64_t as T.
++template <typename T>
++static inline T VmaAlignDown(T val, T alignment)
++{
++ VMA_HEAVY_ASSERT(VmaIsPow2(alignment));
++ return val & ~(alignment - 1);
++}
++
++// Division with mathematical rounding to nearest number.
++template <typename T>
++static inline T VmaRoundDiv(T x, T y)
++{
++ return (x + (y / (T)2)) / y;
++}
++
++// Divide by 'y' and round up to nearest integer.
++template <typename T>
++static inline T VmaDivideRoundingUp(T x, T y)
++{
++ return (x + y - (T)1) / y;
++}
++
++// Returns smallest power of 2 greater or equal to v.
++static inline uint32_t VmaNextPow2(uint32_t v)
++{
++ v--;
++ v |= v >> 1;
++ v |= v >> 2;
++ v |= v >> 4;
++ v |= v >> 8;
++ v |= v >> 16;
++ v++;
++ return v;
++}
++
++static inline uint64_t VmaNextPow2(uint64_t v)
++{
++ v--;
++ v |= v >> 1;
++ v |= v >> 2;
++ v |= v >> 4;
++ v |= v >> 8;
++ v |= v >> 16;
++ v |= v >> 32;
++ v++;
++ return v;
++}
++
++// Returns largest power of 2 less or equal to v.
++static inline uint32_t VmaPrevPow2(uint32_t v)
++{
++ v |= v >> 1;
++ v |= v >> 2;
++ v |= v >> 4;
++ v |= v >> 8;
++ v |= v >> 16;
++ v = v ^ (v >> 1);
++ return v;
++}
++
++static inline uint64_t VmaPrevPow2(uint64_t v)
++{
++ v |= v >> 1;
++ v |= v >> 2;
++ v |= v >> 4;
++ v |= v >> 8;
++ v |= v >> 16;
++ v |= v >> 32;
++ v = v ^ (v >> 1);
++ return v;
++}
++
++static inline bool VmaStrIsEmpty(const char* pStr)
++{
++ return pStr == VMA_NULL || *pStr == '\0';
++}
++
++#ifndef VMA_SORT
++template<typename Iterator, typename Compare>
++Iterator VmaQuickSortPartition(Iterator beg, Iterator end, Compare cmp)
++{
++ Iterator centerValue = end; --centerValue;
++ Iterator insertIndex = beg;
++ for (Iterator memTypeIndex = beg; memTypeIndex < centerValue; ++memTypeIndex)
++ {
++ if (cmp(*memTypeIndex, *centerValue))
++ {
++ if (insertIndex != memTypeIndex)
++ {
++ VMA_SWAP(*memTypeIndex, *insertIndex);
++ }
++ ++insertIndex;
++ }
++ }
++ if (insertIndex != centerValue)
++ {
++ VMA_SWAP(*insertIndex, *centerValue);
++ }
++ return insertIndex;
++}
++
++template<typename Iterator, typename Compare>
++void VmaQuickSort(Iterator beg, Iterator end, Compare cmp)
++{
++ if (beg < end)
++ {
++ Iterator it = VmaQuickSortPartition<Iterator, Compare>(beg, end, cmp);
++ VmaQuickSort<Iterator, Compare>(beg, it, cmp);
++ VmaQuickSort<Iterator, Compare>(it + 1, end, cmp);
++ }
++}
++
++#define VMA_SORT(beg, end, cmp) VmaQuickSort(beg, end, cmp)
++#endif // VMA_SORT
++
++/*
++Returns true if two memory blocks occupy overlapping pages.
++ResourceA must be in less memory offset than ResourceB.
++
++Algorithm is based on "Vulkan 1.0.39 - A Specification (with all registered Vulkan extensions)"
++chapter 11.6 "Resource Memory Association", paragraph "Buffer-Image Granularity".
++*/
++static inline bool VmaBlocksOnSamePage(
++ VkDeviceSize resourceAOffset,
++ VkDeviceSize resourceASize,
++ VkDeviceSize resourceBOffset,
++ VkDeviceSize pageSize)
++{
++ VMA_ASSERT(resourceAOffset + resourceASize <= resourceBOffset && resourceASize > 0 && pageSize > 0);
++ VkDeviceSize resourceAEnd = resourceAOffset + resourceASize - 1;
++ VkDeviceSize resourceAEndPage = resourceAEnd & ~(pageSize - 1);
++ VkDeviceSize resourceBStart = resourceBOffset;
++ VkDeviceSize resourceBStartPage = resourceBStart & ~(pageSize - 1);
++ return resourceAEndPage == resourceBStartPage;
++}
++
++/*
++Returns true if given suballocation types could conflict and must respect
++VkPhysicalDeviceLimits::bufferImageGranularity. They conflict if one is buffer
++or linear image and another one is optimal image. If type is unknown, behave
++conservatively.
++*/
++static inline bool VmaIsBufferImageGranularityConflict(
++ VmaSuballocationType suballocType1,
++ VmaSuballocationType suballocType2)
++{
++ if (suballocType1 > suballocType2)
++ {
++ VMA_SWAP(suballocType1, suballocType2);
++ }
++
++ switch (suballocType1)
++ {
++ case VMA_SUBALLOCATION_TYPE_FREE:
++ return false;
++ case VMA_SUBALLOCATION_TYPE_UNKNOWN:
++ return true;
++ case VMA_SUBALLOCATION_TYPE_BUFFER:
++ return
++ suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN ||
++ suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL;
++ case VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN:
++ return
++ suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN ||
++ suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR ||
++ suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL;
++ case VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR:
++ return
++ suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL;
++ case VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL:
++ return false;
++ default:
++ VMA_ASSERT(0);
++ return true;
++ }
++}
++
++static void VmaWriteMagicValue(void* pData, VkDeviceSize offset)
++{
++#if VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_DETECT_CORRUPTION
++ uint32_t* pDst = (uint32_t*)((char*)pData + offset);
++ const size_t numberCount = VMA_DEBUG_MARGIN / sizeof(uint32_t);
++ for (size_t i = 0; i < numberCount; ++i, ++pDst)
++ {
++ *pDst = VMA_CORRUPTION_DETECTION_MAGIC_VALUE;
++ }
++#else
++ // no-op
++#endif
++}
++
++static bool VmaValidateMagicValue(const void* pData, VkDeviceSize offset)
++{
++#if VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_DETECT_CORRUPTION
++ const uint32_t* pSrc = (const uint32_t*)((const char*)pData + offset);
++ const size_t numberCount = VMA_DEBUG_MARGIN / sizeof(uint32_t);
++ for (size_t i = 0; i < numberCount; ++i, ++pSrc)
++ {
++ if (*pSrc != VMA_CORRUPTION_DETECTION_MAGIC_VALUE)
++ {
++ return false;
++ }
++ }
++#endif
++ return true;
++}
++
++/*
++Fills structure with parameters of an example buffer to be used for transfers
++during GPU memory defragmentation.
++*/
++static void VmaFillGpuDefragmentationBufferCreateInfo(VkBufferCreateInfo& outBufCreateInfo)
++{
++ memset(&outBufCreateInfo, 0, sizeof(outBufCreateInfo));
++ outBufCreateInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
++ outBufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
++ outBufCreateInfo.size = (VkDeviceSize)VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE; // Example size.
++}
++
++
++/*
++Performs binary search and returns iterator to first element that is greater or
++equal to (key), according to comparison (cmp).
++
++Cmp should return true if first argument is less than second argument.
++
++Returned value is the found element, if present in the collection or place where
++new element with value (key) should be inserted.
++*/
++template <typename CmpLess, typename IterT, typename KeyT>
++static IterT VmaBinaryFindFirstNotLess(IterT beg, IterT end, const KeyT& key, const CmpLess& cmp)
++{
++ size_t down = 0, up = (end - beg);
++ while (down < up)
++ {
++ const size_t mid = down + (up - down) / 2; // Overflow-safe midpoint calculation
++ if (cmp(*(beg + mid), key))
++ {
++ down = mid + 1;
++ }
++ else
++ {
++ up = mid;
++ }
++ }
++ return beg + down;
++}
++
++template<typename CmpLess, typename IterT, typename KeyT>
++IterT VmaBinaryFindSorted(const IterT& beg, const IterT& end, const KeyT& value, const CmpLess& cmp)
++{
++ IterT it = VmaBinaryFindFirstNotLess<CmpLess, IterT, KeyT>(
++ beg, end, value, cmp);
++ if (it == end ||
++ (!cmp(*it, value) && !cmp(value, *it)))
++ {
++ return it;
++ }
++ return end;
++}
++
++/*
++Returns true if all pointers in the array are not-null and unique.
++Warning! O(n^2) complexity. Use only inside VMA_HEAVY_ASSERT.
++T must be pointer type, e.g. VmaAllocation, VmaPool.
++*/
++template<typename T>
++static bool VmaValidatePointerArray(uint32_t count, const T* arr)
++{
++ for (uint32_t i = 0; i < count; ++i)
++ {
++ const T iPtr = arr[i];
++ if (iPtr == VMA_NULL)
++ {
++ return false;
++ }
++ for (uint32_t j = i + 1; j < count; ++j)
++ {
++ if (iPtr == arr[j])
++ {
++ return false;
++ }
++ }
++ }
++ return true;
++}
++
++template<typename MainT, typename NewT>
++static inline void VmaPnextChainPushFront(MainT* mainStruct, NewT* newStruct)
++{
++ newStruct->pNext = mainStruct->pNext;
++ mainStruct->pNext = newStruct;
++}
++
++// This is the main algorithm that guides the selection of a memory type best for an allocation -
++// converts usage to required/preferred/not preferred flags.
++static bool FindMemoryPreferences(
++ bool isIntegratedGPU,
++ const VmaAllocationCreateInfo& allocCreateInfo,
++ VkFlags bufImgUsage, // VkBufferCreateInfo::usage or VkImageCreateInfo::usage. UINT32_MAX if unknown.
++ VkMemoryPropertyFlags& outRequiredFlags,
++ VkMemoryPropertyFlags& outPreferredFlags,
++ VkMemoryPropertyFlags& outNotPreferredFlags)
++{
++ outRequiredFlags = allocCreateInfo.requiredFlags;
++ outPreferredFlags = allocCreateInfo.preferredFlags;
++ outNotPreferredFlags = 0;
++
++ switch(allocCreateInfo.usage)
++ {
++ case VMA_MEMORY_USAGE_UNKNOWN:
++ break;
++ case VMA_MEMORY_USAGE_GPU_ONLY:
++ if(!isIntegratedGPU || (outPreferredFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0)
++ {
++ outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
++ }
++ break;
++ case VMA_MEMORY_USAGE_CPU_ONLY:
++ outRequiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
++ break;
++ case VMA_MEMORY_USAGE_CPU_TO_GPU:
++ outRequiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
++ if(!isIntegratedGPU || (outPreferredFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0)
++ {
++ outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
++ }
++ break;
++ case VMA_MEMORY_USAGE_GPU_TO_CPU:
++ outRequiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
++ outPreferredFlags |= VK_MEMORY_PROPERTY_HOST_CACHED_BIT;
++ break;
++ case VMA_MEMORY_USAGE_CPU_COPY:
++ outNotPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
++ break;
++ case VMA_MEMORY_USAGE_GPU_LAZILY_ALLOCATED:
++ outRequiredFlags |= VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT;
++ break;
++ case VMA_MEMORY_USAGE_AUTO:
++ case VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE:
++ case VMA_MEMORY_USAGE_AUTO_PREFER_HOST:
++ {
++ if(bufImgUsage == UINT32_MAX)
++ {
++ VMA_ASSERT(0 && "VMA_MEMORY_USAGE_AUTO* values can only be used with functions like vmaCreateBuffer, vmaCreateImage so that the details of the created resource are known.");
++ return false;
++ }
++ // This relies on values of VK_IMAGE_USAGE_TRANSFER* being the same VK_BUFFER_IMAGE_TRANSFER*.
++ const bool deviceAccess = (bufImgUsage & ~(VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_TRANSFER_SRC_BIT)) != 0;
++ const bool hostAccessSequentialWrite = (allocCreateInfo.flags & VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT) != 0;
++ const bool hostAccessRandom = (allocCreateInfo.flags & VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT) != 0;
++ const bool hostAccessAllowTransferInstead = (allocCreateInfo.flags & VMA_ALLOCATION_CREATE_HOST_ACCESS_ALLOW_TRANSFER_INSTEAD_BIT) != 0;
++ const bool preferDevice = allocCreateInfo.usage == VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE;
++ const bool preferHost = allocCreateInfo.usage == VMA_MEMORY_USAGE_AUTO_PREFER_HOST;
++
++ // CPU random access - e.g. a buffer written to or transferred from GPU to read back on CPU.
++ if(hostAccessRandom)
++ {
++ if(!isIntegratedGPU && deviceAccess && hostAccessAllowTransferInstead && !preferHost)
++ {
++ // Nice if it will end up in HOST_VISIBLE, but more importantly prefer DEVICE_LOCAL.
++ // Omitting HOST_VISIBLE here is intentional.
++ // In case there is DEVICE_LOCAL | HOST_VISIBLE | HOST_CACHED, it will pick that one.
++ // Otherwise, this will give same weight to DEVICE_LOCAL as HOST_VISIBLE | HOST_CACHED and select the former if occurs first on the list.
++ outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT;
++ }
++ else
++ {
++ // Always CPU memory, cached.
++ outRequiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT;
++ }
++ }
++ // CPU sequential write - may be CPU or host-visible GPU memory, uncached and write-combined.
++ else if(hostAccessSequentialWrite)
++ {
++ // Want uncached and write-combined.
++ outNotPreferredFlags |= VK_MEMORY_PROPERTY_HOST_CACHED_BIT;
++
++ if(!isIntegratedGPU && deviceAccess && hostAccessAllowTransferInstead && !preferHost)
++ {
++ outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
++ }
++ else
++ {
++ outRequiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
++ // Direct GPU access, CPU sequential write (e.g. a dynamic uniform buffer updated every frame)
++ if(deviceAccess)
++ {
++ // Could go to CPU memory or GPU BAR/unified. Up to the user to decide. If no preference, choose GPU memory.
++ if(preferHost)
++ outNotPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
++ else
++ outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
++ }
++ // GPU no direct access, CPU sequential write (e.g. an upload buffer to be transferred to the GPU)
++ else
++ {
++ // Could go to CPU memory or GPU BAR/unified. Up to the user to decide. If no preference, choose CPU memory.
++ if(preferDevice)
++ outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
++ else
++ outNotPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
++ }
++ }
++ }
++ // No CPU access
++ else
++ {
++ // GPU access, no CPU access (e.g. a color attachment image) - prefer GPU memory
++ if(deviceAccess)
++ {
++ // ...unless there is a clear preference from the user not to do so.
++ if(preferHost)
++ outNotPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
++ else
++ outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
++ }
++ // No direct GPU access, no CPU access, just transfers.
++ // It may be staging copy intended for e.g. preserving image for next frame (then better GPU memory) or
++ // a "swap file" copy to free some GPU memory (then better CPU memory).
++ // Up to the user to decide. If no preferece, assume the former and choose GPU memory.
++ if(preferHost)
++ outNotPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
++ else
++ outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
++ }
++ break;
++ }
++ default:
++ VMA_ASSERT(0);
++ }
++
++ // Avoid DEVICE_COHERENT unless explicitly requested.
++ if(((allocCreateInfo.requiredFlags | allocCreateInfo.preferredFlags) &
++ (VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY | VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD_COPY)) == 0)
++ {
++ outNotPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD_COPY;
++ }
++
++ return true;
++}
++
++////////////////////////////////////////////////////////////////////////////////
++// Memory allocation
++
++static void* VmaMalloc(const VkAllocationCallbacks* pAllocationCallbacks, size_t size, size_t alignment)
++{
++ void* result = VMA_NULL;
++ if ((pAllocationCallbacks != VMA_NULL) &&
++ (pAllocationCallbacks->pfnAllocation != VMA_NULL))
++ {
++ result = (*pAllocationCallbacks->pfnAllocation)(
++ pAllocationCallbacks->pUserData,
++ size,
++ alignment,
++ VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
++ }
++ else
++ {
++ result = VMA_SYSTEM_ALIGNED_MALLOC(size, alignment);
++ }
++ VMA_ASSERT(result != VMA_NULL && "CPU memory allocation failed.");
++ return result;
++}
++
++static void VmaFree(const VkAllocationCallbacks* pAllocationCallbacks, void* ptr)
++{
++ if ((pAllocationCallbacks != VMA_NULL) &&
++ (pAllocationCallbacks->pfnFree != VMA_NULL))
++ {
++ (*pAllocationCallbacks->pfnFree)(pAllocationCallbacks->pUserData, ptr);
++ }
++ else
++ {
++ VMA_SYSTEM_ALIGNED_FREE(ptr);
++ }
++}
++
++template<typename T>
++static T* VmaAllocate(const VkAllocationCallbacks* pAllocationCallbacks)
++{
++ return (T*)VmaMalloc(pAllocationCallbacks, sizeof(T), VMA_ALIGN_OF(T));
++}
++
++template<typename T>
++static T* VmaAllocateArray(const VkAllocationCallbacks* pAllocationCallbacks, size_t count)
++{
++ return (T*)VmaMalloc(pAllocationCallbacks, sizeof(T) * count, VMA_ALIGN_OF(T));
++}
++
++#define vma_new(allocator, type) new(VmaAllocate<type>(allocator))(type)
++
++#define vma_new_array(allocator, type, count) new(VmaAllocateArray<type>((allocator), (count)))(type)
++
++template<typename T>
++static void vma_delete(const VkAllocationCallbacks* pAllocationCallbacks, T* ptr)
++{
++ ptr->~T();
++ VmaFree(pAllocationCallbacks, ptr);
++}
++
++template<typename T>
++static void vma_delete_array(const VkAllocationCallbacks* pAllocationCallbacks, T* ptr, size_t count)
++{
++ if (ptr != VMA_NULL)
++ {
++ for (size_t i = count; i--; )
++ {
++ ptr[i].~T();
++ }
++ VmaFree(pAllocationCallbacks, ptr);
++ }
++}
++
++static char* VmaCreateStringCopy(const VkAllocationCallbacks* allocs, const char* srcStr)
++{
++ if (srcStr != VMA_NULL)
++ {
++ const size_t len = strlen(srcStr);
++ char* const result = vma_new_array(allocs, char, len + 1);
++ memcpy(result, srcStr, len + 1);
++ return result;
++ }
++ return VMA_NULL;
++}
++
++#if VMA_STATS_STRING_ENABLED
++static char* VmaCreateStringCopy(const VkAllocationCallbacks* allocs, const char* srcStr, size_t strLen)
++{
++ if (srcStr != VMA_NULL)
++ {
++ char* const result = vma_new_array(allocs, char, strLen + 1);
++ memcpy(result, srcStr, strLen);
++ result[strLen] = '\0';
++ return result;
++ }
++ return VMA_NULL;
++}
++#endif // VMA_STATS_STRING_ENABLED
++
++static void VmaFreeString(const VkAllocationCallbacks* allocs, char* str)
++{
++ if (str != VMA_NULL)
++ {
++ const size_t len = strlen(str);
++ vma_delete_array(allocs, str, len + 1);
++ }
++}
++
++template<typename CmpLess, typename VectorT>
++size_t VmaVectorInsertSorted(VectorT& vector, const typename VectorT::value_type& value)
++{
++ const size_t indexToInsert = VmaBinaryFindFirstNotLess(
++ vector.data(),
++ vector.data() + vector.size(),
++ value,
++ CmpLess()) - vector.data();
++ VmaVectorInsert(vector, indexToInsert, value);
++ return indexToInsert;
++}
++
++template<typename CmpLess, typename VectorT>
++bool VmaVectorRemoveSorted(VectorT& vector, const typename VectorT::value_type& value)
++{
++ CmpLess comparator;
++ typename VectorT::iterator it = VmaBinaryFindFirstNotLess(
++ vector.begin(),
++ vector.end(),
++ value,
++ comparator);
++ if ((it != vector.end()) && !comparator(*it, value) && !comparator(value, *it))
++ {
++ size_t indexToRemove = it - vector.begin();
++ VmaVectorRemove(vector, indexToRemove);
++ return true;
++ }
++ return false;
++}
++#endif // _VMA_FUNCTIONS
++
++#ifndef _VMA_STATISTICS_FUNCTIONS
++
++static void VmaClearStatistics(VmaStatistics& outStats)
++{
++ outStats.blockCount = 0;
++ outStats.allocationCount = 0;
++ outStats.blockBytes = 0;
++ outStats.allocationBytes = 0;
++}
++
++static void VmaAddStatistics(VmaStatistics& inoutStats, const VmaStatistics& src)
++{
++ inoutStats.blockCount += src.blockCount;
++ inoutStats.allocationCount += src.allocationCount;
++ inoutStats.blockBytes += src.blockBytes;
++ inoutStats.allocationBytes += src.allocationBytes;
++}
++
++static void VmaClearDetailedStatistics(VmaDetailedStatistics& outStats)
++{
++ VmaClearStatistics(outStats.statistics);
++ outStats.unusedRangeCount = 0;
++ outStats.allocationSizeMin = VK_WHOLE_SIZE;
++ outStats.allocationSizeMax = 0;
++ outStats.unusedRangeSizeMin = VK_WHOLE_SIZE;
++ outStats.unusedRangeSizeMax = 0;
++}
++
++static void VmaAddDetailedStatisticsAllocation(VmaDetailedStatistics& inoutStats, VkDeviceSize size)
++{
++ inoutStats.statistics.allocationCount++;
++ inoutStats.statistics.allocationBytes += size;
++ inoutStats.allocationSizeMin = VMA_MIN(inoutStats.allocationSizeMin, size);
++ inoutStats.allocationSizeMax = VMA_MAX(inoutStats.allocationSizeMax, size);
++}
++
++static void VmaAddDetailedStatisticsUnusedRange(VmaDetailedStatistics& inoutStats, VkDeviceSize size)
++{
++ inoutStats.unusedRangeCount++;
++ inoutStats.unusedRangeSizeMin = VMA_MIN(inoutStats.unusedRangeSizeMin, size);
++ inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, size);
++}
++
++static void VmaAddDetailedStatistics(VmaDetailedStatistics& inoutStats, const VmaDetailedStatistics& src)
++{
++ VmaAddStatistics(inoutStats.statistics, src.statistics);
++ inoutStats.unusedRangeCount += src.unusedRangeCount;
++ inoutStats.allocationSizeMin = VMA_MIN(inoutStats.allocationSizeMin, src.allocationSizeMin);
++ inoutStats.allocationSizeMax = VMA_MAX(inoutStats.allocationSizeMax, src.allocationSizeMax);
++ inoutStats.unusedRangeSizeMin = VMA_MIN(inoutStats.unusedRangeSizeMin, src.unusedRangeSizeMin);
++ inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, src.unusedRangeSizeMax);
++}
++
++#endif // _VMA_STATISTICS_FUNCTIONS
++
++#ifndef _VMA_MUTEX_LOCK
++// Helper RAII class to lock a mutex in constructor and unlock it in destructor (at the end of scope).
++struct VmaMutexLock
++{
++ VMA_CLASS_NO_COPY(VmaMutexLock)
++public:
++ VmaMutexLock(VMA_MUTEX& mutex, bool useMutex = true) :
++ m_pMutex(useMutex ? &mutex : VMA_NULL)
++ {
++ if (m_pMutex) { m_pMutex->Lock(); }
++ }
++ ~VmaMutexLock() { if (m_pMutex) { m_pMutex->Unlock(); } }
++
++private:
++ VMA_MUTEX* m_pMutex;
++};
++
++// Helper RAII class to lock a RW mutex in constructor and unlock it in destructor (at the end of scope), for reading.
++struct VmaMutexLockRead
++{
++ VMA_CLASS_NO_COPY(VmaMutexLockRead)
++public:
++ VmaMutexLockRead(VMA_RW_MUTEX& mutex, bool useMutex) :
++ m_pMutex(useMutex ? &mutex : VMA_NULL)
++ {
++ if (m_pMutex) { m_pMutex->LockRead(); }
++ }
++ ~VmaMutexLockRead() { if (m_pMutex) { m_pMutex->UnlockRead(); } }
++
++private:
++ VMA_RW_MUTEX* m_pMutex;
++};
++
++// Helper RAII class to lock a RW mutex in constructor and unlock it in destructor (at the end of scope), for writing.
++struct VmaMutexLockWrite
++{
++ VMA_CLASS_NO_COPY(VmaMutexLockWrite)
++public:
++ VmaMutexLockWrite(VMA_RW_MUTEX& mutex, bool useMutex)
++ : m_pMutex(useMutex ? &mutex : VMA_NULL)
++ {
++ if (m_pMutex) { m_pMutex->LockWrite(); }
++ }
++ ~VmaMutexLockWrite() { if (m_pMutex) { m_pMutex->UnlockWrite(); } }
++
++private:
++ VMA_RW_MUTEX* m_pMutex;
++};
++
++#if VMA_DEBUG_GLOBAL_MUTEX
++ static VMA_MUTEX gDebugGlobalMutex;
++ #define VMA_DEBUG_GLOBAL_MUTEX_LOCK VmaMutexLock debugGlobalMutexLock(gDebugGlobalMutex, true);
++#else
++ #define VMA_DEBUG_GLOBAL_MUTEX_LOCK
++#endif
++#endif // _VMA_MUTEX_LOCK
++
++#ifndef _VMA_ATOMIC_TRANSACTIONAL_INCREMENT
++// An object that increments given atomic but decrements it back in the destructor unless Commit() is called.
++template<typename T>
++struct AtomicTransactionalIncrement
++{
++public:
++ typedef std::atomic<T> AtomicT;
++
++ ~AtomicTransactionalIncrement()
++ {
++ if(m_Atomic)
++ --(*m_Atomic);
++ }
++
++ void Commit() { m_Atomic = nullptr; }
++ T Increment(AtomicT* atomic)
++ {
++ m_Atomic = atomic;
++ return m_Atomic->fetch_add(1);
++ }
++
++private:
++ AtomicT* m_Atomic = nullptr;
++};
++#endif // _VMA_ATOMIC_TRANSACTIONAL_INCREMENT
++
++#ifndef _VMA_STL_ALLOCATOR
++// STL-compatible allocator.
++template<typename T>
++struct VmaStlAllocator
++{
++ const VkAllocationCallbacks* const m_pCallbacks;
++ typedef T value_type;
++
++ VmaStlAllocator(const VkAllocationCallbacks* pCallbacks) : m_pCallbacks(pCallbacks) {}
++ template<typename U>
++ VmaStlAllocator(const VmaStlAllocator<U>& src) : m_pCallbacks(src.m_pCallbacks) {}
++ VmaStlAllocator(const VmaStlAllocator&) = default;
++ VmaStlAllocator& operator=(const VmaStlAllocator&) = delete;
++
++ T* allocate(size_t n) { return VmaAllocateArray<T>(m_pCallbacks, n); }
++ void deallocate(T* p, size_t n) { VmaFree(m_pCallbacks, p); }
++
++ template<typename U>
++ bool operator==(const VmaStlAllocator<U>& rhs) const
++ {
++ return m_pCallbacks == rhs.m_pCallbacks;
++ }
++ template<typename U>
++ bool operator!=(const VmaStlAllocator<U>& rhs) const
++ {
++ return m_pCallbacks != rhs.m_pCallbacks;
++ }
++};
++#endif // _VMA_STL_ALLOCATOR
++
++#ifndef _VMA_VECTOR
++/* Class with interface compatible with subset of std::vector.
++T must be POD because constructors and destructors are not called and memcpy is
++used for these objects. */
++template<typename T, typename AllocatorT>
++class VmaVector
++{
++public:
++ typedef T value_type;
++ typedef T* iterator;
++ typedef const T* const_iterator;
++
++ VmaVector(const AllocatorT& allocator);
++ VmaVector(size_t count, const AllocatorT& allocator);
++ // This version of the constructor is here for compatibility with pre-C++14 std::vector.
++ // value is unused.
++ VmaVector(size_t count, const T& value, const AllocatorT& allocator) : VmaVector(count, allocator) {}
++ VmaVector(const VmaVector<T, AllocatorT>& src);
++ VmaVector& operator=(const VmaVector& rhs);
++ ~VmaVector() { VmaFree(m_Allocator.m_pCallbacks, m_pArray); }
++
++ bool empty() const { return m_Count == 0; }
++ size_t size() const { return m_Count; }
++ T* data() { return m_pArray; }
++ T& front() { VMA_HEAVY_ASSERT(m_Count > 0); return m_pArray[0]; }
++ T& back() { VMA_HEAVY_ASSERT(m_Count > 0); return m_pArray[m_Count - 1]; }
++ const T* data() const { return m_pArray; }
++ const T& front() const { VMA_HEAVY_ASSERT(m_Count > 0); return m_pArray[0]; }
++ const T& back() const { VMA_HEAVY_ASSERT(m_Count > 0); return m_pArray[m_Count - 1]; }
++
++ iterator begin() { return m_pArray; }
++ iterator end() { return m_pArray + m_Count; }
++ const_iterator cbegin() const { return m_pArray; }
++ const_iterator cend() const { return m_pArray + m_Count; }
++ const_iterator begin() const { return cbegin(); }
++ const_iterator end() const { return cend(); }
++
++ void pop_front() { VMA_HEAVY_ASSERT(m_Count > 0); remove(0); }
++ void pop_back() { VMA_HEAVY_ASSERT(m_Count > 0); resize(size() - 1); }
++ void push_front(const T& src) { insert(0, src); }
++
++ void push_back(const T& src);
++ void reserve(size_t newCapacity, bool freeMemory = false);
++ void resize(size_t newCount);
++ void clear() { resize(0); }
++ void shrink_to_fit();
++ void insert(size_t index, const T& src);
++ void remove(size_t index);
++
++ T& operator[](size_t index) { VMA_HEAVY_ASSERT(index < m_Count); return m_pArray[index]; }
++ const T& operator[](size_t index) const { VMA_HEAVY_ASSERT(index < m_Count); return m_pArray[index]; }
++
++private:
++ AllocatorT m_Allocator;
++ T* m_pArray;
++ size_t m_Count;
++ size_t m_Capacity;
++};
++
++#ifndef _VMA_VECTOR_FUNCTIONS
++template<typename T, typename AllocatorT>
++VmaVector<T, AllocatorT>::VmaVector(const AllocatorT& allocator)
++ : m_Allocator(allocator),
++ m_pArray(VMA_NULL),
++ m_Count(0),
++ m_Capacity(0) {}
++
++template<typename T, typename AllocatorT>
++VmaVector<T, AllocatorT>::VmaVector(size_t count, const AllocatorT& allocator)
++ : m_Allocator(allocator),
++ m_pArray(count ? (T*)VmaAllocateArray<T>(allocator.m_pCallbacks, count) : VMA_NULL),
++ m_Count(count),
++ m_Capacity(count) {}
++
++template<typename T, typename AllocatorT>
++VmaVector<T, AllocatorT>::VmaVector(const VmaVector& src)
++ : m_Allocator(src.m_Allocator),
++ m_pArray(src.m_Count ? (T*)VmaAllocateArray<T>(src.m_Allocator.m_pCallbacks, src.m_Count) : VMA_NULL),
++ m_Count(src.m_Count),
++ m_Capacity(src.m_Count)
++{
++ if (m_Count != 0)
++ {
++ memcpy(m_pArray, src.m_pArray, m_Count * sizeof(T));
++ }
++}
++
++template<typename T, typename AllocatorT>
++VmaVector<T, AllocatorT>& VmaVector<T, AllocatorT>::operator=(const VmaVector& rhs)
++{
++ if (&rhs != this)
++ {
++ resize(rhs.m_Count);
++ if (m_Count != 0)
++ {
++ memcpy(m_pArray, rhs.m_pArray, m_Count * sizeof(T));
++ }
++ }
++ return *this;
++}
++
++template<typename T, typename AllocatorT>
++void VmaVector<T, AllocatorT>::push_back(const T& src)
++{
++ const size_t newIndex = size();
++ resize(newIndex + 1);
++ m_pArray[newIndex] = src;
++}
++
++template<typename T, typename AllocatorT>
++void VmaVector<T, AllocatorT>::reserve(size_t newCapacity, bool freeMemory)
++{
++ newCapacity = VMA_MAX(newCapacity, m_Count);
++
++ if ((newCapacity < m_Capacity) && !freeMemory)
++ {
++ newCapacity = m_Capacity;
++ }
++
++ if (newCapacity != m_Capacity)
++ {
++ T* const newArray = newCapacity ? VmaAllocateArray<T>(m_Allocator, newCapacity) : VMA_NULL;
++ if (m_Count != 0)
++ {
++ memcpy(newArray, m_pArray, m_Count * sizeof(T));
++ }
++ VmaFree(m_Allocator.m_pCallbacks, m_pArray);
++ m_Capacity = newCapacity;
++ m_pArray = newArray;
++ }
++}
++
++template<typename T, typename AllocatorT>
++void VmaVector<T, AllocatorT>::resize(size_t newCount)
++{
++ size_t newCapacity = m_Capacity;
++ if (newCount > m_Capacity)
++ {
++ newCapacity = VMA_MAX(newCount, VMA_MAX(m_Capacity * 3 / 2, (size_t)8));
++ }
++
++ if (newCapacity != m_Capacity)
++ {
++ T* const newArray = newCapacity ? VmaAllocateArray<T>(m_Allocator.m_pCallbacks, newCapacity) : VMA_NULL;
++ const size_t elementsToCopy = VMA_MIN(m_Count, newCount);
++ if (elementsToCopy != 0)
++ {
++ memcpy(newArray, m_pArray, elementsToCopy * sizeof(T));
++ }
++ VmaFree(m_Allocator.m_pCallbacks, m_pArray);
++ m_Capacity = newCapacity;
++ m_pArray = newArray;
++ }
++
++ m_Count = newCount;
++}
++
++template<typename T, typename AllocatorT>
++void VmaVector<T, AllocatorT>::shrink_to_fit()
++{
++ if (m_Capacity > m_Count)
++ {
++ T* newArray = VMA_NULL;
++ if (m_Count > 0)
++ {
++ newArray = VmaAllocateArray<T>(m_Allocator.m_pCallbacks, m_Count);
++ memcpy(newArray, m_pArray, m_Count * sizeof(T));
++ }
++ VmaFree(m_Allocator.m_pCallbacks, m_pArray);
++ m_Capacity = m_Count;
++ m_pArray = newArray;
++ }
++}
++
++template<typename T, typename AllocatorT>
++void VmaVector<T, AllocatorT>::insert(size_t index, const T& src)
++{
++ VMA_HEAVY_ASSERT(index <= m_Count);
++ const size_t oldCount = size();
++ resize(oldCount + 1);
++ if (index < oldCount)
++ {
++ memmove(m_pArray + (index + 1), m_pArray + index, (oldCount - index) * sizeof(T));
++ }
++ m_pArray[index] = src;
++}
++
++template<typename T, typename AllocatorT>
++void VmaVector<T, AllocatorT>::remove(size_t index)
++{
++ VMA_HEAVY_ASSERT(index < m_Count);
++ const size_t oldCount = size();
++ if (index < oldCount - 1)
++ {
++ memmove(m_pArray + index, m_pArray + (index + 1), (oldCount - index - 1) * sizeof(T));
++ }
++ resize(oldCount - 1);
++}
++#endif // _VMA_VECTOR_FUNCTIONS
++
++template<typename T, typename allocatorT>
++static void VmaVectorInsert(VmaVector<T, allocatorT>& vec, size_t index, const T& item)
++{
++ vec.insert(index, item);
++}
++
++template<typename T, typename allocatorT>
++static void VmaVectorRemove(VmaVector<T, allocatorT>& vec, size_t index)
++{
++ vec.remove(index);
++}
++#endif // _VMA_VECTOR
++
++#ifndef _VMA_SMALL_VECTOR
++/*
++This is a vector (a variable-sized array), optimized for the case when the array is small.
++
++It contains some number of elements in-place, which allows it to avoid heap allocation
++when the actual number of elements is below that threshold. This allows normal "small"
++cases to be fast without losing generality for large inputs.
++*/
++template<typename T, typename AllocatorT, size_t N>
++class VmaSmallVector
++{
++public:
++ typedef T value_type;
++ typedef T* iterator;
++
++ VmaSmallVector(const AllocatorT& allocator);
++ VmaSmallVector(size_t count, const AllocatorT& allocator);
++ template<typename SrcT, typename SrcAllocatorT, size_t SrcN>
++ VmaSmallVector(const VmaSmallVector<SrcT, SrcAllocatorT, SrcN>&) = delete;
++ template<typename SrcT, typename SrcAllocatorT, size_t SrcN>
++ VmaSmallVector<T, AllocatorT, N>& operator=(const VmaSmallVector<SrcT, SrcAllocatorT, SrcN>&) = delete;
++ ~VmaSmallVector() = default;
++
++ bool empty() const { return m_Count == 0; }
++ size_t size() const { return m_Count; }
++ T* data() { return m_Count > N ? m_DynamicArray.data() : m_StaticArray; }
++ T& front() { VMA_HEAVY_ASSERT(m_Count > 0); return data()[0]; }
++ T& back() { VMA_HEAVY_ASSERT(m_Count > 0); return data()[m_Count - 1]; }
++ const T* data() const { return m_Count > N ? m_DynamicArray.data() : m_StaticArray; }
++ const T& front() const { VMA_HEAVY_ASSERT(m_Count > 0); return data()[0]; }
++ const T& back() const { VMA_HEAVY_ASSERT(m_Count > 0); return data()[m_Count - 1]; }
++
++ iterator begin() { return data(); }
++ iterator end() { return data() + m_Count; }
++
++ void pop_front() { VMA_HEAVY_ASSERT(m_Count > 0); remove(0); }
++ void pop_back() { VMA_HEAVY_ASSERT(m_Count > 0); resize(size() - 1); }
++ void push_front(const T& src) { insert(0, src); }
++
++ void push_back(const T& src);
++ void resize(size_t newCount, bool freeMemory = false);
++ void clear(bool freeMemory = false);
++ void insert(size_t index, const T& src);
++ void remove(size_t index);
++
++ T& operator[](size_t index) { VMA_HEAVY_ASSERT(index < m_Count); return data()[index]; }
++ const T& operator[](size_t index) const { VMA_HEAVY_ASSERT(index < m_Count); return data()[index]; }
++
++private:
++ size_t m_Count;
++ T m_StaticArray[N]; // Used when m_Size <= N
++ VmaVector<T, AllocatorT> m_DynamicArray; // Used when m_Size > N
++};
++
++#ifndef _VMA_SMALL_VECTOR_FUNCTIONS
++template<typename T, typename AllocatorT, size_t N>
++VmaSmallVector<T, AllocatorT, N>::VmaSmallVector(const AllocatorT& allocator)
++ : m_Count(0),
++ m_DynamicArray(allocator) {}
++
++template<typename T, typename AllocatorT, size_t N>
++VmaSmallVector<T, AllocatorT, N>::VmaSmallVector(size_t count, const AllocatorT& allocator)
++ : m_Count(count),
++ m_DynamicArray(count > N ? count : 0, allocator) {}
++
++template<typename T, typename AllocatorT, size_t N>
++void VmaSmallVector<T, AllocatorT, N>::push_back(const T& src)
++{
++ const size_t newIndex = size();
++ resize(newIndex + 1);
++ data()[newIndex] = src;
++}
++
++template<typename T, typename AllocatorT, size_t N>
++void VmaSmallVector<T, AllocatorT, N>::resize(size_t newCount, bool freeMemory)
++{
++ if (newCount > N && m_Count > N)
++ {
++ // Any direction, staying in m_DynamicArray
++ m_DynamicArray.resize(newCount);
++ if (freeMemory)
++ {
++ m_DynamicArray.shrink_to_fit();
++ }
++ }
++ else if (newCount > N && m_Count <= N)
++ {
++ // Growing, moving from m_StaticArray to m_DynamicArray
++ m_DynamicArray.resize(newCount);
++ if (m_Count > 0)
++ {
++ memcpy(m_DynamicArray.data(), m_StaticArray, m_Count * sizeof(T));
++ }
++ }
++ else if (newCount <= N && m_Count > N)
++ {
++ // Shrinking, moving from m_DynamicArray to m_StaticArray
++ if (newCount > 0)
++ {
++ memcpy(m_StaticArray, m_DynamicArray.data(), newCount * sizeof(T));
++ }
++ m_DynamicArray.resize(0);
++ if (freeMemory)
++ {
++ m_DynamicArray.shrink_to_fit();
++ }
++ }
++ else
++ {
++ // Any direction, staying in m_StaticArray - nothing to do here
++ }
++ m_Count = newCount;
++}
++
++template<typename T, typename AllocatorT, size_t N>
++void VmaSmallVector<T, AllocatorT, N>::clear(bool freeMemory)
++{
++ m_DynamicArray.clear();
++ if (freeMemory)
++ {
++ m_DynamicArray.shrink_to_fit();
++ }
++ m_Count = 0;
++}
++
++template<typename T, typename AllocatorT, size_t N>
++void VmaSmallVector<T, AllocatorT, N>::insert(size_t index, const T& src)
++{
++ VMA_HEAVY_ASSERT(index <= m_Count);
++ const size_t oldCount = size();
++ resize(oldCount + 1);
++ T* const dataPtr = data();
++ if (index < oldCount)
++ {
++ // I know, this could be more optimal for case where memmove can be memcpy directly from m_StaticArray to m_DynamicArray.
++ memmove(dataPtr + (index + 1), dataPtr + index, (oldCount - index) * sizeof(T));
++ }
++ dataPtr[index] = src;
++}
++
++template<typename T, typename AllocatorT, size_t N>
++void VmaSmallVector<T, AllocatorT, N>::remove(size_t index)
++{
++ VMA_HEAVY_ASSERT(index < m_Count);
++ const size_t oldCount = size();
++ if (index < oldCount - 1)
++ {
++ // I know, this could be more optimal for case where memmove can be memcpy directly from m_DynamicArray to m_StaticArray.
++ T* const dataPtr = data();
++ memmove(dataPtr + index, dataPtr + (index + 1), (oldCount - index - 1) * sizeof(T));
++ }
++ resize(oldCount - 1);
++}
++#endif // _VMA_SMALL_VECTOR_FUNCTIONS
++#endif // _VMA_SMALL_VECTOR
++
++#ifndef _VMA_POOL_ALLOCATOR
++/*
++Allocator for objects of type T using a list of arrays (pools) to speed up
++allocation. Number of elements that can be allocated is not bounded because
++allocator can create multiple blocks.
++*/
++template<typename T>
++class VmaPoolAllocator
++{
++ VMA_CLASS_NO_COPY(VmaPoolAllocator)
++public:
++ VmaPoolAllocator(const VkAllocationCallbacks* pAllocationCallbacks, uint32_t firstBlockCapacity);
++ ~VmaPoolAllocator();
++ template<typename... Types> T* Alloc(Types&&... args);
++ void Free(T* ptr);
++
++private:
++ union Item
++ {
++ uint32_t NextFreeIndex;
++ alignas(T) char Value[sizeof(T)];
++ };
++ struct ItemBlock
++ {
++ Item* pItems;
++ uint32_t Capacity;
++ uint32_t FirstFreeIndex;
++ };
++
++ const VkAllocationCallbacks* m_pAllocationCallbacks;
++ const uint32_t m_FirstBlockCapacity;
++ VmaVector<ItemBlock, VmaStlAllocator<ItemBlock>> m_ItemBlocks;
++
++ ItemBlock& CreateNewBlock();
++};
++
++#ifndef _VMA_POOL_ALLOCATOR_FUNCTIONS
++template<typename T>
++VmaPoolAllocator<T>::VmaPoolAllocator(const VkAllocationCallbacks* pAllocationCallbacks, uint32_t firstBlockCapacity)
++ : m_pAllocationCallbacks(pAllocationCallbacks),
++ m_FirstBlockCapacity(firstBlockCapacity),
++ m_ItemBlocks(VmaStlAllocator<ItemBlock>(pAllocationCallbacks))
++{
++ VMA_ASSERT(m_FirstBlockCapacity > 1);
++}
++
++template<typename T>
++VmaPoolAllocator<T>::~VmaPoolAllocator()
++{
++ for (size_t i = m_ItemBlocks.size(); i--;)
++ vma_delete_array(m_pAllocationCallbacks, m_ItemBlocks[i].pItems, m_ItemBlocks[i].Capacity);
++ m_ItemBlocks.clear();
++}
++
++template<typename T>
++template<typename... Types> T* VmaPoolAllocator<T>::Alloc(Types&&... args)
++{
++ for (size_t i = m_ItemBlocks.size(); i--; )
++ {
++ ItemBlock& block = m_ItemBlocks[i];
++ // This block has some free items: Use first one.
++ if (block.FirstFreeIndex != UINT32_MAX)
++ {
++ Item* const pItem = &block.pItems[block.FirstFreeIndex];
++ block.FirstFreeIndex = pItem->NextFreeIndex;
++ T* result = (T*)&pItem->Value;
++ new(result)T(std::forward<Types>(args)...); // Explicit constructor call.
++ return result;
++ }
++ }
++
++ // No block has free item: Create new one and use it.
++ ItemBlock& newBlock = CreateNewBlock();
++ Item* const pItem = &newBlock.pItems[0];
++ newBlock.FirstFreeIndex = pItem->NextFreeIndex;
++ T* result = (T*)&pItem->Value;
++ new(result) T(std::forward<Types>(args)...); // Explicit constructor call.
++ return result;
++}
++
++template<typename T>
++void VmaPoolAllocator<T>::Free(T* ptr)
++{
++ // Search all memory blocks to find ptr.
++ for (size_t i = m_ItemBlocks.size(); i--; )
++ {
++ ItemBlock& block = m_ItemBlocks[i];
++
++ // Casting to union.
++ Item* pItemPtr;
++ memcpy(&pItemPtr, &ptr, sizeof(pItemPtr));
++
++ // Check if pItemPtr is in address range of this block.
++ if ((pItemPtr >= block.pItems) && (pItemPtr < block.pItems + block.Capacity))
++ {
++ ptr->~T(); // Explicit destructor call.
++ const uint32_t index = static_cast<uint32_t>(pItemPtr - block.pItems);
++ pItemPtr->NextFreeIndex = block.FirstFreeIndex;
++ block.FirstFreeIndex = index;
++ return;
++ }
++ }
++ VMA_ASSERT(0 && "Pointer doesn't belong to this memory pool.");
++}
++
++template<typename T>
++typename VmaPoolAllocator<T>::ItemBlock& VmaPoolAllocator<T>::CreateNewBlock()
++{
++ const uint32_t newBlockCapacity = m_ItemBlocks.empty() ?
++ m_FirstBlockCapacity : m_ItemBlocks.back().Capacity * 3 / 2;
++
++ const ItemBlock newBlock =
++ {
++ vma_new_array(m_pAllocationCallbacks, Item, newBlockCapacity),
++ newBlockCapacity,
++ 0
++ };
++
++ m_ItemBlocks.push_back(newBlock);
++
++ // Setup singly-linked list of all free items in this block.
++ for (uint32_t i = 0; i < newBlockCapacity - 1; ++i)
++ newBlock.pItems[i].NextFreeIndex = i + 1;
++ newBlock.pItems[newBlockCapacity - 1].NextFreeIndex = UINT32_MAX;
++ return m_ItemBlocks.back();
++}
++#endif // _VMA_POOL_ALLOCATOR_FUNCTIONS
++#endif // _VMA_POOL_ALLOCATOR
++
++#ifndef _VMA_RAW_LIST
++template<typename T>
++struct VmaListItem
++{
++ VmaListItem* pPrev;
++ VmaListItem* pNext;
++ T Value;
++};
++
++// Doubly linked list.
++template<typename T>
++class VmaRawList
++{
++ VMA_CLASS_NO_COPY(VmaRawList)
++public:
++ typedef VmaListItem<T> ItemType;
++
++ VmaRawList(const VkAllocationCallbacks* pAllocationCallbacks);
++ // Intentionally not calling Clear, because that would be unnecessary
++ // computations to return all items to m_ItemAllocator as free.
++ ~VmaRawList() = default;
++
++ size_t GetCount() const { return m_Count; }
++ bool IsEmpty() const { return m_Count == 0; }
++
++ ItemType* Front() { return m_pFront; }
++ ItemType* Back() { return m_pBack; }
++ const ItemType* Front() const { return m_pFront; }
++ const ItemType* Back() const { return m_pBack; }
++
++ ItemType* PushFront();
++ ItemType* PushBack();
++ ItemType* PushFront(const T& value);
++ ItemType* PushBack(const T& value);
++ void PopFront();
++ void PopBack();
++
++ // Item can be null - it means PushBack.
++ ItemType* InsertBefore(ItemType* pItem);
++ // Item can be null - it means PushFront.
++ ItemType* InsertAfter(ItemType* pItem);
++ ItemType* InsertBefore(ItemType* pItem, const T& value);
++ ItemType* InsertAfter(ItemType* pItem, const T& value);
++
++ void Clear();
++ void Remove(ItemType* pItem);
++
++private:
++ const VkAllocationCallbacks* const m_pAllocationCallbacks;
++ VmaPoolAllocator<ItemType> m_ItemAllocator;
++ ItemType* m_pFront;
++ ItemType* m_pBack;
++ size_t m_Count;
++};
++
++#ifndef _VMA_RAW_LIST_FUNCTIONS
++template<typename T>
++VmaRawList<T>::VmaRawList(const VkAllocationCallbacks* pAllocationCallbacks)
++ : m_pAllocationCallbacks(pAllocationCallbacks),
++ m_ItemAllocator(pAllocationCallbacks, 128),
++ m_pFront(VMA_NULL),
++ m_pBack(VMA_NULL),
++ m_Count(0) {}
++
++template<typename T>
++VmaListItem<T>* VmaRawList<T>::PushFront()
++{
++ ItemType* const pNewItem = m_ItemAllocator.Alloc();
++ pNewItem->pPrev = VMA_NULL;
++ if (IsEmpty())
++ {
++ pNewItem->pNext = VMA_NULL;
++ m_pFront = pNewItem;
++ m_pBack = pNewItem;
++ m_Count = 1;
++ }
++ else
++ {
++ pNewItem->pNext = m_pFront;
++ m_pFront->pPrev = pNewItem;
++ m_pFront = pNewItem;
++ ++m_Count;
++ }
++ return pNewItem;
++}
++
++template<typename T>
++VmaListItem<T>* VmaRawList<T>::PushBack()
++{
++ ItemType* const pNewItem = m_ItemAllocator.Alloc();
++ pNewItem->pNext = VMA_NULL;
++ if(IsEmpty())
++ {
++ pNewItem->pPrev = VMA_NULL;
++ m_pFront = pNewItem;
++ m_pBack = pNewItem;
++ m_Count = 1;
++ }
++ else
++ {
++ pNewItem->pPrev = m_pBack;
++ m_pBack->pNext = pNewItem;
++ m_pBack = pNewItem;
++ ++m_Count;
++ }
++ return pNewItem;
++}
++
++template<typename T>
++VmaListItem<T>* VmaRawList<T>::PushFront(const T& value)
++{
++ ItemType* const pNewItem = PushFront();
++ pNewItem->Value = value;
++ return pNewItem;
++}
++
++template<typename T>
++VmaListItem<T>* VmaRawList<T>::PushBack(const T& value)
++{
++ ItemType* const pNewItem = PushBack();
++ pNewItem->Value = value;
++ return pNewItem;
++}
++
++template<typename T>
++void VmaRawList<T>::PopFront()
++{
++ VMA_HEAVY_ASSERT(m_Count > 0);
++ ItemType* const pFrontItem = m_pFront;
++ ItemType* const pNextItem = pFrontItem->pNext;
++ if (pNextItem != VMA_NULL)
++ {
++ pNextItem->pPrev = VMA_NULL;
++ }
++ m_pFront = pNextItem;
++ m_ItemAllocator.Free(pFrontItem);
++ --m_Count;
++}
++
++template<typename T>
++void VmaRawList<T>::PopBack()
++{
++ VMA_HEAVY_ASSERT(m_Count > 0);
++ ItemType* const pBackItem = m_pBack;
++ ItemType* const pPrevItem = pBackItem->pPrev;
++ if(pPrevItem != VMA_NULL)
++ {
++ pPrevItem->pNext = VMA_NULL;
++ }
++ m_pBack = pPrevItem;
++ m_ItemAllocator.Free(pBackItem);
++ --m_Count;
++}
++
++template<typename T>
++void VmaRawList<T>::Clear()
++{
++ if (IsEmpty() == false)
++ {
++ ItemType* pItem = m_pBack;
++ while (pItem != VMA_NULL)
++ {
++ ItemType* const pPrevItem = pItem->pPrev;
++ m_ItemAllocator.Free(pItem);
++ pItem = pPrevItem;
++ }
++ m_pFront = VMA_NULL;
++ m_pBack = VMA_NULL;
++ m_Count = 0;
++ }
++}
++
++template<typename T>
++void VmaRawList<T>::Remove(ItemType* pItem)
++{
++ VMA_HEAVY_ASSERT(pItem != VMA_NULL);
++ VMA_HEAVY_ASSERT(m_Count > 0);
++
++ if(pItem->pPrev != VMA_NULL)
++ {
++ pItem->pPrev->pNext = pItem->pNext;
++ }
++ else
++ {
++ VMA_HEAVY_ASSERT(m_pFront == pItem);
++ m_pFront = pItem->pNext;
++ }
++
++ if(pItem->pNext != VMA_NULL)
++ {
++ pItem->pNext->pPrev = pItem->pPrev;
++ }
++ else
++ {
++ VMA_HEAVY_ASSERT(m_pBack == pItem);
++ m_pBack = pItem->pPrev;
++ }
++
++ m_ItemAllocator.Free(pItem);
++ --m_Count;
++}
++
++template<typename T>
++VmaListItem<T>* VmaRawList<T>::InsertBefore(ItemType* pItem)
++{
++ if(pItem != VMA_NULL)
++ {
++ ItemType* const prevItem = pItem->pPrev;
++ ItemType* const newItem = m_ItemAllocator.Alloc();
++ newItem->pPrev = prevItem;
++ newItem->pNext = pItem;
++ pItem->pPrev = newItem;
++ if(prevItem != VMA_NULL)
++ {
++ prevItem->pNext = newItem;
++ }
++ else
++ {
++ VMA_HEAVY_ASSERT(m_pFront == pItem);
++ m_pFront = newItem;
++ }
++ ++m_Count;
++ return newItem;
++ }
++ else
++ return PushBack();
++}
++
++template<typename T>
++VmaListItem<T>* VmaRawList<T>::InsertAfter(ItemType* pItem)
++{
++ if(pItem != VMA_NULL)
++ {
++ ItemType* const nextItem = pItem->pNext;
++ ItemType* const newItem = m_ItemAllocator.Alloc();
++ newItem->pNext = nextItem;
++ newItem->pPrev = pItem;
++ pItem->pNext = newItem;
++ if(nextItem != VMA_NULL)
++ {
++ nextItem->pPrev = newItem;
++ }
++ else
++ {
++ VMA_HEAVY_ASSERT(m_pBack == pItem);
++ m_pBack = newItem;
++ }
++ ++m_Count;
++ return newItem;
++ }
++ else
++ return PushFront();
++}
++
++template<typename T>
++VmaListItem<T>* VmaRawList<T>::InsertBefore(ItemType* pItem, const T& value)
++{
++ ItemType* const newItem = InsertBefore(pItem);
++ newItem->Value = value;
++ return newItem;
++}
++
++template<typename T>
++VmaListItem<T>* VmaRawList<T>::InsertAfter(ItemType* pItem, const T& value)
++{
++ ItemType* const newItem = InsertAfter(pItem);
++ newItem->Value = value;
++ return newItem;
++}
++#endif // _VMA_RAW_LIST_FUNCTIONS
++#endif // _VMA_RAW_LIST
++
++#ifndef _VMA_LIST
++template<typename T, typename AllocatorT>
++class VmaList
++{
++ VMA_CLASS_NO_COPY(VmaList)
++public:
++ class reverse_iterator;
++ class const_iterator;
++ class const_reverse_iterator;
++
++ class iterator
++ {
++ friend class const_iterator;
++ friend class VmaList<T, AllocatorT>;
++ public:
++ iterator() : m_pList(VMA_NULL), m_pItem(VMA_NULL) {}
++ iterator(const reverse_iterator& src) : m_pList(src.m_pList), m_pItem(src.m_pItem) {}
++
++ T& operator*() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return m_pItem->Value; }
++ T* operator->() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return &m_pItem->Value; }
++
++ bool operator==(const iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem == rhs.m_pItem; }
++ bool operator!=(const iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem != rhs.m_pItem; }
++
++ iterator operator++(int) { iterator result = *this; ++*this; return result; }
++ iterator operator--(int) { iterator result = *this; --*this; return result; }
++
++ iterator& operator++() { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); m_pItem = m_pItem->pNext; return *this; }
++ iterator& operator--();
++
++ private:
++ VmaRawList<T>* m_pList;
++ VmaListItem<T>* m_pItem;
++
++ iterator(VmaRawList<T>* pList, VmaListItem<T>* pItem) : m_pList(pList), m_pItem(pItem) {}
++ };
++ class reverse_iterator
++ {
++ friend class const_reverse_iterator;
++ friend class VmaList<T, AllocatorT>;
++ public:
++ reverse_iterator() : m_pList(VMA_NULL), m_pItem(VMA_NULL) {}
++ reverse_iterator(const iterator& src) : m_pList(src.m_pList), m_pItem(src.m_pItem) {}
++
++ T& operator*() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return m_pItem->Value; }
++ T* operator->() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return &m_pItem->Value; }
++
++ bool operator==(const reverse_iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem == rhs.m_pItem; }
++ bool operator!=(const reverse_iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem != rhs.m_pItem; }
++
++ reverse_iterator operator++(int) { reverse_iterator result = *this; ++* this; return result; }
++ reverse_iterator operator--(int) { reverse_iterator result = *this; --* this; return result; }
++
++ reverse_iterator& operator++() { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); m_pItem = m_pItem->pPrev; return *this; }
++ reverse_iterator& operator--();
++
++ private:
++ VmaRawList<T>* m_pList;
++ VmaListItem<T>* m_pItem;
++
++ reverse_iterator(VmaRawList<T>* pList, VmaListItem<T>* pItem) : m_pList(pList), m_pItem(pItem) {}
++ };
++ class const_iterator
++ {
++ friend class VmaList<T, AllocatorT>;
++ public:
++ const_iterator() : m_pList(VMA_NULL), m_pItem(VMA_NULL) {}
++ const_iterator(const iterator& src) : m_pList(src.m_pList), m_pItem(src.m_pItem) {}
++ const_iterator(const reverse_iterator& src) : m_pList(src.m_pList), m_pItem(src.m_pItem) {}
++
++ iterator drop_const() { return { const_cast<VmaRawList<T>*>(m_pList), const_cast<VmaListItem<T>*>(m_pItem) }; }
++
++ const T& operator*() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return m_pItem->Value; }
++ const T* operator->() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return &m_pItem->Value; }
++
++ bool operator==(const const_iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem == rhs.m_pItem; }
++ bool operator!=(const const_iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem != rhs.m_pItem; }
++
++ const_iterator operator++(int) { const_iterator result = *this; ++* this; return result; }
++ const_iterator operator--(int) { const_iterator result = *this; --* this; return result; }
++
++ const_iterator& operator++() { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); m_pItem = m_pItem->pNext; return *this; }
++ const_iterator& operator--();
++
++ private:
++ const VmaRawList<T>* m_pList;
++ const VmaListItem<T>* m_pItem;
++
++ const_iterator(const VmaRawList<T>* pList, const VmaListItem<T>* pItem) : m_pList(pList), m_pItem(pItem) {}
++ };
++ class const_reverse_iterator
++ {
++ friend class VmaList<T, AllocatorT>;
++ public:
++ const_reverse_iterator() : m_pList(VMA_NULL), m_pItem(VMA_NULL) {}
++ const_reverse_iterator(const reverse_iterator& src) : m_pList(src.m_pList), m_pItem(src.m_pItem) {}
++ const_reverse_iterator(const iterator& src) : m_pList(src.m_pList), m_pItem(src.m_pItem) {}
++
++ reverse_iterator drop_const() { return { const_cast<VmaRawList<T>*>(m_pList), const_cast<VmaListItem<T>*>(m_pItem) }; }
++
++ const T& operator*() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return m_pItem->Value; }
++ const T* operator->() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return &m_pItem->Value; }
++
++ bool operator==(const const_reverse_iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem == rhs.m_pItem; }
++ bool operator!=(const const_reverse_iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem != rhs.m_pItem; }
++
++ const_reverse_iterator operator++(int) { const_reverse_iterator result = *this; ++* this; return result; }
++ const_reverse_iterator operator--(int) { const_reverse_iterator result = *this; --* this; return result; }
++
++ const_reverse_iterator& operator++() { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); m_pItem = m_pItem->pPrev; return *this; }
++ const_reverse_iterator& operator--();
++
++ private:
++ const VmaRawList<T>* m_pList;
++ const VmaListItem<T>* m_pItem;
++
++ const_reverse_iterator(const VmaRawList<T>* pList, const VmaListItem<T>* pItem) : m_pList(pList), m_pItem(pItem) {}
++ };
++
++ VmaList(const AllocatorT& allocator) : m_RawList(allocator.m_pCallbacks) {}
++
++ bool empty() const { return m_RawList.IsEmpty(); }
++ size_t size() const { return m_RawList.GetCount(); }
++
++ iterator begin() { return iterator(&m_RawList, m_RawList.Front()); }
++ iterator end() { return iterator(&m_RawList, VMA_NULL); }
++
++ const_iterator cbegin() const { return const_iterator(&m_RawList, m_RawList.Front()); }
++ const_iterator cend() const { return const_iterator(&m_RawList, VMA_NULL); }
++
++ const_iterator begin() const { return cbegin(); }
++ const_iterator end() const { return cend(); }
++
++ reverse_iterator rbegin() { return reverse_iterator(&m_RawList, m_RawList.Back()); }
++ reverse_iterator rend() { return reverse_iterator(&m_RawList, VMA_NULL); }
++
++ const_reverse_iterator crbegin() const { return const_reverse_iterator(&m_RawList, m_RawList.Back()); }
++ const_reverse_iterator crend() const { return const_reverse_iterator(&m_RawList, VMA_NULL); }
++
++ const_reverse_iterator rbegin() const { return crbegin(); }
++ const_reverse_iterator rend() const { return crend(); }
++
++ void push_back(const T& value) { m_RawList.PushBack(value); }
++ iterator insert(iterator it, const T& value) { return iterator(&m_RawList, m_RawList.InsertBefore(it.m_pItem, value)); }
++
++ void clear() { m_RawList.Clear(); }
++ void erase(iterator it) { m_RawList.Remove(it.m_pItem); }
++
++private:
++ VmaRawList<T> m_RawList;
++};
++
++#ifndef _VMA_LIST_FUNCTIONS
++template<typename T, typename AllocatorT>
++typename VmaList<T, AllocatorT>::iterator& VmaList<T, AllocatorT>::iterator::operator--()
++{
++ if (m_pItem != VMA_NULL)
++ {
++ m_pItem = m_pItem->pPrev;
++ }
++ else
++ {
++ VMA_HEAVY_ASSERT(!m_pList->IsEmpty());
++ m_pItem = m_pList->Back();
++ }
++ return *this;
++}
++
++template<typename T, typename AllocatorT>
++typename VmaList<T, AllocatorT>::reverse_iterator& VmaList<T, AllocatorT>::reverse_iterator::operator--()
++{
++ if (m_pItem != VMA_NULL)
++ {
++ m_pItem = m_pItem->pNext;
++ }
++ else
++ {
++ VMA_HEAVY_ASSERT(!m_pList->IsEmpty());
++ m_pItem = m_pList->Front();
++ }
++ return *this;
++}
++
++template<typename T, typename AllocatorT>
++typename VmaList<T, AllocatorT>::const_iterator& VmaList<T, AllocatorT>::const_iterator::operator--()
++{
++ if (m_pItem != VMA_NULL)
++ {
++ m_pItem = m_pItem->pPrev;
++ }
++ else
++ {
++ VMA_HEAVY_ASSERT(!m_pList->IsEmpty());
++ m_pItem = m_pList->Back();
++ }
++ return *this;
++}
++
++template<typename T, typename AllocatorT>
++typename VmaList<T, AllocatorT>::const_reverse_iterator& VmaList<T, AllocatorT>::const_reverse_iterator::operator--()
++{
++ if (m_pItem != VMA_NULL)
++ {
++ m_pItem = m_pItem->pNext;
++ }
++ else
++ {
++ VMA_HEAVY_ASSERT(!m_pList->IsEmpty());
++ m_pItem = m_pList->Back();
++ }
++ return *this;
++}
++#endif // _VMA_LIST_FUNCTIONS
++#endif // _VMA_LIST
++
++#ifndef _VMA_INTRUSIVE_LINKED_LIST
++/*
++Expected interface of ItemTypeTraits:
++struct MyItemTypeTraits
++{
++ typedef MyItem ItemType;
++ static ItemType* GetPrev(const ItemType* item) { return item->myPrevPtr; }
++ static ItemType* GetNext(const ItemType* item) { return item->myNextPtr; }
++ static ItemType*& AccessPrev(ItemType* item) { return item->myPrevPtr; }
++ static ItemType*& AccessNext(ItemType* item) { return item->myNextPtr; }
++};
++*/
++template<typename ItemTypeTraits>
++class VmaIntrusiveLinkedList
++{
++public:
++ typedef typename ItemTypeTraits::ItemType ItemType;
++ static ItemType* GetPrev(const ItemType* item) { return ItemTypeTraits::GetPrev(item); }
++ static ItemType* GetNext(const ItemType* item) { return ItemTypeTraits::GetNext(item); }
++
++ // Movable, not copyable.
++ VmaIntrusiveLinkedList() = default;
++ VmaIntrusiveLinkedList(VmaIntrusiveLinkedList && src);
++ VmaIntrusiveLinkedList(const VmaIntrusiveLinkedList&) = delete;
++ VmaIntrusiveLinkedList& operator=(VmaIntrusiveLinkedList&& src);
++ VmaIntrusiveLinkedList& operator=(const VmaIntrusiveLinkedList&) = delete;
++ ~VmaIntrusiveLinkedList() { VMA_HEAVY_ASSERT(IsEmpty()); }
++
++ size_t GetCount() const { return m_Count; }
++ bool IsEmpty() const { return m_Count == 0; }
++ ItemType* Front() { return m_Front; }
++ ItemType* Back() { return m_Back; }
++ const ItemType* Front() const { return m_Front; }
++ const ItemType* Back() const { return m_Back; }
++
++ void PushBack(ItemType* item);
++ void PushFront(ItemType* item);
++ ItemType* PopBack();
++ ItemType* PopFront();
++
++ // MyItem can be null - it means PushBack.
++ void InsertBefore(ItemType* existingItem, ItemType* newItem);
++ // MyItem can be null - it means PushFront.
++ void InsertAfter(ItemType* existingItem, ItemType* newItem);
++ void Remove(ItemType* item);
++ void RemoveAll();
++
++private:
++ ItemType* m_Front = VMA_NULL;
++ ItemType* m_Back = VMA_NULL;
++ size_t m_Count = 0;
++};
++
++#ifndef _VMA_INTRUSIVE_LINKED_LIST_FUNCTIONS
++template<typename ItemTypeTraits>
++VmaIntrusiveLinkedList<ItemTypeTraits>::VmaIntrusiveLinkedList(VmaIntrusiveLinkedList&& src)
++ : m_Front(src.m_Front), m_Back(src.m_Back), m_Count(src.m_Count)
++{
++ src.m_Front = src.m_Back = VMA_NULL;
++ src.m_Count = 0;
++}
++
++template<typename ItemTypeTraits>
++VmaIntrusiveLinkedList<ItemTypeTraits>& VmaIntrusiveLinkedList<ItemTypeTraits>::operator=(VmaIntrusiveLinkedList&& src)
++{
++ if (&src != this)
++ {
++ VMA_HEAVY_ASSERT(IsEmpty());
++ m_Front = src.m_Front;
++ m_Back = src.m_Back;
++ m_Count = src.m_Count;
++ src.m_Front = src.m_Back = VMA_NULL;
++ src.m_Count = 0;
++ }
++ return *this;
++}
++
++template<typename ItemTypeTraits>
++void VmaIntrusiveLinkedList<ItemTypeTraits>::PushBack(ItemType* item)
++{
++ VMA_HEAVY_ASSERT(ItemTypeTraits::GetPrev(item) == VMA_NULL && ItemTypeTraits::GetNext(item) == VMA_NULL);
++ if (IsEmpty())
++ {
++ m_Front = item;
++ m_Back = item;
++ m_Count = 1;
++ }
++ else
++ {
++ ItemTypeTraits::AccessPrev(item) = m_Back;
++ ItemTypeTraits::AccessNext(m_Back) = item;
++ m_Back = item;
++ ++m_Count;
++ }
++}
++
++template<typename ItemTypeTraits>
++void VmaIntrusiveLinkedList<ItemTypeTraits>::PushFront(ItemType* item)
++{
++ VMA_HEAVY_ASSERT(ItemTypeTraits::GetPrev(item) == VMA_NULL && ItemTypeTraits::GetNext(item) == VMA_NULL);
++ if (IsEmpty())
++ {
++ m_Front = item;
++ m_Back = item;
++ m_Count = 1;
++ }
++ else
++ {
++ ItemTypeTraits::AccessNext(item) = m_Front;
++ ItemTypeTraits::AccessPrev(m_Front) = item;
++ m_Front = item;
++ ++m_Count;
++ }
++}
++
++template<typename ItemTypeTraits>
++typename VmaIntrusiveLinkedList<ItemTypeTraits>::ItemType* VmaIntrusiveLinkedList<ItemTypeTraits>::PopBack()
++{
++ VMA_HEAVY_ASSERT(m_Count > 0);
++ ItemType* const backItem = m_Back;
++ ItemType* const prevItem = ItemTypeTraits::GetPrev(backItem);
++ if (prevItem != VMA_NULL)
++ {
++ ItemTypeTraits::AccessNext(prevItem) = VMA_NULL;
++ }
++ m_Back = prevItem;
++ --m_Count;
++ ItemTypeTraits::AccessPrev(backItem) = VMA_NULL;
++ ItemTypeTraits::AccessNext(backItem) = VMA_NULL;
++ return backItem;
++}
++
++template<typename ItemTypeTraits>
++typename VmaIntrusiveLinkedList<ItemTypeTraits>::ItemType* VmaIntrusiveLinkedList<ItemTypeTraits>::PopFront()
++{
++ VMA_HEAVY_ASSERT(m_Count > 0);
++ ItemType* const frontItem = m_Front;
++ ItemType* const nextItem = ItemTypeTraits::GetNext(frontItem);
++ if (nextItem != VMA_NULL)
++ {
++ ItemTypeTraits::AccessPrev(nextItem) = VMA_NULL;
++ }
++ m_Front = nextItem;
++ --m_Count;
++ ItemTypeTraits::AccessPrev(frontItem) = VMA_NULL;
++ ItemTypeTraits::AccessNext(frontItem) = VMA_NULL;
++ return frontItem;
++}
++
++template<typename ItemTypeTraits>
++void VmaIntrusiveLinkedList<ItemTypeTraits>::InsertBefore(ItemType* existingItem, ItemType* newItem)
++{
++ VMA_HEAVY_ASSERT(newItem != VMA_NULL && ItemTypeTraits::GetPrev(newItem) == VMA_NULL && ItemTypeTraits::GetNext(newItem) == VMA_NULL);
++ if (existingItem != VMA_NULL)
++ {
++ ItemType* const prevItem = ItemTypeTraits::GetPrev(existingItem);
++ ItemTypeTraits::AccessPrev(newItem) = prevItem;
++ ItemTypeTraits::AccessNext(newItem) = existingItem;
++ ItemTypeTraits::AccessPrev(existingItem) = newItem;
++ if (prevItem != VMA_NULL)
++ {
++ ItemTypeTraits::AccessNext(prevItem) = newItem;
++ }
++ else
++ {
++ VMA_HEAVY_ASSERT(m_Front == existingItem);
++ m_Front = newItem;
++ }
++ ++m_Count;
++ }
++ else
++ PushBack(newItem);
++}
++
++template<typename ItemTypeTraits>
++void VmaIntrusiveLinkedList<ItemTypeTraits>::InsertAfter(ItemType* existingItem, ItemType* newItem)
++{
++ VMA_HEAVY_ASSERT(newItem != VMA_NULL && ItemTypeTraits::GetPrev(newItem) == VMA_NULL && ItemTypeTraits::GetNext(newItem) == VMA_NULL);
++ if (existingItem != VMA_NULL)
++ {
++ ItemType* const nextItem = ItemTypeTraits::GetNext(existingItem);
++ ItemTypeTraits::AccessNext(newItem) = nextItem;
++ ItemTypeTraits::AccessPrev(newItem) = existingItem;
++ ItemTypeTraits::AccessNext(existingItem) = newItem;
++ if (nextItem != VMA_NULL)
++ {
++ ItemTypeTraits::AccessPrev(nextItem) = newItem;
++ }
++ else
++ {
++ VMA_HEAVY_ASSERT(m_Back == existingItem);
++ m_Back = newItem;
++ }
++ ++m_Count;
++ }
++ else
++ return PushFront(newItem);
++}
++
++template<typename ItemTypeTraits>
++void VmaIntrusiveLinkedList<ItemTypeTraits>::Remove(ItemType* item)
++{
++ VMA_HEAVY_ASSERT(item != VMA_NULL && m_Count > 0);
++ if (ItemTypeTraits::GetPrev(item) != VMA_NULL)
++ {
++ ItemTypeTraits::AccessNext(ItemTypeTraits::AccessPrev(item)) = ItemTypeTraits::GetNext(item);
++ }
++ else
++ {
++ VMA_HEAVY_ASSERT(m_Front == item);
++ m_Front = ItemTypeTraits::GetNext(item);
++ }
++
++ if (ItemTypeTraits::GetNext(item) != VMA_NULL)
++ {
++ ItemTypeTraits::AccessPrev(ItemTypeTraits::AccessNext(item)) = ItemTypeTraits::GetPrev(item);
++ }
++ else
++ {
++ VMA_HEAVY_ASSERT(m_Back == item);
++ m_Back = ItemTypeTraits::GetPrev(item);
++ }
++ ItemTypeTraits::AccessPrev(item) = VMA_NULL;
++ ItemTypeTraits::AccessNext(item) = VMA_NULL;
++ --m_Count;
++}
++
++template<typename ItemTypeTraits>
++void VmaIntrusiveLinkedList<ItemTypeTraits>::RemoveAll()
++{
++ if (!IsEmpty())
++ {
++ ItemType* item = m_Back;
++ while (item != VMA_NULL)
++ {
++ ItemType* const prevItem = ItemTypeTraits::AccessPrev(item);
++ ItemTypeTraits::AccessPrev(item) = VMA_NULL;
++ ItemTypeTraits::AccessNext(item) = VMA_NULL;
++ item = prevItem;
++ }
++ m_Front = VMA_NULL;
++ m_Back = VMA_NULL;
++ m_Count = 0;
++ }
++}
++#endif // _VMA_INTRUSIVE_LINKED_LIST_FUNCTIONS
++#endif // _VMA_INTRUSIVE_LINKED_LIST
++
++// Unused in this version.
++#if 0
++
++#ifndef _VMA_PAIR
++template<typename T1, typename T2>
++struct VmaPair
++{
++ T1 first;
++ T2 second;
++
++ VmaPair() : first(), second() {}
++ VmaPair(const T1& firstSrc, const T2& secondSrc) : first(firstSrc), second(secondSrc) {}
++};
++
++template<typename FirstT, typename SecondT>
++struct VmaPairFirstLess
++{
++ bool operator()(const VmaPair<FirstT, SecondT>& lhs, const VmaPair<FirstT, SecondT>& rhs) const
++ {
++ return lhs.first < rhs.first;
++ }
++ bool operator()(const VmaPair<FirstT, SecondT>& lhs, const FirstT& rhsFirst) const
++ {
++ return lhs.first < rhsFirst;
++ }
++};
++#endif // _VMA_PAIR
++
++#ifndef _VMA_MAP
++/* Class compatible with subset of interface of std::unordered_map.
++KeyT, ValueT must be POD because they will be stored in VmaVector.
++*/
++template<typename KeyT, typename ValueT>
++class VmaMap
++{
++public:
++ typedef VmaPair<KeyT, ValueT> PairType;
++ typedef PairType* iterator;
++
++ VmaMap(const VmaStlAllocator<PairType>& allocator) : m_Vector(allocator) {}
++
++ iterator begin() { return m_Vector.begin(); }
++ iterator end() { return m_Vector.end(); }
++ size_t size() { return m_Vector.size(); }
++
++ void insert(const PairType& pair);
++ iterator find(const KeyT& key);
++ void erase(iterator it);
++
++private:
++ VmaVector< PairType, VmaStlAllocator<PairType>> m_Vector;
++};
++
++#ifndef _VMA_MAP_FUNCTIONS
++template<typename KeyT, typename ValueT>
++void VmaMap<KeyT, ValueT>::insert(const PairType& pair)
++{
++ const size_t indexToInsert = VmaBinaryFindFirstNotLess(
++ m_Vector.data(),
++ m_Vector.data() + m_Vector.size(),
++ pair,
++ VmaPairFirstLess<KeyT, ValueT>()) - m_Vector.data();
++ VmaVectorInsert(m_Vector, indexToInsert, pair);
++}
++
++template<typename KeyT, typename ValueT>
++VmaPair<KeyT, ValueT>* VmaMap<KeyT, ValueT>::find(const KeyT& key)
++{
++ PairType* it = VmaBinaryFindFirstNotLess(
++ m_Vector.data(),
++ m_Vector.data() + m_Vector.size(),
++ key,
++ VmaPairFirstLess<KeyT, ValueT>());
++ if ((it != m_Vector.end()) && (it->first == key))
++ {
++ return it;
++ }
++ else
++ {
++ return m_Vector.end();
++ }
++}
++
++template<typename KeyT, typename ValueT>
++void VmaMap<KeyT, ValueT>::erase(iterator it)
++{
++ VmaVectorRemove(m_Vector, it - m_Vector.begin());
++}
++#endif // _VMA_MAP_FUNCTIONS
++#endif // _VMA_MAP
++
++#endif // #if 0
++
++#if !defined(_VMA_STRING_BUILDER) && VMA_STATS_STRING_ENABLED
++class VmaStringBuilder
++{
++public:
++ VmaStringBuilder(const VkAllocationCallbacks* allocationCallbacks) : m_Data(VmaStlAllocator<char>(allocationCallbacks)) {}
++ ~VmaStringBuilder() = default;
++
++ size_t GetLength() const { return m_Data.size(); }
++ const char* GetData() const { return m_Data.data(); }
++ void AddNewLine() { Add('\n'); }
++ void Add(char ch) { m_Data.push_back(ch); }
++
++ void Add(const char* pStr);
++ void AddNumber(uint32_t num);
++ void AddNumber(uint64_t num);
++ void AddPointer(const void* ptr);
++
++private:
++ VmaVector<char, VmaStlAllocator<char>> m_Data;
++};
++
++#ifndef _VMA_STRING_BUILDER_FUNCTIONS
++void VmaStringBuilder::Add(const char* pStr)
++{
++ const size_t strLen = strlen(pStr);
++ if (strLen > 0)
++ {
++ const size_t oldCount = m_Data.size();
++ m_Data.resize(oldCount + strLen);
++ memcpy(m_Data.data() + oldCount, pStr, strLen);
++ }
++}
++
++void VmaStringBuilder::AddNumber(uint32_t num)
++{
++ char buf[11];
++ buf[10] = '\0';
++ char* p = &buf[10];
++ do
++ {
++ *--p = '0' + (num % 10);
++ num /= 10;
++ } while (num);
++ Add(p);
++}
++
++void VmaStringBuilder::AddNumber(uint64_t num)
++{
++ char buf[21];
++ buf[20] = '\0';
++ char* p = &buf[20];
++ do
++ {
++ *--p = '0' + (num % 10);
++ num /= 10;
++ } while (num);
++ Add(p);
++}
++
++void VmaStringBuilder::AddPointer(const void* ptr)
++{
++ char buf[21];
++ VmaPtrToStr(buf, sizeof(buf), ptr);
++ Add(buf);
++}
++#endif //_VMA_STRING_BUILDER_FUNCTIONS
++#endif // _VMA_STRING_BUILDER
++
++#if !defined(_VMA_JSON_WRITER) && VMA_STATS_STRING_ENABLED
++/*
++Allows to conveniently build a correct JSON document to be written to the
++VmaStringBuilder passed to the constructor.
++*/
++class VmaJsonWriter
++{
++ VMA_CLASS_NO_COPY(VmaJsonWriter)
++public:
++ // sb - string builder to write the document to. Must remain alive for the whole lifetime of this object.
++ VmaJsonWriter(const VkAllocationCallbacks* pAllocationCallbacks, VmaStringBuilder& sb);
++ ~VmaJsonWriter();
++
++ // Begins object by writing "{".
++ // Inside an object, you must call pairs of WriteString and a value, e.g.:
++ // j.BeginObject(true); j.WriteString("A"); j.WriteNumber(1); j.WriteString("B"); j.WriteNumber(2); j.EndObject();
++ // Will write: { "A": 1, "B": 2 }
++ void BeginObject(bool singleLine = false);
++ // Ends object by writing "}".
++ void EndObject();
++
++ // Begins array by writing "[".
++ // Inside an array, you can write a sequence of any values.
++ void BeginArray(bool singleLine = false);
++ // Ends array by writing "[".
++ void EndArray();
++
++ // Writes a string value inside "".
++ // pStr can contain any ANSI characters, including '"', new line etc. - they will be properly escaped.
++ void WriteString(const char* pStr);
++
++ // Begins writing a string value.
++ // Call BeginString, ContinueString, ContinueString, ..., EndString instead of
++ // WriteString to conveniently build the string content incrementally, made of
++ // parts including numbers.
++ void BeginString(const char* pStr = VMA_NULL);
++ // Posts next part of an open string.
++ void ContinueString(const char* pStr);
++ // Posts next part of an open string. The number is converted to decimal characters.
++ void ContinueString(uint32_t n);
++ void ContinueString(uint64_t n);
++ void ContinueString_Size(size_t n);
++ // Posts next part of an open string. Pointer value is converted to characters
++ // using "%p" formatting - shown as hexadecimal number, e.g.: 000000081276Ad00
++ void ContinueString_Pointer(const void* ptr);
++ // Ends writing a string value by writing '"'.
++ void EndString(const char* pStr = VMA_NULL);
++
++ // Writes a number value.
++ void WriteNumber(uint32_t n);
++ void WriteNumber(uint64_t n);
++ void WriteSize(size_t n);
++ // Writes a boolean value - false or true.
++ void WriteBool(bool b);
++ // Writes a null value.
++ void WriteNull();
++
++private:
++ enum COLLECTION_TYPE
++ {
++ COLLECTION_TYPE_OBJECT,
++ COLLECTION_TYPE_ARRAY,
++ };
++ struct StackItem
++ {
++ COLLECTION_TYPE type;
++ uint32_t valueCount;
++ bool singleLineMode;
++ };
++
++ static const char* const INDENT;
++
++ VmaStringBuilder& m_SB;
++ VmaVector< StackItem, VmaStlAllocator<StackItem> > m_Stack;
++ bool m_InsideString;
++
++ // Write size_t for less than 64bits
++ void WriteSize(size_t n, std::integral_constant<bool, false>) { m_SB.AddNumber(static_cast<uint32_t>(n)); }
++ // Write size_t for 64bits
++ void WriteSize(size_t n, std::integral_constant<bool, true>) { m_SB.AddNumber(static_cast<uint64_t>(n)); }
++
++ void BeginValue(bool isString);
++ void WriteIndent(bool oneLess = false);
++};
++const char* const VmaJsonWriter::INDENT = " ";
++
++#ifndef _VMA_JSON_WRITER_FUNCTIONS
++VmaJsonWriter::VmaJsonWriter(const VkAllocationCallbacks* pAllocationCallbacks, VmaStringBuilder& sb)
++ : m_SB(sb),
++ m_Stack(VmaStlAllocator<StackItem>(pAllocationCallbacks)),
++ m_InsideString(false) {}
++
++VmaJsonWriter::~VmaJsonWriter()
++{
++ VMA_ASSERT(!m_InsideString);
++ VMA_ASSERT(m_Stack.empty());
++}
++
++void VmaJsonWriter::BeginObject(bool singleLine)
++{
++ VMA_ASSERT(!m_InsideString);
++
++ BeginValue(false);
++ m_SB.Add('{');
++
++ StackItem item;
++ item.type = COLLECTION_TYPE_OBJECT;
++ item.valueCount = 0;
++ item.singleLineMode = singleLine;
++ m_Stack.push_back(item);
++}
++
++void VmaJsonWriter::EndObject()
++{
++ VMA_ASSERT(!m_InsideString);
++
++ WriteIndent(true);
++ m_SB.Add('}');
++
++ VMA_ASSERT(!m_Stack.empty() && m_Stack.back().type == COLLECTION_TYPE_OBJECT);
++ m_Stack.pop_back();
++}
++
++void VmaJsonWriter::BeginArray(bool singleLine)
++{
++ VMA_ASSERT(!m_InsideString);
++
++ BeginValue(false);
++ m_SB.Add('[');
++
++ StackItem item;
++ item.type = COLLECTION_TYPE_ARRAY;
++ item.valueCount = 0;
++ item.singleLineMode = singleLine;
++ m_Stack.push_back(item);
++}
++
++void VmaJsonWriter::EndArray()
++{
++ VMA_ASSERT(!m_InsideString);
++
++ WriteIndent(true);
++ m_SB.Add(']');
++
++ VMA_ASSERT(!m_Stack.empty() && m_Stack.back().type == COLLECTION_TYPE_ARRAY);
++ m_Stack.pop_back();
++}
++
++void VmaJsonWriter::WriteString(const char* pStr)
++{
++ BeginString(pStr);
++ EndString();
++}
++
++void VmaJsonWriter::BeginString(const char* pStr)
++{
++ VMA_ASSERT(!m_InsideString);
++
++ BeginValue(true);
++ m_SB.Add('"');
++ m_InsideString = true;
++ if (pStr != VMA_NULL && pStr[0] != '\0')
++ {
++ ContinueString(pStr);
++ }
++}
++
++void VmaJsonWriter::ContinueString(const char* pStr)
++{
++ VMA_ASSERT(m_InsideString);
++
++ const size_t strLen = strlen(pStr);
++ for (size_t i = 0; i < strLen; ++i)
++ {
++ char ch = pStr[i];
++ if (ch == '\\')
++ {
++ m_SB.Add("\\\\");
++ }
++ else if (ch == '"')
++ {
++ m_SB.Add("\\\"");
++ }
++ else if (ch >= 32)
++ {
++ m_SB.Add(ch);
++ }
++ else switch (ch)
++ {
++ case '\b':
++ m_SB.Add("\\b");
++ break;
++ case '\f':
++ m_SB.Add("\\f");
++ break;
++ case '\n':
++ m_SB.Add("\\n");
++ break;
++ case '\r':
++ m_SB.Add("\\r");
++ break;
++ case '\t':
++ m_SB.Add("\\t");
++ break;
++ default:
++ VMA_ASSERT(0 && "Character not currently supported.");
++ break;
++ }
++ }
++}
++
++void VmaJsonWriter::ContinueString(uint32_t n)
++{
++ VMA_ASSERT(m_InsideString);
++ m_SB.AddNumber(n);
++}
++
++void VmaJsonWriter::ContinueString(uint64_t n)
++{
++ VMA_ASSERT(m_InsideString);
++ m_SB.AddNumber(n);
++}
++
++void VmaJsonWriter::ContinueString_Size(size_t n)
++{
++ VMA_ASSERT(m_InsideString);
++ // Fix for AppleClang incorrect type casting
++ // TODO: Change to if constexpr when C++17 used as minimal standard
++ WriteSize(n, std::is_same<size_t, uint64_t>{});
++}
++
++void VmaJsonWriter::ContinueString_Pointer(const void* ptr)
++{
++ VMA_ASSERT(m_InsideString);
++ m_SB.AddPointer(ptr);
++}
++
++void VmaJsonWriter::EndString(const char* pStr)
++{
++ VMA_ASSERT(m_InsideString);
++ if (pStr != VMA_NULL && pStr[0] != '\0')
++ {
++ ContinueString(pStr);
++ }
++ m_SB.Add('"');
++ m_InsideString = false;
++}
++
++void VmaJsonWriter::WriteNumber(uint32_t n)
++{
++ VMA_ASSERT(!m_InsideString);
++ BeginValue(false);
++ m_SB.AddNumber(n);
++}
++
++void VmaJsonWriter::WriteNumber(uint64_t n)
++{
++ VMA_ASSERT(!m_InsideString);
++ BeginValue(false);
++ m_SB.AddNumber(n);
++}
++
++void VmaJsonWriter::WriteSize(size_t n)
++{
++ VMA_ASSERT(!m_InsideString);
++ BeginValue(false);
++ // Fix for AppleClang incorrect type casting
++ // TODO: Change to if constexpr when C++17 used as minimal standard
++ WriteSize(n, std::is_same<size_t, uint64_t>{});
++}
++
++void VmaJsonWriter::WriteBool(bool b)
++{
++ VMA_ASSERT(!m_InsideString);
++ BeginValue(false);
++ m_SB.Add(b ? "true" : "false");
++}
++
++void VmaJsonWriter::WriteNull()
++{
++ VMA_ASSERT(!m_InsideString);
++ BeginValue(false);
++ m_SB.Add("null");
++}
++
++void VmaJsonWriter::BeginValue(bool isString)
++{
++ if (!m_Stack.empty())
++ {
++ StackItem& currItem = m_Stack.back();
++ if (currItem.type == COLLECTION_TYPE_OBJECT &&
++ currItem.valueCount % 2 == 0)
++ {
++ VMA_ASSERT(isString);
++ }
++
++ if (currItem.type == COLLECTION_TYPE_OBJECT &&
++ currItem.valueCount % 2 != 0)
++ {
++ m_SB.Add(": ");
++ }
++ else if (currItem.valueCount > 0)
++ {
++ m_SB.Add(", ");
++ WriteIndent();
++ }
++ else
++ {
++ WriteIndent();
++ }
++ ++currItem.valueCount;
++ }
++}
++
++void VmaJsonWriter::WriteIndent(bool oneLess)
++{
++ if (!m_Stack.empty() && !m_Stack.back().singleLineMode)
++ {
++ m_SB.AddNewLine();
++
++ size_t count = m_Stack.size();
++ if (count > 0 && oneLess)
++ {
++ --count;
++ }
++ for (size_t i = 0; i < count; ++i)
++ {
++ m_SB.Add(INDENT);
++ }
++ }
++}
++#endif // _VMA_JSON_WRITER_FUNCTIONS
++
++static void VmaPrintDetailedStatistics(VmaJsonWriter& json, const VmaDetailedStatistics& stat)
++{
++ json.BeginObject();
++
++ json.WriteString("BlockCount");
++ json.WriteNumber(stat.statistics.blockCount);
++ json.WriteString("BlockBytes");
++ json.WriteNumber(stat.statistics.blockBytes);
++ json.WriteString("AllocationCount");
++ json.WriteNumber(stat.statistics.allocationCount);
++ json.WriteString("AllocationBytes");
++ json.WriteNumber(stat.statistics.allocationBytes);
++ json.WriteString("UnusedRangeCount");
++ json.WriteNumber(stat.unusedRangeCount);
++
++ if (stat.statistics.allocationCount > 1)
++ {
++ json.WriteString("AllocationSizeMin");
++ json.WriteNumber(stat.allocationSizeMin);
++ json.WriteString("AllocationSizeMax");
++ json.WriteNumber(stat.allocationSizeMax);
++ }
++ if (stat.unusedRangeCount > 1)
++ {
++ json.WriteString("UnusedRangeSizeMin");
++ json.WriteNumber(stat.unusedRangeSizeMin);
++ json.WriteString("UnusedRangeSizeMax");
++ json.WriteNumber(stat.unusedRangeSizeMax);
++ }
++ json.EndObject();
++}
++#endif // _VMA_JSON_WRITER
++
++#ifndef _VMA_MAPPING_HYSTERESIS
++
++class VmaMappingHysteresis
++{
++ VMA_CLASS_NO_COPY(VmaMappingHysteresis)
++public:
++ VmaMappingHysteresis() = default;
++
++ uint32_t GetExtraMapping() const { return m_ExtraMapping; }
++
++ // Call when Map was called.
++ // Returns true if switched to extra +1 mapping reference count.
++ bool PostMap()
++ {
++#if VMA_MAPPING_HYSTERESIS_ENABLED
++ if(m_ExtraMapping == 0)
++ {
++ ++m_MajorCounter;
++ if(m_MajorCounter >= COUNTER_MIN_EXTRA_MAPPING)
++ {
++ m_ExtraMapping = 1;
++ m_MajorCounter = 0;
++ m_MinorCounter = 0;
++ return true;
++ }
++ }
++ else // m_ExtraMapping == 1
++ PostMinorCounter();
++#endif // #if VMA_MAPPING_HYSTERESIS_ENABLED
++ return false;
++ }
++
++ // Call when Unmap was called.
++ void PostUnmap()
++ {
++#if VMA_MAPPING_HYSTERESIS_ENABLED
++ if(m_ExtraMapping == 0)
++ ++m_MajorCounter;
++ else // m_ExtraMapping == 1
++ PostMinorCounter();
++#endif // #if VMA_MAPPING_HYSTERESIS_ENABLED
++ }
++
++ // Call when allocation was made from the memory block.
++ void PostAlloc()
++ {
++#if VMA_MAPPING_HYSTERESIS_ENABLED
++ if(m_ExtraMapping == 1)
++ ++m_MajorCounter;
++ else // m_ExtraMapping == 0
++ PostMinorCounter();
++#endif // #if VMA_MAPPING_HYSTERESIS_ENABLED
++ }
++
++ // Call when allocation was freed from the memory block.
++ // Returns true if switched to extra -1 mapping reference count.
++ bool PostFree()
++ {
++#if VMA_MAPPING_HYSTERESIS_ENABLED
++ if(m_ExtraMapping == 1)
++ {
++ ++m_MajorCounter;
++ if(m_MajorCounter >= COUNTER_MIN_EXTRA_MAPPING &&
++ m_MajorCounter > m_MinorCounter + 1)
++ {
++ m_ExtraMapping = 0;
++ m_MajorCounter = 0;
++ m_MinorCounter = 0;
++ return true;
++ }
++ }
++ else // m_ExtraMapping == 0
++ PostMinorCounter();
++#endif // #if VMA_MAPPING_HYSTERESIS_ENABLED
++ return false;
++ }
++
++private:
++ static const int32_t COUNTER_MIN_EXTRA_MAPPING = 7;
++
++ uint32_t m_MinorCounter = 0;
++ uint32_t m_MajorCounter = 0;
++ uint32_t m_ExtraMapping = 0; // 0 or 1.
++
++ void PostMinorCounter()
++ {
++ if(m_MinorCounter < m_MajorCounter)
++ {
++ ++m_MinorCounter;
++ }
++ else if(m_MajorCounter > 0)
++ {
++ --m_MajorCounter;
++ --m_MinorCounter;
++ }
++ }
++};
++
++#endif // _VMA_MAPPING_HYSTERESIS
++
++#ifndef _VMA_DEVICE_MEMORY_BLOCK
++/*
++Represents a single block of device memory (`VkDeviceMemory`) with all the
++data about its regions (aka suballocations, #VmaAllocation), assigned and free.
++
++Thread-safety:
++- Access to m_pMetadata must be externally synchronized.
++- Map, Unmap, Bind* are synchronized internally.
++*/
++class VmaDeviceMemoryBlock
++{
++ VMA_CLASS_NO_COPY(VmaDeviceMemoryBlock)
++public:
++ VmaBlockMetadata* m_pMetadata;
++
++ VmaDeviceMemoryBlock(VmaAllocator hAllocator);
++ ~VmaDeviceMemoryBlock();
++
++ // Always call after construction.
++ void Init(
++ VmaAllocator hAllocator,
++ VmaPool hParentPool,
++ uint32_t newMemoryTypeIndex,
++ VkDeviceMemory newMemory,
++ VkDeviceSize newSize,
++ uint32_t id,
++ uint32_t algorithm,
++ VkDeviceSize bufferImageGranularity);
++ // Always call before destruction.
++ void Destroy(VmaAllocator allocator);
++
++ VmaPool GetParentPool() const { return m_hParentPool; }
++ VkDeviceMemory GetDeviceMemory() const { return m_hMemory; }
++ uint32_t GetMemoryTypeIndex() const { return m_MemoryTypeIndex; }
++ uint32_t GetId() const { return m_Id; }
++ void* GetMappedData() const { return m_pMappedData; }
++ uint32_t GetMapRefCount() const { return m_MapCount; }
++
++ // Call when allocation/free was made from m_pMetadata.
++ // Used for m_MappingHysteresis.
++ void PostAlloc() { m_MappingHysteresis.PostAlloc(); }
++ void PostFree(VmaAllocator hAllocator);
++
++ // Validates all data structures inside this object. If not valid, returns false.
++ bool Validate() const;
++ VkResult CheckCorruption(VmaAllocator hAllocator);
++
++ // ppData can be null.
++ VkResult Map(VmaAllocator hAllocator, uint32_t count, void** ppData);
++ void Unmap(VmaAllocator hAllocator, uint32_t count);
++
++ VkResult WriteMagicValueAfterAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize);
++ VkResult ValidateMagicValueAfterAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize);
++
++ VkResult BindBufferMemory(
++ const VmaAllocator hAllocator,
++ const VmaAllocation hAllocation,
++ VkDeviceSize allocationLocalOffset,
++ VkBuffer hBuffer,
++ const void* pNext);
++ VkResult BindImageMemory(
++ const VmaAllocator hAllocator,
++ const VmaAllocation hAllocation,
++ VkDeviceSize allocationLocalOffset,
++ VkImage hImage,
++ const void* pNext);
++
++private:
++ VmaPool m_hParentPool; // VK_NULL_HANDLE if not belongs to custom pool.
++ uint32_t m_MemoryTypeIndex;
++ uint32_t m_Id;
++ VkDeviceMemory m_hMemory;
++
++ /*
++ Protects access to m_hMemory so it is not used by multiple threads simultaneously, e.g. vkMapMemory, vkBindBufferMemory.
++ Also protects m_MapCount, m_pMappedData.
++ Allocations, deallocations, any change in m_pMetadata is protected by parent's VmaBlockVector::m_Mutex.
++ */
++ VMA_MUTEX m_MapAndBindMutex;
++ VmaMappingHysteresis m_MappingHysteresis;
++ uint32_t m_MapCount;
++ void* m_pMappedData;
++};
++#endif // _VMA_DEVICE_MEMORY_BLOCK
++
++#ifndef _VMA_ALLOCATION_T
++struct VmaAllocation_T
++{
++ friend struct VmaDedicatedAllocationListItemTraits;
++
++ enum FLAGS
++ {
++ FLAG_PERSISTENT_MAP = 0x01,
++ FLAG_MAPPING_ALLOWED = 0x02,
++ };
++
++public:
++ enum ALLOCATION_TYPE
++ {
++ ALLOCATION_TYPE_NONE,
++ ALLOCATION_TYPE_BLOCK,
++ ALLOCATION_TYPE_DEDICATED,
++ };
++
++ // This struct is allocated using VmaPoolAllocator.
++ VmaAllocation_T(bool mappingAllowed);
++ ~VmaAllocation_T();
++
++ void InitBlockAllocation(
++ VmaDeviceMemoryBlock* block,
++ VmaAllocHandle allocHandle,
++ VkDeviceSize alignment,
++ VkDeviceSize size,
++ uint32_t memoryTypeIndex,
++ VmaSuballocationType suballocationType,
++ bool mapped);
++ // pMappedData not null means allocation is created with MAPPED flag.
++ void InitDedicatedAllocation(
++ VmaPool hParentPool,
++ uint32_t memoryTypeIndex,
++ VkDeviceMemory hMemory,
++ VmaSuballocationType suballocationType,
++ void* pMappedData,
++ VkDeviceSize size);
++
++ ALLOCATION_TYPE GetType() const { return (ALLOCATION_TYPE)m_Type; }
++ VkDeviceSize GetAlignment() const { return m_Alignment; }
++ VkDeviceSize GetSize() const { return m_Size; }
++ void* GetUserData() const { return m_pUserData; }
++ const char* GetName() const { return m_pName; }
++ VmaSuballocationType GetSuballocationType() const { return (VmaSuballocationType)m_SuballocationType; }
++
++ VmaDeviceMemoryBlock* GetBlock() const { VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK); return m_BlockAllocation.m_Block; }
++ uint32_t GetMemoryTypeIndex() const { return m_MemoryTypeIndex; }
++ bool IsPersistentMap() const { return (m_Flags & FLAG_PERSISTENT_MAP) != 0; }
++ bool IsMappingAllowed() const { return (m_Flags & FLAG_MAPPING_ALLOWED) != 0; }
++
++ void SetUserData(VmaAllocator hAllocator, void* pUserData) { m_pUserData = pUserData; }
++ void SetName(VmaAllocator hAllocator, const char* pName);
++ void FreeName(VmaAllocator hAllocator);
++ uint8_t SwapBlockAllocation(VmaAllocator hAllocator, VmaAllocation allocation);
++ VmaAllocHandle GetAllocHandle() const;
++ VkDeviceSize GetOffset() const;
++ VmaPool GetParentPool() const;
++ VkDeviceMemory GetMemory() const;
++ void* GetMappedData() const;
++
++ void BlockAllocMap();
++ void BlockAllocUnmap();
++ VkResult DedicatedAllocMap(VmaAllocator hAllocator, void** ppData);
++ void DedicatedAllocUnmap(VmaAllocator hAllocator);
++
++#if VMA_STATS_STRING_ENABLED
++ uint32_t GetBufferImageUsage() const { return m_BufferImageUsage; }
++
++ void InitBufferImageUsage(uint32_t bufferImageUsage);
++ void PrintParameters(class VmaJsonWriter& json) const;
++#endif
++
++private:
++ // Allocation out of VmaDeviceMemoryBlock.
++ struct BlockAllocation
++ {
++ VmaDeviceMemoryBlock* m_Block;
++ VmaAllocHandle m_AllocHandle;
++ };
++ // Allocation for an object that has its own private VkDeviceMemory.
++ struct DedicatedAllocation
++ {
++ VmaPool m_hParentPool; // VK_NULL_HANDLE if not belongs to custom pool.
++ VkDeviceMemory m_hMemory;
++ void* m_pMappedData; // Not null means memory is mapped.
++ VmaAllocation_T* m_Prev;
++ VmaAllocation_T* m_Next;
++ };
++ union
++ {
++ // Allocation out of VmaDeviceMemoryBlock.
++ BlockAllocation m_BlockAllocation;
++ // Allocation for an object that has its own private VkDeviceMemory.
++ DedicatedAllocation m_DedicatedAllocation;
++ };
++
++ VkDeviceSize m_Alignment;
++ VkDeviceSize m_Size;
++ void* m_pUserData;
++ char* m_pName;
++ uint32_t m_MemoryTypeIndex;
++ uint8_t m_Type; // ALLOCATION_TYPE
++ uint8_t m_SuballocationType; // VmaSuballocationType
++ // Reference counter for vmaMapMemory()/vmaUnmapMemory().
++ uint8_t m_MapCount;
++ uint8_t m_Flags; // enum FLAGS
++#if VMA_STATS_STRING_ENABLED
++ uint32_t m_BufferImageUsage; // 0 if unknown.
++#endif
++};
++#endif // _VMA_ALLOCATION_T
++
++#ifndef _VMA_DEDICATED_ALLOCATION_LIST_ITEM_TRAITS
++struct VmaDedicatedAllocationListItemTraits
++{
++ typedef VmaAllocation_T ItemType;
++
++ static ItemType* GetPrev(const ItemType* item)
++ {
++ VMA_HEAVY_ASSERT(item->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED);
++ return item->m_DedicatedAllocation.m_Prev;
++ }
++ static ItemType* GetNext(const ItemType* item)
++ {
++ VMA_HEAVY_ASSERT(item->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED);
++ return item->m_DedicatedAllocation.m_Next;
++ }
++ static ItemType*& AccessPrev(ItemType* item)
++ {
++ VMA_HEAVY_ASSERT(item->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED);
++ return item->m_DedicatedAllocation.m_Prev;
++ }
++ static ItemType*& AccessNext(ItemType* item)
++ {
++ VMA_HEAVY_ASSERT(item->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED);
++ return item->m_DedicatedAllocation.m_Next;
++ }
++};
++#endif // _VMA_DEDICATED_ALLOCATION_LIST_ITEM_TRAITS
++
++#ifndef _VMA_DEDICATED_ALLOCATION_LIST
++/*
++Stores linked list of VmaAllocation_T objects.
++Thread-safe, synchronized internally.
++*/
++class VmaDedicatedAllocationList
++{
++public:
++ VmaDedicatedAllocationList() {}
++ ~VmaDedicatedAllocationList();
++
++ void Init(bool useMutex) { m_UseMutex = useMutex; }
++ bool Validate();
++
++ void AddDetailedStatistics(VmaDetailedStatistics& inoutStats);
++ void AddStatistics(VmaStatistics& inoutStats);
++#if VMA_STATS_STRING_ENABLED
++ // Writes JSON array with the list of allocations.
++ void BuildStatsString(VmaJsonWriter& json);
++#endif
++
++ bool IsEmpty();
++ void Register(VmaAllocation alloc);
++ void Unregister(VmaAllocation alloc);
++
++private:
++ typedef VmaIntrusiveLinkedList<VmaDedicatedAllocationListItemTraits> DedicatedAllocationLinkedList;
++
++ bool m_UseMutex = true;
++ VMA_RW_MUTEX m_Mutex;
++ DedicatedAllocationLinkedList m_AllocationList;
++};
++
++#ifndef _VMA_DEDICATED_ALLOCATION_LIST_FUNCTIONS
++
++VmaDedicatedAllocationList::~VmaDedicatedAllocationList()
++{
++ VMA_HEAVY_ASSERT(Validate());
++
++ if (!m_AllocationList.IsEmpty())
++ {
++ VMA_ASSERT(false && "Unfreed dedicated allocations found!");
++ }
++}
++
++bool VmaDedicatedAllocationList::Validate()
++{
++ const size_t declaredCount = m_AllocationList.GetCount();
++ size_t actualCount = 0;
++ VmaMutexLockRead lock(m_Mutex, m_UseMutex);
++ for (VmaAllocation alloc = m_AllocationList.Front();
++ alloc != VMA_NULL; alloc = m_AllocationList.GetNext(alloc))
++ {
++ ++actualCount;
++ }
++ VMA_VALIDATE(actualCount == declaredCount);
++
++ return true;
++}
++
++void VmaDedicatedAllocationList::AddDetailedStatistics(VmaDetailedStatistics& inoutStats)
++{
++ for(auto* item = m_AllocationList.Front(); item != nullptr; item = DedicatedAllocationLinkedList::GetNext(item))
++ {
++ const VkDeviceSize size = item->GetSize();
++ inoutStats.statistics.blockCount++;
++ inoutStats.statistics.blockBytes += size;
++ VmaAddDetailedStatisticsAllocation(inoutStats, item->GetSize());
++ }
++}
++
++void VmaDedicatedAllocationList::AddStatistics(VmaStatistics& inoutStats)
++{
++ VmaMutexLockRead lock(m_Mutex, m_UseMutex);
++
++ const uint32_t allocCount = (uint32_t)m_AllocationList.GetCount();
++ inoutStats.blockCount += allocCount;
++ inoutStats.allocationCount += allocCount;
++
++ for(auto* item = m_AllocationList.Front(); item != nullptr; item = DedicatedAllocationLinkedList::GetNext(item))
++ {
++ const VkDeviceSize size = item->GetSize();
++ inoutStats.blockBytes += size;
++ inoutStats.allocationBytes += size;
++ }
++}
++
++#if VMA_STATS_STRING_ENABLED
++void VmaDedicatedAllocationList::BuildStatsString(VmaJsonWriter& json)
++{
++ VmaMutexLockRead lock(m_Mutex, m_UseMutex);
++ json.BeginArray();
++ for (VmaAllocation alloc = m_AllocationList.Front();
++ alloc != VMA_NULL; alloc = m_AllocationList.GetNext(alloc))
++ {
++ json.BeginObject(true);
++ alloc->PrintParameters(json);
++ json.EndObject();
++ }
++ json.EndArray();
++}
++#endif // VMA_STATS_STRING_ENABLED
++
++bool VmaDedicatedAllocationList::IsEmpty()
++{
++ VmaMutexLockRead lock(m_Mutex, m_UseMutex);
++ return m_AllocationList.IsEmpty();
++}
++
++void VmaDedicatedAllocationList::Register(VmaAllocation alloc)
++{
++ VmaMutexLockWrite lock(m_Mutex, m_UseMutex);
++ m_AllocationList.PushBack(alloc);
++}
++
++void VmaDedicatedAllocationList::Unregister(VmaAllocation alloc)
++{
++ VmaMutexLockWrite lock(m_Mutex, m_UseMutex);
++ m_AllocationList.Remove(alloc);
++}
++#endif // _VMA_DEDICATED_ALLOCATION_LIST_FUNCTIONS
++#endif // _VMA_DEDICATED_ALLOCATION_LIST
++
++#ifndef _VMA_SUBALLOCATION
++/*
++Represents a region of VmaDeviceMemoryBlock that is either assigned and returned as
++allocated memory block or free.
++*/
++struct VmaSuballocation
++{
++ VkDeviceSize offset;
++ VkDeviceSize size;
++ void* userData;
++ VmaSuballocationType type;
++};
++
++// Comparator for offsets.
++struct VmaSuballocationOffsetLess
++{
++ bool operator()(const VmaSuballocation& lhs, const VmaSuballocation& rhs) const
++ {
++ return lhs.offset < rhs.offset;
++ }
++};
++
++struct VmaSuballocationOffsetGreater
++{
++ bool operator()(const VmaSuballocation& lhs, const VmaSuballocation& rhs) const
++ {
++ return lhs.offset > rhs.offset;
++ }
++};
++
++struct VmaSuballocationItemSizeLess
++{
++ bool operator()(const VmaSuballocationList::iterator lhs,
++ const VmaSuballocationList::iterator rhs) const
++ {
++ return lhs->size < rhs->size;
++ }
++
++ bool operator()(const VmaSuballocationList::iterator lhs,
++ VkDeviceSize rhsSize) const
++ {
++ return lhs->size < rhsSize;
++ }
++};
++#endif // _VMA_SUBALLOCATION
++
++#ifndef _VMA_ALLOCATION_REQUEST
++/*
++Parameters of planned allocation inside a VmaDeviceMemoryBlock.
++item points to a FREE suballocation.
++*/
++struct VmaAllocationRequest
++{
++ VmaAllocHandle allocHandle;
++ VkDeviceSize size;
++ VmaSuballocationList::iterator item;
++ void* customData;
++ uint64_t algorithmData;
++ VmaAllocationRequestType type;
++};
++#endif // _VMA_ALLOCATION_REQUEST
++
++#ifndef _VMA_BLOCK_METADATA
++/*
++Data structure used for bookkeeping of allocations and unused ranges of memory
++in a single VkDeviceMemory block.
++*/
++class VmaBlockMetadata
++{
++public:
++ // pAllocationCallbacks, if not null, must be owned externally - alive and unchanged for the whole lifetime of this object.
++ VmaBlockMetadata(const VkAllocationCallbacks* pAllocationCallbacks,
++ VkDeviceSize bufferImageGranularity, bool isVirtual);
++ virtual ~VmaBlockMetadata() = default;
++
++ virtual void Init(VkDeviceSize size) { m_Size = size; }
++ bool IsVirtual() const { return m_IsVirtual; }
++ VkDeviceSize GetSize() const { return m_Size; }
++
++ // Validates all data structures inside this object. If not valid, returns false.
++ virtual bool Validate() const = 0;
++ virtual size_t GetAllocationCount() const = 0;
++ virtual size_t GetFreeRegionsCount() const = 0;
++ virtual VkDeviceSize GetSumFreeSize() const = 0;
++ // Returns true if this block is empty - contains only single free suballocation.
++ virtual bool IsEmpty() const = 0;
++ virtual void GetAllocationInfo(VmaAllocHandle allocHandle, VmaVirtualAllocationInfo& outInfo) = 0;
++ virtual VkDeviceSize GetAllocationOffset(VmaAllocHandle allocHandle) const = 0;
++ virtual void* GetAllocationUserData(VmaAllocHandle allocHandle) const = 0;
++
++ virtual VmaAllocHandle GetAllocationListBegin() const = 0;
++ virtual VmaAllocHandle GetNextAllocation(VmaAllocHandle prevAlloc) const = 0;
++ virtual VkDeviceSize GetNextFreeRegionSize(VmaAllocHandle alloc) const = 0;
++
++ // Shouldn't modify blockCount.
++ virtual void AddDetailedStatistics(VmaDetailedStatistics& inoutStats) const = 0;
++ virtual void AddStatistics(VmaStatistics& inoutStats) const = 0;
++
++#if VMA_STATS_STRING_ENABLED
++ virtual void PrintDetailedMap(class VmaJsonWriter& json) const = 0;
++#endif
++
++ // Tries to find a place for suballocation with given parameters inside this block.
++ // If succeeded, fills pAllocationRequest and returns true.
++ // If failed, returns false.
++ virtual bool CreateAllocationRequest(
++ VkDeviceSize allocSize,
++ VkDeviceSize allocAlignment,
++ bool upperAddress,
++ VmaSuballocationType allocType,
++ // Always one of VMA_ALLOCATION_CREATE_STRATEGY_* or VMA_ALLOCATION_INTERNAL_STRATEGY_* flags.
++ uint32_t strategy,
++ VmaAllocationRequest* pAllocationRequest) = 0;
++
++ virtual VkResult CheckCorruption(const void* pBlockData) = 0;
++
++ // Makes actual allocation based on request. Request must already be checked and valid.
++ virtual void Alloc(
++ const VmaAllocationRequest& request,
++ VmaSuballocationType type,
++ void* userData) = 0;
++
++ // Frees suballocation assigned to given memory region.
++ virtual void Free(VmaAllocHandle allocHandle) = 0;
++
++ // Frees all allocations.
++ // Careful! Don't call it if there are VmaAllocation objects owned by userData of cleared allocations!
++ virtual void Clear() = 0;
++
++ virtual void SetAllocationUserData(VmaAllocHandle allocHandle, void* userData) = 0;
++ virtual void DebugLogAllAllocations() const = 0;
++
++protected:
++ const VkAllocationCallbacks* GetAllocationCallbacks() const { return m_pAllocationCallbacks; }
++ VkDeviceSize GetBufferImageGranularity() const { return m_BufferImageGranularity; }
++ VkDeviceSize GetDebugMargin() const { return IsVirtual() ? 0 : VMA_DEBUG_MARGIN; }
++
++ void DebugLogAllocation(VkDeviceSize offset, VkDeviceSize size, void* userData) const;
++#if VMA_STATS_STRING_ENABLED
++ // mapRefCount == UINT32_MAX means unspecified.
++ void PrintDetailedMap_Begin(class VmaJsonWriter& json,
++ VkDeviceSize unusedBytes,
++ size_t allocationCount,
++ size_t unusedRangeCount) const;
++ void PrintDetailedMap_Allocation(class VmaJsonWriter& json,
++ VkDeviceSize offset, VkDeviceSize size, void* userData) const;
++ void PrintDetailedMap_UnusedRange(class VmaJsonWriter& json,
++ VkDeviceSize offset,
++ VkDeviceSize size) const;
++ void PrintDetailedMap_End(class VmaJsonWriter& json) const;
++#endif
++
++private:
++ VkDeviceSize m_Size;
++ const VkAllocationCallbacks* m_pAllocationCallbacks;
++ const VkDeviceSize m_BufferImageGranularity;
++ const bool m_IsVirtual;
++};
++
++#ifndef _VMA_BLOCK_METADATA_FUNCTIONS
++VmaBlockMetadata::VmaBlockMetadata(const VkAllocationCallbacks* pAllocationCallbacks,
++ VkDeviceSize bufferImageGranularity, bool isVirtual)
++ : m_Size(0),
++ m_pAllocationCallbacks(pAllocationCallbacks),
++ m_BufferImageGranularity(bufferImageGranularity),
++ m_IsVirtual(isVirtual) {}
++
++void VmaBlockMetadata::DebugLogAllocation(VkDeviceSize offset, VkDeviceSize size, void* userData) const
++{
++ if (IsVirtual())
++ {
++ VMA_DEBUG_LOG("UNFREED VIRTUAL ALLOCATION; Offset: %llu; Size: %llu; UserData: %p", offset, size, userData);
++ }
++ else
++ {
++ VMA_ASSERT(userData != VMA_NULL);
++ VmaAllocation allocation = reinterpret_cast<VmaAllocation>(userData);
++
++ userData = allocation->GetUserData();
++ const char* name = allocation->GetName();
++
++#if VMA_STATS_STRING_ENABLED
++ VMA_DEBUG_LOG("UNFREED ALLOCATION; Offset: %llu; Size: %llu; UserData: %p; Name: %s; Type: %s; Usage: %u",
++ offset, size, userData, name ? name : "vma_empty",
++ VMA_SUBALLOCATION_TYPE_NAMES[allocation->GetSuballocationType()],
++ allocation->GetBufferImageUsage());
++#else
++ VMA_DEBUG_LOG("UNFREED ALLOCATION; Offset: %llu; Size: %llu; UserData: %p; Name: %s; Type: %u",
++ offset, size, userData, name ? name : "vma_empty",
++ (uint32_t)allocation->GetSuballocationType());
++#endif // VMA_STATS_STRING_ENABLED
++ }
++
++}
++
++#if VMA_STATS_STRING_ENABLED
++void VmaBlockMetadata::PrintDetailedMap_Begin(class VmaJsonWriter& json,
++ VkDeviceSize unusedBytes, size_t allocationCount, size_t unusedRangeCount) const
++{
++ json.WriteString("TotalBytes");
++ json.WriteNumber(GetSize());
++
++ json.WriteString("UnusedBytes");
++ json.WriteSize(unusedBytes);
++
++ json.WriteString("Allocations");
++ json.WriteSize(allocationCount);
++
++ json.WriteString("UnusedRanges");
++ json.WriteSize(unusedRangeCount);
++
++ json.WriteString("Suballocations");
++ json.BeginArray();
++}
++
++void VmaBlockMetadata::PrintDetailedMap_Allocation(class VmaJsonWriter& json,
++ VkDeviceSize offset, VkDeviceSize size, void* userData) const
++{
++ json.BeginObject(true);
++
++ json.WriteString("Offset");
++ json.WriteNumber(offset);
++
++ if (IsVirtual())
++ {
++ json.WriteString("Size");
++ json.WriteNumber(size);
++ if (userData)
++ {
++ json.WriteString("CustomData");
++ json.BeginString();
++ json.ContinueString_Pointer(userData);
++ json.EndString();
++ }
++ }
++ else
++ {
++ ((VmaAllocation)userData)->PrintParameters(json);
++ }
++
++ json.EndObject();
++}
++
++void VmaBlockMetadata::PrintDetailedMap_UnusedRange(class VmaJsonWriter& json,
++ VkDeviceSize offset, VkDeviceSize size) const
++{
++ json.BeginObject(true);
++
++ json.WriteString("Offset");
++ json.WriteNumber(offset);
++
++ json.WriteString("Type");
++ json.WriteString(VMA_SUBALLOCATION_TYPE_NAMES[VMA_SUBALLOCATION_TYPE_FREE]);
++
++ json.WriteString("Size");
++ json.WriteNumber(size);
++
++ json.EndObject();
++}
++
++void VmaBlockMetadata::PrintDetailedMap_End(class VmaJsonWriter& json) const
++{
++ json.EndArray();
++}
++#endif // VMA_STATS_STRING_ENABLED
++#endif // _VMA_BLOCK_METADATA_FUNCTIONS
++#endif // _VMA_BLOCK_METADATA
++
++#ifndef _VMA_BLOCK_BUFFER_IMAGE_GRANULARITY
++// Before deleting object of this class remember to call 'Destroy()'
++class VmaBlockBufferImageGranularity final
++{
++public:
++ struct ValidationContext
++ {
++ const VkAllocationCallbacks* allocCallbacks;
++ uint16_t* pageAllocs;
++ };
++
++ VmaBlockBufferImageGranularity(VkDeviceSize bufferImageGranularity);
++ ~VmaBlockBufferImageGranularity();
++
++ bool IsEnabled() const { return m_BufferImageGranularity > MAX_LOW_BUFFER_IMAGE_GRANULARITY; }
++
++ void Init(const VkAllocationCallbacks* pAllocationCallbacks, VkDeviceSize size);
++ // Before destroying object you must call free it's memory
++ void Destroy(const VkAllocationCallbacks* pAllocationCallbacks);
++
++ void RoundupAllocRequest(VmaSuballocationType allocType,
++ VkDeviceSize& inOutAllocSize,
++ VkDeviceSize& inOutAllocAlignment) const;
++
++ bool CheckConflictAndAlignUp(VkDeviceSize& inOutAllocOffset,
++ VkDeviceSize allocSize,
++ VkDeviceSize blockOffset,
++ VkDeviceSize blockSize,
++ VmaSuballocationType allocType) const;
++
++ void AllocPages(uint8_t allocType, VkDeviceSize offset, VkDeviceSize size);
++ void FreePages(VkDeviceSize offset, VkDeviceSize size);
++ void Clear();
++
++ ValidationContext StartValidation(const VkAllocationCallbacks* pAllocationCallbacks,
++ bool isVirutal) const;
++ bool Validate(ValidationContext& ctx, VkDeviceSize offset, VkDeviceSize size) const;
++ bool FinishValidation(ValidationContext& ctx) const;
++
++private:
++ static const uint16_t MAX_LOW_BUFFER_IMAGE_GRANULARITY = 256;
++
++ struct RegionInfo
++ {
++ uint8_t allocType;
++ uint16_t allocCount;
++ };
++
++ VkDeviceSize m_BufferImageGranularity;
++ uint32_t m_RegionCount;
++ RegionInfo* m_RegionInfo;
++
++ uint32_t GetStartPage(VkDeviceSize offset) const { return OffsetToPageIndex(offset & ~(m_BufferImageGranularity - 1)); }
++ uint32_t GetEndPage(VkDeviceSize offset, VkDeviceSize size) const { return OffsetToPageIndex((offset + size - 1) & ~(m_BufferImageGranularity - 1)); }
++
++ uint32_t OffsetToPageIndex(VkDeviceSize offset) const;
++ void AllocPage(RegionInfo& page, uint8_t allocType);
++};
++
++#ifndef _VMA_BLOCK_BUFFER_IMAGE_GRANULARITY_FUNCTIONS
++VmaBlockBufferImageGranularity::VmaBlockBufferImageGranularity(VkDeviceSize bufferImageGranularity)
++ : m_BufferImageGranularity(bufferImageGranularity),
++ m_RegionCount(0),
++ m_RegionInfo(VMA_NULL) {}
++
++VmaBlockBufferImageGranularity::~VmaBlockBufferImageGranularity()
++{
++ VMA_ASSERT(m_RegionInfo == VMA_NULL && "Free not called before destroying object!");
++}
++
++void VmaBlockBufferImageGranularity::Init(const VkAllocationCallbacks* pAllocationCallbacks, VkDeviceSize size)
++{
++ if (IsEnabled())
++ {
++ m_RegionCount = static_cast<uint32_t>(VmaDivideRoundingUp(size, m_BufferImageGranularity));
++ m_RegionInfo = vma_new_array(pAllocationCallbacks, RegionInfo, m_RegionCount);
++ memset(m_RegionInfo, 0, m_RegionCount * sizeof(RegionInfo));
++ }
++}
++
++void VmaBlockBufferImageGranularity::Destroy(const VkAllocationCallbacks* pAllocationCallbacks)
++{
++ if (m_RegionInfo)
++ {
++ vma_delete_array(pAllocationCallbacks, m_RegionInfo, m_RegionCount);
++ m_RegionInfo = VMA_NULL;
++ }
++}
++
++void VmaBlockBufferImageGranularity::RoundupAllocRequest(VmaSuballocationType allocType,
++ VkDeviceSize& inOutAllocSize,
++ VkDeviceSize& inOutAllocAlignment) const
++{
++ if (m_BufferImageGranularity > 1 &&
++ m_BufferImageGranularity <= MAX_LOW_BUFFER_IMAGE_GRANULARITY)
++ {
++ if (allocType == VMA_SUBALLOCATION_TYPE_UNKNOWN ||
++ allocType == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN ||
++ allocType == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL)
++ {
++ inOutAllocAlignment = VMA_MAX(inOutAllocAlignment, m_BufferImageGranularity);
++ inOutAllocSize = VmaAlignUp(inOutAllocSize, m_BufferImageGranularity);
++ }
++ }
++}
++
++bool VmaBlockBufferImageGranularity::CheckConflictAndAlignUp(VkDeviceSize& inOutAllocOffset,
++ VkDeviceSize allocSize,
++ VkDeviceSize blockOffset,
++ VkDeviceSize blockSize,
++ VmaSuballocationType allocType) const
++{
++ if (IsEnabled())
++ {
++ uint32_t startPage = GetStartPage(inOutAllocOffset);
++ if (m_RegionInfo[startPage].allocCount > 0 &&
++ VmaIsBufferImageGranularityConflict(static_cast<VmaSuballocationType>(m_RegionInfo[startPage].allocType), allocType))
++ {
++ inOutAllocOffset = VmaAlignUp(inOutAllocOffset, m_BufferImageGranularity);
++ if (blockSize < allocSize + inOutAllocOffset - blockOffset)
++ return true;
++ ++startPage;
++ }
++ uint32_t endPage = GetEndPage(inOutAllocOffset, allocSize);
++ if (endPage != startPage &&
++ m_RegionInfo[endPage].allocCount > 0 &&
++ VmaIsBufferImageGranularityConflict(static_cast<VmaSuballocationType>(m_RegionInfo[endPage].allocType), allocType))
++ {
++ return true;
++ }
++ }
++ return false;
++}
++
++void VmaBlockBufferImageGranularity::AllocPages(uint8_t allocType, VkDeviceSize offset, VkDeviceSize size)
++{
++ if (IsEnabled())
++ {
++ uint32_t startPage = GetStartPage(offset);
++ AllocPage(m_RegionInfo[startPage], allocType);
++
++ uint32_t endPage = GetEndPage(offset, size);
++ if (startPage != endPage)
++ AllocPage(m_RegionInfo[endPage], allocType);
++ }
++}
++
++void VmaBlockBufferImageGranularity::FreePages(VkDeviceSize offset, VkDeviceSize size)
++{
++ if (IsEnabled())
++ {
++ uint32_t startPage = GetStartPage(offset);
++ --m_RegionInfo[startPage].allocCount;
++ if (m_RegionInfo[startPage].allocCount == 0)
++ m_RegionInfo[startPage].allocType = VMA_SUBALLOCATION_TYPE_FREE;
++ uint32_t endPage = GetEndPage(offset, size);
++ if (startPage != endPage)
++ {
++ --m_RegionInfo[endPage].allocCount;
++ if (m_RegionInfo[endPage].allocCount == 0)
++ m_RegionInfo[endPage].allocType = VMA_SUBALLOCATION_TYPE_FREE;
++ }
++ }
++}
++
++void VmaBlockBufferImageGranularity::Clear()
++{
++ if (m_RegionInfo)
++ memset(m_RegionInfo, 0, m_RegionCount * sizeof(RegionInfo));
++}
++
++VmaBlockBufferImageGranularity::ValidationContext VmaBlockBufferImageGranularity::StartValidation(
++ const VkAllocationCallbacks* pAllocationCallbacks, bool isVirutal) const
++{
++ ValidationContext ctx{ pAllocationCallbacks, VMA_NULL };
++ if (!isVirutal && IsEnabled())
++ {
++ ctx.pageAllocs = vma_new_array(pAllocationCallbacks, uint16_t, m_RegionCount);
++ memset(ctx.pageAllocs, 0, m_RegionCount * sizeof(uint16_t));
++ }
++ return ctx;
++}
++
++bool VmaBlockBufferImageGranularity::Validate(ValidationContext& ctx,
++ VkDeviceSize offset, VkDeviceSize size) const
++{
++ if (IsEnabled())
++ {
++ uint32_t start = GetStartPage(offset);
++ ++ctx.pageAllocs[start];
++ VMA_VALIDATE(m_RegionInfo[start].allocCount > 0);
++
++ uint32_t end = GetEndPage(offset, size);
++ if (start != end)
++ {
++ ++ctx.pageAllocs[end];
++ VMA_VALIDATE(m_RegionInfo[end].allocCount > 0);
++ }
++ }
++ return true;
++}
++
++bool VmaBlockBufferImageGranularity::FinishValidation(ValidationContext& ctx) const
++{
++ // Check proper page structure
++ if (IsEnabled())
++ {
++ VMA_ASSERT(ctx.pageAllocs != VMA_NULL && "Validation context not initialized!");
++
++ for (uint32_t page = 0; page < m_RegionCount; ++page)
++ {
++ VMA_VALIDATE(ctx.pageAllocs[page] == m_RegionInfo[page].allocCount);
++ }
++ vma_delete_array(ctx.allocCallbacks, ctx.pageAllocs, m_RegionCount);
++ ctx.pageAllocs = VMA_NULL;
++ }
++ return true;
++}
++
++uint32_t VmaBlockBufferImageGranularity::OffsetToPageIndex(VkDeviceSize offset) const
++{
++ return static_cast<uint32_t>(offset >> VMA_BITSCAN_MSB(m_BufferImageGranularity));
++}
++
++void VmaBlockBufferImageGranularity::AllocPage(RegionInfo& page, uint8_t allocType)
++{
++ // When current alloc type is free then it can be overriden by new type
++ if (page.allocCount == 0 || (page.allocCount > 0 && page.allocType == VMA_SUBALLOCATION_TYPE_FREE))
++ page.allocType = allocType;
++
++ ++page.allocCount;
++}
++#endif // _VMA_BLOCK_BUFFER_IMAGE_GRANULARITY_FUNCTIONS
++#endif // _VMA_BLOCK_BUFFER_IMAGE_GRANULARITY
++
++#if 0
++#ifndef _VMA_BLOCK_METADATA_GENERIC
++class VmaBlockMetadata_Generic : public VmaBlockMetadata
++{
++ friend class VmaDefragmentationAlgorithm_Generic;
++ friend class VmaDefragmentationAlgorithm_Fast;
++ VMA_CLASS_NO_COPY(VmaBlockMetadata_Generic)
++public:
++ VmaBlockMetadata_Generic(const VkAllocationCallbacks* pAllocationCallbacks,
++ VkDeviceSize bufferImageGranularity, bool isVirtual);
++ virtual ~VmaBlockMetadata_Generic() = default;
++
++ size_t GetAllocationCount() const override { return m_Suballocations.size() - m_FreeCount; }
++ VkDeviceSize GetSumFreeSize() const override { return m_SumFreeSize; }
++ bool IsEmpty() const override { return (m_Suballocations.size() == 1) && (m_FreeCount == 1); }
++ void Free(VmaAllocHandle allocHandle) override { FreeSuballocation(FindAtOffset((VkDeviceSize)allocHandle - 1)); }
++ VkDeviceSize GetAllocationOffset(VmaAllocHandle allocHandle) const override { return (VkDeviceSize)allocHandle - 1; };
++
++ void Init(VkDeviceSize size) override;
++ bool Validate() const override;
++
++ void AddDetailedStatistics(VmaDetailedStatistics& inoutStats) const override;
++ void AddStatistics(VmaStatistics& inoutStats) const override;
++
++#if VMA_STATS_STRING_ENABLED
++ void PrintDetailedMap(class VmaJsonWriter& json, uint32_t mapRefCount) const override;
++#endif
++
++ bool CreateAllocationRequest(
++ VkDeviceSize allocSize,
++ VkDeviceSize allocAlignment,
++ bool upperAddress,
++ VmaSuballocationType allocType,
++ uint32_t strategy,
++ VmaAllocationRequest* pAllocationRequest) override;
++
++ VkResult CheckCorruption(const void* pBlockData) override;
++
++ void Alloc(
++ const VmaAllocationRequest& request,
++ VmaSuballocationType type,
++ void* userData) override;
++
++ void GetAllocationInfo(VmaAllocHandle allocHandle, VmaVirtualAllocationInfo& outInfo) override;
++ void* GetAllocationUserData(VmaAllocHandle allocHandle) const override;
++ VmaAllocHandle GetAllocationListBegin() const override;
++ VmaAllocHandle GetNextAllocation(VmaAllocHandle prevAlloc) const override;
++ void Clear() override;
++ void SetAllocationUserData(VmaAllocHandle allocHandle, void* userData) override;
++ void DebugLogAllAllocations() const override;
++
++private:
++ uint32_t m_FreeCount;
++ VkDeviceSize m_SumFreeSize;
++ VmaSuballocationList m_Suballocations;
++ // Suballocations that are free. Sorted by size, ascending.
++ VmaVector<VmaSuballocationList::iterator, VmaStlAllocator<VmaSuballocationList::iterator>> m_FreeSuballocationsBySize;
++
++ VkDeviceSize AlignAllocationSize(VkDeviceSize size) const { return IsVirtual() ? size : VmaAlignUp(size, (VkDeviceSize)16); }
++
++ VmaSuballocationList::iterator FindAtOffset(VkDeviceSize offset) const;
++ bool ValidateFreeSuballocationList() const;
++
++ // Checks if requested suballocation with given parameters can be placed in given pFreeSuballocItem.
++ // If yes, fills pOffset and returns true. If no, returns false.
++ bool CheckAllocation(
++ VkDeviceSize allocSize,
++ VkDeviceSize allocAlignment,
++ VmaSuballocationType allocType,
++ VmaSuballocationList::const_iterator suballocItem,
++ VmaAllocHandle* pAllocHandle) const;
++
++ // Given free suballocation, it merges it with following one, which must also be free.
++ void MergeFreeWithNext(VmaSuballocationList::iterator item);
++ // Releases given suballocation, making it free.
++ // Merges it with adjacent free suballocations if applicable.
++ // Returns iterator to new free suballocation at this place.
++ VmaSuballocationList::iterator FreeSuballocation(VmaSuballocationList::iterator suballocItem);
++ // Given free suballocation, it inserts it into sorted list of
++ // m_FreeSuballocationsBySize if it is suitable.
++ void RegisterFreeSuballocation(VmaSuballocationList::iterator item);
++ // Given free suballocation, it removes it from sorted list of
++ // m_FreeSuballocationsBySize if it is suitable.
++ void UnregisterFreeSuballocation(VmaSuballocationList::iterator item);
++};
++
++#ifndef _VMA_BLOCK_METADATA_GENERIC_FUNCTIONS
++VmaBlockMetadata_Generic::VmaBlockMetadata_Generic(const VkAllocationCallbacks* pAllocationCallbacks,
++ VkDeviceSize bufferImageGranularity, bool isVirtual)
++ : VmaBlockMetadata(pAllocationCallbacks, bufferImageGranularity, isVirtual),
++ m_FreeCount(0),
++ m_SumFreeSize(0),
++ m_Suballocations(VmaStlAllocator<VmaSuballocation>(pAllocationCallbacks)),
++ m_FreeSuballocationsBySize(VmaStlAllocator<VmaSuballocationList::iterator>(pAllocationCallbacks)) {}
++
++void VmaBlockMetadata_Generic::Init(VkDeviceSize size)
++{
++ VmaBlockMetadata::Init(size);
++
++ m_FreeCount = 1;
++ m_SumFreeSize = size;
++
++ VmaSuballocation suballoc = {};
++ suballoc.offset = 0;
++ suballoc.size = size;
++ suballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
++
++ m_Suballocations.push_back(suballoc);
++ m_FreeSuballocationsBySize.push_back(m_Suballocations.begin());
++}
++
++bool VmaBlockMetadata_Generic::Validate() const
++{
++ VMA_VALIDATE(!m_Suballocations.empty());
++
++ // Expected offset of new suballocation as calculated from previous ones.
++ VkDeviceSize calculatedOffset = 0;
++ // Expected number of free suballocations as calculated from traversing their list.
++ uint32_t calculatedFreeCount = 0;
++ // Expected sum size of free suballocations as calculated from traversing their list.
++ VkDeviceSize calculatedSumFreeSize = 0;
++ // Expected number of free suballocations that should be registered in
++ // m_FreeSuballocationsBySize calculated from traversing their list.
++ size_t freeSuballocationsToRegister = 0;
++ // True if previous visited suballocation was free.
++ bool prevFree = false;
++
++ const VkDeviceSize debugMargin = GetDebugMargin();
++
++ for (const auto& subAlloc : m_Suballocations)
++ {
++ // Actual offset of this suballocation doesn't match expected one.
++ VMA_VALIDATE(subAlloc.offset == calculatedOffset);
++
++ const bool currFree = (subAlloc.type == VMA_SUBALLOCATION_TYPE_FREE);
++ // Two adjacent free suballocations are invalid. They should be merged.
++ VMA_VALIDATE(!prevFree || !currFree);
++
++ VmaAllocation alloc = (VmaAllocation)subAlloc.userData;
++ if (!IsVirtual())
++ {
++ VMA_VALIDATE(currFree == (alloc == VK_NULL_HANDLE));
++ }
++
++ if (currFree)
++ {
++ calculatedSumFreeSize += subAlloc.size;
++ ++calculatedFreeCount;
++ ++freeSuballocationsToRegister;
++
++ // Margin required between allocations - every free space must be at least that large.
++ VMA_VALIDATE(subAlloc.size >= debugMargin);
++ }
++ else
++ {
++ if (!IsVirtual())
++ {
++ VMA_VALIDATE((VkDeviceSize)alloc->GetAllocHandle() == subAlloc.offset + 1);
++ VMA_VALIDATE(alloc->GetSize() == subAlloc.size);
++ }
++
++ // Margin required between allocations - previous allocation must be free.
++ VMA_VALIDATE(debugMargin == 0 || prevFree);
++ }
++
++ calculatedOffset += subAlloc.size;
++ prevFree = currFree;
++ }
++
++ // Number of free suballocations registered in m_FreeSuballocationsBySize doesn't
++ // match expected one.
++ VMA_VALIDATE(m_FreeSuballocationsBySize.size() == freeSuballocationsToRegister);
++
++ VkDeviceSize lastSize = 0;
++ for (size_t i = 0; i < m_FreeSuballocationsBySize.size(); ++i)
++ {
++ VmaSuballocationList::iterator suballocItem = m_FreeSuballocationsBySize[i];
++
++ // Only free suballocations can be registered in m_FreeSuballocationsBySize.
++ VMA_VALIDATE(suballocItem->type == VMA_SUBALLOCATION_TYPE_FREE);
++ // They must be sorted by size ascending.
++ VMA_VALIDATE(suballocItem->size >= lastSize);
++
++ lastSize = suballocItem->size;
++ }
++
++ // Check if totals match calculated values.
++ VMA_VALIDATE(ValidateFreeSuballocationList());
++ VMA_VALIDATE(calculatedOffset == GetSize());
++ VMA_VALIDATE(calculatedSumFreeSize == m_SumFreeSize);
++ VMA_VALIDATE(calculatedFreeCount == m_FreeCount);
++
++ return true;
++}
++
++void VmaBlockMetadata_Generic::AddDetailedStatistics(VmaDetailedStatistics& inoutStats) const
++{
++ const uint32_t rangeCount = (uint32_t)m_Suballocations.size();
++ inoutStats.statistics.blockCount++;
++ inoutStats.statistics.blockBytes += GetSize();
++
++ for (const auto& suballoc : m_Suballocations)
++ {
++ if (suballoc.type != VMA_SUBALLOCATION_TYPE_FREE)
++ VmaAddDetailedStatisticsAllocation(inoutStats, suballoc.size);
++ else
++ VmaAddDetailedStatisticsUnusedRange(inoutStats, suballoc.size);
++ }
++}
++
++void VmaBlockMetadata_Generic::AddStatistics(VmaStatistics& inoutStats) const
++{
++ inoutStats.blockCount++;
++ inoutStats.allocationCount += (uint32_t)m_Suballocations.size() - m_FreeCount;
++ inoutStats.blockBytes += GetSize();
++ inoutStats.allocationBytes += GetSize() - m_SumFreeSize;
++}
++
++#if VMA_STATS_STRING_ENABLED
++void VmaBlockMetadata_Generic::PrintDetailedMap(class VmaJsonWriter& json, uint32_t mapRefCount) const
++{
++ PrintDetailedMap_Begin(json,
++ m_SumFreeSize, // unusedBytes
++ m_Suballocations.size() - (size_t)m_FreeCount, // allocationCount
++ m_FreeCount, // unusedRangeCount
++ mapRefCount);
++
++ for (const auto& suballoc : m_Suballocations)
++ {
++ if (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE)
++ {
++ PrintDetailedMap_UnusedRange(json, suballoc.offset, suballoc.size);
++ }
++ else
++ {
++ PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.size, suballoc.userData);
++ }
++ }
++
++ PrintDetailedMap_End(json);
++}
++#endif // VMA_STATS_STRING_ENABLED
++
++bool VmaBlockMetadata_Generic::CreateAllocationRequest(
++ VkDeviceSize allocSize,
++ VkDeviceSize allocAlignment,
++ bool upperAddress,
++ VmaSuballocationType allocType,
++ uint32_t strategy,
++ VmaAllocationRequest* pAllocationRequest)
++{
++ VMA_ASSERT(allocSize > 0);
++ VMA_ASSERT(!upperAddress);
++ VMA_ASSERT(allocType != VMA_SUBALLOCATION_TYPE_FREE);
++ VMA_ASSERT(pAllocationRequest != VMA_NULL);
++ VMA_HEAVY_ASSERT(Validate());
++
++ allocSize = AlignAllocationSize(allocSize);
++
++ pAllocationRequest->type = VmaAllocationRequestType::Normal;
++ pAllocationRequest->size = allocSize;
++
++ const VkDeviceSize debugMargin = GetDebugMargin();
++
++ // There is not enough total free space in this block to fulfill the request: Early return.
++ if (m_SumFreeSize < allocSize + debugMargin)
++ {
++ return false;
++ }
++
++ // New algorithm, efficiently searching freeSuballocationsBySize.
++ const size_t freeSuballocCount = m_FreeSuballocationsBySize.size();
++ if (freeSuballocCount > 0)
++ {
++ if (strategy == 0 ||
++ strategy == VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT)
++ {
++ // Find first free suballocation with size not less than allocSize + debugMargin.
++ VmaSuballocationList::iterator* const it = VmaBinaryFindFirstNotLess(
++ m_FreeSuballocationsBySize.data(),
++ m_FreeSuballocationsBySize.data() + freeSuballocCount,
++ allocSize + debugMargin,
++ VmaSuballocationItemSizeLess());
++ size_t index = it - m_FreeSuballocationsBySize.data();
++ for (; index < freeSuballocCount; ++index)
++ {
++ if (CheckAllocation(
++ allocSize,
++ allocAlignment,
++ allocType,
++ m_FreeSuballocationsBySize[index],
++ &pAllocationRequest->allocHandle))
++ {
++ pAllocationRequest->item = m_FreeSuballocationsBySize[index];
++ return true;
++ }
++ }
++ }
++ else if (strategy == VMA_ALLOCATION_INTERNAL_STRATEGY_MIN_OFFSET)
++ {
++ for (VmaSuballocationList::iterator it = m_Suballocations.begin();
++ it != m_Suballocations.end();
++ ++it)
++ {
++ if (it->type == VMA_SUBALLOCATION_TYPE_FREE && CheckAllocation(
++ allocSize,
++ allocAlignment,
++ allocType,
++ it,
++ &pAllocationRequest->allocHandle))
++ {
++ pAllocationRequest->item = it;
++ return true;
++ }
++ }
++ }
++ else
++ {
++ VMA_ASSERT(strategy & (VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT | VMA_ALLOCATION_CREATE_STRATEGY_MIN_OFFSET_BIT ));
++ // Search staring from biggest suballocations.
++ for (size_t index = freeSuballocCount; index--; )
++ {
++ if (CheckAllocation(
++ allocSize,
++ allocAlignment,
++ allocType,
++ m_FreeSuballocationsBySize[index],
++ &pAllocationRequest->allocHandle))
++ {
++ pAllocationRequest->item = m_FreeSuballocationsBySize[index];
++ return true;
++ }
++ }
++ }
++ }
++
++ return false;
++}
++
++VkResult VmaBlockMetadata_Generic::CheckCorruption(const void* pBlockData)
++{
++ for (auto& suballoc : m_Suballocations)
++ {
++ if (suballoc.type != VMA_SUBALLOCATION_TYPE_FREE)
++ {
++ if (!VmaValidateMagicValue(pBlockData, suballoc.offset + suballoc.size))
++ {
++ VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER VALIDATED ALLOCATION!");
++ return VK_ERROR_UNKNOWN_COPY;
++ }
++ }
++ }
++
++ return VK_SUCCESS;
++}
++
++void VmaBlockMetadata_Generic::Alloc(
++ const VmaAllocationRequest& request,
++ VmaSuballocationType type,
++ void* userData)
++{
++ VMA_ASSERT(request.type == VmaAllocationRequestType::Normal);
++ VMA_ASSERT(request.item != m_Suballocations.end());
++ VmaSuballocation& suballoc = *request.item;
++ // Given suballocation is a free block.
++ VMA_ASSERT(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE);
++
++ // Given offset is inside this suballocation.
++ VMA_ASSERT((VkDeviceSize)request.allocHandle - 1 >= suballoc.offset);
++ const VkDeviceSize paddingBegin = (VkDeviceSize)request.allocHandle - suballoc.offset - 1;
++ VMA_ASSERT(suballoc.size >= paddingBegin + request.size);
++ const VkDeviceSize paddingEnd = suballoc.size - paddingBegin - request.size;
++
++ // Unregister this free suballocation from m_FreeSuballocationsBySize and update
++ // it to become used.
++ UnregisterFreeSuballocation(request.item);
++
++ suballoc.offset = (VkDeviceSize)request.allocHandle - 1;
++ suballoc.size = request.size;
++ suballoc.type = type;
++ suballoc.userData = userData;
++
++ // If there are any free bytes remaining at the end, insert new free suballocation after current one.
++ if (paddingEnd)
++ {
++ VmaSuballocation paddingSuballoc = {};
++ paddingSuballoc.offset = suballoc.offset + suballoc.size;
++ paddingSuballoc.size = paddingEnd;
++ paddingSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
++ VmaSuballocationList::iterator next = request.item;
++ ++next;
++ const VmaSuballocationList::iterator paddingEndItem =
++ m_Suballocations.insert(next, paddingSuballoc);
++ RegisterFreeSuballocation(paddingEndItem);
++ }
++
++ // If there are any free bytes remaining at the beginning, insert new free suballocation before current one.
++ if (paddingBegin)
++ {
++ VmaSuballocation paddingSuballoc = {};
++ paddingSuballoc.offset = suballoc.offset - paddingBegin;
++ paddingSuballoc.size = paddingBegin;
++ paddingSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
++ const VmaSuballocationList::iterator paddingBeginItem =
++ m_Suballocations.insert(request.item, paddingSuballoc);
++ RegisterFreeSuballocation(paddingBeginItem);
++ }
++
++ // Update totals.
++ m_FreeCount = m_FreeCount - 1;
++ if (paddingBegin > 0)
++ {
++ ++m_FreeCount;
++ }
++ if (paddingEnd > 0)
++ {
++ ++m_FreeCount;
++ }
++ m_SumFreeSize -= request.size;
++}
++
++void VmaBlockMetadata_Generic::GetAllocationInfo(VmaAllocHandle allocHandle, VmaVirtualAllocationInfo& outInfo)
++{
++ outInfo.offset = (VkDeviceSize)allocHandle - 1;
++ const VmaSuballocation& suballoc = *FindAtOffset(outInfo.offset);
++ outInfo.size = suballoc.size;
++ outInfo.pUserData = suballoc.userData;
++}
++
++void* VmaBlockMetadata_Generic::GetAllocationUserData(VmaAllocHandle allocHandle) const
++{
++ return FindAtOffset((VkDeviceSize)allocHandle - 1)->userData;
++}
++
++VmaAllocHandle VmaBlockMetadata_Generic::GetAllocationListBegin() const
++{
++ if (IsEmpty())
++ return VK_NULL_HANDLE;
++
++ for (const auto& suballoc : m_Suballocations)
++ {
++ if (suballoc.type != VMA_SUBALLOCATION_TYPE_FREE)
++ return (VmaAllocHandle)(suballoc.offset + 1);
++ }
++ VMA_ASSERT(false && "Should contain at least 1 allocation!");
++ return VK_NULL_HANDLE;
++}
++
++VmaAllocHandle VmaBlockMetadata_Generic::GetNextAllocation(VmaAllocHandle prevAlloc) const
++{
++ VmaSuballocationList::const_iterator prev = FindAtOffset((VkDeviceSize)prevAlloc - 1);
++
++ for (VmaSuballocationList::const_iterator it = ++prev; it != m_Suballocations.end(); ++it)
++ {
++ if (it->type != VMA_SUBALLOCATION_TYPE_FREE)
++ return (VmaAllocHandle)(it->offset + 1);
++ }
++ return VK_NULL_HANDLE;
++}
++
++void VmaBlockMetadata_Generic::Clear()
++{
++ const VkDeviceSize size = GetSize();
++
++ VMA_ASSERT(IsVirtual());
++ m_FreeCount = 1;
++ m_SumFreeSize = size;
++ m_Suballocations.clear();
++ m_FreeSuballocationsBySize.clear();
++
++ VmaSuballocation suballoc = {};
++ suballoc.offset = 0;
++ suballoc.size = size;
++ suballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
++ m_Suballocations.push_back(suballoc);
++
++ m_FreeSuballocationsBySize.push_back(m_Suballocations.begin());
++}
++
++void VmaBlockMetadata_Generic::SetAllocationUserData(VmaAllocHandle allocHandle, void* userData)
++{
++ VmaSuballocation& suballoc = *FindAtOffset((VkDeviceSize)allocHandle - 1);
++ suballoc.userData = userData;
++}
++
++void VmaBlockMetadata_Generic::DebugLogAllAllocations() const
++{
++ for (const auto& suballoc : m_Suballocations)
++ {
++ if (suballoc.type != VMA_SUBALLOCATION_TYPE_FREE)
++ DebugLogAllocation(suballoc.offset, suballoc.size, suballoc.userData);
++ }
++}
++
++VmaSuballocationList::iterator VmaBlockMetadata_Generic::FindAtOffset(VkDeviceSize offset) const
++{
++ VMA_HEAVY_ASSERT(!m_Suballocations.empty());
++ const VkDeviceSize last = m_Suballocations.rbegin()->offset;
++ if (last == offset)
++ return m_Suballocations.rbegin().drop_const();
++ const VkDeviceSize first = m_Suballocations.begin()->offset;
++ if (first == offset)
++ return m_Suballocations.begin().drop_const();
++
++ const size_t suballocCount = m_Suballocations.size();
++ const VkDeviceSize step = (last - first + m_Suballocations.begin()->size) / suballocCount;
++ auto findSuballocation = [&](auto begin, auto end) -> VmaSuballocationList::iterator
++ {
++ for (auto suballocItem = begin;
++ suballocItem != end;
++ ++suballocItem)
++ {
++ if (suballocItem->offset == offset)
++ return suballocItem.drop_const();
++ }
++ VMA_ASSERT(false && "Not found!");
++ return m_Suballocations.end().drop_const();
++ };
++ // If requested offset is closer to the end of range, search from the end
++ if (offset - first > suballocCount * step / 2)
++ {
++ return findSuballocation(m_Suballocations.rbegin(), m_Suballocations.rend());
++ }
++ return findSuballocation(m_Suballocations.begin(), m_Suballocations.end());
++}
++
++bool VmaBlockMetadata_Generic::ValidateFreeSuballocationList() const
++{
++ VkDeviceSize lastSize = 0;
++ for (size_t i = 0, count = m_FreeSuballocationsBySize.size(); i < count; ++i)
++ {
++ const VmaSuballocationList::iterator it = m_FreeSuballocationsBySize[i];
++
++ VMA_VALIDATE(it->type == VMA_SUBALLOCATION_TYPE_FREE);
++ VMA_VALIDATE(it->size >= lastSize);
++ lastSize = it->size;
++ }
++ return true;
++}
++
++bool VmaBlockMetadata_Generic::CheckAllocation(
++ VkDeviceSize allocSize,
++ VkDeviceSize allocAlignment,
++ VmaSuballocationType allocType,
++ VmaSuballocationList::const_iterator suballocItem,
++ VmaAllocHandle* pAllocHandle) const
++{
++ VMA_ASSERT(allocSize > 0);
++ VMA_ASSERT(allocType != VMA_SUBALLOCATION_TYPE_FREE);
++ VMA_ASSERT(suballocItem != m_Suballocations.cend());
++ VMA_ASSERT(pAllocHandle != VMA_NULL);
++
++ const VkDeviceSize debugMargin = GetDebugMargin();
++ const VkDeviceSize bufferImageGranularity = GetBufferImageGranularity();
++
++ const VmaSuballocation& suballoc = *suballocItem;
++ VMA_ASSERT(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE);
++
++ // Size of this suballocation is too small for this request: Early return.
++ if (suballoc.size < allocSize)
++ {
++ return false;
++ }
++
++ // Start from offset equal to beginning of this suballocation.
++ VkDeviceSize offset = suballoc.offset + (suballocItem == m_Suballocations.cbegin() ? 0 : GetDebugMargin());
++
++ // Apply debugMargin from the end of previous alloc.
++ if (debugMargin > 0)
++ {
++ offset += debugMargin;
++ }
++
++ // Apply alignment.
++ offset = VmaAlignUp(offset, allocAlignment);
++
++ // Check previous suballocations for BufferImageGranularity conflicts.
++ // Make bigger alignment if necessary.
++ if (bufferImageGranularity > 1 && bufferImageGranularity != allocAlignment)
++ {
++ bool bufferImageGranularityConflict = false;
++ VmaSuballocationList::const_iterator prevSuballocItem = suballocItem;
++ while (prevSuballocItem != m_Suballocations.cbegin())
++ {
++ --prevSuballocItem;
++ const VmaSuballocation& prevSuballoc = *prevSuballocItem;
++ if (VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, offset, bufferImageGranularity))
++ {
++ if (VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType))
++ {
++ bufferImageGranularityConflict = true;
++ break;
++ }
++ }
++ else
++ // Already on previous page.
++ break;
++ }
++ if (bufferImageGranularityConflict)
++ {
++ offset = VmaAlignUp(offset, bufferImageGranularity);
++ }
++ }
++
++ // Calculate padding at the beginning based on current offset.
++ const VkDeviceSize paddingBegin = offset - suballoc.offset;
++
++ // Fail if requested size plus margin after is bigger than size of this suballocation.
++ if (paddingBegin + allocSize + debugMargin > suballoc.size)
++ {
++ return false;
++ }
++
++ // Check next suballocations for BufferImageGranularity conflicts.
++ // If conflict exists, allocation cannot be made here.
++ if (allocSize % bufferImageGranularity || offset % bufferImageGranularity)
++ {
++ VmaSuballocationList::const_iterator nextSuballocItem = suballocItem;
++ ++nextSuballocItem;
++ while (nextSuballocItem != m_Suballocations.cend())
++ {
++ const VmaSuballocation& nextSuballoc = *nextSuballocItem;
++ if (VmaBlocksOnSamePage(offset, allocSize, nextSuballoc.offset, bufferImageGranularity))
++ {
++ if (VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type))
++ {
++ return false;
++ }
++ }
++ else
++ {
++ // Already on next page.
++ break;
++ }
++ ++nextSuballocItem;
++ }
++ }
++
++ *pAllocHandle = (VmaAllocHandle)(offset + 1);
++ // All tests passed: Success. pAllocHandle is already filled.
++ return true;
++}
++
++void VmaBlockMetadata_Generic::MergeFreeWithNext(VmaSuballocationList::iterator item)
++{
++ VMA_ASSERT(item != m_Suballocations.end());
++ VMA_ASSERT(item->type == VMA_SUBALLOCATION_TYPE_FREE);
++
++ VmaSuballocationList::iterator nextItem = item;
++ ++nextItem;
++ VMA_ASSERT(nextItem != m_Suballocations.end());
++ VMA_ASSERT(nextItem->type == VMA_SUBALLOCATION_TYPE_FREE);
++
++ item->size += nextItem->size;
++ --m_FreeCount;
++ m_Suballocations.erase(nextItem);
++}
++
++VmaSuballocationList::iterator VmaBlockMetadata_Generic::FreeSuballocation(VmaSuballocationList::iterator suballocItem)
++{
++ // Change this suballocation to be marked as free.
++ VmaSuballocation& suballoc = *suballocItem;
++ suballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
++ suballoc.userData = VMA_NULL;
++
++ // Update totals.
++ ++m_FreeCount;
++ m_SumFreeSize += suballoc.size;
++
++ // Merge with previous and/or next suballocation if it's also free.
++ bool mergeWithNext = false;
++ bool mergeWithPrev = false;
++
++ VmaSuballocationList::iterator nextItem = suballocItem;
++ ++nextItem;
++ if ((nextItem != m_Suballocations.end()) && (nextItem->type == VMA_SUBALLOCATION_TYPE_FREE))
++ {
++ mergeWithNext = true;
++ }
++
++ VmaSuballocationList::iterator prevItem = suballocItem;
++ if (suballocItem != m_Suballocations.begin())
++ {
++ --prevItem;
++ if (prevItem->type == VMA_SUBALLOCATION_TYPE_FREE)
++ {
++ mergeWithPrev = true;
++ }
++ }
++
++ if (mergeWithNext)
++ {
++ UnregisterFreeSuballocation(nextItem);
++ MergeFreeWithNext(suballocItem);
++ }
++
++ if (mergeWithPrev)
++ {
++ UnregisterFreeSuballocation(prevItem);
++ MergeFreeWithNext(prevItem);
++ RegisterFreeSuballocation(prevItem);
++ return prevItem;
++ }
++ else
++ {
++ RegisterFreeSuballocation(suballocItem);
++ return suballocItem;
++ }
++}
++
++void VmaBlockMetadata_Generic::RegisterFreeSuballocation(VmaSuballocationList::iterator item)
++{
++ VMA_ASSERT(item->type == VMA_SUBALLOCATION_TYPE_FREE);
++ VMA_ASSERT(item->size > 0);
++
++ // You may want to enable this validation at the beginning or at the end of
++ // this function, depending on what do you want to check.
++ VMA_HEAVY_ASSERT(ValidateFreeSuballocationList());
++
++ if (m_FreeSuballocationsBySize.empty())
++ {
++ m_FreeSuballocationsBySize.push_back(item);
++ }
++ else
++ {
++ VmaVectorInsertSorted<VmaSuballocationItemSizeLess>(m_FreeSuballocationsBySize, item);
++ }
++
++ //VMA_HEAVY_ASSERT(ValidateFreeSuballocationList());
++}
++
++void VmaBlockMetadata_Generic::UnregisterFreeSuballocation(VmaSuballocationList::iterator item)
++{
++ VMA_ASSERT(item->type == VMA_SUBALLOCATION_TYPE_FREE);
++ VMA_ASSERT(item->size > 0);
++
++ // You may want to enable this validation at the beginning or at the end of
++ // this function, depending on what do you want to check.
++ VMA_HEAVY_ASSERT(ValidateFreeSuballocationList());
++
++ VmaSuballocationList::iterator* const it = VmaBinaryFindFirstNotLess(
++ m_FreeSuballocationsBySize.data(),
++ m_FreeSuballocationsBySize.data() + m_FreeSuballocationsBySize.size(),
++ item,
++ VmaSuballocationItemSizeLess());
++ for (size_t index = it - m_FreeSuballocationsBySize.data();
++ index < m_FreeSuballocationsBySize.size();
++ ++index)
++ {
++ if (m_FreeSuballocationsBySize[index] == item)
++ {
++ VmaVectorRemove(m_FreeSuballocationsBySize, index);
++ return;
++ }
++ VMA_ASSERT((m_FreeSuballocationsBySize[index]->size == item->size) && "Not found.");
++ }
++ VMA_ASSERT(0 && "Not found.");
++
++ //VMA_HEAVY_ASSERT(ValidateFreeSuballocationList());
++}
++#endif // _VMA_BLOCK_METADATA_GENERIC_FUNCTIONS
++#endif // _VMA_BLOCK_METADATA_GENERIC
++#endif // #if 0
++
++#ifndef _VMA_BLOCK_METADATA_LINEAR
++/*
++Allocations and their references in internal data structure look like this:
++
++if(m_2ndVectorMode == SECOND_VECTOR_EMPTY):
++
++ 0 +-------+
++ | |
++ | |
++ | |
++ +-------+
++ | Alloc | 1st[m_1stNullItemsBeginCount]
++ +-------+
++ | Alloc | 1st[m_1stNullItemsBeginCount + 1]
++ +-------+
++ | ... |
++ +-------+
++ | Alloc | 1st[1st.size() - 1]
++ +-------+
++ | |
++ | |
++ | |
++GetSize() +-------+
++
++if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER):
++
++ 0 +-------+
++ | Alloc | 2nd[0]
++ +-------+
++ | Alloc | 2nd[1]
++ +-------+
++ | ... |
++ +-------+
++ | Alloc | 2nd[2nd.size() - 1]
++ +-------+
++ | |
++ | |
++ | |
++ +-------+
++ | Alloc | 1st[m_1stNullItemsBeginCount]
++ +-------+
++ | Alloc | 1st[m_1stNullItemsBeginCount + 1]
++ +-------+
++ | ... |
++ +-------+
++ | Alloc | 1st[1st.size() - 1]
++ +-------+
++ | |
++GetSize() +-------+
++
++if(m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK):
++
++ 0 +-------+
++ | |
++ | |
++ | |
++ +-------+
++ | Alloc | 1st[m_1stNullItemsBeginCount]
++ +-------+
++ | Alloc | 1st[m_1stNullItemsBeginCount + 1]
++ +-------+
++ | ... |
++ +-------+
++ | Alloc | 1st[1st.size() - 1]
++ +-------+
++ | |
++ | |
++ | |
++ +-------+
++ | Alloc | 2nd[2nd.size() - 1]
++ +-------+
++ | ... |
++ +-------+
++ | Alloc | 2nd[1]
++ +-------+
++ | Alloc | 2nd[0]
++GetSize() +-------+
++
++*/
++class VmaBlockMetadata_Linear : public VmaBlockMetadata
++{
++ VMA_CLASS_NO_COPY(VmaBlockMetadata_Linear)
++public:
++ VmaBlockMetadata_Linear(const VkAllocationCallbacks* pAllocationCallbacks,
++ VkDeviceSize bufferImageGranularity, bool isVirtual);
++ virtual ~VmaBlockMetadata_Linear() = default;
++
++ VkDeviceSize GetSumFreeSize() const override { return m_SumFreeSize; }
++ bool IsEmpty() const override { return GetAllocationCount() == 0; }
++ VkDeviceSize GetAllocationOffset(VmaAllocHandle allocHandle) const override { return (VkDeviceSize)allocHandle - 1; };
++
++ void Init(VkDeviceSize size) override;
++ bool Validate() const override;
++ size_t GetAllocationCount() const override;
++ size_t GetFreeRegionsCount() const override;
++
++ void AddDetailedStatistics(VmaDetailedStatistics& inoutStats) const override;
++ void AddStatistics(VmaStatistics& inoutStats) const override;
++
++#if VMA_STATS_STRING_ENABLED
++ void PrintDetailedMap(class VmaJsonWriter& json) const override;
++#endif
++
++ bool CreateAllocationRequest(
++ VkDeviceSize allocSize,
++ VkDeviceSize allocAlignment,
++ bool upperAddress,
++ VmaSuballocationType allocType,
++ uint32_t strategy,
++ VmaAllocationRequest* pAllocationRequest) override;
++
++ VkResult CheckCorruption(const void* pBlockData) override;
++
++ void Alloc(
++ const VmaAllocationRequest& request,
++ VmaSuballocationType type,
++ void* userData) override;
++
++ void Free(VmaAllocHandle allocHandle) override;
++ void GetAllocationInfo(VmaAllocHandle allocHandle, VmaVirtualAllocationInfo& outInfo) override;
++ void* GetAllocationUserData(VmaAllocHandle allocHandle) const override;
++ VmaAllocHandle GetAllocationListBegin() const override;
++ VmaAllocHandle GetNextAllocation(VmaAllocHandle prevAlloc) const override;
++ VkDeviceSize GetNextFreeRegionSize(VmaAllocHandle alloc) const override;
++ void Clear() override;
++ void SetAllocationUserData(VmaAllocHandle allocHandle, void* userData) override;
++ void DebugLogAllAllocations() const override;
++
++private:
++ /*
++ There are two suballocation vectors, used in ping-pong way.
++ The one with index m_1stVectorIndex is called 1st.
++ The one with index (m_1stVectorIndex ^ 1) is called 2nd.
++ 2nd can be non-empty only when 1st is not empty.
++ When 2nd is not empty, m_2ndVectorMode indicates its mode of operation.
++ */
++ typedef VmaVector<VmaSuballocation, VmaStlAllocator<VmaSuballocation>> SuballocationVectorType;
++
++ enum SECOND_VECTOR_MODE
++ {
++ SECOND_VECTOR_EMPTY,
++ /*
++ Suballocations in 2nd vector are created later than the ones in 1st, but they
++ all have smaller offset.
++ */
++ SECOND_VECTOR_RING_BUFFER,
++ /*
++ Suballocations in 2nd vector are upper side of double stack.
++ They all have offsets higher than those in 1st vector.
++ Top of this stack means smaller offsets, but higher indices in this vector.
++ */
++ SECOND_VECTOR_DOUBLE_STACK,
++ };
++
++ VkDeviceSize m_SumFreeSize;
++ SuballocationVectorType m_Suballocations0, m_Suballocations1;
++ uint32_t m_1stVectorIndex;
++ SECOND_VECTOR_MODE m_2ndVectorMode;
++ // Number of items in 1st vector with hAllocation = null at the beginning.
++ size_t m_1stNullItemsBeginCount;
++ // Number of other items in 1st vector with hAllocation = null somewhere in the middle.
++ size_t m_1stNullItemsMiddleCount;
++ // Number of items in 2nd vector with hAllocation = null.
++ size_t m_2ndNullItemsCount;
++
++ SuballocationVectorType& AccessSuballocations1st() { return m_1stVectorIndex ? m_Suballocations1 : m_Suballocations0; }
++ SuballocationVectorType& AccessSuballocations2nd() { return m_1stVectorIndex ? m_Suballocations0 : m_Suballocations1; }
++ const SuballocationVectorType& AccessSuballocations1st() const { return m_1stVectorIndex ? m_Suballocations1 : m_Suballocations0; }
++ const SuballocationVectorType& AccessSuballocations2nd() const { return m_1stVectorIndex ? m_Suballocations0 : m_Suballocations1; }
++
++ VmaSuballocation& FindSuballocation(VkDeviceSize offset) const;
++ bool ShouldCompact1st() const;
++ void CleanupAfterFree();
++
++ bool CreateAllocationRequest_LowerAddress(
++ VkDeviceSize allocSize,
++ VkDeviceSize allocAlignment,
++ VmaSuballocationType allocType,
++ uint32_t strategy,
++ VmaAllocationRequest* pAllocationRequest);
++ bool CreateAllocationRequest_UpperAddress(
++ VkDeviceSize allocSize,
++ VkDeviceSize allocAlignment,
++ VmaSuballocationType allocType,
++ uint32_t strategy,
++ VmaAllocationRequest* pAllocationRequest);
++};
++
++#ifndef _VMA_BLOCK_METADATA_LINEAR_FUNCTIONS
++VmaBlockMetadata_Linear::VmaBlockMetadata_Linear(const VkAllocationCallbacks* pAllocationCallbacks,
++ VkDeviceSize bufferImageGranularity, bool isVirtual)
++ : VmaBlockMetadata(pAllocationCallbacks, bufferImageGranularity, isVirtual),
++ m_SumFreeSize(0),
++ m_Suballocations0(VmaStlAllocator<VmaSuballocation>(pAllocationCallbacks)),
++ m_Suballocations1(VmaStlAllocator<VmaSuballocation>(pAllocationCallbacks)),
++ m_1stVectorIndex(0),
++ m_2ndVectorMode(SECOND_VECTOR_EMPTY),
++ m_1stNullItemsBeginCount(0),
++ m_1stNullItemsMiddleCount(0),
++ m_2ndNullItemsCount(0) {}
++
++void VmaBlockMetadata_Linear::Init(VkDeviceSize size)
++{
++ VmaBlockMetadata::Init(size);
++ m_SumFreeSize = size;
++}
++
++bool VmaBlockMetadata_Linear::Validate() const
++{
++ const SuballocationVectorType& suballocations1st = AccessSuballocations1st();
++ const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
++
++ VMA_VALIDATE(suballocations2nd.empty() == (m_2ndVectorMode == SECOND_VECTOR_EMPTY));
++ VMA_VALIDATE(!suballocations1st.empty() ||
++ suballocations2nd.empty() ||
++ m_2ndVectorMode != SECOND_VECTOR_RING_BUFFER);
++
++ if (!suballocations1st.empty())
++ {
++ // Null item at the beginning should be accounted into m_1stNullItemsBeginCount.
++ VMA_VALIDATE(suballocations1st[m_1stNullItemsBeginCount].type != VMA_SUBALLOCATION_TYPE_FREE);
++ // Null item at the end should be just pop_back().
++ VMA_VALIDATE(suballocations1st.back().type != VMA_SUBALLOCATION_TYPE_FREE);
++ }
++ if (!suballocations2nd.empty())
++ {
++ // Null item at the end should be just pop_back().
++ VMA_VALIDATE(suballocations2nd.back().type != VMA_SUBALLOCATION_TYPE_FREE);
++ }
++
++ VMA_VALIDATE(m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount <= suballocations1st.size());
++ VMA_VALIDATE(m_2ndNullItemsCount <= suballocations2nd.size());
++
++ VkDeviceSize sumUsedSize = 0;
++ const size_t suballoc1stCount = suballocations1st.size();
++ const VkDeviceSize debugMargin = GetDebugMargin();
++ VkDeviceSize offset = 0;
++
++ if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
++ {
++ const size_t suballoc2ndCount = suballocations2nd.size();
++ size_t nullItem2ndCount = 0;
++ for (size_t i = 0; i < suballoc2ndCount; ++i)
++ {
++ const VmaSuballocation& suballoc = suballocations2nd[i];
++ const bool currFree = (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE);
++
++ VmaAllocation const alloc = (VmaAllocation)suballoc.userData;
++ if (!IsVirtual())
++ {
++ VMA_VALIDATE(currFree == (alloc == VK_NULL_HANDLE));
++ }
++ VMA_VALIDATE(suballoc.offset >= offset);
++
++ if (!currFree)
++ {
++ if (!IsVirtual())
++ {
++ VMA_VALIDATE((VkDeviceSize)alloc->GetAllocHandle() == suballoc.offset + 1);
++ VMA_VALIDATE(alloc->GetSize() == suballoc.size);
++ }
++ sumUsedSize += suballoc.size;
++ }
++ else
++ {
++ ++nullItem2ndCount;
++ }
++
++ offset = suballoc.offset + suballoc.size + debugMargin;
++ }
++
++ VMA_VALIDATE(nullItem2ndCount == m_2ndNullItemsCount);
++ }
++
++ for (size_t i = 0; i < m_1stNullItemsBeginCount; ++i)
++ {
++ const VmaSuballocation& suballoc = suballocations1st[i];
++ VMA_VALIDATE(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE &&
++ suballoc.userData == VMA_NULL);
++ }
++
++ size_t nullItem1stCount = m_1stNullItemsBeginCount;
++
++ for (size_t i = m_1stNullItemsBeginCount; i < suballoc1stCount; ++i)
++ {
++ const VmaSuballocation& suballoc = suballocations1st[i];
++ const bool currFree = (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE);
++
++ VmaAllocation const alloc = (VmaAllocation)suballoc.userData;
++ if (!IsVirtual())
++ {
++ VMA_VALIDATE(currFree == (alloc == VK_NULL_HANDLE));
++ }
++ VMA_VALIDATE(suballoc.offset >= offset);
++ VMA_VALIDATE(i >= m_1stNullItemsBeginCount || currFree);
++
++ if (!currFree)
++ {
++ if (!IsVirtual())
++ {
++ VMA_VALIDATE((VkDeviceSize)alloc->GetAllocHandle() == suballoc.offset + 1);
++ VMA_VALIDATE(alloc->GetSize() == suballoc.size);
++ }
++ sumUsedSize += suballoc.size;
++ }
++ else
++ {
++ ++nullItem1stCount;
++ }
++
++ offset = suballoc.offset + suballoc.size + debugMargin;
++ }
++ VMA_VALIDATE(nullItem1stCount == m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount);
++
++ if (m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)
++ {
++ const size_t suballoc2ndCount = suballocations2nd.size();
++ size_t nullItem2ndCount = 0;
++ for (size_t i = suballoc2ndCount; i--; )
++ {
++ const VmaSuballocation& suballoc = suballocations2nd[i];
++ const bool currFree = (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE);
++
++ VmaAllocation const alloc = (VmaAllocation)suballoc.userData;
++ if (!IsVirtual())
++ {
++ VMA_VALIDATE(currFree == (alloc == VK_NULL_HANDLE));
++ }
++ VMA_VALIDATE(suballoc.offset >= offset);
++
++ if (!currFree)
++ {
++ if (!IsVirtual())
++ {
++ VMA_VALIDATE((VkDeviceSize)alloc->GetAllocHandle() == suballoc.offset + 1);
++ VMA_VALIDATE(alloc->GetSize() == suballoc.size);
++ }
++ sumUsedSize += suballoc.size;
++ }
++ else
++ {
++ ++nullItem2ndCount;
++ }
++
++ offset = suballoc.offset + suballoc.size + debugMargin;
++ }
++
++ VMA_VALIDATE(nullItem2ndCount == m_2ndNullItemsCount);
++ }
++
++ VMA_VALIDATE(offset <= GetSize());
++ VMA_VALIDATE(m_SumFreeSize == GetSize() - sumUsedSize);
++
++ return true;
++}
++
++size_t VmaBlockMetadata_Linear::GetAllocationCount() const
++{
++ return AccessSuballocations1st().size() - m_1stNullItemsBeginCount - m_1stNullItemsMiddleCount +
++ AccessSuballocations2nd().size() - m_2ndNullItemsCount;
++}
++
++size_t VmaBlockMetadata_Linear::GetFreeRegionsCount() const
++{
++ // Function only used for defragmentation, which is disabled for this algorithm
++ VMA_ASSERT(0);
++ return SIZE_MAX;
++}
++
++void VmaBlockMetadata_Linear::AddDetailedStatistics(VmaDetailedStatistics& inoutStats) const
++{
++ const VkDeviceSize size = GetSize();
++ const SuballocationVectorType& suballocations1st = AccessSuballocations1st();
++ const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
++ const size_t suballoc1stCount = suballocations1st.size();
++ const size_t suballoc2ndCount = suballocations2nd.size();
++
++ inoutStats.statistics.blockCount++;
++ inoutStats.statistics.blockBytes += size;
++
++ VkDeviceSize lastOffset = 0;
++
++ if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
++ {
++ const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset;
++ size_t nextAlloc2ndIndex = 0;
++ while (lastOffset < freeSpace2ndTo1stEnd)
++ {
++ // Find next non-null allocation or move nextAllocIndex to the end.
++ while (nextAlloc2ndIndex < suballoc2ndCount &&
++ suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL)
++ {
++ ++nextAlloc2ndIndex;
++ }
++
++ // Found non-null allocation.
++ if (nextAlloc2ndIndex < suballoc2ndCount)
++ {
++ const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];
++
++ // 1. Process free space before this allocation.
++ if (lastOffset < suballoc.offset)
++ {
++ // There is free space from lastOffset to suballoc.offset.
++ const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
++ VmaAddDetailedStatisticsUnusedRange(inoutStats, unusedRangeSize);
++ }
++
++ // 2. Process this allocation.
++ // There is allocation with suballoc.offset, suballoc.size.
++ VmaAddDetailedStatisticsAllocation(inoutStats, suballoc.size);
++
++ // 3. Prepare for next iteration.
++ lastOffset = suballoc.offset + suballoc.size;
++ ++nextAlloc2ndIndex;
++ }
++ // We are at the end.
++ else
++ {
++ // There is free space from lastOffset to freeSpace2ndTo1stEnd.
++ if (lastOffset < freeSpace2ndTo1stEnd)
++ {
++ const VkDeviceSize unusedRangeSize = freeSpace2ndTo1stEnd - lastOffset;
++ VmaAddDetailedStatisticsUnusedRange(inoutStats, unusedRangeSize);
++ }
++
++ // End of loop.
++ lastOffset = freeSpace2ndTo1stEnd;
++ }
++ }
++ }
++
++ size_t nextAlloc1stIndex = m_1stNullItemsBeginCount;
++ const VkDeviceSize freeSpace1stTo2ndEnd =
++ m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? suballocations2nd.back().offset : size;
++ while (lastOffset < freeSpace1stTo2ndEnd)
++ {
++ // Find next non-null allocation or move nextAllocIndex to the end.
++ while (nextAlloc1stIndex < suballoc1stCount &&
++ suballocations1st[nextAlloc1stIndex].userData == VMA_NULL)
++ {
++ ++nextAlloc1stIndex;
++ }
++
++ // Found non-null allocation.
++ if (nextAlloc1stIndex < suballoc1stCount)
++ {
++ const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex];
++
++ // 1. Process free space before this allocation.
++ if (lastOffset < suballoc.offset)
++ {
++ // There is free space from lastOffset to suballoc.offset.
++ const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
++ VmaAddDetailedStatisticsUnusedRange(inoutStats, unusedRangeSize);
++ }
++
++ // 2. Process this allocation.
++ // There is allocation with suballoc.offset, suballoc.size.
++ VmaAddDetailedStatisticsAllocation(inoutStats, suballoc.size);
++
++ // 3. Prepare for next iteration.
++ lastOffset = suballoc.offset + suballoc.size;
++ ++nextAlloc1stIndex;
++ }
++ // We are at the end.
++ else
++ {
++ // There is free space from lastOffset to freeSpace1stTo2ndEnd.
++ if (lastOffset < freeSpace1stTo2ndEnd)
++ {
++ const VkDeviceSize unusedRangeSize = freeSpace1stTo2ndEnd - lastOffset;
++ VmaAddDetailedStatisticsUnusedRange(inoutStats, unusedRangeSize);
++ }
++
++ // End of loop.
++ lastOffset = freeSpace1stTo2ndEnd;
++ }
++ }
++
++ if (m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)
++ {
++ size_t nextAlloc2ndIndex = suballocations2nd.size() - 1;
++ while (lastOffset < size)
++ {
++ // Find next non-null allocation or move nextAllocIndex to the end.
++ while (nextAlloc2ndIndex != SIZE_MAX &&
++ suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL)
++ {
++ --nextAlloc2ndIndex;
++ }
++
++ // Found non-null allocation.
++ if (nextAlloc2ndIndex != SIZE_MAX)
++ {
++ const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];
++
++ // 1. Process free space before this allocation.
++ if (lastOffset < suballoc.offset)
++ {
++ // There is free space from lastOffset to suballoc.offset.
++ const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
++ VmaAddDetailedStatisticsUnusedRange(inoutStats, unusedRangeSize);
++ }
++
++ // 2. Process this allocation.
++ // There is allocation with suballoc.offset, suballoc.size.
++ VmaAddDetailedStatisticsAllocation(inoutStats, suballoc.size);
++
++ // 3. Prepare for next iteration.
++ lastOffset = suballoc.offset + suballoc.size;
++ --nextAlloc2ndIndex;
++ }
++ // We are at the end.
++ else
++ {
++ // There is free space from lastOffset to size.
++ if (lastOffset < size)
++ {
++ const VkDeviceSize unusedRangeSize = size - lastOffset;
++ VmaAddDetailedStatisticsUnusedRange(inoutStats, unusedRangeSize);
++ }
++
++ // End of loop.
++ lastOffset = size;
++ }
++ }
++ }
++}
++
++void VmaBlockMetadata_Linear::AddStatistics(VmaStatistics& inoutStats) const
++{
++ const SuballocationVectorType& suballocations1st = AccessSuballocations1st();
++ const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
++ const VkDeviceSize size = GetSize();
++ const size_t suballoc1stCount = suballocations1st.size();
++ const size_t suballoc2ndCount = suballocations2nd.size();
++
++ inoutStats.blockCount++;
++ inoutStats.blockBytes += size;
++ inoutStats.allocationBytes += size - m_SumFreeSize;
++
++ VkDeviceSize lastOffset = 0;
++
++ if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
++ {
++ const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset;
++ size_t nextAlloc2ndIndex = m_1stNullItemsBeginCount;
++ while (lastOffset < freeSpace2ndTo1stEnd)
++ {
++ // Find next non-null allocation or move nextAlloc2ndIndex to the end.
++ while (nextAlloc2ndIndex < suballoc2ndCount &&
++ suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL)
++ {
++ ++nextAlloc2ndIndex;
++ }
++
++ // Found non-null allocation.
++ if (nextAlloc2ndIndex < suballoc2ndCount)
++ {
++ const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];
++
++ // 1. Process free space before this allocation.
++ if (lastOffset < suballoc.offset)
++ {
++ // There is free space from lastOffset to suballoc.offset.
++ const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
++ }
++
++ // 2. Process this allocation.
++ // There is allocation with suballoc.offset, suballoc.size.
++ ++inoutStats.allocationCount;
++
++ // 3. Prepare for next iteration.
++ lastOffset = suballoc.offset + suballoc.size;
++ ++nextAlloc2ndIndex;
++ }
++ // We are at the end.
++ else
++ {
++ if (lastOffset < freeSpace2ndTo1stEnd)
++ {
++ // There is free space from lastOffset to freeSpace2ndTo1stEnd.
++ const VkDeviceSize unusedRangeSize = freeSpace2ndTo1stEnd - lastOffset;
++ }
++
++ // End of loop.
++ lastOffset = freeSpace2ndTo1stEnd;
++ }
++ }
++ }
++
++ size_t nextAlloc1stIndex = m_1stNullItemsBeginCount;
++ const VkDeviceSize freeSpace1stTo2ndEnd =
++ m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? suballocations2nd.back().offset : size;
++ while (lastOffset < freeSpace1stTo2ndEnd)
++ {
++ // Find next non-null allocation or move nextAllocIndex to the end.
++ while (nextAlloc1stIndex < suballoc1stCount &&
++ suballocations1st[nextAlloc1stIndex].userData == VMA_NULL)
++ {
++ ++nextAlloc1stIndex;
++ }
++
++ // Found non-null allocation.
++ if (nextAlloc1stIndex < suballoc1stCount)
++ {
++ const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex];
++
++ // 1. Process free space before this allocation.
++ if (lastOffset < suballoc.offset)
++ {
++ // There is free space from lastOffset to suballoc.offset.
++ const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
++ }
++
++ // 2. Process this allocation.
++ // There is allocation with suballoc.offset, suballoc.size.
++ ++inoutStats.allocationCount;
++
++ // 3. Prepare for next iteration.
++ lastOffset = suballoc.offset + suballoc.size;
++ ++nextAlloc1stIndex;
++ }
++ // We are at the end.
++ else
++ {
++ if (lastOffset < freeSpace1stTo2ndEnd)
++ {
++ // There is free space from lastOffset to freeSpace1stTo2ndEnd.
++ const VkDeviceSize unusedRangeSize = freeSpace1stTo2ndEnd - lastOffset;
++ }
++
++ // End of loop.
++ lastOffset = freeSpace1stTo2ndEnd;
++ }
++ }
++
++ if (m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)
++ {
++ size_t nextAlloc2ndIndex = suballocations2nd.size() - 1;
++ while (lastOffset < size)
++ {
++ // Find next non-null allocation or move nextAlloc2ndIndex to the end.
++ while (nextAlloc2ndIndex != SIZE_MAX &&
++ suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL)
++ {
++ --nextAlloc2ndIndex;
++ }
++
++ // Found non-null allocation.
++ if (nextAlloc2ndIndex != SIZE_MAX)
++ {
++ const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];
++
++ // 1. Process free space before this allocation.
++ if (lastOffset < suballoc.offset)
++ {
++ // There is free space from lastOffset to suballoc.offset.
++ const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
++ }
++
++ // 2. Process this allocation.
++ // There is allocation with suballoc.offset, suballoc.size.
++ ++inoutStats.allocationCount;
++
++ // 3. Prepare for next iteration.
++ lastOffset = suballoc.offset + suballoc.size;
++ --nextAlloc2ndIndex;
++ }
++ // We are at the end.
++ else
++ {
++ if (lastOffset < size)
++ {
++ // There is free space from lastOffset to size.
++ const VkDeviceSize unusedRangeSize = size - lastOffset;
++ }
++
++ // End of loop.
++ lastOffset = size;
++ }
++ }
++ }
++}
++
++#if VMA_STATS_STRING_ENABLED
++void VmaBlockMetadata_Linear::PrintDetailedMap(class VmaJsonWriter& json) const
++{
++ const VkDeviceSize size = GetSize();
++ const SuballocationVectorType& suballocations1st = AccessSuballocations1st();
++ const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
++ const size_t suballoc1stCount = suballocations1st.size();
++ const size_t suballoc2ndCount = suballocations2nd.size();
++
++ // FIRST PASS
++
++ size_t unusedRangeCount = 0;
++ VkDeviceSize usedBytes = 0;
++
++ VkDeviceSize lastOffset = 0;
++
++ size_t alloc2ndCount = 0;
++ if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
++ {
++ const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset;
++ size_t nextAlloc2ndIndex = 0;
++ while (lastOffset < freeSpace2ndTo1stEnd)
++ {
++ // Find next non-null allocation or move nextAlloc2ndIndex to the end.
++ while (nextAlloc2ndIndex < suballoc2ndCount &&
++ suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL)
++ {
++ ++nextAlloc2ndIndex;
++ }
++
++ // Found non-null allocation.
++ if (nextAlloc2ndIndex < suballoc2ndCount)
++ {
++ const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];
++
++ // 1. Process free space before this allocation.
++ if (lastOffset < suballoc.offset)
++ {
++ // There is free space from lastOffset to suballoc.offset.
++ ++unusedRangeCount;
++ }
++
++ // 2. Process this allocation.
++ // There is allocation with suballoc.offset, suballoc.size.
++ ++alloc2ndCount;
++ usedBytes += suballoc.size;
++
++ // 3. Prepare for next iteration.
++ lastOffset = suballoc.offset + suballoc.size;
++ ++nextAlloc2ndIndex;
++ }
++ // We are at the end.
++ else
++ {
++ if (lastOffset < freeSpace2ndTo1stEnd)
++ {
++ // There is free space from lastOffset to freeSpace2ndTo1stEnd.
++ ++unusedRangeCount;
++ }
++
++ // End of loop.
++ lastOffset = freeSpace2ndTo1stEnd;
++ }
++ }
++ }
++
++ size_t nextAlloc1stIndex = m_1stNullItemsBeginCount;
++ size_t alloc1stCount = 0;
++ const VkDeviceSize freeSpace1stTo2ndEnd =
++ m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? suballocations2nd.back().offset : size;
++ while (lastOffset < freeSpace1stTo2ndEnd)
++ {
++ // Find next non-null allocation or move nextAllocIndex to the end.
++ while (nextAlloc1stIndex < suballoc1stCount &&
++ suballocations1st[nextAlloc1stIndex].userData == VMA_NULL)
++ {
++ ++nextAlloc1stIndex;
++ }
++
++ // Found non-null allocation.
++ if (nextAlloc1stIndex < suballoc1stCount)
++ {
++ const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex];
++
++ // 1. Process free space before this allocation.
++ if (lastOffset < suballoc.offset)
++ {
++ // There is free space from lastOffset to suballoc.offset.
++ ++unusedRangeCount;
++ }
++
++ // 2. Process this allocation.
++ // There is allocation with suballoc.offset, suballoc.size.
++ ++alloc1stCount;
++ usedBytes += suballoc.size;
++
++ // 3. Prepare for next iteration.
++ lastOffset = suballoc.offset + suballoc.size;
++ ++nextAlloc1stIndex;
++ }
++ // We are at the end.
++ else
++ {
++ if (lastOffset < size)
++ {
++ // There is free space from lastOffset to freeSpace1stTo2ndEnd.
++ ++unusedRangeCount;
++ }
++
++ // End of loop.
++ lastOffset = freeSpace1stTo2ndEnd;
++ }
++ }
++
++ if (m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)
++ {
++ size_t nextAlloc2ndIndex = suballocations2nd.size() - 1;
++ while (lastOffset < size)
++ {
++ // Find next non-null allocation or move nextAlloc2ndIndex to the end.
++ while (nextAlloc2ndIndex != SIZE_MAX &&
++ suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL)
++ {
++ --nextAlloc2ndIndex;
++ }
++
++ // Found non-null allocation.
++ if (nextAlloc2ndIndex != SIZE_MAX)
++ {
++ const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];
++
++ // 1. Process free space before this allocation.
++ if (lastOffset < suballoc.offset)
++ {
++ // There is free space from lastOffset to suballoc.offset.
++ ++unusedRangeCount;
++ }
++
++ // 2. Process this allocation.
++ // There is allocation with suballoc.offset, suballoc.size.
++ ++alloc2ndCount;
++ usedBytes += suballoc.size;
++
++ // 3. Prepare for next iteration.
++ lastOffset = suballoc.offset + suballoc.size;
++ --nextAlloc2ndIndex;
++ }
++ // We are at the end.
++ else
++ {
++ if (lastOffset < size)
++ {
++ // There is free space from lastOffset to size.
++ ++unusedRangeCount;
++ }
++
++ // End of loop.
++ lastOffset = size;
++ }
++ }
++ }
++
++ const VkDeviceSize unusedBytes = size - usedBytes;
++ PrintDetailedMap_Begin(json, unusedBytes, alloc1stCount + alloc2ndCount, unusedRangeCount);
++
++ // SECOND PASS
++ lastOffset = 0;
++
++ if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
++ {
++ const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset;
++ size_t nextAlloc2ndIndex = 0;
++ while (lastOffset < freeSpace2ndTo1stEnd)
++ {
++ // Find next non-null allocation or move nextAlloc2ndIndex to the end.
++ while (nextAlloc2ndIndex < suballoc2ndCount &&
++ suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL)
++ {
++ ++nextAlloc2ndIndex;
++ }
++
++ // Found non-null allocation.
++ if (nextAlloc2ndIndex < suballoc2ndCount)
++ {
++ const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];
++
++ // 1. Process free space before this allocation.
++ if (lastOffset < suballoc.offset)
++ {
++ // There is free space from lastOffset to suballoc.offset.
++ const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
++ PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize);
++ }
++
++ // 2. Process this allocation.
++ // There is allocation with suballoc.offset, suballoc.size.
++ PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.size, suballoc.userData);
++
++ // 3. Prepare for next iteration.
++ lastOffset = suballoc.offset + suballoc.size;
++ ++nextAlloc2ndIndex;
++ }
++ // We are at the end.
++ else
++ {
++ if (lastOffset < freeSpace2ndTo1stEnd)
++ {
++ // There is free space from lastOffset to freeSpace2ndTo1stEnd.
++ const VkDeviceSize unusedRangeSize = freeSpace2ndTo1stEnd - lastOffset;
++ PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize);
++ }
++
++ // End of loop.
++ lastOffset = freeSpace2ndTo1stEnd;
++ }
++ }
++ }
++
++ nextAlloc1stIndex = m_1stNullItemsBeginCount;
++ while (lastOffset < freeSpace1stTo2ndEnd)
++ {
++ // Find next non-null allocation or move nextAllocIndex to the end.
++ while (nextAlloc1stIndex < suballoc1stCount &&
++ suballocations1st[nextAlloc1stIndex].userData == VMA_NULL)
++ {
++ ++nextAlloc1stIndex;
++ }
++
++ // Found non-null allocation.
++ if (nextAlloc1stIndex < suballoc1stCount)
++ {
++ const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex];
++
++ // 1. Process free space before this allocation.
++ if (lastOffset < suballoc.offset)
++ {
++ // There is free space from lastOffset to suballoc.offset.
++ const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
++ PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize);
++ }
++
++ // 2. Process this allocation.
++ // There is allocation with suballoc.offset, suballoc.size.
++ PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.size, suballoc.userData);
++
++ // 3. Prepare for next iteration.
++ lastOffset = suballoc.offset + suballoc.size;
++ ++nextAlloc1stIndex;
++ }
++ // We are at the end.
++ else
++ {
++ if (lastOffset < freeSpace1stTo2ndEnd)
++ {
++ // There is free space from lastOffset to freeSpace1stTo2ndEnd.
++ const VkDeviceSize unusedRangeSize = freeSpace1stTo2ndEnd - lastOffset;
++ PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize);
++ }
++
++ // End of loop.
++ lastOffset = freeSpace1stTo2ndEnd;
++ }
++ }
++
++ if (m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)
++ {
++ size_t nextAlloc2ndIndex = suballocations2nd.size() - 1;
++ while (lastOffset < size)
++ {
++ // Find next non-null allocation or move nextAlloc2ndIndex to the end.
++ while (nextAlloc2ndIndex != SIZE_MAX &&
++ suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL)
++ {
++ --nextAlloc2ndIndex;
++ }
++
++ // Found non-null allocation.
++ if (nextAlloc2ndIndex != SIZE_MAX)
++ {
++ const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];
++
++ // 1. Process free space before this allocation.
++ if (lastOffset < suballoc.offset)
++ {
++ // There is free space from lastOffset to suballoc.offset.
++ const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
++ PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize);
++ }
++
++ // 2. Process this allocation.
++ // There is allocation with suballoc.offset, suballoc.size.
++ PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.size, suballoc.userData);
++
++ // 3. Prepare for next iteration.
++ lastOffset = suballoc.offset + suballoc.size;
++ --nextAlloc2ndIndex;
++ }
++ // We are at the end.
++ else
++ {
++ if (lastOffset < size)
++ {
++ // There is free space from lastOffset to size.
++ const VkDeviceSize unusedRangeSize = size - lastOffset;
++ PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize);
++ }
++
++ // End of loop.
++ lastOffset = size;
++ }
++ }
++ }
++
++ PrintDetailedMap_End(json);
++}
++#endif // VMA_STATS_STRING_ENABLED
++
++bool VmaBlockMetadata_Linear::CreateAllocationRequest(
++ VkDeviceSize allocSize,
++ VkDeviceSize allocAlignment,
++ bool upperAddress,
++ VmaSuballocationType allocType,
++ uint32_t strategy,
++ VmaAllocationRequest* pAllocationRequest)
++{
++ VMA_ASSERT(allocSize > 0);
++ VMA_ASSERT(allocType != VMA_SUBALLOCATION_TYPE_FREE);
++ VMA_ASSERT(pAllocationRequest != VMA_NULL);
++ VMA_HEAVY_ASSERT(Validate());
++ pAllocationRequest->size = allocSize;
++ return upperAddress ?
++ CreateAllocationRequest_UpperAddress(
++ allocSize, allocAlignment, allocType, strategy, pAllocationRequest) :
++ CreateAllocationRequest_LowerAddress(
++ allocSize, allocAlignment, allocType, strategy, pAllocationRequest);
++}
++
++VkResult VmaBlockMetadata_Linear::CheckCorruption(const void* pBlockData)
++{
++ VMA_ASSERT(!IsVirtual());
++ SuballocationVectorType& suballocations1st = AccessSuballocations1st();
++ for (size_t i = m_1stNullItemsBeginCount, count = suballocations1st.size(); i < count; ++i)
++ {
++ const VmaSuballocation& suballoc = suballocations1st[i];
++ if (suballoc.type != VMA_SUBALLOCATION_TYPE_FREE)
++ {
++ if (!VmaValidateMagicValue(pBlockData, suballoc.offset + suballoc.size))
++ {
++ VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER VALIDATED ALLOCATION!");
++ return VK_ERROR_UNKNOWN_COPY;
++ }
++ }
++ }
++
++ SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
++ for (size_t i = 0, count = suballocations2nd.size(); i < count; ++i)
++ {
++ const VmaSuballocation& suballoc = suballocations2nd[i];
++ if (suballoc.type != VMA_SUBALLOCATION_TYPE_FREE)
++ {
++ if (!VmaValidateMagicValue(pBlockData, suballoc.offset + suballoc.size))
++ {
++ VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER VALIDATED ALLOCATION!");
++ return VK_ERROR_UNKNOWN_COPY;
++ }
++ }
++ }
++
++ return VK_SUCCESS;
++}
++
++void VmaBlockMetadata_Linear::Alloc(
++ const VmaAllocationRequest& request,
++ VmaSuballocationType type,
++ void* userData)
++{
++ const VkDeviceSize offset = (VkDeviceSize)request.allocHandle - 1;
++ const VmaSuballocation newSuballoc = { offset, request.size, userData, type };
++
++ switch (request.type)
++ {
++ case VmaAllocationRequestType::UpperAddress:
++ {
++ VMA_ASSERT(m_2ndVectorMode != SECOND_VECTOR_RING_BUFFER &&
++ "CRITICAL ERROR: Trying to use linear allocator as double stack while it was already used as ring buffer.");
++ SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
++ suballocations2nd.push_back(newSuballoc);
++ m_2ndVectorMode = SECOND_VECTOR_DOUBLE_STACK;
++ }
++ break;
++ case VmaAllocationRequestType::EndOf1st:
++ {
++ SuballocationVectorType& suballocations1st = AccessSuballocations1st();
++
++ VMA_ASSERT(suballocations1st.empty() ||
++ offset >= suballocations1st.back().offset + suballocations1st.back().size);
++ // Check if it fits before the end of the block.
++ VMA_ASSERT(offset + request.size <= GetSize());
++
++ suballocations1st.push_back(newSuballoc);
++ }
++ break;
++ case VmaAllocationRequestType::EndOf2nd:
++ {
++ SuballocationVectorType& suballocations1st = AccessSuballocations1st();
++ // New allocation at the end of 2-part ring buffer, so before first allocation from 1st vector.
++ VMA_ASSERT(!suballocations1st.empty() &&
++ offset + request.size <= suballocations1st[m_1stNullItemsBeginCount].offset);
++ SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
++
++ switch (m_2ndVectorMode)
++ {
++ case SECOND_VECTOR_EMPTY:
++ // First allocation from second part ring buffer.
++ VMA_ASSERT(suballocations2nd.empty());
++ m_2ndVectorMode = SECOND_VECTOR_RING_BUFFER;
++ break;
++ case SECOND_VECTOR_RING_BUFFER:
++ // 2-part ring buffer is already started.
++ VMA_ASSERT(!suballocations2nd.empty());
++ break;
++ case SECOND_VECTOR_DOUBLE_STACK:
++ VMA_ASSERT(0 && "CRITICAL ERROR: Trying to use linear allocator as ring buffer while it was already used as double stack.");
++ break;
++ default:
++ VMA_ASSERT(0);
++ }
++
++ suballocations2nd.push_back(newSuballoc);
++ }
++ break;
++ default:
++ VMA_ASSERT(0 && "CRITICAL INTERNAL ERROR.");
++ }
++
++ m_SumFreeSize -= newSuballoc.size;
++}
++
++void VmaBlockMetadata_Linear::Free(VmaAllocHandle allocHandle)
++{
++ SuballocationVectorType& suballocations1st = AccessSuballocations1st();
++ SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
++ VkDeviceSize offset = (VkDeviceSize)allocHandle - 1;
++
++ if (!suballocations1st.empty())
++ {
++ // First allocation: Mark it as next empty at the beginning.
++ VmaSuballocation& firstSuballoc = suballocations1st[m_1stNullItemsBeginCount];
++ if (firstSuballoc.offset == offset)
++ {
++ firstSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
++ firstSuballoc.userData = VMA_NULL;
++ m_SumFreeSize += firstSuballoc.size;
++ ++m_1stNullItemsBeginCount;
++ CleanupAfterFree();
++ return;
++ }
++ }
++
++ // Last allocation in 2-part ring buffer or top of upper stack (same logic).
++ if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER ||
++ m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)
++ {
++ VmaSuballocation& lastSuballoc = suballocations2nd.back();
++ if (lastSuballoc.offset == offset)
++ {
++ m_SumFreeSize += lastSuballoc.size;
++ suballocations2nd.pop_back();
++ CleanupAfterFree();
++ return;
++ }
++ }
++ // Last allocation in 1st vector.
++ else if (m_2ndVectorMode == SECOND_VECTOR_EMPTY)
++ {
++ VmaSuballocation& lastSuballoc = suballocations1st.back();
++ if (lastSuballoc.offset == offset)
++ {
++ m_SumFreeSize += lastSuballoc.size;
++ suballocations1st.pop_back();
++ CleanupAfterFree();
++ return;
++ }
++ }
++
++ VmaSuballocation refSuballoc;
++ refSuballoc.offset = offset;
++ // Rest of members stays uninitialized intentionally for better performance.
++
++ // Item from the middle of 1st vector.
++ {
++ const SuballocationVectorType::iterator it = VmaBinaryFindSorted(
++ suballocations1st.begin() + m_1stNullItemsBeginCount,
++ suballocations1st.end(),
++ refSuballoc,
++ VmaSuballocationOffsetLess());
++ if (it != suballocations1st.end())
++ {
++ it->type = VMA_SUBALLOCATION_TYPE_FREE;
++ it->userData = VMA_NULL;
++ ++m_1stNullItemsMiddleCount;
++ m_SumFreeSize += it->size;
++ CleanupAfterFree();
++ return;
++ }
++ }
++
++ if (m_2ndVectorMode != SECOND_VECTOR_EMPTY)
++ {
++ // Item from the middle of 2nd vector.
++ const SuballocationVectorType::iterator it = m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER ?
++ VmaBinaryFindSorted(suballocations2nd.begin(), suballocations2nd.end(), refSuballoc, VmaSuballocationOffsetLess()) :
++ VmaBinaryFindSorted(suballocations2nd.begin(), suballocations2nd.end(), refSuballoc, VmaSuballocationOffsetGreater());
++ if (it != suballocations2nd.end())
++ {
++ it->type = VMA_SUBALLOCATION_TYPE_FREE;
++ it->userData = VMA_NULL;
++ ++m_2ndNullItemsCount;
++ m_SumFreeSize += it->size;
++ CleanupAfterFree();
++ return;
++ }
++ }
++
++ VMA_ASSERT(0 && "Allocation to free not found in linear allocator!");
++}
++
++void VmaBlockMetadata_Linear::GetAllocationInfo(VmaAllocHandle allocHandle, VmaVirtualAllocationInfo& outInfo)
++{
++ outInfo.offset = (VkDeviceSize)allocHandle - 1;
++ VmaSuballocation& suballoc = FindSuballocation(outInfo.offset);
++ outInfo.size = suballoc.size;
++ outInfo.pUserData = suballoc.userData;
++}
++
++void* VmaBlockMetadata_Linear::GetAllocationUserData(VmaAllocHandle allocHandle) const
++{
++ return FindSuballocation((VkDeviceSize)allocHandle - 1).userData;
++}
++
++VmaAllocHandle VmaBlockMetadata_Linear::GetAllocationListBegin() const
++{
++ // Function only used for defragmentation, which is disabled for this algorithm
++ VMA_ASSERT(0);
++ return VK_NULL_HANDLE;
++}
++
++VmaAllocHandle VmaBlockMetadata_Linear::GetNextAllocation(VmaAllocHandle prevAlloc) const
++{
++ // Function only used for defragmentation, which is disabled for this algorithm
++ VMA_ASSERT(0);
++ return VK_NULL_HANDLE;
++}
++
++VkDeviceSize VmaBlockMetadata_Linear::GetNextFreeRegionSize(VmaAllocHandle alloc) const
++{
++ // Function only used for defragmentation, which is disabled for this algorithm
++ VMA_ASSERT(0);
++ return 0;
++}
++
++void VmaBlockMetadata_Linear::Clear()
++{
++ m_SumFreeSize = GetSize();
++ m_Suballocations0.clear();
++ m_Suballocations1.clear();
++ // Leaving m_1stVectorIndex unchanged - it doesn't matter.
++ m_2ndVectorMode = SECOND_VECTOR_EMPTY;
++ m_1stNullItemsBeginCount = 0;
++ m_1stNullItemsMiddleCount = 0;
++ m_2ndNullItemsCount = 0;
++}
++
++void VmaBlockMetadata_Linear::SetAllocationUserData(VmaAllocHandle allocHandle, void* userData)
++{
++ VmaSuballocation& suballoc = FindSuballocation((VkDeviceSize)allocHandle - 1);
++ suballoc.userData = userData;
++}
++
++void VmaBlockMetadata_Linear::DebugLogAllAllocations() const
++{
++ const SuballocationVectorType& suballocations1st = AccessSuballocations1st();
++ for (auto it = suballocations1st.begin() + m_1stNullItemsBeginCount; it != suballocations1st.end(); ++it)
++ if (it->type != VMA_SUBALLOCATION_TYPE_FREE)
++ DebugLogAllocation(it->offset, it->size, it->userData);
++
++ const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
++ for (auto it = suballocations2nd.begin(); it != suballocations2nd.end(); ++it)
++ if (it->type != VMA_SUBALLOCATION_TYPE_FREE)
++ DebugLogAllocation(it->offset, it->size, it->userData);
++}
++
++VmaSuballocation& VmaBlockMetadata_Linear::FindSuballocation(VkDeviceSize offset) const
++{
++ const SuballocationVectorType& suballocations1st = AccessSuballocations1st();
++ const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
++
++ VmaSuballocation refSuballoc;
++ refSuballoc.offset = offset;
++ // Rest of members stays uninitialized intentionally for better performance.
++
++ // Item from the 1st vector.
++ {
++ SuballocationVectorType::const_iterator it = VmaBinaryFindSorted(
++ suballocations1st.begin() + m_1stNullItemsBeginCount,
++ suballocations1st.end(),
++ refSuballoc,
++ VmaSuballocationOffsetLess());
++ if (it != suballocations1st.end())
++ {
++ return const_cast<VmaSuballocation&>(*it);
++ }
++ }
++
++ if (m_2ndVectorMode != SECOND_VECTOR_EMPTY)
++ {
++ // Rest of members stays uninitialized intentionally for better performance.
++ SuballocationVectorType::const_iterator it = m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER ?
++ VmaBinaryFindSorted(suballocations2nd.begin(), suballocations2nd.end(), refSuballoc, VmaSuballocationOffsetLess()) :
++ VmaBinaryFindSorted(suballocations2nd.begin(), suballocations2nd.end(), refSuballoc, VmaSuballocationOffsetGreater());
++ if (it != suballocations2nd.end())
++ {
++ return const_cast<VmaSuballocation&>(*it);
++ }
++ }
++
++ VMA_ASSERT(0 && "Allocation not found in linear allocator!");
++ return const_cast<VmaSuballocation&>(suballocations1st.back()); // Should never occur.
++}
++
++bool VmaBlockMetadata_Linear::ShouldCompact1st() const
++{
++ const size_t nullItemCount = m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount;
++ const size_t suballocCount = AccessSuballocations1st().size();
++ return suballocCount > 32 && nullItemCount * 2 >= (suballocCount - nullItemCount) * 3;
++}
++
++void VmaBlockMetadata_Linear::CleanupAfterFree()
++{
++ SuballocationVectorType& suballocations1st = AccessSuballocations1st();
++ SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
++
++ if (IsEmpty())
++ {
++ suballocations1st.clear();
++ suballocations2nd.clear();
++ m_1stNullItemsBeginCount = 0;
++ m_1stNullItemsMiddleCount = 0;
++ m_2ndNullItemsCount = 0;
++ m_2ndVectorMode = SECOND_VECTOR_EMPTY;
++ }
++ else
++ {
++ const size_t suballoc1stCount = suballocations1st.size();
++ const size_t nullItem1stCount = m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount;
++ VMA_ASSERT(nullItem1stCount <= suballoc1stCount);
++
++ // Find more null items at the beginning of 1st vector.
++ while (m_1stNullItemsBeginCount < suballoc1stCount &&
++ suballocations1st[m_1stNullItemsBeginCount].type == VMA_SUBALLOCATION_TYPE_FREE)
++ {
++ ++m_1stNullItemsBeginCount;
++ --m_1stNullItemsMiddleCount;
++ }
++
++ // Find more null items at the end of 1st vector.
++ while (m_1stNullItemsMiddleCount > 0 &&
++ suballocations1st.back().type == VMA_SUBALLOCATION_TYPE_FREE)
++ {
++ --m_1stNullItemsMiddleCount;
++ suballocations1st.pop_back();
++ }
++
++ // Find more null items at the end of 2nd vector.
++ while (m_2ndNullItemsCount > 0 &&
++ suballocations2nd.back().type == VMA_SUBALLOCATION_TYPE_FREE)
++ {
++ --m_2ndNullItemsCount;
++ suballocations2nd.pop_back();
++ }
++
++ // Find more null items at the beginning of 2nd vector.
++ while (m_2ndNullItemsCount > 0 &&
++ suballocations2nd[0].type == VMA_SUBALLOCATION_TYPE_FREE)
++ {
++ --m_2ndNullItemsCount;
++ VmaVectorRemove(suballocations2nd, 0);
++ }
++
++ if (ShouldCompact1st())
++ {
++ const size_t nonNullItemCount = suballoc1stCount - nullItem1stCount;
++ size_t srcIndex = m_1stNullItemsBeginCount;
++ for (size_t dstIndex = 0; dstIndex < nonNullItemCount; ++dstIndex)
++ {
++ while (suballocations1st[srcIndex].type == VMA_SUBALLOCATION_TYPE_FREE)
++ {
++ ++srcIndex;
++ }
++ if (dstIndex != srcIndex)
++ {
++ suballocations1st[dstIndex] = suballocations1st[srcIndex];
++ }
++ ++srcIndex;
++ }
++ suballocations1st.resize(nonNullItemCount);
++ m_1stNullItemsBeginCount = 0;
++ m_1stNullItemsMiddleCount = 0;
++ }
++
++ // 2nd vector became empty.
++ if (suballocations2nd.empty())
++ {
++ m_2ndVectorMode = SECOND_VECTOR_EMPTY;
++ }
++
++ // 1st vector became empty.
++ if (suballocations1st.size() - m_1stNullItemsBeginCount == 0)
++ {
++ suballocations1st.clear();
++ m_1stNullItemsBeginCount = 0;
++
++ if (!suballocations2nd.empty() && m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
++ {
++ // Swap 1st with 2nd. Now 2nd is empty.
++ m_2ndVectorMode = SECOND_VECTOR_EMPTY;
++ m_1stNullItemsMiddleCount = m_2ndNullItemsCount;
++ while (m_1stNullItemsBeginCount < suballocations2nd.size() &&
++ suballocations2nd[m_1stNullItemsBeginCount].type == VMA_SUBALLOCATION_TYPE_FREE)
++ {
++ ++m_1stNullItemsBeginCount;
++ --m_1stNullItemsMiddleCount;
++ }
++ m_2ndNullItemsCount = 0;
++ m_1stVectorIndex ^= 1;
++ }
++ }
++ }
++
++ VMA_HEAVY_ASSERT(Validate());
++}
++
++bool VmaBlockMetadata_Linear::CreateAllocationRequest_LowerAddress(
++ VkDeviceSize allocSize,
++ VkDeviceSize allocAlignment,
++ VmaSuballocationType allocType,
++ uint32_t strategy,
++ VmaAllocationRequest* pAllocationRequest)
++{
++ const VkDeviceSize blockSize = GetSize();
++ const VkDeviceSize debugMargin = GetDebugMargin();
++ const VkDeviceSize bufferImageGranularity = GetBufferImageGranularity();
++ SuballocationVectorType& suballocations1st = AccessSuballocations1st();
++ SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
++
++ if (m_2ndVectorMode == SECOND_VECTOR_EMPTY || m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)
++ {
++ // Try to allocate at the end of 1st vector.
++
++ VkDeviceSize resultBaseOffset = 0;
++ if (!suballocations1st.empty())
++ {
++ const VmaSuballocation& lastSuballoc = suballocations1st.back();
++ resultBaseOffset = lastSuballoc.offset + lastSuballoc.size + debugMargin;
++ }
++
++ // Start from offset equal to beginning of free space.
++ VkDeviceSize resultOffset = resultBaseOffset;
++
++ // Apply alignment.
++ resultOffset = VmaAlignUp(resultOffset, allocAlignment);
++
++ // Check previous suballocations for BufferImageGranularity conflicts.
++ // Make bigger alignment if necessary.
++ if (bufferImageGranularity > 1 && bufferImageGranularity != allocAlignment && !suballocations1st.empty())
++ {
++ bool bufferImageGranularityConflict = false;
++ for (size_t prevSuballocIndex = suballocations1st.size(); prevSuballocIndex--; )
++ {
++ const VmaSuballocation& prevSuballoc = suballocations1st[prevSuballocIndex];
++ if (VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, resultOffset, bufferImageGranularity))
++ {
++ if (VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType))
++ {
++ bufferImageGranularityConflict = true;
++ break;
++ }
++ }
++ else
++ // Already on previous page.
++ break;
++ }
++ if (bufferImageGranularityConflict)
++ {
++ resultOffset = VmaAlignUp(resultOffset, bufferImageGranularity);
++ }
++ }
++
++ const VkDeviceSize freeSpaceEnd = m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ?
++ suballocations2nd.back().offset : blockSize;
++
++ // There is enough free space at the end after alignment.
++ if (resultOffset + allocSize + debugMargin <= freeSpaceEnd)
++ {
++ // Check next suballocations for BufferImageGranularity conflicts.
++ // If conflict exists, allocation cannot be made here.
++ if ((allocSize % bufferImageGranularity || resultOffset % bufferImageGranularity) && m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)
++ {
++ for (size_t nextSuballocIndex = suballocations2nd.size(); nextSuballocIndex--; )
++ {
++ const VmaSuballocation& nextSuballoc = suballocations2nd[nextSuballocIndex];
++ if (VmaBlocksOnSamePage(resultOffset, allocSize, nextSuballoc.offset, bufferImageGranularity))
++ {
++ if (VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type))
++ {
++ return false;
++ }
++ }
++ else
++ {
++ // Already on previous page.
++ break;
++ }
++ }
++ }
++
++ // All tests passed: Success.
++ pAllocationRequest->allocHandle = (VmaAllocHandle)(resultOffset + 1);
++ // pAllocationRequest->item, customData unused.
++ pAllocationRequest->type = VmaAllocationRequestType::EndOf1st;
++ return true;
++ }
++ }
++
++ // Wrap-around to end of 2nd vector. Try to allocate there, watching for the
++ // beginning of 1st vector as the end of free space.
++ if (m_2ndVectorMode == SECOND_VECTOR_EMPTY || m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
++ {
++ VMA_ASSERT(!suballocations1st.empty());
++
++ VkDeviceSize resultBaseOffset = 0;
++ if (!suballocations2nd.empty())
++ {
++ const VmaSuballocation& lastSuballoc = suballocations2nd.back();
++ resultBaseOffset = lastSuballoc.offset + lastSuballoc.size + debugMargin;
++ }
++
++ // Start from offset equal to beginning of free space.
++ VkDeviceSize resultOffset = resultBaseOffset;
++
++ // Apply alignment.
++ resultOffset = VmaAlignUp(resultOffset, allocAlignment);
++
++ // Check previous suballocations for BufferImageGranularity conflicts.
++ // Make bigger alignment if necessary.
++ if (bufferImageGranularity > 1 && bufferImageGranularity != allocAlignment && !suballocations2nd.empty())
++ {
++ bool bufferImageGranularityConflict = false;
++ for (size_t prevSuballocIndex = suballocations2nd.size(); prevSuballocIndex--; )
++ {
++ const VmaSuballocation& prevSuballoc = suballocations2nd[prevSuballocIndex];
++ if (VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, resultOffset, bufferImageGranularity))
++ {
++ if (VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType))
++ {
++ bufferImageGranularityConflict = true;
++ break;
++ }
++ }
++ else
++ // Already on previous page.
++ break;
++ }
++ if (bufferImageGranularityConflict)
++ {
++ resultOffset = VmaAlignUp(resultOffset, bufferImageGranularity);
++ }
++ }
++
++ size_t index1st = m_1stNullItemsBeginCount;
++
++ // There is enough free space at the end after alignment.
++ if ((index1st == suballocations1st.size() && resultOffset + allocSize + debugMargin <= blockSize) ||
++ (index1st < suballocations1st.size() && resultOffset + allocSize + debugMargin <= suballocations1st[index1st].offset))
++ {
++ // Check next suballocations for BufferImageGranularity conflicts.
++ // If conflict exists, allocation cannot be made here.
++ if (allocSize % bufferImageGranularity || resultOffset % bufferImageGranularity)
++ {
++ for (size_t nextSuballocIndex = index1st;
++ nextSuballocIndex < suballocations1st.size();
++ nextSuballocIndex++)
++ {
++ const VmaSuballocation& nextSuballoc = suballocations1st[nextSuballocIndex];
++ if (VmaBlocksOnSamePage(resultOffset, allocSize, nextSuballoc.offset, bufferImageGranularity))
++ {
++ if (VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type))
++ {
++ return false;
++ }
++ }
++ else
++ {
++ // Already on next page.
++ break;
++ }
++ }
++ }
++
++ // All tests passed: Success.
++ pAllocationRequest->allocHandle = (VmaAllocHandle)(resultOffset + 1);
++ pAllocationRequest->type = VmaAllocationRequestType::EndOf2nd;
++ // pAllocationRequest->item, customData unused.
++ return true;
++ }
++ }
++
++ return false;
++}
++
++bool VmaBlockMetadata_Linear::CreateAllocationRequest_UpperAddress(
++ VkDeviceSize allocSize,
++ VkDeviceSize allocAlignment,
++ VmaSuballocationType allocType,
++ uint32_t strategy,
++ VmaAllocationRequest* pAllocationRequest)
++{
++ const VkDeviceSize blockSize = GetSize();
++ const VkDeviceSize bufferImageGranularity = GetBufferImageGranularity();
++ SuballocationVectorType& suballocations1st = AccessSuballocations1st();
++ SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
++
++ if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
++ {
++ VMA_ASSERT(0 && "Trying to use pool with linear algorithm as double stack, while it is already being used as ring buffer.");
++ return false;
++ }
++
++ // Try to allocate before 2nd.back(), or end of block if 2nd.empty().
++ if (allocSize > blockSize)
++ {
++ return false;
++ }
++ VkDeviceSize resultBaseOffset = blockSize - allocSize;
++ if (!suballocations2nd.empty())
++ {
++ const VmaSuballocation& lastSuballoc = suballocations2nd.back();
++ resultBaseOffset = lastSuballoc.offset - allocSize;
++ if (allocSize > lastSuballoc.offset)
++ {
++ return false;
++ }
++ }
++
++ // Start from offset equal to end of free space.
++ VkDeviceSize resultOffset = resultBaseOffset;
++
++ const VkDeviceSize debugMargin = GetDebugMargin();
++
++ // Apply debugMargin at the end.
++ if (debugMargin > 0)
++ {
++ if (resultOffset < debugMargin)
++ {
++ return false;
++ }
++ resultOffset -= debugMargin;
++ }
++
++ // Apply alignment.
++ resultOffset = VmaAlignDown(resultOffset, allocAlignment);
++
++ // Check next suballocations from 2nd for BufferImageGranularity conflicts.
++ // Make bigger alignment if necessary.
++ if (bufferImageGranularity > 1 && bufferImageGranularity != allocAlignment && !suballocations2nd.empty())
++ {
++ bool bufferImageGranularityConflict = false;
++ for (size_t nextSuballocIndex = suballocations2nd.size(); nextSuballocIndex--; )
++ {
++ const VmaSuballocation& nextSuballoc = suballocations2nd[nextSuballocIndex];
++ if (VmaBlocksOnSamePage(resultOffset, allocSize, nextSuballoc.offset, bufferImageGranularity))
++ {
++ if (VmaIsBufferImageGranularityConflict(nextSuballoc.type, allocType))
++ {
++ bufferImageGranularityConflict = true;
++ break;
++ }
++ }
++ else
++ // Already on previous page.
++ break;
++ }
++ if (bufferImageGranularityConflict)
++ {
++ resultOffset = VmaAlignDown(resultOffset, bufferImageGranularity);
++ }
++ }
++
++ // There is enough free space.
++ const VkDeviceSize endOf1st = !suballocations1st.empty() ?
++ suballocations1st.back().offset + suballocations1st.back().size :
++ 0;
++ if (endOf1st + debugMargin <= resultOffset)
++ {
++ // Check previous suballocations for BufferImageGranularity conflicts.
++ // If conflict exists, allocation cannot be made here.
++ if (bufferImageGranularity > 1)
++ {
++ for (size_t prevSuballocIndex = suballocations1st.size(); prevSuballocIndex--; )
++ {
++ const VmaSuballocation& prevSuballoc = suballocations1st[prevSuballocIndex];
++ if (VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, resultOffset, bufferImageGranularity))
++ {
++ if (VmaIsBufferImageGranularityConflict(allocType, prevSuballoc.type))
++ {
++ return false;
++ }
++ }
++ else
++ {
++ // Already on next page.
++ break;
++ }
++ }
++ }
++
++ // All tests passed: Success.
++ pAllocationRequest->allocHandle = (VmaAllocHandle)(resultOffset + 1);
++ // pAllocationRequest->item unused.
++ pAllocationRequest->type = VmaAllocationRequestType::UpperAddress;
++ return true;
++ }
++
++ return false;
++}
++#endif // _VMA_BLOCK_METADATA_LINEAR_FUNCTIONS
++#endif // _VMA_BLOCK_METADATA_LINEAR
++
++#if 0
++#ifndef _VMA_BLOCK_METADATA_BUDDY
++/*
++- GetSize() is the original size of allocated memory block.
++- m_UsableSize is this size aligned down to a power of two.
++ All allocations and calculations happen relative to m_UsableSize.
++- GetUnusableSize() is the difference between them.
++ It is reported as separate, unused range, not available for allocations.
++
++Node at level 0 has size = m_UsableSize.
++Each next level contains nodes with size 2 times smaller than current level.
++m_LevelCount is the maximum number of levels to use in the current object.
++*/
++class VmaBlockMetadata_Buddy : public VmaBlockMetadata
++{
++ VMA_CLASS_NO_COPY(VmaBlockMetadata_Buddy)
++public:
++ VmaBlockMetadata_Buddy(const VkAllocationCallbacks* pAllocationCallbacks,
++ VkDeviceSize bufferImageGranularity, bool isVirtual);
++ virtual ~VmaBlockMetadata_Buddy();
++
++ size_t GetAllocationCount() const override { return m_AllocationCount; }
++ VkDeviceSize GetSumFreeSize() const override { return m_SumFreeSize + GetUnusableSize(); }
++ bool IsEmpty() const override { return m_Root->type == Node::TYPE_FREE; }
++ VkResult CheckCorruption(const void* pBlockData) override { return VK_ERROR_FEATURE_NOT_PRESENT; }
++ VkDeviceSize GetAllocationOffset(VmaAllocHandle allocHandle) const override { return (VkDeviceSize)allocHandle - 1; };
++ void DebugLogAllAllocations() const override { DebugLogAllAllocationNode(m_Root, 0); }
++
++ void Init(VkDeviceSize size) override;
++ bool Validate() const override;
++
++ void AddDetailedStatistics(VmaDetailedStatistics& inoutStats) const override;
++ void AddStatistics(VmaStatistics& inoutStats) const override;
++
++#if VMA_STATS_STRING_ENABLED
++ void PrintDetailedMap(class VmaJsonWriter& json, uint32_t mapRefCount) const override;
++#endif
++
++ bool CreateAllocationRequest(
++ VkDeviceSize allocSize,
++ VkDeviceSize allocAlignment,
++ bool upperAddress,
++ VmaSuballocationType allocType,
++ uint32_t strategy,
++ VmaAllocationRequest* pAllocationRequest) override;
++
++ void Alloc(
++ const VmaAllocationRequest& request,
++ VmaSuballocationType type,
++ void* userData) override;
++
++ void Free(VmaAllocHandle allocHandle) override;
++ void GetAllocationInfo(VmaAllocHandle allocHandle, VmaVirtualAllocationInfo& outInfo) override;
++ void* GetAllocationUserData(VmaAllocHandle allocHandle) const override;
++ VmaAllocHandle GetAllocationListBegin() const override;
++ VmaAllocHandle GetNextAllocation(VmaAllocHandle prevAlloc) const override;
++ void Clear() override;
++ void SetAllocationUserData(VmaAllocHandle allocHandle, void* userData) override;
++
++private:
++ static const size_t MAX_LEVELS = 48;
++
++ struct ValidationContext
++ {
++ size_t calculatedAllocationCount = 0;
++ size_t calculatedFreeCount = 0;
++ VkDeviceSize calculatedSumFreeSize = 0;
++ };
++ struct Node
++ {
++ VkDeviceSize offset;
++ enum TYPE
++ {
++ TYPE_FREE,
++ TYPE_ALLOCATION,
++ TYPE_SPLIT,
++ TYPE_COUNT
++ } type;
++ Node* parent;
++ Node* buddy;
++
++ union
++ {
++ struct
++ {
++ Node* prev;
++ Node* next;
++ } free;
++ struct
++ {
++ void* userData;
++ } allocation;
++ struct
++ {
++ Node* leftChild;
++ } split;
++ };
++ };
++
++ // Size of the memory block aligned down to a power of two.
++ VkDeviceSize m_UsableSize;
++ uint32_t m_LevelCount;
++ VmaPoolAllocator<Node> m_NodeAllocator;
++ Node* m_Root;
++ struct
++ {
++ Node* front;
++ Node* back;
++ } m_FreeList[MAX_LEVELS];
++
++ // Number of nodes in the tree with type == TYPE_ALLOCATION.
++ size_t m_AllocationCount;
++ // Number of nodes in the tree with type == TYPE_FREE.
++ size_t m_FreeCount;
++ // Doesn't include space wasted due to internal fragmentation - allocation sizes are just aligned up to node sizes.
++ // Doesn't include unusable size.
++ VkDeviceSize m_SumFreeSize;
++
++ VkDeviceSize GetUnusableSize() const { return GetSize() - m_UsableSize; }
++ VkDeviceSize LevelToNodeSize(uint32_t level) const { return m_UsableSize >> level; }
++
++ VkDeviceSize AlignAllocationSize(VkDeviceSize size) const
++ {
++ if (!IsVirtual())
++ {
++ size = VmaAlignUp(size, (VkDeviceSize)16);
++ }
++ return VmaNextPow2(size);
++ }
++ Node* FindAllocationNode(VkDeviceSize offset, uint32_t& outLevel) const;
++ void DeleteNodeChildren(Node* node);
++ bool ValidateNode(ValidationContext& ctx, const Node* parent, const Node* curr, uint32_t level, VkDeviceSize levelNodeSize) const;
++ uint32_t AllocSizeToLevel(VkDeviceSize allocSize) const;
++ void AddNodeToDetailedStatistics(VmaDetailedStatistics& inoutStats, const Node* node, VkDeviceSize levelNodeSize) const;
++ // Adds node to the front of FreeList at given level.
++ // node->type must be FREE.
++ // node->free.prev, next can be undefined.
++ void AddToFreeListFront(uint32_t level, Node* node);
++ // Removes node from FreeList at given level.
++ // node->type must be FREE.
++ // node->free.prev, next stay untouched.
++ void RemoveFromFreeList(uint32_t level, Node* node);
++ void DebugLogAllAllocationNode(Node* node, uint32_t level) const;
++
++#if VMA_STATS_STRING_ENABLED
++ void PrintDetailedMapNode(class VmaJsonWriter& json, const Node* node, VkDeviceSize levelNodeSize) const;
++#endif
++};
++
++#ifndef _VMA_BLOCK_METADATA_BUDDY_FUNCTIONS
++VmaBlockMetadata_Buddy::VmaBlockMetadata_Buddy(const VkAllocationCallbacks* pAllocationCallbacks,
++ VkDeviceSize bufferImageGranularity, bool isVirtual)
++ : VmaBlockMetadata(pAllocationCallbacks, bufferImageGranularity, isVirtual),
++ m_NodeAllocator(pAllocationCallbacks, 32), // firstBlockCapacity
++ m_Root(VMA_NULL),
++ m_AllocationCount(0),
++ m_FreeCount(1),
++ m_SumFreeSize(0)
++{
++ memset(m_FreeList, 0, sizeof(m_FreeList));
++}
++
++VmaBlockMetadata_Buddy::~VmaBlockMetadata_Buddy()
++{
++ DeleteNodeChildren(m_Root);
++ m_NodeAllocator.Free(m_Root);
++}
++
++void VmaBlockMetadata_Buddy::Init(VkDeviceSize size)
++{
++ VmaBlockMetadata::Init(size);
++
++ m_UsableSize = VmaPrevPow2(size);
++ m_SumFreeSize = m_UsableSize;
++
++ // Calculate m_LevelCount.
++ const VkDeviceSize minNodeSize = IsVirtual() ? 1 : 16;
++ m_LevelCount = 1;
++ while (m_LevelCount < MAX_LEVELS &&
++ LevelToNodeSize(m_LevelCount) >= minNodeSize)
++ {
++ ++m_LevelCount;
++ }
++
++ Node* rootNode = m_NodeAllocator.Alloc();
++ rootNode->offset = 0;
++ rootNode->type = Node::TYPE_FREE;
++ rootNode->parent = VMA_NULL;
++ rootNode->buddy = VMA_NULL;
++
++ m_Root = rootNode;
++ AddToFreeListFront(0, rootNode);
++}
++
++bool VmaBlockMetadata_Buddy::Validate() const
++{
++ // Validate tree.
++ ValidationContext ctx;
++ if (!ValidateNode(ctx, VMA_NULL, m_Root, 0, LevelToNodeSize(0)))
++ {
++ VMA_VALIDATE(false && "ValidateNode failed.");
++ }
++ VMA_VALIDATE(m_AllocationCount == ctx.calculatedAllocationCount);
++ VMA_VALIDATE(m_SumFreeSize == ctx.calculatedSumFreeSize);
++
++ // Validate free node lists.
++ for (uint32_t level = 0; level < m_LevelCount; ++level)
++ {
++ VMA_VALIDATE(m_FreeList[level].front == VMA_NULL ||
++ m_FreeList[level].front->free.prev == VMA_NULL);
++
++ for (Node* node = m_FreeList[level].front;
++ node != VMA_NULL;
++ node = node->free.next)
++ {
++ VMA_VALIDATE(node->type == Node::TYPE_FREE);
++
++ if (node->free.next == VMA_NULL)
++ {
++ VMA_VALIDATE(m_FreeList[level].back == node);
++ }
++ else
++ {
++ VMA_VALIDATE(node->free.next->free.prev == node);
++ }
++ }
++ }
++
++ // Validate that free lists ar higher levels are empty.
++ for (uint32_t level = m_LevelCount; level < MAX_LEVELS; ++level)
++ {
++ VMA_VALIDATE(m_FreeList[level].front == VMA_NULL && m_FreeList[level].back == VMA_NULL);
++ }
++
++ return true;
++}
++
++void VmaBlockMetadata_Buddy::AddDetailedStatistics(VmaDetailedStatistics& inoutStats) const
++{
++ inoutStats.statistics.blockCount++;
++ inoutStats.statistics.blockBytes += GetSize();
++
++ AddNodeToDetailedStatistics(inoutStats, m_Root, LevelToNodeSize(0));
++
++ const VkDeviceSize unusableSize = GetUnusableSize();
++ if (unusableSize > 0)
++ VmaAddDetailedStatisticsUnusedRange(inoutStats, unusableSize);
++}
++
++void VmaBlockMetadata_Buddy::AddStatistics(VmaStatistics& inoutStats) const
++{
++ inoutStats.blockCount++;
++ inoutStats.allocationCount += (uint32_t)m_AllocationCount;
++ inoutStats.blockBytes += GetSize();
++ inoutStats.allocationBytes += GetSize() - m_SumFreeSize;
++}
++
++#if VMA_STATS_STRING_ENABLED
++void VmaBlockMetadata_Buddy::PrintDetailedMap(class VmaJsonWriter& json, uint32_t mapRefCount) const
++{
++ VmaDetailedStatistics stats;
++ VmaClearDetailedStatistics(stats);
++ AddDetailedStatistics(stats);
++
++ PrintDetailedMap_Begin(
++ json,
++ stats.statistics.blockBytes - stats.statistics.allocationBytes,
++ stats.statistics.allocationCount,
++ stats.unusedRangeCount,
++ mapRefCount);
++
++ PrintDetailedMapNode(json, m_Root, LevelToNodeSize(0));
++
++ const VkDeviceSize unusableSize = GetUnusableSize();
++ if (unusableSize > 0)
++ {
++ PrintDetailedMap_UnusedRange(json,
++ m_UsableSize, // offset
++ unusableSize); // size
++ }
++
++ PrintDetailedMap_End(json);
++}
++#endif // VMA_STATS_STRING_ENABLED
++
++bool VmaBlockMetadata_Buddy::CreateAllocationRequest(
++ VkDeviceSize allocSize,
++ VkDeviceSize allocAlignment,
++ bool upperAddress,
++ VmaSuballocationType allocType,
++ uint32_t strategy,
++ VmaAllocationRequest* pAllocationRequest)
++{
++ VMA_ASSERT(!upperAddress && "VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT can be used only with linear algorithm.");
++
++ allocSize = AlignAllocationSize(allocSize);
++
++ // Simple way to respect bufferImageGranularity. May be optimized some day.
++ // Whenever it might be an OPTIMAL image...
++ if (allocType == VMA_SUBALLOCATION_TYPE_UNKNOWN ||
++ allocType == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN ||
++ allocType == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL)
++ {
++ allocAlignment = VMA_MAX(allocAlignment, GetBufferImageGranularity());
++ allocSize = VmaAlignUp(allocSize, GetBufferImageGranularity());
++ }
++
++ if (allocSize > m_UsableSize)
++ {
++ return false;
++ }
++
++ const uint32_t targetLevel = AllocSizeToLevel(allocSize);
++ for (uint32_t level = targetLevel; level--; )
++ {
++ for (Node* freeNode = m_FreeList[level].front;
++ freeNode != VMA_NULL;
++ freeNode = freeNode->free.next)
++ {
++ if (freeNode->offset % allocAlignment == 0)
++ {
++ pAllocationRequest->type = VmaAllocationRequestType::Normal;
++ pAllocationRequest->allocHandle = (VmaAllocHandle)(freeNode->offset + 1);
++ pAllocationRequest->size = allocSize;
++ pAllocationRequest->customData = (void*)(uintptr_t)level;
++ return true;
++ }
++ }
++ }
++
++ return false;
++}
++
++void VmaBlockMetadata_Buddy::Alloc(
++ const VmaAllocationRequest& request,
++ VmaSuballocationType type,
++ void* userData)
++{
++ VMA_ASSERT(request.type == VmaAllocationRequestType::Normal);
++
++ const uint32_t targetLevel = AllocSizeToLevel(request.size);
++ uint32_t currLevel = (uint32_t)(uintptr_t)request.customData;
++
++ Node* currNode = m_FreeList[currLevel].front;
++ VMA_ASSERT(currNode != VMA_NULL && currNode->type == Node::TYPE_FREE);
++ const VkDeviceSize offset = (VkDeviceSize)request.allocHandle - 1;
++ while (currNode->offset != offset)
++ {
++ currNode = currNode->free.next;
++ VMA_ASSERT(currNode != VMA_NULL && currNode->type == Node::TYPE_FREE);
++ }
++
++ // Go down, splitting free nodes.
++ while (currLevel < targetLevel)
++ {
++ // currNode is already first free node at currLevel.
++ // Remove it from list of free nodes at this currLevel.
++ RemoveFromFreeList(currLevel, currNode);
++
++ const uint32_t childrenLevel = currLevel + 1;
++
++ // Create two free sub-nodes.
++ Node* leftChild = m_NodeAllocator.Alloc();
++ Node* rightChild = m_NodeAllocator.Alloc();
++
++ leftChild->offset = currNode->offset;
++ leftChild->type = Node::TYPE_FREE;
++ leftChild->parent = currNode;
++ leftChild->buddy = rightChild;
++
++ rightChild->offset = currNode->offset + LevelToNodeSize(childrenLevel);
++ rightChild->type = Node::TYPE_FREE;
++ rightChild->parent = currNode;
++ rightChild->buddy = leftChild;
++
++ // Convert current currNode to split type.
++ currNode->type = Node::TYPE_SPLIT;
++ currNode->split.leftChild = leftChild;
++
++ // Add child nodes to free list. Order is important!
++ AddToFreeListFront(childrenLevel, rightChild);
++ AddToFreeListFront(childrenLevel, leftChild);
++
++ ++m_FreeCount;
++ ++currLevel;
++ currNode = m_FreeList[currLevel].front;
++
++ /*
++ We can be sure that currNode, as left child of node previously split,
++ also fulfills the alignment requirement.
++ */
++ }
++
++ // Remove from free list.
++ VMA_ASSERT(currLevel == targetLevel &&
++ currNode != VMA_NULL &&
++ currNode->type == Node::TYPE_FREE);
++ RemoveFromFreeList(currLevel, currNode);
++
++ // Convert to allocation node.
++ currNode->type = Node::TYPE_ALLOCATION;
++ currNode->allocation.userData = userData;
++
++ ++m_AllocationCount;
++ --m_FreeCount;
++ m_SumFreeSize -= request.size;
++}
++
++void VmaBlockMetadata_Buddy::GetAllocationInfo(VmaAllocHandle allocHandle, VmaVirtualAllocationInfo& outInfo)
++{
++ uint32_t level = 0;
++ outInfo.offset = (VkDeviceSize)allocHandle - 1;
++ const Node* const node = FindAllocationNode(outInfo.offset, level);
++ outInfo.size = LevelToNodeSize(level);
++ outInfo.pUserData = node->allocation.userData;
++}
++
++void* VmaBlockMetadata_Buddy::GetAllocationUserData(VmaAllocHandle allocHandle) const
++{
++ uint32_t level = 0;
++ const Node* const node = FindAllocationNode((VkDeviceSize)allocHandle - 1, level);
++ return node->allocation.userData;
++}
++
++VmaAllocHandle VmaBlockMetadata_Buddy::GetAllocationListBegin() const
++{
++ // Function only used for defragmentation, which is disabled for this algorithm
++ return VK_NULL_HANDLE;
++}
++
++VmaAllocHandle VmaBlockMetadata_Buddy::GetNextAllocation(VmaAllocHandle prevAlloc) const
++{
++ // Function only used for defragmentation, which is disabled for this algorithm
++ return VK_NULL_HANDLE;
++}
++
++void VmaBlockMetadata_Buddy::DeleteNodeChildren(Node* node)
++{
++ if (node->type == Node::TYPE_SPLIT)
++ {
++ DeleteNodeChildren(node->split.leftChild->buddy);
++ DeleteNodeChildren(node->split.leftChild);
++ const VkAllocationCallbacks* allocationCallbacks = GetAllocationCallbacks();
++ m_NodeAllocator.Free(node->split.leftChild->buddy);
++ m_NodeAllocator.Free(node->split.leftChild);
++ }
++}
++
++void VmaBlockMetadata_Buddy::Clear()
++{
++ DeleteNodeChildren(m_Root);
++ m_Root->type = Node::TYPE_FREE;
++ m_AllocationCount = 0;
++ m_FreeCount = 1;
++ m_SumFreeSize = m_UsableSize;
++}
++
++void VmaBlockMetadata_Buddy::SetAllocationUserData(VmaAllocHandle allocHandle, void* userData)
++{
++ uint32_t level = 0;
++ Node* const node = FindAllocationNode((VkDeviceSize)allocHandle - 1, level);
++ node->allocation.userData = userData;
++}
++
++VmaBlockMetadata_Buddy::Node* VmaBlockMetadata_Buddy::FindAllocationNode(VkDeviceSize offset, uint32_t& outLevel) const
++{
++ Node* node = m_Root;
++ VkDeviceSize nodeOffset = 0;
++ outLevel = 0;
++ VkDeviceSize levelNodeSize = LevelToNodeSize(0);
++ while (node->type == Node::TYPE_SPLIT)
++ {
++ const VkDeviceSize nextLevelNodeSize = levelNodeSize >> 1;
++ if (offset < nodeOffset + nextLevelNodeSize)
++ {
++ node = node->split.leftChild;
++ }
++ else
++ {
++ node = node->split.leftChild->buddy;
++ nodeOffset += nextLevelNodeSize;
++ }
++ ++outLevel;
++ levelNodeSize = nextLevelNodeSize;
++ }
++
++ VMA_ASSERT(node != VMA_NULL && node->type == Node::TYPE_ALLOCATION);
++ return node;
++}
++
++bool VmaBlockMetadata_Buddy::ValidateNode(ValidationContext& ctx, const Node* parent, const Node* curr, uint32_t level, VkDeviceSize levelNodeSize) const
++{
++ VMA_VALIDATE(level < m_LevelCount);
++ VMA_VALIDATE(curr->parent == parent);
++ VMA_VALIDATE((curr->buddy == VMA_NULL) == (parent == VMA_NULL));
++ VMA_VALIDATE(curr->buddy == VMA_NULL || curr->buddy->buddy == curr);
++ switch (curr->type)
++ {
++ case Node::TYPE_FREE:
++ // curr->free.prev, next are validated separately.
++ ctx.calculatedSumFreeSize += levelNodeSize;
++ ++ctx.calculatedFreeCount;
++ break;
++ case Node::TYPE_ALLOCATION:
++ ++ctx.calculatedAllocationCount;
++ if (!IsVirtual())
++ {
++ VMA_VALIDATE(curr->allocation.userData != VMA_NULL);
++ }
++ break;
++ case Node::TYPE_SPLIT:
++ {
++ const uint32_t childrenLevel = level + 1;
++ const VkDeviceSize childrenLevelNodeSize = levelNodeSize >> 1;
++ const Node* const leftChild = curr->split.leftChild;
++ VMA_VALIDATE(leftChild != VMA_NULL);
++ VMA_VALIDATE(leftChild->offset == curr->offset);
++ if (!ValidateNode(ctx, curr, leftChild, childrenLevel, childrenLevelNodeSize))
++ {
++ VMA_VALIDATE(false && "ValidateNode for left child failed.");
++ }
++ const Node* const rightChild = leftChild->buddy;
++ VMA_VALIDATE(rightChild->offset == curr->offset + childrenLevelNodeSize);
++ if (!ValidateNode(ctx, curr, rightChild, childrenLevel, childrenLevelNodeSize))
++ {
++ VMA_VALIDATE(false && "ValidateNode for right child failed.");
++ }
++ }
++ break;
++ default:
++ return false;
++ }
++
++ return true;
++}
++
++uint32_t VmaBlockMetadata_Buddy::AllocSizeToLevel(VkDeviceSize allocSize) const
++{
++ // I know this could be optimized somehow e.g. by using std::log2p1 from C++20.
++ uint32_t level = 0;
++ VkDeviceSize currLevelNodeSize = m_UsableSize;
++ VkDeviceSize nextLevelNodeSize = currLevelNodeSize >> 1;
++ while (allocSize <= nextLevelNodeSize && level + 1 < m_LevelCount)
++ {
++ ++level;
++ currLevelNodeSize >>= 1;
++ nextLevelNodeSize >>= 1;
++ }
++ return level;
++}
++
++void VmaBlockMetadata_Buddy::Free(VmaAllocHandle allocHandle)
++{
++ uint32_t level = 0;
++ Node* node = FindAllocationNode((VkDeviceSize)allocHandle - 1, level);
++
++ ++m_FreeCount;
++ --m_AllocationCount;
++ m_SumFreeSize += LevelToNodeSize(level);
++
++ node->type = Node::TYPE_FREE;
++
++ // Join free nodes if possible.
++ while (level > 0 && node->buddy->type == Node::TYPE_FREE)
++ {
++ RemoveFromFreeList(level, node->buddy);
++ Node* const parent = node->parent;
++
++ m_NodeAllocator.Free(node->buddy);
++ m_NodeAllocator.Free(node);
++ parent->type = Node::TYPE_FREE;
++
++ node = parent;
++ --level;
++ --m_FreeCount;
++ }
++
++ AddToFreeListFront(level, node);
++}
++
++void VmaBlockMetadata_Buddy::AddNodeToDetailedStatistics(VmaDetailedStatistics& inoutStats, const Node* node, VkDeviceSize levelNodeSize) const
++{
++ switch (node->type)
++ {
++ case Node::TYPE_FREE:
++ VmaAddDetailedStatisticsUnusedRange(inoutStats, levelNodeSize);
++ break;
++ case Node::TYPE_ALLOCATION:
++ VmaAddDetailedStatisticsAllocation(inoutStats, levelNodeSize);
++ break;
++ case Node::TYPE_SPLIT:
++ {
++ const VkDeviceSize childrenNodeSize = levelNodeSize / 2;
++ const Node* const leftChild = node->split.leftChild;
++ AddNodeToDetailedStatistics(inoutStats, leftChild, childrenNodeSize);
++ const Node* const rightChild = leftChild->buddy;
++ AddNodeToDetailedStatistics(inoutStats, rightChild, childrenNodeSize);
++ }
++ break;
++ default:
++ VMA_ASSERT(0);
++ }
++}
++
++void VmaBlockMetadata_Buddy::AddToFreeListFront(uint32_t level, Node* node)
++{
++ VMA_ASSERT(node->type == Node::TYPE_FREE);
++
++ // List is empty.
++ Node* const frontNode = m_FreeList[level].front;
++ if (frontNode == VMA_NULL)
++ {
++ VMA_ASSERT(m_FreeList[level].back == VMA_NULL);
++ node->free.prev = node->free.next = VMA_NULL;
++ m_FreeList[level].front = m_FreeList[level].back = node;
++ }
++ else
++ {
++ VMA_ASSERT(frontNode->free.prev == VMA_NULL);
++ node->free.prev = VMA_NULL;
++ node->free.next = frontNode;
++ frontNode->free.prev = node;
++ m_FreeList[level].front = node;
++ }
++}
++
++void VmaBlockMetadata_Buddy::RemoveFromFreeList(uint32_t level, Node* node)
++{
++ VMA_ASSERT(m_FreeList[level].front != VMA_NULL);
++
++ // It is at the front.
++ if (node->free.prev == VMA_NULL)
++ {
++ VMA_ASSERT(m_FreeList[level].front == node);
++ m_FreeList[level].front = node->free.next;
++ }
++ else
++ {
++ Node* const prevFreeNode = node->free.prev;
++ VMA_ASSERT(prevFreeNode->free.next == node);
++ prevFreeNode->free.next = node->free.next;
++ }
++
++ // It is at the back.
++ if (node->free.next == VMA_NULL)
++ {
++ VMA_ASSERT(m_FreeList[level].back == node);
++ m_FreeList[level].back = node->free.prev;
++ }
++ else
++ {
++ Node* const nextFreeNode = node->free.next;
++ VMA_ASSERT(nextFreeNode->free.prev == node);
++ nextFreeNode->free.prev = node->free.prev;
++ }
++}
++
++void VmaBlockMetadata_Buddy::DebugLogAllAllocationNode(Node* node, uint32_t level) const
++{
++ switch (node->type)
++ {
++ case Node::TYPE_FREE:
++ break;
++ case Node::TYPE_ALLOCATION:
++ DebugLogAllocation(node->offset, LevelToNodeSize(level), node->allocation.userData);
++ break;
++ case Node::TYPE_SPLIT:
++ {
++ ++level;
++ DebugLogAllAllocationNode(node->split.leftChild, level);
++ DebugLogAllAllocationNode(node->split.leftChild->buddy, level);
++ }
++ break;
++ default:
++ VMA_ASSERT(0);
++ }
++}
++
++#if VMA_STATS_STRING_ENABLED
++void VmaBlockMetadata_Buddy::PrintDetailedMapNode(class VmaJsonWriter& json, const Node* node, VkDeviceSize levelNodeSize) const
++{
++ switch (node->type)
++ {
++ case Node::TYPE_FREE:
++ PrintDetailedMap_UnusedRange(json, node->offset, levelNodeSize);
++ break;
++ case Node::TYPE_ALLOCATION:
++ PrintDetailedMap_Allocation(json, node->offset, levelNodeSize, node->allocation.userData);
++ break;
++ case Node::TYPE_SPLIT:
++ {
++ const VkDeviceSize childrenNodeSize = levelNodeSize / 2;
++ const Node* const leftChild = node->split.leftChild;
++ PrintDetailedMapNode(json, leftChild, childrenNodeSize);
++ const Node* const rightChild = leftChild->buddy;
++ PrintDetailedMapNode(json, rightChild, childrenNodeSize);
++ }
++ break;
++ default:
++ VMA_ASSERT(0);
++ }
++}
++#endif // VMA_STATS_STRING_ENABLED
++#endif // _VMA_BLOCK_METADATA_BUDDY_FUNCTIONS
++#endif // _VMA_BLOCK_METADATA_BUDDY
++#endif // #if 0
++
++#ifndef _VMA_BLOCK_METADATA_TLSF
++// To not search current larger region if first allocation won't succeed and skip to smaller range
++// use with VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT as strategy in CreateAllocationRequest().
++// When fragmentation and reusal of previous blocks doesn't matter then use with
++// VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT for fastest alloc time possible.
++class VmaBlockMetadata_TLSF : public VmaBlockMetadata
++{
++ VMA_CLASS_NO_COPY(VmaBlockMetadata_TLSF)
++public:
++ VmaBlockMetadata_TLSF(const VkAllocationCallbacks* pAllocationCallbacks,
++ VkDeviceSize bufferImageGranularity, bool isVirtual);
++ virtual ~VmaBlockMetadata_TLSF();
++
++ size_t GetAllocationCount() const override { return m_AllocCount; }
++ size_t GetFreeRegionsCount() const override { return m_BlocksFreeCount + 1; }
++ VkDeviceSize GetSumFreeSize() const override { return m_BlocksFreeSize + m_NullBlock->size; }
++ bool IsEmpty() const override { return m_NullBlock->offset == 0; }
++ VkDeviceSize GetAllocationOffset(VmaAllocHandle allocHandle) const override { return ((Block*)allocHandle)->offset; };
++
++ void Init(VkDeviceSize size) override;
++ bool Validate() const override;
++
++ void AddDetailedStatistics(VmaDetailedStatistics& inoutStats) const override;
++ void AddStatistics(VmaStatistics& inoutStats) const override;
++
++#if VMA_STATS_STRING_ENABLED
++ void PrintDetailedMap(class VmaJsonWriter& json) const override;
++#endif
++
++ bool CreateAllocationRequest(
++ VkDeviceSize allocSize,
++ VkDeviceSize allocAlignment,
++ bool upperAddress,
++ VmaSuballocationType allocType,
++ uint32_t strategy,
++ VmaAllocationRequest* pAllocationRequest) override;
++
++ VkResult CheckCorruption(const void* pBlockData) override;
++ void Alloc(
++ const VmaAllocationRequest& request,
++ VmaSuballocationType type,
++ void* userData) override;
++
++ void Free(VmaAllocHandle allocHandle) override;
++ void GetAllocationInfo(VmaAllocHandle allocHandle, VmaVirtualAllocationInfo& outInfo) override;
++ void* GetAllocationUserData(VmaAllocHandle allocHandle) const override;
++ VmaAllocHandle GetAllocationListBegin() const override;
++ VmaAllocHandle GetNextAllocation(VmaAllocHandle prevAlloc) const override;
++ VkDeviceSize GetNextFreeRegionSize(VmaAllocHandle alloc) const override;
++ void Clear() override;
++ void SetAllocationUserData(VmaAllocHandle allocHandle, void* userData) override;
++ void DebugLogAllAllocations() const override;
++
++private:
++ // According to original paper it should be preferable 4 or 5:
++ // M. Masmano, I. Ripoll, A. Crespo, and J. Real "TLSF: a New Dynamic Memory Allocator for Real-Time Systems"
++ // http://www.gii.upv.es/tlsf/files/ecrts04_tlsf.pdf
++ static const uint8_t SECOND_LEVEL_INDEX = 5;
++ static const uint16_t SMALL_BUFFER_SIZE = 256;
++ static const uint32_t INITIAL_BLOCK_ALLOC_COUNT = 16;
++ static const uint8_t MEMORY_CLASS_SHIFT = 7;
++ static const uint8_t MAX_MEMORY_CLASSES = 65 - MEMORY_CLASS_SHIFT;
++
++ class Block
++ {
++ public:
++ VkDeviceSize offset;
++ VkDeviceSize size;
++ Block* prevPhysical;
++ Block* nextPhysical;
++
++ void MarkFree() { prevFree = VMA_NULL; }
++ void MarkTaken() { prevFree = this; }
++ bool IsFree() const { return prevFree != this; }
++ void*& UserData() { VMA_HEAVY_ASSERT(!IsFree()); return userData; }
++ Block*& PrevFree() { return prevFree; }
++ Block*& NextFree() { VMA_HEAVY_ASSERT(IsFree()); return nextFree; }
++
++ private:
++ Block* prevFree; // Address of the same block here indicates that block is taken
++ union
++ {
++ Block* nextFree;
++ void* userData;
++ };
++ };
++
++ size_t m_AllocCount;
++ // Total number of free blocks besides null block
++ size_t m_BlocksFreeCount;
++ // Total size of free blocks excluding null block
++ VkDeviceSize m_BlocksFreeSize;
++ uint32_t m_IsFreeBitmap;
++ uint8_t m_MemoryClasses;
++ uint32_t m_InnerIsFreeBitmap[MAX_MEMORY_CLASSES];
++ uint32_t m_ListsCount;
++ /*
++ * 0: 0-3 lists for small buffers
++ * 1+: 0-(2^SLI-1) lists for normal buffers
++ */
++ Block** m_FreeList;
++ VmaPoolAllocator<Block> m_BlockAllocator;
++ Block* m_NullBlock;
++ VmaBlockBufferImageGranularity m_GranularityHandler;
++
++ uint8_t SizeToMemoryClass(VkDeviceSize size) const;
++ uint16_t SizeToSecondIndex(VkDeviceSize size, uint8_t memoryClass) const;
++ uint32_t GetListIndex(uint8_t memoryClass, uint16_t secondIndex) const;
++ uint32_t GetListIndex(VkDeviceSize size) const;
++
++ void RemoveFreeBlock(Block* block);
++ void InsertFreeBlock(Block* block);
++ void MergeBlock(Block* block, Block* prev);
++
++ Block* FindFreeBlock(VkDeviceSize size, uint32_t& listIndex) const;
++ bool CheckBlock(
++ Block& block,
++ uint32_t listIndex,
++ VkDeviceSize allocSize,
++ VkDeviceSize allocAlignment,
++ VmaSuballocationType allocType,
++ VmaAllocationRequest* pAllocationRequest);
++};
++
++#ifndef _VMA_BLOCK_METADATA_TLSF_FUNCTIONS
++VmaBlockMetadata_TLSF::VmaBlockMetadata_TLSF(const VkAllocationCallbacks* pAllocationCallbacks,
++ VkDeviceSize bufferImageGranularity, bool isVirtual)
++ : VmaBlockMetadata(pAllocationCallbacks, bufferImageGranularity, isVirtual),
++ m_AllocCount(0),
++ m_BlocksFreeCount(0),
++ m_BlocksFreeSize(0),
++ m_IsFreeBitmap(0),
++ m_MemoryClasses(0),
++ m_ListsCount(0),
++ m_FreeList(VMA_NULL),
++ m_BlockAllocator(pAllocationCallbacks, INITIAL_BLOCK_ALLOC_COUNT),
++ m_NullBlock(VMA_NULL),
++ m_GranularityHandler(bufferImageGranularity) {}
++
++VmaBlockMetadata_TLSF::~VmaBlockMetadata_TLSF()
++{
++ if (m_FreeList)
++ vma_delete_array(GetAllocationCallbacks(), m_FreeList, m_ListsCount);
++ m_GranularityHandler.Destroy(GetAllocationCallbacks());
++}
++
++void VmaBlockMetadata_TLSF::Init(VkDeviceSize size)
++{
++ VmaBlockMetadata::Init(size);
++
++ if (!IsVirtual())
++ m_GranularityHandler.Init(GetAllocationCallbacks(), size);
++
++ m_NullBlock = m_BlockAllocator.Alloc();
++ m_NullBlock->size = size;
++ m_NullBlock->offset = 0;
++ m_NullBlock->prevPhysical = VMA_NULL;
++ m_NullBlock->nextPhysical = VMA_NULL;
++ m_NullBlock->MarkFree();
++ m_NullBlock->NextFree() = VMA_NULL;
++ m_NullBlock->PrevFree() = VMA_NULL;
++ uint8_t memoryClass = SizeToMemoryClass(size);
++ uint16_t sli = SizeToSecondIndex(size, memoryClass);
++ m_ListsCount = (memoryClass == 0 ? 0 : (memoryClass - 1) * (1UL << SECOND_LEVEL_INDEX) + sli) + 1;
++ if (IsVirtual())
++ m_ListsCount += 1UL << SECOND_LEVEL_INDEX;
++ else
++ m_ListsCount += 4;
++
++ m_MemoryClasses = memoryClass + 2;
++ memset(m_InnerIsFreeBitmap, 0, MAX_MEMORY_CLASSES * sizeof(uint32_t));
++
++ m_FreeList = vma_new_array(GetAllocationCallbacks(), Block*, m_ListsCount);
++ memset(m_FreeList, 0, m_ListsCount * sizeof(Block*));
++}
++
++bool VmaBlockMetadata_TLSF::Validate() const
++{
++ VMA_VALIDATE(GetSumFreeSize() <= GetSize());
++
++ VkDeviceSize calculatedSize = m_NullBlock->size;
++ VkDeviceSize calculatedFreeSize = m_NullBlock->size;
++ size_t allocCount = 0;
++ size_t freeCount = 0;
++
++ // Check integrity of free lists
++ for (uint32_t list = 0; list < m_ListsCount; ++list)
++ {
++ Block* block = m_FreeList[list];
++ if (block != VMA_NULL)
++ {
++ VMA_VALIDATE(block->IsFree());
++ VMA_VALIDATE(block->PrevFree() == VMA_NULL);
++ while (block->NextFree())
++ {
++ VMA_VALIDATE(block->NextFree()->IsFree());
++ VMA_VALIDATE(block->NextFree()->PrevFree() == block);
++ block = block->NextFree();
++ }
++ }
++ }
++
++ VkDeviceSize nextOffset = m_NullBlock->offset;
++ auto validateCtx = m_GranularityHandler.StartValidation(GetAllocationCallbacks(), IsVirtual());
++
++ VMA_VALIDATE(m_NullBlock->nextPhysical == VMA_NULL);
++ if (m_NullBlock->prevPhysical)
++ {
++ VMA_VALIDATE(m_NullBlock->prevPhysical->nextPhysical == m_NullBlock);
++ }
++ // Check all blocks
++ for (Block* prev = m_NullBlock->prevPhysical; prev != VMA_NULL; prev = prev->prevPhysical)
++ {
++ VMA_VALIDATE(prev->offset + prev->size == nextOffset);
++ nextOffset = prev->offset;
++ calculatedSize += prev->size;
++
++ uint32_t listIndex = GetListIndex(prev->size);
++ if (prev->IsFree())
++ {
++ ++freeCount;
++ // Check if free block belongs to free list
++ Block* freeBlock = m_FreeList[listIndex];
++ VMA_VALIDATE(freeBlock != VMA_NULL);
++
++ bool found = false;
++ do
++ {
++ if (freeBlock == prev)
++ found = true;
++
++ freeBlock = freeBlock->NextFree();
++ } while (!found && freeBlock != VMA_NULL);
++
++ VMA_VALIDATE(found);
++ calculatedFreeSize += prev->size;
++ }
++ else
++ {
++ ++allocCount;
++ // Check if taken block is not on a free list
++ Block* freeBlock = m_FreeList[listIndex];
++ while (freeBlock)
++ {
++ VMA_VALIDATE(freeBlock != prev);
++ freeBlock = freeBlock->NextFree();
++ }
++
++ if (!IsVirtual())
++ {
++ VMA_VALIDATE(m_GranularityHandler.Validate(validateCtx, prev->offset, prev->size));
++ }
++ }
++
++ if (prev->prevPhysical)
++ {
++ VMA_VALIDATE(prev->prevPhysical->nextPhysical == prev);
++ }
++ }
++
++ if (!IsVirtual())
++ {
++ VMA_VALIDATE(m_GranularityHandler.FinishValidation(validateCtx));
++ }
++
++ VMA_VALIDATE(nextOffset == 0);
++ VMA_VALIDATE(calculatedSize == GetSize());
++ VMA_VALIDATE(calculatedFreeSize == GetSumFreeSize());
++ VMA_VALIDATE(allocCount == m_AllocCount);
++ VMA_VALIDATE(freeCount == m_BlocksFreeCount);
++
++ return true;
++}
++
++void VmaBlockMetadata_TLSF::AddDetailedStatistics(VmaDetailedStatistics& inoutStats) const
++{
++ inoutStats.statistics.blockCount++;
++ inoutStats.statistics.blockBytes += GetSize();
++ if (m_NullBlock->size > 0)
++ VmaAddDetailedStatisticsUnusedRange(inoutStats, m_NullBlock->size);
++
++ for (Block* block = m_NullBlock->prevPhysical; block != VMA_NULL; block = block->prevPhysical)
++ {
++ if (block->IsFree())
++ VmaAddDetailedStatisticsUnusedRange(inoutStats, block->size);
++ else
++ VmaAddDetailedStatisticsAllocation(inoutStats, block->size);
++ }
++}
++
++void VmaBlockMetadata_TLSF::AddStatistics(VmaStatistics& inoutStats) const
++{
++ inoutStats.blockCount++;
++ inoutStats.allocationCount += (uint32_t)m_AllocCount;
++ inoutStats.blockBytes += GetSize();
++ inoutStats.allocationBytes += GetSize() - GetSumFreeSize();
++}
++
++#if VMA_STATS_STRING_ENABLED
++void VmaBlockMetadata_TLSF::PrintDetailedMap(class VmaJsonWriter& json) const
++{
++ size_t blockCount = m_AllocCount + m_BlocksFreeCount;
++ VmaStlAllocator<Block*> allocator(GetAllocationCallbacks());
++ VmaVector<Block*, VmaStlAllocator<Block*>> blockList(blockCount, allocator);
++
++ size_t i = blockCount;
++ for (Block* block = m_NullBlock->prevPhysical; block != VMA_NULL; block = block->prevPhysical)
++ {
++ blockList[--i] = block;
++ }
++ VMA_ASSERT(i == 0);
++
++ VmaDetailedStatistics stats;
++ VmaClearDetailedStatistics(stats);
++ AddDetailedStatistics(stats);
++
++ PrintDetailedMap_Begin(json,
++ stats.statistics.blockBytes - stats.statistics.allocationBytes,
++ stats.statistics.allocationCount,
++ stats.unusedRangeCount);
++
++ for (; i < blockCount; ++i)
++ {
++ Block* block = blockList[i];
++ if (block->IsFree())
++ PrintDetailedMap_UnusedRange(json, block->offset, block->size);
++ else
++ PrintDetailedMap_Allocation(json, block->offset, block->size, block->UserData());
++ }
++ if (m_NullBlock->size > 0)
++ PrintDetailedMap_UnusedRange(json, m_NullBlock->offset, m_NullBlock->size);
++
++ PrintDetailedMap_End(json);
++}
++#endif
++
++bool VmaBlockMetadata_TLSF::CreateAllocationRequest(
++ VkDeviceSize allocSize,
++ VkDeviceSize allocAlignment,
++ bool upperAddress,
++ VmaSuballocationType allocType,
++ uint32_t strategy,
++ VmaAllocationRequest* pAllocationRequest)
++{
++ VMA_ASSERT(allocSize > 0 && "Cannot allocate empty block!");
++ VMA_ASSERT(!upperAddress && "VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT can be used only with linear algorithm.");
++
++ // For small granularity round up
++ if (!IsVirtual())
++ m_GranularityHandler.RoundupAllocRequest(allocType, allocSize, allocAlignment);
++
++ allocSize += GetDebugMargin();
++ // Quick check for too small pool
++ if (allocSize > GetSumFreeSize())
++ return false;
++
++ // If no free blocks in pool then check only null block
++ if (m_BlocksFreeCount == 0)
++ return CheckBlock(*m_NullBlock, m_ListsCount, allocSize, allocAlignment, allocType, pAllocationRequest);
++
++ // Round up to the next block
++ VkDeviceSize sizeForNextList = allocSize;
++ VkDeviceSize smallSizeStep = SMALL_BUFFER_SIZE / (IsVirtual() ? 1 << SECOND_LEVEL_INDEX : 4);
++ if (allocSize > SMALL_BUFFER_SIZE)
++ {
++ sizeForNextList += (1ULL << (VMA_BITSCAN_MSB(allocSize) - SECOND_LEVEL_INDEX));
++ }
++ else if (allocSize > SMALL_BUFFER_SIZE - smallSizeStep)
++ sizeForNextList = SMALL_BUFFER_SIZE + 1;
++ else
++ sizeForNextList += smallSizeStep;
++
++ uint32_t nextListIndex = 0;
++ uint32_t prevListIndex = 0;
++ Block* nextListBlock = VMA_NULL;
++ Block* prevListBlock = VMA_NULL;
++
++ // Check blocks according to strategies
++ if (strategy & VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT)
++ {
++ // Quick check for larger block first
++ nextListBlock = FindFreeBlock(sizeForNextList, nextListIndex);
++ if (nextListBlock != VMA_NULL && CheckBlock(*nextListBlock, nextListIndex, allocSize, allocAlignment, allocType, pAllocationRequest))
++ return true;
++
++ // If not fitted then null block
++ if (CheckBlock(*m_NullBlock, m_ListsCount, allocSize, allocAlignment, allocType, pAllocationRequest))
++ return true;
++
++ // Null block failed, search larger bucket
++ while (nextListBlock)
++ {
++ if (CheckBlock(*nextListBlock, nextListIndex, allocSize, allocAlignment, allocType, pAllocationRequest))
++ return true;
++ nextListBlock = nextListBlock->NextFree();
++ }
++
++ // Failed again, check best fit bucket
++ prevListBlock = FindFreeBlock(allocSize, prevListIndex);
++ while (prevListBlock)
++ {
++ if (CheckBlock(*prevListBlock, prevListIndex, allocSize, allocAlignment, allocType, pAllocationRequest))
++ return true;
++ prevListBlock = prevListBlock->NextFree();
++ }
++ }
++ else if (strategy & VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT)
++ {
++ // Check best fit bucket
++ prevListBlock = FindFreeBlock(allocSize, prevListIndex);
++ while (prevListBlock)
++ {
++ if (CheckBlock(*prevListBlock, prevListIndex, allocSize, allocAlignment, allocType, pAllocationRequest))
++ return true;
++ prevListBlock = prevListBlock->NextFree();
++ }
++
++ // If failed check null block
++ if (CheckBlock(*m_NullBlock, m_ListsCount, allocSize, allocAlignment, allocType, pAllocationRequest))
++ return true;
++
++ // Check larger bucket
++ nextListBlock = FindFreeBlock(sizeForNextList, nextListIndex);
++ while (nextListBlock)
++ {
++ if (CheckBlock(*nextListBlock, nextListIndex, allocSize, allocAlignment, allocType, pAllocationRequest))
++ return true;
++ nextListBlock = nextListBlock->NextFree();
++ }
++ }
++ else if (strategy & VMA_ALLOCATION_CREATE_STRATEGY_MIN_OFFSET_BIT )
++ {
++ // Perform search from the start
++ VmaStlAllocator<Block*> allocator(GetAllocationCallbacks());
++ VmaVector<Block*, VmaStlAllocator<Block*>> blockList(m_BlocksFreeCount, allocator);
++
++ size_t i = m_BlocksFreeCount;
++ for (Block* block = m_NullBlock->prevPhysical; block != VMA_NULL; block = block->prevPhysical)
++ {
++ if (block->IsFree() && block->size >= allocSize)
++ blockList[--i] = block;
++ }
++
++ for (; i < m_BlocksFreeCount; ++i)
++ {
++ Block& block = *blockList[i];
++ if (CheckBlock(block, GetListIndex(block.size), allocSize, allocAlignment, allocType, pAllocationRequest))
++ return true;
++ }
++
++ // If failed check null block
++ if (CheckBlock(*m_NullBlock, m_ListsCount, allocSize, allocAlignment, allocType, pAllocationRequest))
++ return true;
++
++ // Whole range searched, no more memory
++ return false;
++ }
++ else
++ {
++ // Check larger bucket
++ nextListBlock = FindFreeBlock(sizeForNextList, nextListIndex);
++ while (nextListBlock)
++ {
++ if (CheckBlock(*nextListBlock, nextListIndex, allocSize, allocAlignment, allocType, pAllocationRequest))
++ return true;
++ nextListBlock = nextListBlock->NextFree();
++ }
++
++ // If failed check null block
++ if (CheckBlock(*m_NullBlock, m_ListsCount, allocSize, allocAlignment, allocType, pAllocationRequest))
++ return true;
++
++ // Check best fit bucket
++ prevListBlock = FindFreeBlock(allocSize, prevListIndex);
++ while (prevListBlock)
++ {
++ if (CheckBlock(*prevListBlock, prevListIndex, allocSize, allocAlignment, allocType, pAllocationRequest))
++ return true;
++ prevListBlock = prevListBlock->NextFree();
++ }
++ }
++
++ // Worst case, full search has to be done
++ while (++nextListIndex < m_ListsCount)
++ {
++ nextListBlock = m_FreeList[nextListIndex];
++ while (nextListBlock)
++ {
++ if (CheckBlock(*nextListBlock, nextListIndex, allocSize, allocAlignment, allocType, pAllocationRequest))
++ return true;
++ nextListBlock = nextListBlock->NextFree();
++ }
++ }
++
++ // No more memory sadly
++ return false;
++}
++
++VkResult VmaBlockMetadata_TLSF::CheckCorruption(const void* pBlockData)
++{
++ for (Block* block = m_NullBlock->prevPhysical; block != VMA_NULL; block = block->prevPhysical)
++ {
++ if (!block->IsFree())
++ {
++ if (!VmaValidateMagicValue(pBlockData, block->offset + block->size))
++ {
++ VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER VALIDATED ALLOCATION!");
++ return VK_ERROR_UNKNOWN_COPY;
++ }
++ }
++ }
++
++ return VK_SUCCESS;
++}
++
++void VmaBlockMetadata_TLSF::Alloc(
++ const VmaAllocationRequest& request,
++ VmaSuballocationType type,
++ void* userData)
++{
++ VMA_ASSERT(request.type == VmaAllocationRequestType::TLSF);
++
++ // Get block and pop it from the free list
++ Block* currentBlock = (Block*)request.allocHandle;
++ VkDeviceSize offset = request.algorithmData;
++ VMA_ASSERT(currentBlock != VMA_NULL);
++ VMA_ASSERT(currentBlock->offset <= offset);
++
++ if (currentBlock != m_NullBlock)
++ RemoveFreeBlock(currentBlock);
++
++ VkDeviceSize debugMargin = GetDebugMargin();
++ VkDeviceSize misssingAlignment = offset - currentBlock->offset;
++
++ // Append missing alignment to prev block or create new one
++ if (misssingAlignment)
++ {
++ Block* prevBlock = currentBlock->prevPhysical;
++ VMA_ASSERT(prevBlock != VMA_NULL && "There should be no missing alignment at offset 0!");
++
++ if (prevBlock->IsFree() && prevBlock->size != debugMargin)
++ {
++ uint32_t oldList = GetListIndex(prevBlock->size);
++ prevBlock->size += misssingAlignment;
++ // Check if new size crosses list bucket
++ if (oldList != GetListIndex(prevBlock->size))
++ {
++ prevBlock->size -= misssingAlignment;
++ RemoveFreeBlock(prevBlock);
++ prevBlock->size += misssingAlignment;
++ InsertFreeBlock(prevBlock);
++ }
++ else
++ m_BlocksFreeSize += misssingAlignment;
++ }
++ else
++ {
++ Block* newBlock = m_BlockAllocator.Alloc();
++ currentBlock->prevPhysical = newBlock;
++ prevBlock->nextPhysical = newBlock;
++ newBlock->prevPhysical = prevBlock;
++ newBlock->nextPhysical = currentBlock;
++ newBlock->size = misssingAlignment;
++ newBlock->offset = currentBlock->offset;
++ newBlock->MarkTaken();
++
++ InsertFreeBlock(newBlock);
++ }
++
++ currentBlock->size -= misssingAlignment;
++ currentBlock->offset += misssingAlignment;
++ }
++
++ VkDeviceSize size = request.size + debugMargin;
++ if (currentBlock->size == size)
++ {
++ if (currentBlock == m_NullBlock)
++ {
++ // Setup new null block
++ m_NullBlock = m_BlockAllocator.Alloc();
++ m_NullBlock->size = 0;
++ m_NullBlock->offset = currentBlock->offset + size;
++ m_NullBlock->prevPhysical = currentBlock;
++ m_NullBlock->nextPhysical = VMA_NULL;
++ m_NullBlock->MarkFree();
++ m_NullBlock->PrevFree() = VMA_NULL;
++ m_NullBlock->NextFree() = VMA_NULL;
++ currentBlock->nextPhysical = m_NullBlock;
++ currentBlock->MarkTaken();
++ }
++ }
++ else
++ {
++ VMA_ASSERT(currentBlock->size > size && "Proper block already found, shouldn't find smaller one!");
++
++ // Create new free block
++ Block* newBlock = m_BlockAllocator.Alloc();
++ newBlock->size = currentBlock->size - size;
++ newBlock->offset = currentBlock->offset + size;
++ newBlock->prevPhysical = currentBlock;
++ newBlock->nextPhysical = currentBlock->nextPhysical;
++ currentBlock->nextPhysical = newBlock;
++ currentBlock->size = size;
++
++ if (currentBlock == m_NullBlock)
++ {
++ m_NullBlock = newBlock;
++ m_NullBlock->MarkFree();
++ m_NullBlock->NextFree() = VMA_NULL;
++ m_NullBlock->PrevFree() = VMA_NULL;
++ currentBlock->MarkTaken();
++ }
++ else
++ {
++ newBlock->nextPhysical->prevPhysical = newBlock;
++ newBlock->MarkTaken();
++ InsertFreeBlock(newBlock);
++ }
++ }
++ currentBlock->UserData() = userData;
++
++ if (debugMargin > 0)
++ {
++ currentBlock->size -= debugMargin;
++ Block* newBlock = m_BlockAllocator.Alloc();
++ newBlock->size = debugMargin;
++ newBlock->offset = currentBlock->offset + currentBlock->size;
++ newBlock->prevPhysical = currentBlock;
++ newBlock->nextPhysical = currentBlock->nextPhysical;
++ newBlock->MarkTaken();
++ currentBlock->nextPhysical->prevPhysical = newBlock;
++ currentBlock->nextPhysical = newBlock;
++ InsertFreeBlock(newBlock);
++ }
++
++ if (!IsVirtual())
++ m_GranularityHandler.AllocPages((uint8_t)(uintptr_t)request.customData,
++ currentBlock->offset, currentBlock->size);
++ ++m_AllocCount;
++}
++
++void VmaBlockMetadata_TLSF::Free(VmaAllocHandle allocHandle)
++{
++ Block* block = (Block*)allocHandle;
++ Block* next = block->nextPhysical;
++ VMA_ASSERT(!block->IsFree() && "Block is already free!");
++
++ if (!IsVirtual())
++ m_GranularityHandler.FreePages(block->offset, block->size);
++ --m_AllocCount;
++
++ VkDeviceSize debugMargin = GetDebugMargin();
++ if (debugMargin > 0)
++ {
++ RemoveFreeBlock(next);
++ MergeBlock(next, block);
++ block = next;
++ next = next->nextPhysical;
++ }
++
++ // Try merging
++ Block* prev = block->prevPhysical;
++ if (prev != VMA_NULL && prev->IsFree() && prev->size != debugMargin)
++ {
++ RemoveFreeBlock(prev);
++ MergeBlock(block, prev);
++ }
++
++ if (!next->IsFree())
++ InsertFreeBlock(block);
++ else if (next == m_NullBlock)
++ MergeBlock(m_NullBlock, block);
++ else
++ {
++ RemoveFreeBlock(next);
++ MergeBlock(next, block);
++ InsertFreeBlock(next);
++ }
++}
++
++void VmaBlockMetadata_TLSF::GetAllocationInfo(VmaAllocHandle allocHandle, VmaVirtualAllocationInfo& outInfo)
++{
++ Block* block = (Block*)allocHandle;
++ VMA_ASSERT(!block->IsFree() && "Cannot get allocation info for free block!");
++ outInfo.offset = block->offset;
++ outInfo.size = block->size;
++ outInfo.pUserData = block->UserData();
++}
++
++void* VmaBlockMetadata_TLSF::GetAllocationUserData(VmaAllocHandle allocHandle) const
++{
++ Block* block = (Block*)allocHandle;
++ VMA_ASSERT(!block->IsFree() && "Cannot get user data for free block!");
++ return block->UserData();
++}
++
++VmaAllocHandle VmaBlockMetadata_TLSF::GetAllocationListBegin() const
++{
++ if (m_AllocCount == 0)
++ return VK_NULL_HANDLE;
++
++ for (Block* block = m_NullBlock->prevPhysical; block; block = block->prevPhysical)
++ {
++ if (!block->IsFree())
++ return (VmaAllocHandle)block;
++ }
++ VMA_ASSERT(false && "If m_AllocCount > 0 then should find any allocation!");
++ return VK_NULL_HANDLE;
++}
++
++VmaAllocHandle VmaBlockMetadata_TLSF::GetNextAllocation(VmaAllocHandle prevAlloc) const
++{
++ Block* startBlock = (Block*)prevAlloc;
++ VMA_ASSERT(!startBlock->IsFree() && "Incorrect block!");
++
++ for (Block* block = startBlock->prevPhysical; block; block = block->prevPhysical)
++ {
++ if (!block->IsFree())
++ return (VmaAllocHandle)block;
++ }
++ return VK_NULL_HANDLE;
++}
++
++VkDeviceSize VmaBlockMetadata_TLSF::GetNextFreeRegionSize(VmaAllocHandle alloc) const
++{
++ Block* block = (Block*)alloc;
++ VMA_ASSERT(!block->IsFree() && "Incorrect block!");
++
++ if (block->prevPhysical)
++ return block->prevPhysical->IsFree() ? block->prevPhysical->size : 0;
++ return 0;
++}
++
++void VmaBlockMetadata_TLSF::Clear()
++{
++ m_AllocCount = 0;
++ m_BlocksFreeCount = 0;
++ m_BlocksFreeSize = 0;
++ m_IsFreeBitmap = 0;
++ m_NullBlock->offset = 0;
++ m_NullBlock->size = GetSize();
++ Block* block = m_NullBlock->prevPhysical;
++ m_NullBlock->prevPhysical = VMA_NULL;
++ while (block)
++ {
++ Block* prev = block->prevPhysical;
++ m_BlockAllocator.Free(block);
++ block = prev;
++ }
++ memset(m_FreeList, 0, m_ListsCount * sizeof(Block*));
++ memset(m_InnerIsFreeBitmap, 0, m_MemoryClasses * sizeof(uint32_t));
++ m_GranularityHandler.Clear();
++}
++
++void VmaBlockMetadata_TLSF::SetAllocationUserData(VmaAllocHandle allocHandle, void* userData)
++{
++ Block* block = (Block*)allocHandle;
++ VMA_ASSERT(!block->IsFree() && "Trying to set user data for not allocated block!");
++ block->UserData() = userData;
++}
++
++void VmaBlockMetadata_TLSF::DebugLogAllAllocations() const
++{
++ for (Block* block = m_NullBlock->prevPhysical; block != VMA_NULL; block = block->prevPhysical)
++ if (!block->IsFree())
++ DebugLogAllocation(block->offset, block->size, block->UserData());
++}
++
++uint8_t VmaBlockMetadata_TLSF::SizeToMemoryClass(VkDeviceSize size) const
++{
++ if (size > SMALL_BUFFER_SIZE)
++ return VMA_BITSCAN_MSB(size) - MEMORY_CLASS_SHIFT;
++ return 0;
++}
++
++uint16_t VmaBlockMetadata_TLSF::SizeToSecondIndex(VkDeviceSize size, uint8_t memoryClass) const
++{
++ if (memoryClass == 0)
++ {
++ if (IsVirtual())
++ return static_cast<uint16_t>((size - 1) / 8);
++ else
++ return static_cast<uint16_t>((size - 1) / 64);
++ }
++ return static_cast<uint16_t>((size >> (memoryClass + MEMORY_CLASS_SHIFT - SECOND_LEVEL_INDEX)) ^ (1U << SECOND_LEVEL_INDEX));
++}
++
++uint32_t VmaBlockMetadata_TLSF::GetListIndex(uint8_t memoryClass, uint16_t secondIndex) const
++{
++ if (memoryClass == 0)
++ return secondIndex;
++
++ const uint32_t index = static_cast<uint32_t>(memoryClass - 1) * (1 << SECOND_LEVEL_INDEX) + secondIndex;
++ if (IsVirtual())
++ return index + (1 << SECOND_LEVEL_INDEX);
++ else
++ return index + 4;
++}
++
++uint32_t VmaBlockMetadata_TLSF::GetListIndex(VkDeviceSize size) const
++{
++ uint8_t memoryClass = SizeToMemoryClass(size);
++ return GetListIndex(memoryClass, SizeToSecondIndex(size, memoryClass));
++}
++
++void VmaBlockMetadata_TLSF::RemoveFreeBlock(Block* block)
++{
++ VMA_ASSERT(block != m_NullBlock);
++ VMA_ASSERT(block->IsFree());
++
++ if (block->NextFree() != VMA_NULL)
++ block->NextFree()->PrevFree() = block->PrevFree();
++ if (block->PrevFree() != VMA_NULL)
++ block->PrevFree()->NextFree() = block->NextFree();
++ else
++ {
++ uint8_t memClass = SizeToMemoryClass(block->size);
++ uint16_t secondIndex = SizeToSecondIndex(block->size, memClass);
++ uint32_t index = GetListIndex(memClass, secondIndex);
++ VMA_ASSERT(m_FreeList[index] == block);
++ m_FreeList[index] = block->NextFree();
++ if (block->NextFree() == VMA_NULL)
++ {
++ m_InnerIsFreeBitmap[memClass] &= ~(1U << secondIndex);
++ if (m_InnerIsFreeBitmap[memClass] == 0)
++ m_IsFreeBitmap &= ~(1UL << memClass);
++ }
++ }
++ block->MarkTaken();
++ block->UserData() = VMA_NULL;
++ --m_BlocksFreeCount;
++ m_BlocksFreeSize -= block->size;
++}
++
++void VmaBlockMetadata_TLSF::InsertFreeBlock(Block* block)
++{
++ VMA_ASSERT(block != m_NullBlock);
++ VMA_ASSERT(!block->IsFree() && "Cannot insert block twice!");
++
++ uint8_t memClass = SizeToMemoryClass(block->size);
++ uint16_t secondIndex = SizeToSecondIndex(block->size, memClass);
++ uint32_t index = GetListIndex(memClass, secondIndex);
++ VMA_ASSERT(index < m_ListsCount);
++ block->PrevFree() = VMA_NULL;
++ block->NextFree() = m_FreeList[index];
++ m_FreeList[index] = block;
++ if (block->NextFree() != VMA_NULL)
++ block->NextFree()->PrevFree() = block;
++ else
++ {
++ m_InnerIsFreeBitmap[memClass] |= 1U << secondIndex;
++ m_IsFreeBitmap |= 1UL << memClass;
++ }
++ ++m_BlocksFreeCount;
++ m_BlocksFreeSize += block->size;
++}
++
++void VmaBlockMetadata_TLSF::MergeBlock(Block* block, Block* prev)
++{
++ VMA_ASSERT(block->prevPhysical == prev && "Cannot merge seperate physical regions!");
++ VMA_ASSERT(!prev->IsFree() && "Cannot merge block that belongs to free list!");
++
++ block->offset = prev->offset;
++ block->size += prev->size;
++ block->prevPhysical = prev->prevPhysical;
++ if (block->prevPhysical)
++ block->prevPhysical->nextPhysical = block;
++ m_BlockAllocator.Free(prev);
++}
++
++VmaBlockMetadata_TLSF::Block* VmaBlockMetadata_TLSF::FindFreeBlock(VkDeviceSize size, uint32_t& listIndex) const
++{
++ uint8_t memoryClass = SizeToMemoryClass(size);
++ uint32_t innerFreeMap = m_InnerIsFreeBitmap[memoryClass] & (~0U << SizeToSecondIndex(size, memoryClass));
++ if (!innerFreeMap)
++ {
++ // Check higher levels for avaiable blocks
++ uint32_t freeMap = m_IsFreeBitmap & (~0UL << (memoryClass + 1));
++ if (!freeMap)
++ return VMA_NULL; // No more memory avaible
++
++ // Find lowest free region
++ memoryClass = VMA_BITSCAN_LSB(freeMap);
++ innerFreeMap = m_InnerIsFreeBitmap[memoryClass];
++ VMA_ASSERT(innerFreeMap != 0);
++ }
++ // Find lowest free subregion
++ listIndex = GetListIndex(memoryClass, VMA_BITSCAN_LSB(innerFreeMap));
++ VMA_ASSERT(m_FreeList[listIndex]);
++ return m_FreeList[listIndex];
++}
++
++bool VmaBlockMetadata_TLSF::CheckBlock(
++ Block& block,
++ uint32_t listIndex,
++ VkDeviceSize allocSize,
++ VkDeviceSize allocAlignment,
++ VmaSuballocationType allocType,
++ VmaAllocationRequest* pAllocationRequest)
++{
++ VMA_ASSERT(block.IsFree() && "Block is already taken!");
++
++ VkDeviceSize alignedOffset = VmaAlignUp(block.offset, allocAlignment);
++ if (block.size < allocSize + alignedOffset - block.offset)
++ return false;
++
++ // Check for granularity conflicts
++ if (!IsVirtual() &&
++ m_GranularityHandler.CheckConflictAndAlignUp(alignedOffset, allocSize, block.offset, block.size, allocType))
++ return false;
++
++ // Alloc successful
++ pAllocationRequest->type = VmaAllocationRequestType::TLSF;
++ pAllocationRequest->allocHandle = (VmaAllocHandle)&block;
++ pAllocationRequest->size = allocSize - GetDebugMargin();
++ pAllocationRequest->customData = (void*)allocType;
++ pAllocationRequest->algorithmData = alignedOffset;
++
++ // Place block at the start of list if it's normal block
++ if (listIndex != m_ListsCount && block.PrevFree())
++ {
++ block.PrevFree()->NextFree() = block.NextFree();
++ if (block.NextFree())
++ block.NextFree()->PrevFree() = block.PrevFree();
++ block.PrevFree() = VMA_NULL;
++ block.NextFree() = m_FreeList[listIndex];
++ m_FreeList[listIndex] = &block;
++ if (block.NextFree())
++ block.NextFree()->PrevFree() = &block;
++ }
++
++ return true;
++}
++#endif // _VMA_BLOCK_METADATA_TLSF_FUNCTIONS
++#endif // _VMA_BLOCK_METADATA_TLSF
++
++#ifndef _VMA_BLOCK_VECTOR
++/*
++Sequence of VmaDeviceMemoryBlock. Represents memory blocks allocated for a specific
++Vulkan memory type.
++
++Synchronized internally with a mutex.
++*/
++class VmaBlockVector
++{
++ friend struct VmaDefragmentationContext_T;
++ VMA_CLASS_NO_COPY(VmaBlockVector)
++public:
++ VmaBlockVector(
++ VmaAllocator hAllocator,
++ VmaPool hParentPool,
++ uint32_t memoryTypeIndex,
++ VkDeviceSize preferredBlockSize,
++ size_t minBlockCount,
++ size_t maxBlockCount,
++ VkDeviceSize bufferImageGranularity,
++ bool explicitBlockSize,
++ uint32_t algorithm,
++ float priority,
++ VkDeviceSize minAllocationAlignment,
++ void* pMemoryAllocateNext);
++ ~VmaBlockVector();
++
++ VmaAllocator GetAllocator() const { return m_hAllocator; }
++ VmaPool GetParentPool() const { return m_hParentPool; }
++ bool IsCustomPool() const { return m_hParentPool != VMA_NULL; }
++ uint32_t GetMemoryTypeIndex() const { return m_MemoryTypeIndex; }
++ VkDeviceSize GetPreferredBlockSize() const { return m_PreferredBlockSize; }
++ VkDeviceSize GetBufferImageGranularity() const { return m_BufferImageGranularity; }
++ uint32_t GetAlgorithm() const { return m_Algorithm; }
++ bool HasExplicitBlockSize() const { return m_ExplicitBlockSize; }
++ float GetPriority() const { return m_Priority; }
++ const void* GetAllocationNextPtr() const { return m_pMemoryAllocateNext; }
++ // To be used only while the m_Mutex is locked. Used during defragmentation.
++ size_t GetBlockCount() const { return m_Blocks.size(); }
++ // To be used only while the m_Mutex is locked. Used during defragmentation.
++ VmaDeviceMemoryBlock* GetBlock(size_t index) const { return m_Blocks[index]; }
++ VMA_RW_MUTEX &GetMutex() { return m_Mutex; }
++
++ VkResult CreateMinBlocks();
++ void AddStatistics(VmaStatistics& inoutStats);
++ void AddDetailedStatistics(VmaDetailedStatistics& inoutStats);
++ bool IsEmpty();
++ bool IsCorruptionDetectionEnabled() const;
++
++ VkResult Allocate(
++ VkDeviceSize size,
++ VkDeviceSize alignment,
++ const VmaAllocationCreateInfo& createInfo,
++ VmaSuballocationType suballocType,
++ size_t allocationCount,
++ VmaAllocation* pAllocations);
++
++ void Free(const VmaAllocation hAllocation);
++
++#if VMA_STATS_STRING_ENABLED
++ void PrintDetailedMap(class VmaJsonWriter& json);
++#endif
++
++ VkResult CheckCorruption();
++
++private:
++ const VmaAllocator m_hAllocator;
++ const VmaPool m_hParentPool;
++ const uint32_t m_MemoryTypeIndex;
++ const VkDeviceSize m_PreferredBlockSize;
++ const size_t m_MinBlockCount;
++ const size_t m_MaxBlockCount;
++ const VkDeviceSize m_BufferImageGranularity;
++ const bool m_ExplicitBlockSize;
++ const uint32_t m_Algorithm;
++ const float m_Priority;
++ const VkDeviceSize m_MinAllocationAlignment;
++
++ void* const m_pMemoryAllocateNext;
++ VMA_RW_MUTEX m_Mutex;
++ // Incrementally sorted by sumFreeSize, ascending.
++ VmaVector<VmaDeviceMemoryBlock*, VmaStlAllocator<VmaDeviceMemoryBlock*>> m_Blocks;
++ uint32_t m_NextBlockId;
++ bool m_IncrementalSort = true;
++
++ void SetIncrementalSort(bool val) { m_IncrementalSort = val; }
++
++ VkDeviceSize CalcMaxBlockSize() const;
++ // Finds and removes given block from vector.
++ void Remove(VmaDeviceMemoryBlock* pBlock);
++ // Performs single step in sorting m_Blocks. They may not be fully sorted
++ // after this call.
++ void IncrementallySortBlocks();
++ void SortByFreeSize();
++
++ VkResult AllocatePage(
++ VkDeviceSize size,
++ VkDeviceSize alignment,
++ const VmaAllocationCreateInfo& createInfo,
++ VmaSuballocationType suballocType,
++ VmaAllocation* pAllocation);
++
++ VkResult AllocateFromBlock(
++ VmaDeviceMemoryBlock* pBlock,
++ VkDeviceSize size,
++ VkDeviceSize alignment,
++ VmaAllocationCreateFlags allocFlags,
++ void* pUserData,
++ VmaSuballocationType suballocType,
++ uint32_t strategy,
++ VmaAllocation* pAllocation);
++
++ VkResult CommitAllocationRequest(
++ VmaAllocationRequest& allocRequest,
++ VmaDeviceMemoryBlock* pBlock,
++ VkDeviceSize alignment,
++ VmaAllocationCreateFlags allocFlags,
++ void* pUserData,
++ VmaSuballocationType suballocType,
++ VmaAllocation* pAllocation);
++
++ VkResult CreateBlock(VkDeviceSize blockSize, size_t* pNewBlockIndex);
++ bool HasEmptyBlock();
++};
++#endif // _VMA_BLOCK_VECTOR
++
++#ifndef _VMA_DEFRAGMENTATION_CONTEXT
++struct VmaDefragmentationContext_T
++{
++ VMA_CLASS_NO_COPY(VmaDefragmentationContext_T)
++public:
++ VmaDefragmentationContext_T(
++ VmaAllocator hAllocator,
++ const VmaDefragmentationInfo& info);
++ ~VmaDefragmentationContext_T();
++
++ void GetStats(VmaDefragmentationStats& outStats) { outStats = m_GlobalStats; }
++
++ VkResult DefragmentPassBegin(VmaDefragmentationPassMoveInfo& moveInfo);
++ VkResult DefragmentPassEnd(VmaDefragmentationPassMoveInfo& moveInfo);
++
++private:
++ // Max number of allocations to ignore due to size constraints before ending single pass
++ static const uint8_t MAX_ALLOCS_TO_IGNORE = 16;
++ enum class CounterStatus { Pass, Ignore, End };
++
++ struct FragmentedBlock
++ {
++ uint32_t data;
++ VmaDeviceMemoryBlock* block;
++ };
++ struct StateBalanced
++ {
++ VkDeviceSize avgFreeSize = 0;
++ VkDeviceSize avgAllocSize = UINT64_MAX;
++ };
++ struct StateExtensive
++ {
++ enum class Operation : uint8_t
++ {
++ FindFreeBlockBuffer, FindFreeBlockTexture, FindFreeBlockAll,
++ MoveBuffers, MoveTextures, MoveAll,
++ Cleanup, Done
++ };
++
++ Operation operation = Operation::FindFreeBlockTexture;
++ size_t firstFreeBlock = SIZE_MAX;
++ };
++ struct MoveAllocationData
++ {
++ VkDeviceSize size;
++ VkDeviceSize alignment;
++ VmaSuballocationType type;
++ VmaAllocationCreateFlags flags;
++ VmaDefragmentationMove move = {};
++ };
++
++ const VkDeviceSize m_MaxPassBytes;
++ const uint32_t m_MaxPassAllocations;
++
++ VmaStlAllocator<VmaDefragmentationMove> m_MoveAllocator;
++ VmaVector<VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove>> m_Moves;
++
++ uint8_t m_IgnoredAllocs = 0;
++ uint32_t m_Algorithm;
++ uint32_t m_BlockVectorCount;
++ VmaBlockVector* m_PoolBlockVector;
++ VmaBlockVector** m_pBlockVectors;
++ size_t m_ImmovableBlockCount = 0;
++ VmaDefragmentationStats m_GlobalStats = { 0 };
++ VmaDefragmentationStats m_PassStats = { 0 };
++ void* m_AlgorithmState = VMA_NULL;
++
++ static MoveAllocationData GetMoveData(VmaAllocHandle handle, VmaBlockMetadata* metadata);
++ CounterStatus CheckCounters(VkDeviceSize bytes);
++ bool IncrementCounters(VkDeviceSize bytes);
++ bool ReallocWithinBlock(VmaBlockVector& vector, VmaDeviceMemoryBlock* block);
++ bool AllocInOtherBlock(size_t start, size_t end, MoveAllocationData& data, VmaBlockVector& vector);
++
++ bool ComputeDefragmentation(VmaBlockVector& vector, size_t index);
++ bool ComputeDefragmentation_Fast(VmaBlockVector& vector);
++ bool ComputeDefragmentation_Balanced(VmaBlockVector& vector, size_t index, bool update);
++ bool ComputeDefragmentation_Full(VmaBlockVector& vector);
++ bool ComputeDefragmentation_Extensive(VmaBlockVector& vector, size_t index);
++
++ void UpdateVectorStatistics(VmaBlockVector& vector, StateBalanced& state);
++ bool MoveDataToFreeBlocks(VmaSuballocationType currentType,
++ VmaBlockVector& vector, size_t firstFreeBlock,
++ bool& texturePresent, bool& bufferPresent, bool& otherPresent);
++};
++#endif // _VMA_DEFRAGMENTATION_CONTEXT
++
++#ifndef _VMA_POOL_T
++struct VmaPool_T
++{
++ friend struct VmaPoolListItemTraits;
++ VMA_CLASS_NO_COPY(VmaPool_T)
++public:
++ VmaBlockVector m_BlockVector;
++ VmaDedicatedAllocationList m_DedicatedAllocations;
++
++ VmaPool_T(
++ VmaAllocator hAllocator,
++ const VmaPoolCreateInfo& createInfo,
++ VkDeviceSize preferredBlockSize);
++ ~VmaPool_T();
++
++ uint32_t GetId() const { return m_Id; }
++ void SetId(uint32_t id) { VMA_ASSERT(m_Id == 0); m_Id = id; }
++
++ const char* GetName() const { return m_Name; }
++ void SetName(const char* pName);
++
++#if VMA_STATS_STRING_ENABLED
++ //void PrintDetailedMap(class VmaStringBuilder& sb);
++#endif
++
++private:
++ uint32_t m_Id;
++ char* m_Name;
++ VmaPool_T* m_PrevPool = VMA_NULL;
++ VmaPool_T* m_NextPool = VMA_NULL;
++};
++
++struct VmaPoolListItemTraits
++{
++ typedef VmaPool_T ItemType;
++
++ static ItemType* GetPrev(const ItemType* item) { return item->m_PrevPool; }
++ static ItemType* GetNext(const ItemType* item) { return item->m_NextPool; }
++ static ItemType*& AccessPrev(ItemType* item) { return item->m_PrevPool; }
++ static ItemType*& AccessNext(ItemType* item) { return item->m_NextPool; }
++};
++#endif // _VMA_POOL_T
++
++#ifndef _VMA_CURRENT_BUDGET_DATA
++struct VmaCurrentBudgetData
++{
++ VMA_ATOMIC_UINT32 m_BlockCount[VK_MAX_MEMORY_HEAPS];
++ VMA_ATOMIC_UINT32 m_AllocationCount[VK_MAX_MEMORY_HEAPS];
++ VMA_ATOMIC_UINT64 m_BlockBytes[VK_MAX_MEMORY_HEAPS];
++ VMA_ATOMIC_UINT64 m_AllocationBytes[VK_MAX_MEMORY_HEAPS];
++
++#if VMA_MEMORY_BUDGET
++ VMA_ATOMIC_UINT32 m_OperationsSinceBudgetFetch;
++ VMA_RW_MUTEX m_BudgetMutex;
++ uint64_t m_VulkanUsage[VK_MAX_MEMORY_HEAPS];
++ uint64_t m_VulkanBudget[VK_MAX_MEMORY_HEAPS];
++ uint64_t m_BlockBytesAtBudgetFetch[VK_MAX_MEMORY_HEAPS];
++#endif // VMA_MEMORY_BUDGET
++
++ VmaCurrentBudgetData();
++
++ void AddAllocation(uint32_t heapIndex, VkDeviceSize allocationSize);
++ void RemoveAllocation(uint32_t heapIndex, VkDeviceSize allocationSize);
++};
++
++#ifndef _VMA_CURRENT_BUDGET_DATA_FUNCTIONS
++VmaCurrentBudgetData::VmaCurrentBudgetData()
++{
++ for (uint32_t heapIndex = 0; heapIndex < VK_MAX_MEMORY_HEAPS; ++heapIndex)
++ {
++ m_BlockCount[heapIndex] = 0;
++ m_AllocationCount[heapIndex] = 0;
++ m_BlockBytes[heapIndex] = 0;
++ m_AllocationBytes[heapIndex] = 0;
++#if VMA_MEMORY_BUDGET
++ m_VulkanUsage[heapIndex] = 0;
++ m_VulkanBudget[heapIndex] = 0;
++ m_BlockBytesAtBudgetFetch[heapIndex] = 0;
++#endif
++ }
++
++#if VMA_MEMORY_BUDGET
++ m_OperationsSinceBudgetFetch = 0;
++#endif
++}
++
++void VmaCurrentBudgetData::AddAllocation(uint32_t heapIndex, VkDeviceSize allocationSize)
++{
++ m_AllocationBytes[heapIndex] += allocationSize;
++ ++m_AllocationCount[heapIndex];
++#if VMA_MEMORY_BUDGET
++ ++m_OperationsSinceBudgetFetch;
++#endif
++}
++
++void VmaCurrentBudgetData::RemoveAllocation(uint32_t heapIndex, VkDeviceSize allocationSize)
++{
++ VMA_ASSERT(m_AllocationBytes[heapIndex] >= allocationSize);
++ m_AllocationBytes[heapIndex] -= allocationSize;
++ VMA_ASSERT(m_AllocationCount[heapIndex] > 0);
++ --m_AllocationCount[heapIndex];
++#if VMA_MEMORY_BUDGET
++ ++m_OperationsSinceBudgetFetch;
++#endif
++}
++#endif // _VMA_CURRENT_BUDGET_DATA_FUNCTIONS
++#endif // _VMA_CURRENT_BUDGET_DATA
++
++#ifndef _VMA_ALLOCATION_OBJECT_ALLOCATOR
++/*
++Thread-safe wrapper over VmaPoolAllocator free list, for allocation of VmaAllocation_T objects.
++*/
++class VmaAllocationObjectAllocator
++{
++ VMA_CLASS_NO_COPY(VmaAllocationObjectAllocator)
++public:
++ VmaAllocationObjectAllocator(const VkAllocationCallbacks* pAllocationCallbacks)
++ : m_Allocator(pAllocationCallbacks, 1024) {}
++
++ template<typename... Types> VmaAllocation Allocate(Types&&... args);
++ void Free(VmaAllocation hAlloc);
++
++private:
++ VMA_MUTEX m_Mutex;
++ VmaPoolAllocator<VmaAllocation_T> m_Allocator;
++};
++
++template<typename... Types>
++VmaAllocation VmaAllocationObjectAllocator::Allocate(Types&&... args)
++{
++ VmaMutexLock mutexLock(m_Mutex);
++ return m_Allocator.Alloc<Types...>(std::forward<Types>(args)...);
++}
++
++void VmaAllocationObjectAllocator::Free(VmaAllocation hAlloc)
++{
++ VmaMutexLock mutexLock(m_Mutex);
++ m_Allocator.Free(hAlloc);
++}
++#endif // _VMA_ALLOCATION_OBJECT_ALLOCATOR
++
++#ifndef _VMA_VIRTUAL_BLOCK_T
++struct VmaVirtualBlock_T
++{
++ VMA_CLASS_NO_COPY(VmaVirtualBlock_T)
++public:
++ const bool m_AllocationCallbacksSpecified;
++ const VkAllocationCallbacks m_AllocationCallbacks;
++
++ VmaVirtualBlock_T(const VmaVirtualBlockCreateInfo& createInfo);
++ ~VmaVirtualBlock_T();
++
++ VkResult Init() { return VK_SUCCESS; }
++ bool IsEmpty() const { return m_Metadata->IsEmpty(); }
++ void Free(VmaVirtualAllocation allocation) { m_Metadata->Free((VmaAllocHandle)allocation); }
++ void SetAllocationUserData(VmaVirtualAllocation allocation, void* userData) { m_Metadata->SetAllocationUserData((VmaAllocHandle)allocation, userData); }
++ void Clear() { m_Metadata->Clear(); }
++
++ const VkAllocationCallbacks* GetAllocationCallbacks() const;
++ void GetAllocationInfo(VmaVirtualAllocation allocation, VmaVirtualAllocationInfo& outInfo);
++ VkResult Allocate(const VmaVirtualAllocationCreateInfo& createInfo, VmaVirtualAllocation& outAllocation,
++ VkDeviceSize* outOffset);
++ void GetStatistics(VmaStatistics& outStats) const;
++ void CalculateDetailedStatistics(VmaDetailedStatistics& outStats) const;
++#if VMA_STATS_STRING_ENABLED
++ void BuildStatsString(bool detailedMap, VmaStringBuilder& sb) const;
++#endif
++
++private:
++ VmaBlockMetadata* m_Metadata;
++};
++
++#ifndef _VMA_VIRTUAL_BLOCK_T_FUNCTIONS
++VmaVirtualBlock_T::VmaVirtualBlock_T(const VmaVirtualBlockCreateInfo& createInfo)
++ : m_AllocationCallbacksSpecified(createInfo.pAllocationCallbacks != VMA_NULL),
++ m_AllocationCallbacks(createInfo.pAllocationCallbacks != VMA_NULL ? *createInfo.pAllocationCallbacks : VmaEmptyAllocationCallbacks)
++{
++ const uint32_t algorithm = createInfo.flags & VMA_VIRTUAL_BLOCK_CREATE_ALGORITHM_MASK;
++ switch (algorithm)
++ {
++ default:
++ VMA_ASSERT(0);
++ case 0:
++ m_Metadata = vma_new(GetAllocationCallbacks(), VmaBlockMetadata_TLSF)(VK_NULL_HANDLE, 1, true);
++ break;
++ case VMA_VIRTUAL_BLOCK_CREATE_LINEAR_ALGORITHM_BIT:
++ m_Metadata = vma_new(GetAllocationCallbacks(), VmaBlockMetadata_Linear)(VK_NULL_HANDLE, 1, true);
++ break;
++ }
++
++ m_Metadata->Init(createInfo.size);
++}
++
++VmaVirtualBlock_T::~VmaVirtualBlock_T()
++{
++ // Define macro VMA_DEBUG_LOG to receive the list of the unfreed allocations
++ if (!m_Metadata->IsEmpty())
++ m_Metadata->DebugLogAllAllocations();
++ // This is the most important assert in the entire library.
++ // Hitting it means you have some memory leak - unreleased virtual allocations.
++ VMA_ASSERT(m_Metadata->IsEmpty() && "Some virtual allocations were not freed before destruction of this virtual block!");
++
++ vma_delete(GetAllocationCallbacks(), m_Metadata);
++}
++
++const VkAllocationCallbacks* VmaVirtualBlock_T::GetAllocationCallbacks() const
++{
++ return m_AllocationCallbacksSpecified ? &m_AllocationCallbacks : VMA_NULL;
++}
++
++void VmaVirtualBlock_T::GetAllocationInfo(VmaVirtualAllocation allocation, VmaVirtualAllocationInfo& outInfo)
++{
++ m_Metadata->GetAllocationInfo((VmaAllocHandle)allocation, outInfo);
++}
++
++VkResult VmaVirtualBlock_T::Allocate(const VmaVirtualAllocationCreateInfo& createInfo, VmaVirtualAllocation& outAllocation,
++ VkDeviceSize* outOffset)
++{
++ VmaAllocationRequest request = {};
++ if (m_Metadata->CreateAllocationRequest(
++ createInfo.size, // allocSize
++ VMA_MAX(createInfo.alignment, (VkDeviceSize)1), // allocAlignment
++ (createInfo.flags & VMA_VIRTUAL_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0, // upperAddress
++ VMA_SUBALLOCATION_TYPE_UNKNOWN, // allocType - unimportant
++ createInfo.flags & VMA_VIRTUAL_ALLOCATION_CREATE_STRATEGY_MASK, // strategy
++ &request))
++ {
++ m_Metadata->Alloc(request,
++ VMA_SUBALLOCATION_TYPE_UNKNOWN, // type - unimportant
++ createInfo.pUserData);
++ outAllocation = (VmaVirtualAllocation)request.allocHandle;
++ if(outOffset)
++ *outOffset = m_Metadata->GetAllocationOffset(request.allocHandle);
++ return VK_SUCCESS;
++ }
++ outAllocation = (VmaVirtualAllocation)VK_NULL_HANDLE;
++ if (outOffset)
++ *outOffset = UINT64_MAX;
++ return VK_ERROR_OUT_OF_DEVICE_MEMORY;
++}
++
++void VmaVirtualBlock_T::GetStatistics(VmaStatistics& outStats) const
++{
++ VmaClearStatistics(outStats);
++ m_Metadata->AddStatistics(outStats);
++}
++
++void VmaVirtualBlock_T::CalculateDetailedStatistics(VmaDetailedStatistics& outStats) const
++{
++ VmaClearDetailedStatistics(outStats);
++ m_Metadata->AddDetailedStatistics(outStats);
++}
++
++#if VMA_STATS_STRING_ENABLED
++void VmaVirtualBlock_T::BuildStatsString(bool detailedMap, VmaStringBuilder& sb) const
++{
++ VmaJsonWriter json(GetAllocationCallbacks(), sb);
++ json.BeginObject();
++
++ VmaDetailedStatistics stats;
++ CalculateDetailedStatistics(stats);
++
++ json.WriteString("Stats");
++ VmaPrintDetailedStatistics(json, stats);
++
++ if (detailedMap)
++ {
++ json.WriteString("Details");
++ json.BeginObject();
++ m_Metadata->PrintDetailedMap(json);
++ json.EndObject();
++ }
++
++ json.EndObject();
++}
++#endif // VMA_STATS_STRING_ENABLED
++#endif // _VMA_VIRTUAL_BLOCK_T_FUNCTIONS
++#endif // _VMA_VIRTUAL_BLOCK_T
++
++
++// Main allocator object.
++struct VmaAllocator_T
++{
++ VMA_CLASS_NO_COPY(VmaAllocator_T)
++public:
++ bool m_UseMutex;
++ uint32_t m_VulkanApiVersion;
++ bool m_UseKhrDedicatedAllocation; // Can be set only if m_VulkanApiVersion < VK_MAKE_VERSION(1, 1, 0).
++ bool m_UseKhrBindMemory2; // Can be set only if m_VulkanApiVersion < VK_MAKE_VERSION(1, 1, 0).
++ bool m_UseExtMemoryBudget;
++ bool m_UseAmdDeviceCoherentMemory;
++ bool m_UseKhrBufferDeviceAddress;
++ bool m_UseExtMemoryPriority;
++ VkDevice m_hDevice;
++ VkInstance m_hInstance;
++ bool m_AllocationCallbacksSpecified;
++ VkAllocationCallbacks m_AllocationCallbacks;
++ VmaDeviceMemoryCallbacks m_DeviceMemoryCallbacks;
++ VmaAllocationObjectAllocator m_AllocationObjectAllocator;
++
++ // Each bit (1 << i) is set if HeapSizeLimit is enabled for that heap, so cannot allocate more than the heap size.
++ uint32_t m_HeapSizeLimitMask;
++
++ VkPhysicalDeviceProperties m_PhysicalDeviceProperties;
++ VkPhysicalDeviceMemoryProperties m_MemProps;
++
++ // Default pools.
++ VmaBlockVector* m_pBlockVectors[VK_MAX_MEMORY_TYPES];
++ VmaDedicatedAllocationList m_DedicatedAllocations[VK_MAX_MEMORY_TYPES];
++
++ VmaCurrentBudgetData m_Budget;
++ VMA_ATOMIC_UINT32 m_DeviceMemoryCount; // Total number of VkDeviceMemory objects.
++
++ VmaAllocator_T(const VmaAllocatorCreateInfo* pCreateInfo);
++ VkResult Init(const VmaAllocatorCreateInfo* pCreateInfo);
++ ~VmaAllocator_T();
++
++ const VkAllocationCallbacks* GetAllocationCallbacks() const
++ {
++ return m_AllocationCallbacksSpecified ? &m_AllocationCallbacks : VMA_NULL;
++ }
++ const VmaVulkanFunctions& GetVulkanFunctions() const
++ {
++ return m_VulkanFunctions;
++ }
++
++ VkPhysicalDevice GetPhysicalDevice() const { return m_PhysicalDevice; }
++
++ VkDeviceSize GetBufferImageGranularity() const
++ {
++ return VMA_MAX(
++ static_cast<VkDeviceSize>(VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY),
++ m_PhysicalDeviceProperties.limits.bufferImageGranularity);
++ }
++
++ uint32_t GetMemoryHeapCount() const { return m_MemProps.memoryHeapCount; }
++ uint32_t GetMemoryTypeCount() const { return m_MemProps.memoryTypeCount; }
++
++ uint32_t MemoryTypeIndexToHeapIndex(uint32_t memTypeIndex) const
++ {
++ VMA_ASSERT(memTypeIndex < m_MemProps.memoryTypeCount);
++ return m_MemProps.memoryTypes[memTypeIndex].heapIndex;
++ }
++ // True when specific memory type is HOST_VISIBLE but not HOST_COHERENT.
++ bool IsMemoryTypeNonCoherent(uint32_t memTypeIndex) const
++ {
++ return (m_MemProps.memoryTypes[memTypeIndex].propertyFlags & (VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)) ==
++ VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
++ }
++ // Minimum alignment for all allocations in specific memory type.
++ VkDeviceSize GetMemoryTypeMinAlignment(uint32_t memTypeIndex) const
++ {
++ return IsMemoryTypeNonCoherent(memTypeIndex) ?
++ VMA_MAX((VkDeviceSize)VMA_MIN_ALIGNMENT, m_PhysicalDeviceProperties.limits.nonCoherentAtomSize) :
++ (VkDeviceSize)VMA_MIN_ALIGNMENT;
++ }
++
++ bool IsIntegratedGpu() const
++ {
++ return m_PhysicalDeviceProperties.deviceType == VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU;
++ }
++
++ uint32_t GetGlobalMemoryTypeBits() const { return m_GlobalMemoryTypeBits; }
++
++ void GetBufferMemoryRequirements(
++ VkBuffer hBuffer,
++ VkMemoryRequirements& memReq,
++ bool& requiresDedicatedAllocation,
++ bool& prefersDedicatedAllocation) const;
++ void GetImageMemoryRequirements(
++ VkImage hImage,
++ VkMemoryRequirements& memReq,
++ bool& requiresDedicatedAllocation,
++ bool& prefersDedicatedAllocation) const;
++ VkResult FindMemoryTypeIndex(
++ uint32_t memoryTypeBits,
++ const VmaAllocationCreateInfo* pAllocationCreateInfo,
++ VkFlags bufImgUsage, // VkBufferCreateInfo::usage or VkImageCreateInfo::usage. UINT32_MAX if unknown.
++ uint32_t* pMemoryTypeIndex) const;
++
++ // Main allocation function.
++ VkResult AllocateMemory(
++ const VkMemoryRequirements& vkMemReq,
++ bool requiresDedicatedAllocation,
++ bool prefersDedicatedAllocation,
++ VkBuffer dedicatedBuffer,
++ VkImage dedicatedImage,
++ VkFlags dedicatedBufferImageUsage, // UINT32_MAX if unknown.
++ const VmaAllocationCreateInfo& createInfo,
++ VmaSuballocationType suballocType,
++ size_t allocationCount,
++ VmaAllocation* pAllocations);
++
++ // Main deallocation function.
++ void FreeMemory(
++ size_t allocationCount,
++ const VmaAllocation* pAllocations);
++
++ void CalculateStatistics(VmaTotalStatistics* pStats);
++
++ void GetHeapBudgets(
++ VmaBudget* outBudgets, uint32_t firstHeap, uint32_t heapCount);
++
++#if VMA_STATS_STRING_ENABLED
++ void PrintDetailedMap(class VmaJsonWriter& json);
++#endif
++
++ void GetAllocationInfo(VmaAllocation hAllocation, VmaAllocationInfo* pAllocationInfo);
++
++ VkResult CreatePool(const VmaPoolCreateInfo* pCreateInfo, VmaPool* pPool);
++ void DestroyPool(VmaPool pool);
++ void GetPoolStatistics(VmaPool pool, VmaStatistics* pPoolStats);
++ void CalculatePoolStatistics(VmaPool pool, VmaDetailedStatistics* pPoolStats);
++
++ void SetCurrentFrameIndex(uint32_t frameIndex);
++ uint32_t GetCurrentFrameIndex() const { return m_CurrentFrameIndex.load(); }
++
++ VkResult CheckPoolCorruption(VmaPool hPool);
++ VkResult CheckCorruption(uint32_t memoryTypeBits);
++
++ // Call to Vulkan function vkAllocateMemory with accompanying bookkeeping.
++ VkResult AllocateVulkanMemory(const VkMemoryAllocateInfo* pAllocateInfo, VkDeviceMemory* pMemory);
++ // Call to Vulkan function vkFreeMemory with accompanying bookkeeping.
++ void FreeVulkanMemory(uint32_t memoryType, VkDeviceSize size, VkDeviceMemory hMemory);
++ // Call to Vulkan function vkBindBufferMemory or vkBindBufferMemory2KHR.
++ VkResult BindVulkanBuffer(
++ VkDeviceMemory memory,
++ VkDeviceSize memoryOffset,
++ VkBuffer buffer,
++ const void* pNext);
++ // Call to Vulkan function vkBindImageMemory or vkBindImageMemory2KHR.
++ VkResult BindVulkanImage(
++ VkDeviceMemory memory,
++ VkDeviceSize memoryOffset,
++ VkImage image,
++ const void* pNext);
++
++ VkResult Map(VmaAllocation hAllocation, void** ppData);
++ void Unmap(VmaAllocation hAllocation);
++
++ VkResult BindBufferMemory(
++ VmaAllocation hAllocation,
++ VkDeviceSize allocationLocalOffset,
++ VkBuffer hBuffer,
++ const void* pNext);
++ VkResult BindImageMemory(
++ VmaAllocation hAllocation,
++ VkDeviceSize allocationLocalOffset,
++ VkImage hImage,
++ const void* pNext);
++
++ VkResult FlushOrInvalidateAllocation(
++ VmaAllocation hAllocation,
++ VkDeviceSize offset, VkDeviceSize size,
++ VMA_CACHE_OPERATION op);
++ VkResult FlushOrInvalidateAllocations(
++ uint32_t allocationCount,
++ const VmaAllocation* allocations,
++ const VkDeviceSize* offsets, const VkDeviceSize* sizes,
++ VMA_CACHE_OPERATION op);
++
++ void FillAllocation(const VmaAllocation hAllocation, uint8_t pattern);
++
++ /*
++ Returns bit mask of memory types that can support defragmentation on GPU as
++ they support creation of required buffer for copy operations.
++ */
++ uint32_t GetGpuDefragmentationMemoryTypeBits();
++
++#if VMA_EXTERNAL_MEMORY
++ VkExternalMemoryHandleTypeFlagsKHR GetExternalMemoryHandleTypeFlags(uint32_t memTypeIndex) const
++ {
++ return m_TypeExternalMemoryHandleTypes[memTypeIndex];
++ }
++#endif // #if VMA_EXTERNAL_MEMORY
++
++private:
++ VkDeviceSize m_PreferredLargeHeapBlockSize;
++
++ VkPhysicalDevice m_PhysicalDevice;
++ VMA_ATOMIC_UINT32 m_CurrentFrameIndex;
++ VMA_ATOMIC_UINT32 m_GpuDefragmentationMemoryTypeBits; // UINT32_MAX means uninitialized.
++#if VMA_EXTERNAL_MEMORY
++ VkExternalMemoryHandleTypeFlagsKHR m_TypeExternalMemoryHandleTypes[VK_MAX_MEMORY_TYPES];
++#endif // #if VMA_EXTERNAL_MEMORY
++
++ VMA_RW_MUTEX m_PoolsMutex;
++ typedef VmaIntrusiveLinkedList<VmaPoolListItemTraits> PoolList;
++ // Protected by m_PoolsMutex.
++ PoolList m_Pools;
++ uint32_t m_NextPoolId;
++
++ VmaVulkanFunctions m_VulkanFunctions;
++
++ // Global bit mask AND-ed with any memoryTypeBits to disallow certain memory types.
++ uint32_t m_GlobalMemoryTypeBits;
++
++ void ImportVulkanFunctions(const VmaVulkanFunctions* pVulkanFunctions);
++
++#if VMA_STATIC_VULKAN_FUNCTIONS == 1
++ void ImportVulkanFunctions_Static();
++#endif
++
++ void ImportVulkanFunctions_Custom(const VmaVulkanFunctions* pVulkanFunctions);
++
++#if VMA_DYNAMIC_VULKAN_FUNCTIONS == 1
++ void ImportVulkanFunctions_Dynamic();
++#endif
++
++ void ValidateVulkanFunctions();
++
++ VkDeviceSize CalcPreferredBlockSize(uint32_t memTypeIndex);
++
++ VkResult AllocateMemoryOfType(
++ VmaPool pool,
++ VkDeviceSize size,
++ VkDeviceSize alignment,
++ bool dedicatedPreferred,
++ VkBuffer dedicatedBuffer,
++ VkImage dedicatedImage,
++ VkFlags dedicatedBufferImageUsage,
++ const VmaAllocationCreateInfo& createInfo,
++ uint32_t memTypeIndex,
++ VmaSuballocationType suballocType,
++ VmaDedicatedAllocationList& dedicatedAllocations,
++ VmaBlockVector& blockVector,
++ size_t allocationCount,
++ VmaAllocation* pAllocations);
++
++ // Helper function only to be used inside AllocateDedicatedMemory.
++ VkResult AllocateDedicatedMemoryPage(
++ VmaPool pool,
++ VkDeviceSize size,
++ VmaSuballocationType suballocType,
++ uint32_t memTypeIndex,
++ const VkMemoryAllocateInfo& allocInfo,
++ bool map,
++ bool isUserDataString,
++ bool isMappingAllowed,
++ void* pUserData,
++ VmaAllocation* pAllocation);
++
++ // Allocates and registers new VkDeviceMemory specifically for dedicated allocations.
++ VkResult AllocateDedicatedMemory(
++ VmaPool pool,
++ VkDeviceSize size,
++ VmaSuballocationType suballocType,
++ VmaDedicatedAllocationList& dedicatedAllocations,
++ uint32_t memTypeIndex,
++ bool map,
++ bool isUserDataString,
++ bool isMappingAllowed,
++ bool canAliasMemory,
++ void* pUserData,
++ float priority,
++ VkBuffer dedicatedBuffer,
++ VkImage dedicatedImage,
++ VkFlags dedicatedBufferImageUsage,
++ size_t allocationCount,
++ VmaAllocation* pAllocations,
++ const void* pNextChain = nullptr);
++
++ void FreeDedicatedMemory(const VmaAllocation allocation);
++
++ VkResult CalcMemTypeParams(
++ VmaAllocationCreateInfo& outCreateInfo,
++ uint32_t memTypeIndex,
++ VkDeviceSize size,
++ size_t allocationCount);
++ VkResult CalcAllocationParams(
++ VmaAllocationCreateInfo& outCreateInfo,
++ bool dedicatedRequired,
++ bool dedicatedPreferred);
++
++ /*
++ Calculates and returns bit mask of memory types that can support defragmentation
++ on GPU as they support creation of required buffer for copy operations.
++ */
++ uint32_t CalculateGpuDefragmentationMemoryTypeBits() const;
++ uint32_t CalculateGlobalMemoryTypeBits() const;
++
++ bool GetFlushOrInvalidateRange(
++ VmaAllocation allocation,
++ VkDeviceSize offset, VkDeviceSize size,
++ VkMappedMemoryRange& outRange) const;
++
++#if VMA_MEMORY_BUDGET
++ void UpdateVulkanBudget();
++#endif // #if VMA_MEMORY_BUDGET
++};
++
++
++#ifndef _VMA_MEMORY_FUNCTIONS
++static void* VmaMalloc(VmaAllocator hAllocator, size_t size, size_t alignment)
++{
++ return VmaMalloc(&hAllocator->m_AllocationCallbacks, size, alignment);
++}
++
++static void VmaFree(VmaAllocator hAllocator, void* ptr)
++{
++ VmaFree(&hAllocator->m_AllocationCallbacks, ptr);
++}
++
++template<typename T>
++static T* VmaAllocate(VmaAllocator hAllocator)
++{
++ return (T*)VmaMalloc(hAllocator, sizeof(T), VMA_ALIGN_OF(T));
++}
++
++template<typename T>
++static T* VmaAllocateArray(VmaAllocator hAllocator, size_t count)
++{
++ return (T*)VmaMalloc(hAllocator, sizeof(T) * count, VMA_ALIGN_OF(T));
++}
++
++template<typename T>
++static void vma_delete(VmaAllocator hAllocator, T* ptr)
++{
++ if(ptr != VMA_NULL)
++ {
++ ptr->~T();
++ VmaFree(hAllocator, ptr);
++ }
++}
++
++template<typename T>
++static void vma_delete_array(VmaAllocator hAllocator, T* ptr, size_t count)
++{
++ if(ptr != VMA_NULL)
++ {
++ for(size_t i = count; i--; )
++ ptr[i].~T();
++ VmaFree(hAllocator, ptr);
++ }
++}
++#endif // _VMA_MEMORY_FUNCTIONS
++
++#ifndef _VMA_DEVICE_MEMORY_BLOCK_FUNCTIONS
++VmaDeviceMemoryBlock::VmaDeviceMemoryBlock(VmaAllocator hAllocator)
++ : m_pMetadata(VMA_NULL),
++ m_MemoryTypeIndex(UINT32_MAX),
++ m_Id(0),
++ m_hMemory(VK_NULL_HANDLE),
++ m_MapCount(0),
++ m_pMappedData(VMA_NULL) {}
++
++VmaDeviceMemoryBlock::~VmaDeviceMemoryBlock()
++{
++ VMA_ASSERT(m_MapCount == 0 && "VkDeviceMemory block is being destroyed while it is still mapped.");
++ VMA_ASSERT(m_hMemory == VK_NULL_HANDLE);
++}
++
++void VmaDeviceMemoryBlock::Init(
++ VmaAllocator hAllocator,
++ VmaPool hParentPool,
++ uint32_t newMemoryTypeIndex,
++ VkDeviceMemory newMemory,
++ VkDeviceSize newSize,
++ uint32_t id,
++ uint32_t algorithm,
++ VkDeviceSize bufferImageGranularity)
++{
++ VMA_ASSERT(m_hMemory == VK_NULL_HANDLE);
++
++ m_hParentPool = hParentPool;
++ m_MemoryTypeIndex = newMemoryTypeIndex;
++ m_Id = id;
++ m_hMemory = newMemory;
++
++ switch (algorithm)
++ {
++ case VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT:
++ m_pMetadata = vma_new(hAllocator, VmaBlockMetadata_Linear)(hAllocator->GetAllocationCallbacks(),
++ bufferImageGranularity, false); // isVirtual
++ break;
++ default:
++ VMA_ASSERT(0);
++ // Fall-through.
++ case 0:
++ m_pMetadata = vma_new(hAllocator, VmaBlockMetadata_TLSF)(hAllocator->GetAllocationCallbacks(),
++ bufferImageGranularity, false); // isVirtual
++ }
++ m_pMetadata->Init(newSize);
++}
++
++void VmaDeviceMemoryBlock::Destroy(VmaAllocator allocator)
++{
++ // Define macro VMA_DEBUG_LOG to receive the list of the unfreed allocations
++ if (!m_pMetadata->IsEmpty())
++ m_pMetadata->DebugLogAllAllocations();
++ // This is the most important assert in the entire library.
++ // Hitting it means you have some memory leak - unreleased VmaAllocation objects.
++ VMA_ASSERT(m_pMetadata->IsEmpty() && "Some allocations were not freed before destruction of this memory block!");
++
++ VMA_ASSERT(m_hMemory != VK_NULL_HANDLE);
++ allocator->FreeVulkanMemory(m_MemoryTypeIndex, m_pMetadata->GetSize(), m_hMemory);
++ m_hMemory = VK_NULL_HANDLE;
++
++ vma_delete(allocator, m_pMetadata);
++ m_pMetadata = VMA_NULL;
++}
++
++void VmaDeviceMemoryBlock::PostFree(VmaAllocator hAllocator)
++{
++ if(m_MappingHysteresis.PostFree())
++ {
++ VMA_ASSERT(m_MappingHysteresis.GetExtraMapping() == 0);
++ if (m_MapCount == 0)
++ {
++ m_pMappedData = VMA_NULL;
++ (*hAllocator->GetVulkanFunctions().vkUnmapMemory)(hAllocator->m_hDevice, m_hMemory);
++ }
++ }
++}
++
++bool VmaDeviceMemoryBlock::Validate() const
++{
++ VMA_VALIDATE((m_hMemory != VK_NULL_HANDLE) &&
++ (m_pMetadata->GetSize() != 0));
++
++ return m_pMetadata->Validate();
++}
++
++VkResult VmaDeviceMemoryBlock::CheckCorruption(VmaAllocator hAllocator)
++{
++ void* pData = nullptr;
++ VkResult res = Map(hAllocator, 1, &pData);
++ if (res != VK_SUCCESS)
++ {
++ return res;
++ }
++
++ res = m_pMetadata->CheckCorruption(pData);
++
++ Unmap(hAllocator, 1);
++
++ return res;
++}
++
++VkResult VmaDeviceMemoryBlock::Map(VmaAllocator hAllocator, uint32_t count, void** ppData)
++{
++ if (count == 0)
++ {
++ return VK_SUCCESS;
++ }
++
++ VmaMutexLock lock(m_MapAndBindMutex, hAllocator->m_UseMutex);
++ const uint32_t oldTotalMapCount = m_MapCount + m_MappingHysteresis.GetExtraMapping();
++ m_MappingHysteresis.PostMap();
++ if (oldTotalMapCount != 0)
++ {
++ m_MapCount += count;
++ VMA_ASSERT(m_pMappedData != VMA_NULL);
++ if (ppData != VMA_NULL)
++ {
++ *ppData = m_pMappedData;
++ }
++ return VK_SUCCESS;
++ }
++ else
++ {
++ VkResult result = (*hAllocator->GetVulkanFunctions().vkMapMemory)(
++ hAllocator->m_hDevice,
++ m_hMemory,
++ 0, // offset
++ VK_WHOLE_SIZE,
++ 0, // flags
++ &m_pMappedData);
++ if (result == VK_SUCCESS)
++ {
++ if (ppData != VMA_NULL)
++ {
++ *ppData = m_pMappedData;
++ }
++ m_MapCount = count;
++ }
++ return result;
++ }
++}
++
++void VmaDeviceMemoryBlock::Unmap(VmaAllocator hAllocator, uint32_t count)
++{
++ if (count == 0)
++ {
++ return;
++ }
++
++ VmaMutexLock lock(m_MapAndBindMutex, hAllocator->m_UseMutex);
++ if (m_MapCount >= count)
++ {
++ m_MapCount -= count;
++ const uint32_t totalMapCount = m_MapCount + m_MappingHysteresis.GetExtraMapping();
++ if (totalMapCount == 0)
++ {
++ m_pMappedData = VMA_NULL;
++ (*hAllocator->GetVulkanFunctions().vkUnmapMemory)(hAllocator->m_hDevice, m_hMemory);
++ }
++ m_MappingHysteresis.PostUnmap();
++ }
++ else
++ {
++ VMA_ASSERT(0 && "VkDeviceMemory block is being unmapped while it was not previously mapped.");
++ }
++}
++
++VkResult VmaDeviceMemoryBlock::WriteMagicValueAfterAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize)
++{
++ VMA_ASSERT(VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_MARGIN % 4 == 0 && VMA_DEBUG_DETECT_CORRUPTION);
++
++ void* pData;
++ VkResult res = Map(hAllocator, 1, &pData);
++ if (res != VK_SUCCESS)
++ {
++ return res;
++ }
++
++ VmaWriteMagicValue(pData, allocOffset + allocSize);
++
++ Unmap(hAllocator, 1);
++ return VK_SUCCESS;
++}
++
++VkResult VmaDeviceMemoryBlock::ValidateMagicValueAfterAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize)
++{
++ VMA_ASSERT(VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_MARGIN % 4 == 0 && VMA_DEBUG_DETECT_CORRUPTION);
++
++ void* pData;
++ VkResult res = Map(hAllocator, 1, &pData);
++ if (res != VK_SUCCESS)
++ {
++ return res;
++ }
++
++ if (!VmaValidateMagicValue(pData, allocOffset + allocSize))
++ {
++ VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER FREED ALLOCATION!");
++ }
++
++ Unmap(hAllocator, 1);
++ return VK_SUCCESS;
++}
++
++VkResult VmaDeviceMemoryBlock::BindBufferMemory(
++ const VmaAllocator hAllocator,
++ const VmaAllocation hAllocation,
++ VkDeviceSize allocationLocalOffset,
++ VkBuffer hBuffer,
++ const void* pNext)
++{
++ VMA_ASSERT(hAllocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK &&
++ hAllocation->GetBlock() == this);
++ VMA_ASSERT(allocationLocalOffset < hAllocation->GetSize() &&
++ "Invalid allocationLocalOffset. Did you forget that this offset is relative to the beginning of the allocation, not the whole memory block?");
++ const VkDeviceSize memoryOffset = hAllocation->GetOffset() + allocationLocalOffset;
++ // This lock is important so that we don't call vkBind... and/or vkMap... simultaneously on the same VkDeviceMemory from multiple threads.
++ VmaMutexLock lock(m_MapAndBindMutex, hAllocator->m_UseMutex);
++ return hAllocator->BindVulkanBuffer(m_hMemory, memoryOffset, hBuffer, pNext);
++}
++
++VkResult VmaDeviceMemoryBlock::BindImageMemory(
++ const VmaAllocator hAllocator,
++ const VmaAllocation hAllocation,
++ VkDeviceSize allocationLocalOffset,
++ VkImage hImage,
++ const void* pNext)
++{
++ VMA_ASSERT(hAllocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK &&
++ hAllocation->GetBlock() == this);
++ VMA_ASSERT(allocationLocalOffset < hAllocation->GetSize() &&
++ "Invalid allocationLocalOffset. Did you forget that this offset is relative to the beginning of the allocation, not the whole memory block?");
++ const VkDeviceSize memoryOffset = hAllocation->GetOffset() + allocationLocalOffset;
++ // This lock is important so that we don't call vkBind... and/or vkMap... simultaneously on the same VkDeviceMemory from multiple threads.
++ VmaMutexLock lock(m_MapAndBindMutex, hAllocator->m_UseMutex);
++ return hAllocator->BindVulkanImage(m_hMemory, memoryOffset, hImage, pNext);
++}
++#endif // _VMA_DEVICE_MEMORY_BLOCK_FUNCTIONS
++
++#ifndef _VMA_ALLOCATION_T_FUNCTIONS
++VmaAllocation_T::VmaAllocation_T(bool mappingAllowed)
++ : m_Alignment{ 1 },
++ m_Size{ 0 },
++ m_pUserData{ VMA_NULL },
++ m_pName{ VMA_NULL },
++ m_MemoryTypeIndex{ 0 },
++ m_Type{ (uint8_t)ALLOCATION_TYPE_NONE },
++ m_SuballocationType{ (uint8_t)VMA_SUBALLOCATION_TYPE_UNKNOWN },
++ m_MapCount{ 0 },
++ m_Flags{ 0 }
++{
++ if(mappingAllowed)
++ m_Flags |= (uint8_t)FLAG_MAPPING_ALLOWED;
++
++#if VMA_STATS_STRING_ENABLED
++ m_BufferImageUsage = 0;
++#endif
++}
++
++VmaAllocation_T::~VmaAllocation_T()
++{
++ VMA_ASSERT(m_MapCount == 0 && "Allocation was not unmapped before destruction.");
++
++ // Check if owned string was freed.
++ VMA_ASSERT(m_pName == VMA_NULL);
++}
++
++void VmaAllocation_T::InitBlockAllocation(
++ VmaDeviceMemoryBlock* block,
++ VmaAllocHandle allocHandle,
++ VkDeviceSize alignment,
++ VkDeviceSize size,
++ uint32_t memoryTypeIndex,
++ VmaSuballocationType suballocationType,
++ bool mapped)
++{
++ VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE);
++ VMA_ASSERT(block != VMA_NULL);
++ m_Type = (uint8_t)ALLOCATION_TYPE_BLOCK;
++ m_Alignment = alignment;
++ m_Size = size;
++ m_MemoryTypeIndex = memoryTypeIndex;
++ if(mapped)
++ {
++ VMA_ASSERT(IsMappingAllowed() && "Mapping is not allowed on this allocation! Please use one of the new VMA_ALLOCATION_CREATE_HOST_ACCESS_* flags when creating it.");
++ m_Flags |= (uint8_t)FLAG_PERSISTENT_MAP;
++ }
++ m_SuballocationType = (uint8_t)suballocationType;
++ m_BlockAllocation.m_Block = block;
++ m_BlockAllocation.m_AllocHandle = allocHandle;
++}
++
++void VmaAllocation_T::InitDedicatedAllocation(
++ VmaPool hParentPool,
++ uint32_t memoryTypeIndex,
++ VkDeviceMemory hMemory,
++ VmaSuballocationType suballocationType,
++ void* pMappedData,
++ VkDeviceSize size)
++{
++ VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE);
++ VMA_ASSERT(hMemory != VK_NULL_HANDLE);
++ m_Type = (uint8_t)ALLOCATION_TYPE_DEDICATED;
++ m_Alignment = 0;
++ m_Size = size;
++ m_MemoryTypeIndex = memoryTypeIndex;
++ m_SuballocationType = (uint8_t)suballocationType;
++ if(pMappedData != VMA_NULL)
++ {
++ VMA_ASSERT(IsMappingAllowed() && "Mapping is not allowed on this allocation! Please use one of the new VMA_ALLOCATION_CREATE_HOST_ACCESS_* flags when creating it.");
++ m_Flags |= (uint8_t)FLAG_PERSISTENT_MAP;
++ }
++ m_DedicatedAllocation.m_hParentPool = hParentPool;
++ m_DedicatedAllocation.m_hMemory = hMemory;
++ m_DedicatedAllocation.m_pMappedData = pMappedData;
++ m_DedicatedAllocation.m_Prev = VMA_NULL;
++ m_DedicatedAllocation.m_Next = VMA_NULL;
++}
++
++void VmaAllocation_T::SetName(VmaAllocator hAllocator, const char* pName)
++{
++ VMA_ASSERT(pName == VMA_NULL || pName != m_pName);
++
++ FreeName(hAllocator);
++
++ if (pName != VMA_NULL)
++ m_pName = VmaCreateStringCopy(hAllocator->GetAllocationCallbacks(), pName);
++}
++
++uint8_t VmaAllocation_T::SwapBlockAllocation(VmaAllocator hAllocator, VmaAllocation allocation)
++{
++ VMA_ASSERT(allocation != VMA_NULL);
++ VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK);
++ VMA_ASSERT(allocation->m_Type == ALLOCATION_TYPE_BLOCK);
++
++ if (m_MapCount != 0)
++ m_BlockAllocation.m_Block->Unmap(hAllocator, m_MapCount);
++
++ m_BlockAllocation.m_Block->m_pMetadata->SetAllocationUserData(m_BlockAllocation.m_AllocHandle, allocation);
++ VMA_SWAP(m_BlockAllocation, allocation->m_BlockAllocation);
++ m_BlockAllocation.m_Block->m_pMetadata->SetAllocationUserData(m_BlockAllocation.m_AllocHandle, this);
++
++#if VMA_STATS_STRING_ENABLED
++ VMA_SWAP(m_BufferImageUsage, allocation->m_BufferImageUsage);
++#endif
++ return m_MapCount;
++}
++
++VmaAllocHandle VmaAllocation_T::GetAllocHandle() const
++{
++ switch (m_Type)
++ {
++ case ALLOCATION_TYPE_BLOCK:
++ return m_BlockAllocation.m_AllocHandle;
++ case ALLOCATION_TYPE_DEDICATED:
++ return VK_NULL_HANDLE;
++ default:
++ VMA_ASSERT(0);
++ return VK_NULL_HANDLE;
++ }
++}
++
++VkDeviceSize VmaAllocation_T::GetOffset() const
++{
++ switch (m_Type)
++ {
++ case ALLOCATION_TYPE_BLOCK:
++ return m_BlockAllocation.m_Block->m_pMetadata->GetAllocationOffset(m_BlockAllocation.m_AllocHandle);
++ case ALLOCATION_TYPE_DEDICATED:
++ return 0;
++ default:
++ VMA_ASSERT(0);
++ return 0;
++ }
++}
++
++VmaPool VmaAllocation_T::GetParentPool() const
++{
++ switch (m_Type)
++ {
++ case ALLOCATION_TYPE_BLOCK:
++ return m_BlockAllocation.m_Block->GetParentPool();
++ case ALLOCATION_TYPE_DEDICATED:
++ return m_DedicatedAllocation.m_hParentPool;
++ default:
++ VMA_ASSERT(0);
++ return VK_NULL_HANDLE;
++ }
++}
++
++VkDeviceMemory VmaAllocation_T::GetMemory() const
++{
++ switch (m_Type)
++ {
++ case ALLOCATION_TYPE_BLOCK:
++ return m_BlockAllocation.m_Block->GetDeviceMemory();
++ case ALLOCATION_TYPE_DEDICATED:
++ return m_DedicatedAllocation.m_hMemory;
++ default:
++ VMA_ASSERT(0);
++ return VK_NULL_HANDLE;
++ }
++}
++
++void* VmaAllocation_T::GetMappedData() const
++{
++ switch (m_Type)
++ {
++ case ALLOCATION_TYPE_BLOCK:
++ if (m_MapCount != 0 || IsPersistentMap())
++ {
++ void* pBlockData = m_BlockAllocation.m_Block->GetMappedData();
++ VMA_ASSERT(pBlockData != VMA_NULL);
++ return (char*)pBlockData + GetOffset();
++ }
++ else
++ {
++ return VMA_NULL;
++ }
++ break;
++ case ALLOCATION_TYPE_DEDICATED:
++ VMA_ASSERT((m_DedicatedAllocation.m_pMappedData != VMA_NULL) == (m_MapCount != 0 || IsPersistentMap()));
++ return m_DedicatedAllocation.m_pMappedData;
++ default:
++ VMA_ASSERT(0);
++ return VMA_NULL;
++ }
++}
++
++void VmaAllocation_T::BlockAllocMap()
++{
++ VMA_ASSERT(GetType() == ALLOCATION_TYPE_BLOCK);
++ VMA_ASSERT(IsMappingAllowed() && "Mapping is not allowed on this allocation! Please use one of the new VMA_ALLOCATION_CREATE_HOST_ACCESS_* flags when creating it.");
++
++ if (m_MapCount < 0xFF)
++ {
++ ++m_MapCount;
++ }
++ else
++ {
++ VMA_ASSERT(0 && "Allocation mapped too many times simultaneously.");
++ }
++}
++
++void VmaAllocation_T::BlockAllocUnmap()
++{
++ VMA_ASSERT(GetType() == ALLOCATION_TYPE_BLOCK);
++
++ if (m_MapCount > 0)
++ {
++ --m_MapCount;
++ }
++ else
++ {
++ VMA_ASSERT(0 && "Unmapping allocation not previously mapped.");
++ }
++}
++
++VkResult VmaAllocation_T::DedicatedAllocMap(VmaAllocator hAllocator, void** ppData)
++{
++ VMA_ASSERT(GetType() == ALLOCATION_TYPE_DEDICATED);
++ VMA_ASSERT(IsMappingAllowed() && "Mapping is not allowed on this allocation! Please use one of the new VMA_ALLOCATION_CREATE_HOST_ACCESS_* flags when creating it.");
++
++ if (m_MapCount != 0 || IsPersistentMap())
++ {
++ if (m_MapCount < 0xFF)
++ {
++ VMA_ASSERT(m_DedicatedAllocation.m_pMappedData != VMA_NULL);
++ *ppData = m_DedicatedAllocation.m_pMappedData;
++ ++m_MapCount;
++ return VK_SUCCESS;
++ }
++ else
++ {
++ VMA_ASSERT(0 && "Dedicated allocation mapped too many times simultaneously.");
++ return VK_ERROR_MEMORY_MAP_FAILED;
++ }
++ }
++ else
++ {
++ VkResult result = (*hAllocator->GetVulkanFunctions().vkMapMemory)(
++ hAllocator->m_hDevice,
++ m_DedicatedAllocation.m_hMemory,
++ 0, // offset
++ VK_WHOLE_SIZE,
++ 0, // flags
++ ppData);
++ if (result == VK_SUCCESS)
++ {
++ m_DedicatedAllocation.m_pMappedData = *ppData;
++ m_MapCount = 1;
++ }
++ return result;
++ }
++}
++
++void VmaAllocation_T::DedicatedAllocUnmap(VmaAllocator hAllocator)
++{
++ VMA_ASSERT(GetType() == ALLOCATION_TYPE_DEDICATED);
++
++ if (m_MapCount > 0)
++ {
++ --m_MapCount;
++ if (m_MapCount == 0 && !IsPersistentMap())
++ {
++ m_DedicatedAllocation.m_pMappedData = VMA_NULL;
++ (*hAllocator->GetVulkanFunctions().vkUnmapMemory)(
++ hAllocator->m_hDevice,
++ m_DedicatedAllocation.m_hMemory);
++ }
++ }
++ else
++ {
++ VMA_ASSERT(0 && "Unmapping dedicated allocation not previously mapped.");
++ }
++}
++
++#if VMA_STATS_STRING_ENABLED
++void VmaAllocation_T::InitBufferImageUsage(uint32_t bufferImageUsage)
++{
++ VMA_ASSERT(m_BufferImageUsage == 0);
++ m_BufferImageUsage = bufferImageUsage;
++}
++
++void VmaAllocation_T::PrintParameters(class VmaJsonWriter& json) const
++{
++ json.WriteString("Type");
++ json.WriteString(VMA_SUBALLOCATION_TYPE_NAMES[m_SuballocationType]);
++
++ json.WriteString("Size");
++ json.WriteNumber(m_Size);
++ json.WriteString("Usage");
++ json.WriteNumber(m_BufferImageUsage);
++
++ if (m_pUserData != VMA_NULL)
++ {
++ json.WriteString("CustomData");
++ json.BeginString();
++ json.ContinueString_Pointer(m_pUserData);
++ json.EndString();
++ }
++ if (m_pName != VMA_NULL)
++ {
++ json.WriteString("Name");
++ json.WriteString(m_pName);
++ }
++}
++#endif // VMA_STATS_STRING_ENABLED
++
++void VmaAllocation_T::FreeName(VmaAllocator hAllocator)
++{
++ if(m_pName)
++ {
++ VmaFreeString(hAllocator->GetAllocationCallbacks(), m_pName);
++ m_pName = VMA_NULL;
++ }
++}
++#endif // _VMA_ALLOCATION_T_FUNCTIONS
++
++#ifndef _VMA_BLOCK_VECTOR_FUNCTIONS
++VmaBlockVector::VmaBlockVector(
++ VmaAllocator hAllocator,
++ VmaPool hParentPool,
++ uint32_t memoryTypeIndex,
++ VkDeviceSize preferredBlockSize,
++ size_t minBlockCount,
++ size_t maxBlockCount,
++ VkDeviceSize bufferImageGranularity,
++ bool explicitBlockSize,
++ uint32_t algorithm,
++ float priority,
++ VkDeviceSize minAllocationAlignment,
++ void* pMemoryAllocateNext)
++ : m_hAllocator(hAllocator),
++ m_hParentPool(hParentPool),
++ m_MemoryTypeIndex(memoryTypeIndex),
++ m_PreferredBlockSize(preferredBlockSize),
++ m_MinBlockCount(minBlockCount),
++ m_MaxBlockCount(maxBlockCount),
++ m_BufferImageGranularity(bufferImageGranularity),
++ m_ExplicitBlockSize(explicitBlockSize),
++ m_Algorithm(algorithm),
++ m_Priority(priority),
++ m_MinAllocationAlignment(minAllocationAlignment),
++ m_pMemoryAllocateNext(pMemoryAllocateNext),
++ m_Blocks(VmaStlAllocator<VmaDeviceMemoryBlock*>(hAllocator->GetAllocationCallbacks())),
++ m_NextBlockId(0) {}
++
++VmaBlockVector::~VmaBlockVector()
++{
++ for (size_t i = m_Blocks.size(); i--; )
++ {
++ m_Blocks[i]->Destroy(m_hAllocator);
++ vma_delete(m_hAllocator, m_Blocks[i]);
++ }
++}
++
++VkResult VmaBlockVector::CreateMinBlocks()
++{
++ for (size_t i = 0; i < m_MinBlockCount; ++i)
++ {
++ VkResult res = CreateBlock(m_PreferredBlockSize, VMA_NULL);
++ if (res != VK_SUCCESS)
++ {
++ return res;
++ }
++ }
++ return VK_SUCCESS;
++}
++
++void VmaBlockVector::AddStatistics(VmaStatistics& inoutStats)
++{
++ VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex);
++
++ const size_t blockCount = m_Blocks.size();
++ for (uint32_t blockIndex = 0; blockIndex < blockCount; ++blockIndex)
++ {
++ const VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex];
++ VMA_ASSERT(pBlock);
++ VMA_HEAVY_ASSERT(pBlock->Validate());
++ pBlock->m_pMetadata->AddStatistics(inoutStats);
++ }
++}
++
++void VmaBlockVector::AddDetailedStatistics(VmaDetailedStatistics& inoutStats)
++{
++ VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex);
++
++ const size_t blockCount = m_Blocks.size();
++ for (uint32_t blockIndex = 0; blockIndex < blockCount; ++blockIndex)
++ {
++ const VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex];
++ VMA_ASSERT(pBlock);
++ VMA_HEAVY_ASSERT(pBlock->Validate());
++ pBlock->m_pMetadata->AddDetailedStatistics(inoutStats);
++ }
++}
++
++bool VmaBlockVector::IsEmpty()
++{
++ VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex);
++ return m_Blocks.empty();
++}
++
++bool VmaBlockVector::IsCorruptionDetectionEnabled() const
++{
++ const uint32_t requiredMemFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
++ return (VMA_DEBUG_DETECT_CORRUPTION != 0) &&
++ (VMA_DEBUG_MARGIN > 0) &&
++ (m_Algorithm == 0 || m_Algorithm == VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT) &&
++ (m_hAllocator->m_MemProps.memoryTypes[m_MemoryTypeIndex].propertyFlags & requiredMemFlags) == requiredMemFlags;
++}
++
++VkResult VmaBlockVector::Allocate(
++ VkDeviceSize size,
++ VkDeviceSize alignment,
++ const VmaAllocationCreateInfo& createInfo,
++ VmaSuballocationType suballocType,
++ size_t allocationCount,
++ VmaAllocation* pAllocations)
++{
++ size_t allocIndex;
++ VkResult res = VK_SUCCESS;
++
++ alignment = VMA_MAX(alignment, m_MinAllocationAlignment);
++
++ if (IsCorruptionDetectionEnabled())
++ {
++ size = VmaAlignUp<VkDeviceSize>(size, sizeof(VMA_CORRUPTION_DETECTION_MAGIC_VALUE));
++ alignment = VmaAlignUp<VkDeviceSize>(alignment, sizeof(VMA_CORRUPTION_DETECTION_MAGIC_VALUE));
++ }
++
++ {
++ VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex);
++ for (allocIndex = 0; allocIndex < allocationCount; ++allocIndex)
++ {
++ res = AllocatePage(
++ size,
++ alignment,
++ createInfo,
++ suballocType,
++ pAllocations + allocIndex);
++ if (res != VK_SUCCESS)
++ {
++ break;
++ }
++ }
++ }
++
++ if (res != VK_SUCCESS)
++ {
++ // Free all already created allocations.
++ while (allocIndex--)
++ Free(pAllocations[allocIndex]);
++ memset(pAllocations, 0, sizeof(VmaAllocation) * allocationCount);
++ }
++
++ return res;
++}
++
++VkResult VmaBlockVector::AllocatePage(
++ VkDeviceSize size,
++ VkDeviceSize alignment,
++ const VmaAllocationCreateInfo& createInfo,
++ VmaSuballocationType suballocType,
++ VmaAllocation* pAllocation)
++{
++ const bool isUpperAddress = (createInfo.flags & VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0;
++
++ VkDeviceSize freeMemory;
++ {
++ const uint32_t heapIndex = m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex);
++ VmaBudget heapBudget = {};
++ m_hAllocator->GetHeapBudgets(&heapBudget, heapIndex, 1);
++ freeMemory = (heapBudget.usage < heapBudget.budget) ? (heapBudget.budget - heapBudget.usage) : 0;
++ }
++
++ const bool canFallbackToDedicated = !HasExplicitBlockSize() &&
++ (createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) == 0;
++ const bool canCreateNewBlock =
++ ((createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) == 0) &&
++ (m_Blocks.size() < m_MaxBlockCount) &&
++ (freeMemory >= size || !canFallbackToDedicated);
++ uint32_t strategy = createInfo.flags & VMA_ALLOCATION_CREATE_STRATEGY_MASK;
++
++ // Upper address can only be used with linear allocator and within single memory block.
++ if (isUpperAddress &&
++ (m_Algorithm != VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT || m_MaxBlockCount > 1))
++ {
++ return VK_ERROR_FEATURE_NOT_PRESENT;
++ }
++
++ // Early reject: requested allocation size is larger that maximum block size for this block vector.
++ if (size + VMA_DEBUG_MARGIN > m_PreferredBlockSize)
++ {
++ return VK_ERROR_OUT_OF_DEVICE_MEMORY;
++ }
++
++ // 1. Search existing allocations. Try to allocate.
++ if (m_Algorithm == VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT)
++ {
++ // Use only last block.
++ if (!m_Blocks.empty())
++ {
++ VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks.back();
++ VMA_ASSERT(pCurrBlock);
++ VkResult res = AllocateFromBlock(
++ pCurrBlock, size, alignment, createInfo.flags, createInfo.pUserData, suballocType, strategy, pAllocation);
++ if (res == VK_SUCCESS)
++ {
++ VMA_DEBUG_LOG(" Returned from last block #%u", pCurrBlock->GetId());
++ IncrementallySortBlocks();
++ return VK_SUCCESS;
++ }
++ }
++ }
++ else
++ {
++ if (strategy != VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT) // MIN_MEMORY or default
++ {
++ const bool isHostVisible =
++ (m_hAllocator->m_MemProps.memoryTypes[m_MemoryTypeIndex].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0;
++ if(isHostVisible)
++ {
++ const bool isMappingAllowed = (createInfo.flags &
++ (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) != 0;
++ /*
++ For non-mappable allocations, check blocks that are not mapped first.
++ For mappable allocations, check blocks that are already mapped first.
++ This way, having many blocks, we will separate mappable and non-mappable allocations,
++ hopefully limiting the number of blocks that are mapped, which will help tools like RenderDoc.
++ */
++ for(size_t mappingI = 0; mappingI < 2; ++mappingI)
++ {
++ // Forward order in m_Blocks - prefer blocks with smallest amount of free space.
++ for (size_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex)
++ {
++ VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex];
++ VMA_ASSERT(pCurrBlock);
++ const bool isBlockMapped = pCurrBlock->GetMappedData() != VMA_NULL;
++ if((mappingI == 0) == (isMappingAllowed == isBlockMapped))
++ {
++ VkResult res = AllocateFromBlock(
++ pCurrBlock, size, alignment, createInfo.flags, createInfo.pUserData, suballocType, strategy, pAllocation);
++ if (res == VK_SUCCESS)
++ {
++ VMA_DEBUG_LOG(" Returned from existing block #%u", pCurrBlock->GetId());
++ IncrementallySortBlocks();
++ return VK_SUCCESS;
++ }
++ }
++ }
++ }
++ }
++ else
++ {
++ // Forward order in m_Blocks - prefer blocks with smallest amount of free space.
++ for (size_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex)
++ {
++ VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex];
++ VMA_ASSERT(pCurrBlock);
++ VkResult res = AllocateFromBlock(
++ pCurrBlock, size, alignment, createInfo.flags, createInfo.pUserData, suballocType, strategy, pAllocation);
++ if (res == VK_SUCCESS)
++ {
++ VMA_DEBUG_LOG(" Returned from existing block #%u", pCurrBlock->GetId());
++ IncrementallySortBlocks();
++ return VK_SUCCESS;
++ }
++ }
++ }
++ }
++ else // VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT
++ {
++ // Backward order in m_Blocks - prefer blocks with largest amount of free space.
++ for (size_t blockIndex = m_Blocks.size(); blockIndex--; )
++ {
++ VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex];
++ VMA_ASSERT(pCurrBlock);
++ VkResult res = AllocateFromBlock(pCurrBlock, size, alignment, createInfo.flags, createInfo.pUserData, suballocType, strategy, pAllocation);
++ if (res == VK_SUCCESS)
++ {
++ VMA_DEBUG_LOG(" Returned from existing block #%u", pCurrBlock->GetId());
++ IncrementallySortBlocks();
++ return VK_SUCCESS;
++ }
++ }
++ }
++ }
++
++ // 2. Try to create new block.
++ if (canCreateNewBlock)
++ {
++ // Calculate optimal size for new block.
++ VkDeviceSize newBlockSize = m_PreferredBlockSize;
++ uint32_t newBlockSizeShift = 0;
++ const uint32_t NEW_BLOCK_SIZE_SHIFT_MAX = 3;
++
++ if (!m_ExplicitBlockSize)
++ {
++ // Allocate 1/8, 1/4, 1/2 as first blocks.
++ const VkDeviceSize maxExistingBlockSize = CalcMaxBlockSize();
++ for (uint32_t i = 0; i < NEW_BLOCK_SIZE_SHIFT_MAX; ++i)
++ {
++ const VkDeviceSize smallerNewBlockSize = newBlockSize / 2;
++ if (smallerNewBlockSize > maxExistingBlockSize && smallerNewBlockSize >= size * 2)
++ {
++ newBlockSize = smallerNewBlockSize;
++ ++newBlockSizeShift;
++ }
++ else
++ {
++ break;
++ }
++ }
++ }
++
++ size_t newBlockIndex = 0;
++ VkResult res = (newBlockSize <= freeMemory || !canFallbackToDedicated) ?
++ CreateBlock(newBlockSize, &newBlockIndex) : VK_ERROR_OUT_OF_DEVICE_MEMORY;
++ // Allocation of this size failed? Try 1/2, 1/4, 1/8 of m_PreferredBlockSize.
++ if (!m_ExplicitBlockSize)
++ {
++ while (res < 0 && newBlockSizeShift < NEW_BLOCK_SIZE_SHIFT_MAX)
++ {
++ const VkDeviceSize smallerNewBlockSize = newBlockSize / 2;
++ if (smallerNewBlockSize >= size)
++ {
++ newBlockSize = smallerNewBlockSize;
++ ++newBlockSizeShift;
++ res = (newBlockSize <= freeMemory || !canFallbackToDedicated) ?
++ CreateBlock(newBlockSize, &newBlockIndex) : VK_ERROR_OUT_OF_DEVICE_MEMORY;
++ }
++ else
++ {
++ break;
++ }
++ }
++ }
++
++ if (res == VK_SUCCESS)
++ {
++ VmaDeviceMemoryBlock* const pBlock = m_Blocks[newBlockIndex];
++ VMA_ASSERT(pBlock->m_pMetadata->GetSize() >= size);
++
++ res = AllocateFromBlock(
++ pBlock, size, alignment, createInfo.flags, createInfo.pUserData, suballocType, strategy, pAllocation);
++ if (res == VK_SUCCESS)
++ {
++ VMA_DEBUG_LOG(" Created new block #%u Size=%llu", pBlock->GetId(), newBlockSize);
++ IncrementallySortBlocks();
++ return VK_SUCCESS;
++ }
++ else
++ {
++ // Allocation from new block failed, possibly due to VMA_DEBUG_MARGIN or alignment.
++ return VK_ERROR_OUT_OF_DEVICE_MEMORY;
++ }
++ }
++ }
++
++ return VK_ERROR_OUT_OF_DEVICE_MEMORY;
++}
++
++void VmaBlockVector::Free(const VmaAllocation hAllocation)
++{
++ VmaDeviceMemoryBlock* pBlockToDelete = VMA_NULL;
++
++ bool budgetExceeded = false;
++ {
++ const uint32_t heapIndex = m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex);
++ VmaBudget heapBudget = {};
++ m_hAllocator->GetHeapBudgets(&heapBudget, heapIndex, 1);
++ budgetExceeded = heapBudget.usage >= heapBudget.budget;
++ }
++
++ // Scope for lock.
++ {
++ VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex);
++
++ VmaDeviceMemoryBlock* pBlock = hAllocation->GetBlock();
++
++ if (IsCorruptionDetectionEnabled())
++ {
++ VkResult res = pBlock->ValidateMagicValueAfterAllocation(m_hAllocator, hAllocation->GetOffset(), hAllocation->GetSize());
++ VMA_ASSERT(res == VK_SUCCESS && "Couldn't map block memory to validate magic value.");
++ }
++
++ if (hAllocation->IsPersistentMap())
++ {
++ pBlock->Unmap(m_hAllocator, 1);
++ }
++
++ const bool hadEmptyBlockBeforeFree = HasEmptyBlock();
++ pBlock->m_pMetadata->Free(hAllocation->GetAllocHandle());
++ pBlock->PostFree(m_hAllocator);
++ VMA_HEAVY_ASSERT(pBlock->Validate());
++
++ VMA_DEBUG_LOG(" Freed from MemoryTypeIndex=%u", m_MemoryTypeIndex);
++
++ const bool canDeleteBlock = m_Blocks.size() > m_MinBlockCount;
++ // pBlock became empty after this deallocation.
++ if (pBlock->m_pMetadata->IsEmpty())
++ {
++ // Already had empty block. We don't want to have two, so delete this one.
++ if ((hadEmptyBlockBeforeFree || budgetExceeded) && canDeleteBlock)
++ {
++ pBlockToDelete = pBlock;
++ Remove(pBlock);
++ }
++ // else: We now have one empty block - leave it. A hysteresis to avoid allocating whole block back and forth.
++ }
++ // pBlock didn't become empty, but we have another empty block - find and free that one.
++ // (This is optional, heuristics.)
++ else if (hadEmptyBlockBeforeFree && canDeleteBlock)
++ {
++ VmaDeviceMemoryBlock* pLastBlock = m_Blocks.back();
++ if (pLastBlock->m_pMetadata->IsEmpty())
++ {
++ pBlockToDelete = pLastBlock;
++ m_Blocks.pop_back();
++ }
++ }
++
++ IncrementallySortBlocks();
++ }
++
++ // Destruction of a free block. Deferred until this point, outside of mutex
++ // lock, for performance reason.
++ if (pBlockToDelete != VMA_NULL)
++ {
++ VMA_DEBUG_LOG(" Deleted empty block #%u", pBlockToDelete->GetId());
++ pBlockToDelete->Destroy(m_hAllocator);
++ vma_delete(m_hAllocator, pBlockToDelete);
++ }
++
++ m_hAllocator->m_Budget.RemoveAllocation(m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex), hAllocation->GetSize());
++ m_hAllocator->m_AllocationObjectAllocator.Free(hAllocation);
++}
++
++VkDeviceSize VmaBlockVector::CalcMaxBlockSize() const
++{
++ VkDeviceSize result = 0;
++ for (size_t i = m_Blocks.size(); i--; )
++ {
++ result = VMA_MAX(result, m_Blocks[i]->m_pMetadata->GetSize());
++ if (result >= m_PreferredBlockSize)
++ {
++ break;
++ }
++ }
++ return result;
++}
++
++void VmaBlockVector::Remove(VmaDeviceMemoryBlock* pBlock)
++{
++ for (uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex)
++ {
++ if (m_Blocks[blockIndex] == pBlock)
++ {
++ VmaVectorRemove(m_Blocks, blockIndex);
++ return;
++ }
++ }
++ VMA_ASSERT(0);
++}
++
++void VmaBlockVector::IncrementallySortBlocks()
++{
++ if (!m_IncrementalSort)
++ return;
++ if (m_Algorithm != VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT)
++ {
++ // Bubble sort only until first swap.
++ for (size_t i = 1; i < m_Blocks.size(); ++i)
++ {
++ if (m_Blocks[i - 1]->m_pMetadata->GetSumFreeSize() > m_Blocks[i]->m_pMetadata->GetSumFreeSize())
++ {
++ VMA_SWAP(m_Blocks[i - 1], m_Blocks[i]);
++ return;
++ }
++ }
++ }
++}
++
++void VmaBlockVector::SortByFreeSize()
++{
++ VMA_SORT(m_Blocks.begin(), m_Blocks.end(),
++ [](auto* b1, auto* b2)
++ {
++ return b1->m_pMetadata->GetSumFreeSize() < b2->m_pMetadata->GetSumFreeSize();
++ });
++}
++
++VkResult VmaBlockVector::AllocateFromBlock(
++ VmaDeviceMemoryBlock* pBlock,
++ VkDeviceSize size,
++ VkDeviceSize alignment,
++ VmaAllocationCreateFlags allocFlags,
++ void* pUserData,
++ VmaSuballocationType suballocType,
++ uint32_t strategy,
++ VmaAllocation* pAllocation)
++{
++ const bool isUpperAddress = (allocFlags & VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0;
++
++ VmaAllocationRequest currRequest = {};
++ if (pBlock->m_pMetadata->CreateAllocationRequest(
++ size,
++ alignment,
++ isUpperAddress,
++ suballocType,
++ strategy,
++ &currRequest))
++ {
++ return CommitAllocationRequest(currRequest, pBlock, alignment, allocFlags, pUserData, suballocType, pAllocation);
++ }
++ return VK_ERROR_OUT_OF_DEVICE_MEMORY;
++}
++
++VkResult VmaBlockVector::CommitAllocationRequest(
++ VmaAllocationRequest& allocRequest,
++ VmaDeviceMemoryBlock* pBlock,
++ VkDeviceSize alignment,
++ VmaAllocationCreateFlags allocFlags,
++ void* pUserData,
++ VmaSuballocationType suballocType,
++ VmaAllocation* pAllocation)
++{
++ const bool mapped = (allocFlags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0;
++ const bool isUserDataString = (allocFlags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0;
++ const bool isMappingAllowed = (allocFlags &
++ (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) != 0;
++
++ pBlock->PostAlloc();
++ // Allocate from pCurrBlock.
++ if (mapped)
++ {
++ VkResult res = pBlock->Map(m_hAllocator, 1, VMA_NULL);
++ if (res != VK_SUCCESS)
++ {
++ return res;
++ }
++ }
++
++ *pAllocation = m_hAllocator->m_AllocationObjectAllocator.Allocate(isMappingAllowed);
++ pBlock->m_pMetadata->Alloc(allocRequest, suballocType, *pAllocation);
++ (*pAllocation)->InitBlockAllocation(
++ pBlock,
++ allocRequest.allocHandle,
++ alignment,
++ allocRequest.size, // Not size, as actual allocation size may be larger than requested!
++ m_MemoryTypeIndex,
++ suballocType,
++ mapped);
++ VMA_HEAVY_ASSERT(pBlock->Validate());
++ if (isUserDataString)
++ (*pAllocation)->SetName(m_hAllocator, (const char*)pUserData);
++ else
++ (*pAllocation)->SetUserData(m_hAllocator, pUserData);
++ m_hAllocator->m_Budget.AddAllocation(m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex), allocRequest.size);
++ if (VMA_DEBUG_INITIALIZE_ALLOCATIONS)
++ {
++ m_hAllocator->FillAllocation(*pAllocation, VMA_ALLOCATION_FILL_PATTERN_CREATED);
++ }
++ if (IsCorruptionDetectionEnabled())
++ {
++ VkResult res = pBlock->WriteMagicValueAfterAllocation(m_hAllocator, (*pAllocation)->GetOffset(), allocRequest.size);
++ VMA_ASSERT(res == VK_SUCCESS && "Couldn't map block memory to write magic value.");
++ }
++ return VK_SUCCESS;
++}
++
++VkResult VmaBlockVector::CreateBlock(VkDeviceSize blockSize, size_t* pNewBlockIndex)
++{
++ VkMemoryAllocateInfo allocInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO };
++ allocInfo.pNext = m_pMemoryAllocateNext;
++ allocInfo.memoryTypeIndex = m_MemoryTypeIndex;
++ allocInfo.allocationSize = blockSize;
++
++#if VMA_BUFFER_DEVICE_ADDRESS
++ // Every standalone block can potentially contain a buffer with VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT - always enable the feature.
++ VkMemoryAllocateFlagsInfoKHR allocFlagsInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO_KHR };
++ if (m_hAllocator->m_UseKhrBufferDeviceAddress)
++ {
++ allocFlagsInfo.flags = VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT_KHR;
++ VmaPnextChainPushFront(&allocInfo, &allocFlagsInfo);
++ }
++#endif // VMA_BUFFER_DEVICE_ADDRESS
++
++#if VMA_MEMORY_PRIORITY
++ VkMemoryPriorityAllocateInfoEXT priorityInfo = { VK_STRUCTURE_TYPE_MEMORY_PRIORITY_ALLOCATE_INFO_EXT };
++ if (m_hAllocator->m_UseExtMemoryPriority)
++ {
++ VMA_ASSERT(m_Priority >= 0.f && m_Priority <= 1.f);
++ priorityInfo.priority = m_Priority;
++ VmaPnextChainPushFront(&allocInfo, &priorityInfo);
++ }
++#endif // VMA_MEMORY_PRIORITY
++
++#if VMA_EXTERNAL_MEMORY
++ // Attach VkExportMemoryAllocateInfoKHR if necessary.
++ VkExportMemoryAllocateInfoKHR exportMemoryAllocInfo = { VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO_KHR };
++ exportMemoryAllocInfo.handleTypes = m_hAllocator->GetExternalMemoryHandleTypeFlags(m_MemoryTypeIndex);
++ if (exportMemoryAllocInfo.handleTypes != 0)
++ {
++ VmaPnextChainPushFront(&allocInfo, &exportMemoryAllocInfo);
++ }
++#endif // VMA_EXTERNAL_MEMORY
++
++ VkDeviceMemory mem = VK_NULL_HANDLE;
++ VkResult res = m_hAllocator->AllocateVulkanMemory(&allocInfo, &mem);
++ if (res < 0)
++ {
++ return res;
++ }
++
++ // New VkDeviceMemory successfully created.
++
++ // Create new Allocation for it.
++ VmaDeviceMemoryBlock* const pBlock = vma_new(m_hAllocator, VmaDeviceMemoryBlock)(m_hAllocator);
++ pBlock->Init(
++ m_hAllocator,
++ m_hParentPool,
++ m_MemoryTypeIndex,
++ mem,
++ allocInfo.allocationSize,
++ m_NextBlockId++,
++ m_Algorithm,
++ m_BufferImageGranularity);
++
++ m_Blocks.push_back(pBlock);
++ if (pNewBlockIndex != VMA_NULL)
++ {
++ *pNewBlockIndex = m_Blocks.size() - 1;
++ }
++
++ return VK_SUCCESS;
++}
++
++bool VmaBlockVector::HasEmptyBlock()
++{
++ for (size_t index = 0, count = m_Blocks.size(); index < count; ++index)
++ {
++ VmaDeviceMemoryBlock* const pBlock = m_Blocks[index];
++ if (pBlock->m_pMetadata->IsEmpty())
++ {
++ return true;
++ }
++ }
++ return false;
++}
++
++#if VMA_STATS_STRING_ENABLED
++void VmaBlockVector::PrintDetailedMap(class VmaJsonWriter& json)
++{
++ VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex);
++
++
++ json.BeginObject();
++ for (size_t i = 0; i < m_Blocks.size(); ++i)
++ {
++ json.BeginString();
++ json.ContinueString(m_Blocks[i]->GetId());
++ json.EndString();
++
++ json.BeginObject();
++ json.WriteString("MapRefCount");
++ json.WriteNumber(m_Blocks[i]->GetMapRefCount());
++
++ m_Blocks[i]->m_pMetadata->PrintDetailedMap(json);
++ json.EndObject();
++ }
++ json.EndObject();
++}
++#endif // VMA_STATS_STRING_ENABLED
++
++VkResult VmaBlockVector::CheckCorruption()
++{
++ if (!IsCorruptionDetectionEnabled())
++ {
++ return VK_ERROR_FEATURE_NOT_PRESENT;
++ }
++
++ VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex);
++ for (uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex)
++ {
++ VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex];
++ VMA_ASSERT(pBlock);
++ VkResult res = pBlock->CheckCorruption(m_hAllocator);
++ if (res != VK_SUCCESS)
++ {
++ return res;
++ }
++ }
++ return VK_SUCCESS;
++}
++
++#endif // _VMA_BLOCK_VECTOR_FUNCTIONS
++
++#ifndef _VMA_DEFRAGMENTATION_CONTEXT_FUNCTIONS
++VmaDefragmentationContext_T::VmaDefragmentationContext_T(
++ VmaAllocator hAllocator,
++ const VmaDefragmentationInfo& info)
++ : m_MaxPassBytes(info.maxBytesPerPass == 0 ? VK_WHOLE_SIZE : info.maxBytesPerPass),
++ m_MaxPassAllocations(info.maxAllocationsPerPass == 0 ? UINT32_MAX : info.maxAllocationsPerPass),
++ m_MoveAllocator(hAllocator->GetAllocationCallbacks()),
++ m_Moves(m_MoveAllocator)
++{
++ m_Algorithm = info.flags & VMA_DEFRAGMENTATION_FLAG_ALGORITHM_MASK;
++
++ if (info.pool != VMA_NULL)
++ {
++ m_BlockVectorCount = 1;
++ m_PoolBlockVector = &info.pool->m_BlockVector;
++ m_pBlockVectors = &m_PoolBlockVector;
++ m_PoolBlockVector->SetIncrementalSort(false);
++ m_PoolBlockVector->SortByFreeSize();
++ }
++ else
++ {
++ m_BlockVectorCount = hAllocator->GetMemoryTypeCount();
++ m_PoolBlockVector = VMA_NULL;
++ m_pBlockVectors = hAllocator->m_pBlockVectors;
++ for (uint32_t i = 0; i < m_BlockVectorCount; ++i)
++ {
++ VmaBlockVector* vector = m_pBlockVectors[i];
++ if (vector != VMA_NULL)
++ {
++ vector->SetIncrementalSort(false);
++ vector->SortByFreeSize();
++ }
++ }
++ }
++
++ switch (m_Algorithm)
++ {
++ case 0: // Default algorithm
++ m_Algorithm = VMA_DEFRAGMENTATION_FLAG_ALGORITHM_BALANCED_BIT;
++ case VMA_DEFRAGMENTATION_FLAG_ALGORITHM_BALANCED_BIT:
++ {
++ m_AlgorithmState = vma_new_array(hAllocator, StateBalanced, m_BlockVectorCount);
++ break;
++ }
++ case VMA_DEFRAGMENTATION_FLAG_ALGORITHM_EXTENSIVE_BIT:
++ {
++ if (hAllocator->GetBufferImageGranularity() > 1)
++ {
++ m_AlgorithmState = vma_new_array(hAllocator, StateExtensive, m_BlockVectorCount);
++ }
++ break;
++ }
++ }
++}
++
++VmaDefragmentationContext_T::~VmaDefragmentationContext_T()
++{
++ if (m_PoolBlockVector != VMA_NULL)
++ {
++ m_PoolBlockVector->SetIncrementalSort(true);
++ }
++ else
++ {
++ for (uint32_t i = 0; i < m_BlockVectorCount; ++i)
++ {
++ VmaBlockVector* vector = m_pBlockVectors[i];
++ if (vector != VMA_NULL)
++ vector->SetIncrementalSort(true);
++ }
++ }
++
++ if (m_AlgorithmState)
++ {
++ switch (m_Algorithm)
++ {
++ case VMA_DEFRAGMENTATION_FLAG_ALGORITHM_BALANCED_BIT:
++ vma_delete_array(m_MoveAllocator.m_pCallbacks, reinterpret_cast<StateBalanced*>(m_AlgorithmState), m_BlockVectorCount);
++ break;
++ case VMA_DEFRAGMENTATION_FLAG_ALGORITHM_EXTENSIVE_BIT:
++ vma_delete_array(m_MoveAllocator.m_pCallbacks, reinterpret_cast<StateExtensive*>(m_AlgorithmState), m_BlockVectorCount);
++ break;
++ default:
++ VMA_ASSERT(0);
++ }
++ }
++}
++
++VkResult VmaDefragmentationContext_T::DefragmentPassBegin(VmaDefragmentationPassMoveInfo& moveInfo)
++{
++ if (m_PoolBlockVector != VMA_NULL)
++ {
++ VmaMutexLockWrite lock(m_PoolBlockVector->GetMutex(), m_PoolBlockVector->GetAllocator()->m_UseMutex);
++
++ if (m_PoolBlockVector->GetBlockCount() > 1)
++ ComputeDefragmentation(*m_PoolBlockVector, 0);
++ else if (m_PoolBlockVector->GetBlockCount() == 1)
++ ReallocWithinBlock(*m_PoolBlockVector, m_PoolBlockVector->GetBlock(0));
++ }
++ else
++ {
++ for (uint32_t i = 0; i < m_BlockVectorCount; ++i)
++ {
++ if (m_pBlockVectors[i] != VMA_NULL)
++ {
++ VmaMutexLockWrite lock(m_pBlockVectors[i]->GetMutex(), m_pBlockVectors[i]->GetAllocator()->m_UseMutex);
++
++ if (m_pBlockVectors[i]->GetBlockCount() > 1)
++ {
++ if (ComputeDefragmentation(*m_pBlockVectors[i], i))
++ break;
++ }
++ else if (m_pBlockVectors[i]->GetBlockCount() == 1)
++ {
++ if (ReallocWithinBlock(*m_pBlockVectors[i], m_pBlockVectors[i]->GetBlock(0)))
++ break;
++ }
++ }
++ }
++ }
++
++ moveInfo.moveCount = static_cast<uint32_t>(m_Moves.size());
++ if (moveInfo.moveCount > 0)
++ {
++ moveInfo.pMoves = m_Moves.data();
++ return VK_INCOMPLETE;
++ }
++
++ moveInfo.pMoves = VMA_NULL;
++ return VK_SUCCESS;
++}
++
++VkResult VmaDefragmentationContext_T::DefragmentPassEnd(VmaDefragmentationPassMoveInfo& moveInfo)
++{
++ VMA_ASSERT(moveInfo.moveCount > 0 ? moveInfo.pMoves != VMA_NULL : true);
++
++ VkResult result = VK_SUCCESS;
++ VmaStlAllocator<FragmentedBlock> blockAllocator(m_MoveAllocator.m_pCallbacks);
++ VmaVector<FragmentedBlock, VmaStlAllocator<FragmentedBlock>> immovableBlocks(blockAllocator);
++ VmaVector<FragmentedBlock, VmaStlAllocator<FragmentedBlock>> mappedBlocks(blockAllocator);
++
++ VmaAllocator allocator = VMA_NULL;
++ for (uint32_t i = 0; i < moveInfo.moveCount; ++i)
++ {
++ VmaDefragmentationMove& move = moveInfo.pMoves[i];
++ size_t prevCount = 0, currentCount = 0;
++ VkDeviceSize freedBlockSize = 0;
++
++ uint32_t vectorIndex;
++ VmaBlockVector* vector;
++ if (m_PoolBlockVector != VMA_NULL)
++ {
++ vectorIndex = 0;
++ vector = m_PoolBlockVector;
++ }
++ else
++ {
++ vectorIndex = move.srcAllocation->GetMemoryTypeIndex();
++ vector = m_pBlockVectors[vectorIndex];
++ VMA_ASSERT(vector != VMA_NULL);
++ }
++
++ switch (move.operation)
++ {
++ case VMA_DEFRAGMENTATION_MOVE_OPERATION_COPY:
++ {
++ uint8_t mapCount = move.srcAllocation->SwapBlockAllocation(vector->m_hAllocator, move.dstTmpAllocation);
++ if (mapCount > 0)
++ {
++ allocator = vector->m_hAllocator;
++ VmaDeviceMemoryBlock* newMapBlock = move.srcAllocation->GetBlock();
++ bool notPresent = true;
++ for (FragmentedBlock& block : mappedBlocks)
++ {
++ if (block.block == newMapBlock)
++ {
++ notPresent = false;
++ block.data += mapCount;
++ break;
++ }
++ }
++ if (notPresent)
++ mappedBlocks.push_back({ mapCount, newMapBlock });
++ }
++
++ // Scope for locks, Free have it's own lock
++ {
++ VmaMutexLockRead lock(vector->GetMutex(), vector->GetAllocator()->m_UseMutex);
++ prevCount = vector->GetBlockCount();
++ freedBlockSize = move.dstTmpAllocation->GetBlock()->m_pMetadata->GetSize();
++ }
++ vector->Free(move.dstTmpAllocation);
++ {
++ VmaMutexLockRead lock(vector->GetMutex(), vector->GetAllocator()->m_UseMutex);
++ currentCount = vector->GetBlockCount();
++ }
++
++ result = VK_INCOMPLETE;
++ break;
++ }
++ case VMA_DEFRAGMENTATION_MOVE_OPERATION_IGNORE:
++ {
++ m_PassStats.bytesMoved -= move.srcAllocation->GetSize();
++ --m_PassStats.allocationsMoved;
++ vector->Free(move.dstTmpAllocation);
++
++ VmaDeviceMemoryBlock* newBlock = move.srcAllocation->GetBlock();
++ bool notPresent = true;
++ for (const FragmentedBlock& block : immovableBlocks)
++ {
++ if (block.block == newBlock)
++ {
++ notPresent = false;
++ break;
++ }
++ }
++ if (notPresent)
++ immovableBlocks.push_back({ vectorIndex, newBlock });
++ break;
++ }
++ case VMA_DEFRAGMENTATION_MOVE_OPERATION_DESTROY:
++ {
++ m_PassStats.bytesMoved -= move.srcAllocation->GetSize();
++ --m_PassStats.allocationsMoved;
++ // Scope for locks, Free have it's own lock
++ {
++ VmaMutexLockRead lock(vector->GetMutex(), vector->GetAllocator()->m_UseMutex);
++ prevCount = vector->GetBlockCount();
++ freedBlockSize = move.srcAllocation->GetBlock()->m_pMetadata->GetSize();
++ }
++ vector->Free(move.srcAllocation);
++ {
++ VmaMutexLockRead lock(vector->GetMutex(), vector->GetAllocator()->m_UseMutex);
++ currentCount = vector->GetBlockCount();
++ }
++ freedBlockSize *= prevCount - currentCount;
++
++ VkDeviceSize dstBlockSize;
++ {
++ VmaMutexLockRead lock(vector->GetMutex(), vector->GetAllocator()->m_UseMutex);
++ dstBlockSize = move.dstTmpAllocation->GetBlock()->m_pMetadata->GetSize();
++ }
++ vector->Free(move.dstTmpAllocation);
++ {
++ VmaMutexLockRead lock(vector->GetMutex(), vector->GetAllocator()->m_UseMutex);
++ freedBlockSize += dstBlockSize * (currentCount - vector->GetBlockCount());
++ currentCount = vector->GetBlockCount();
++ }
++
++ result = VK_INCOMPLETE;
++ break;
++ }
++ default:
++ VMA_ASSERT(0);
++ }
++
++ if (prevCount > currentCount)
++ {
++ size_t freedBlocks = prevCount - currentCount;
++ m_PassStats.deviceMemoryBlocksFreed += static_cast<uint32_t>(freedBlocks);
++ m_PassStats.bytesFreed += freedBlockSize;
++ }
++
++ switch (m_Algorithm)
++ {
++ case VMA_DEFRAGMENTATION_FLAG_ALGORITHM_EXTENSIVE_BIT:
++ {
++ if (m_AlgorithmState != VMA_NULL)
++ {
++ // Avoid unnecessary tries to allocate when new free block is avaiable
++ StateExtensive& state = reinterpret_cast<StateExtensive*>(m_AlgorithmState)[vectorIndex];
++ if (state.firstFreeBlock != SIZE_MAX)
++ {
++ const size_t diff = prevCount - currentCount;
++ if (state.firstFreeBlock >= diff)
++ {
++ state.firstFreeBlock -= diff;
++ if (state.firstFreeBlock != 0)
++ state.firstFreeBlock -= vector->GetBlock(state.firstFreeBlock - 1)->m_pMetadata->IsEmpty();
++ }
++ else
++ state.firstFreeBlock = 0;
++ }
++ }
++ }
++ }
++ }
++ moveInfo.moveCount = 0;
++ moveInfo.pMoves = VMA_NULL;
++ m_Moves.clear();
++
++ // Update stats
++ m_GlobalStats.allocationsMoved += m_PassStats.allocationsMoved;
++ m_GlobalStats.bytesFreed += m_PassStats.bytesFreed;
++ m_GlobalStats.bytesMoved += m_PassStats.bytesMoved;
++ m_GlobalStats.deviceMemoryBlocksFreed += m_PassStats.deviceMemoryBlocksFreed;
++ m_PassStats = { 0 };
++
++ // Move blocks with immovable allocations according to algorithm
++ if (immovableBlocks.size() > 0)
++ {
++ switch (m_Algorithm)
++ {
++ case VMA_DEFRAGMENTATION_FLAG_ALGORITHM_EXTENSIVE_BIT:
++ {
++ if (m_AlgorithmState != VMA_NULL)
++ {
++ bool swapped = false;
++ // Move to the start of free blocks range
++ for (const FragmentedBlock& block : immovableBlocks)
++ {
++ StateExtensive& state = reinterpret_cast<StateExtensive*>(m_AlgorithmState)[block.data];
++ if (state.operation != StateExtensive::Operation::Cleanup)
++ {
++ VmaBlockVector* vector = m_pBlockVectors[block.data];
++ VmaMutexLockWrite lock(vector->GetMutex(), vector->GetAllocator()->m_UseMutex);
++
++ for (size_t i = 0, count = vector->GetBlockCount() - m_ImmovableBlockCount; i < count; ++i)
++ {
++ if (vector->GetBlock(i) == block.block)
++ {
++ VMA_SWAP(vector->m_Blocks[i], vector->m_Blocks[vector->GetBlockCount() - ++m_ImmovableBlockCount]);
++ if (state.firstFreeBlock != SIZE_MAX)
++ {
++ if (i + 1 < state.firstFreeBlock)
++ {
++ if (state.firstFreeBlock > 1)
++ VMA_SWAP(vector->m_Blocks[i], vector->m_Blocks[--state.firstFreeBlock]);
++ else
++ --state.firstFreeBlock;
++ }
++ }
++ swapped = true;
++ break;
++ }
++ }
++ }
++ }
++ if (swapped)
++ result = VK_INCOMPLETE;
++ break;
++ }
++ }
++ default:
++ {
++ // Move to the begining
++ for (const FragmentedBlock& block : immovableBlocks)
++ {
++ VmaBlockVector* vector = m_pBlockVectors[block.data];
++ VmaMutexLockWrite lock(vector->GetMutex(), vector->GetAllocator()->m_UseMutex);
++
++ for (size_t i = m_ImmovableBlockCount; i < vector->GetBlockCount(); ++i)
++ {
++ if (vector->GetBlock(i) == block.block)
++ {
++ VMA_SWAP(vector->m_Blocks[i], vector->m_Blocks[m_ImmovableBlockCount++]);
++ break;
++ }
++ }
++ }
++ break;
++ }
++ }
++ }
++
++ // Bulk-map destination blocks
++ for (const FragmentedBlock& block : mappedBlocks)
++ {
++ VkResult res = block.block->Map(allocator, block.data, VMA_NULL);
++ VMA_ASSERT(res == VK_SUCCESS);
++ }
++ return result;
++}
++
++bool VmaDefragmentationContext_T::ComputeDefragmentation(VmaBlockVector& vector, size_t index)
++{
++ switch (m_Algorithm)
++ {
++ case VMA_DEFRAGMENTATION_FLAG_ALGORITHM_FAST_BIT:
++ return ComputeDefragmentation_Fast(vector);
++ default:
++ VMA_ASSERT(0);
++ case VMA_DEFRAGMENTATION_FLAG_ALGORITHM_BALANCED_BIT:
++ return ComputeDefragmentation_Balanced(vector, index, true);
++ case VMA_DEFRAGMENTATION_FLAG_ALGORITHM_FULL_BIT:
++ return ComputeDefragmentation_Full(vector);
++ case VMA_DEFRAGMENTATION_FLAG_ALGORITHM_EXTENSIVE_BIT:
++ return ComputeDefragmentation_Extensive(vector, index);
++ }
++}
++
++VmaDefragmentationContext_T::MoveAllocationData VmaDefragmentationContext_T::GetMoveData(
++ VmaAllocHandle handle, VmaBlockMetadata* metadata)
++{
++ MoveAllocationData moveData;
++ moveData.move.srcAllocation = (VmaAllocation)metadata->GetAllocationUserData(handle);
++ moveData.size = moveData.move.srcAllocation->GetSize();
++ moveData.alignment = moveData.move.srcAllocation->GetAlignment();
++ moveData.type = moveData.move.srcAllocation->GetSuballocationType();
++ moveData.flags = 0;
++
++ if (moveData.move.srcAllocation->IsPersistentMap())
++ moveData.flags |= VMA_ALLOCATION_CREATE_MAPPED_BIT;
++ if (moveData.move.srcAllocation->IsMappingAllowed())
++ moveData.flags |= VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT;
++
++ return moveData;
++}
++
++VmaDefragmentationContext_T::CounterStatus VmaDefragmentationContext_T::CheckCounters(VkDeviceSize bytes)
++{
++ // Ignore allocation if will exceed max size for copy
++ if (m_PassStats.bytesMoved + bytes > m_MaxPassBytes)
++ {
++ if (++m_IgnoredAllocs < MAX_ALLOCS_TO_IGNORE)
++ return CounterStatus::Ignore;
++ else
++ return CounterStatus::End;
++ }
++ return CounterStatus::Pass;
++}
++
++bool VmaDefragmentationContext_T::IncrementCounters(VkDeviceSize bytes)
++{
++ m_PassStats.bytesMoved += bytes;
++ // Early return when max found
++ if (++m_PassStats.allocationsMoved >= m_MaxPassAllocations || m_PassStats.bytesMoved >= m_MaxPassBytes)
++ {
++ VMA_ASSERT(m_PassStats.allocationsMoved == m_MaxPassAllocations ||
++ m_PassStats.bytesMoved == m_MaxPassBytes && "Exceeded maximal pass threshold!");
++ return true;
++ }
++ return false;
++}
++
++bool VmaDefragmentationContext_T::ReallocWithinBlock(VmaBlockVector& vector, VmaDeviceMemoryBlock* block)
++{
++ VmaBlockMetadata* metadata = block->m_pMetadata;
++
++ for (VmaAllocHandle handle = metadata->GetAllocationListBegin();
++ handle != VK_NULL_HANDLE;
++ handle = metadata->GetNextAllocation(handle))
++ {
++ MoveAllocationData moveData = GetMoveData(handle, metadata);
++ // Ignore newly created allocations by defragmentation algorithm
++ if (moveData.move.srcAllocation->GetUserData() == this)
++ continue;
++ switch (CheckCounters(moveData.move.srcAllocation->GetSize()))
++ {
++ case CounterStatus::Ignore:
++ continue;
++ case CounterStatus::End:
++ return true;
++ default:
++ VMA_ASSERT(0);
++ case CounterStatus::Pass:
++ break;
++ }
++
++ VkDeviceSize offset = moveData.move.srcAllocation->GetOffset();
++ if (offset != 0 && metadata->GetSumFreeSize() >= moveData.size)
++ {
++ VmaAllocationRequest request = {};
++ if (metadata->CreateAllocationRequest(
++ moveData.size,
++ moveData.alignment,
++ false,
++ moveData.type,
++ VMA_ALLOCATION_CREATE_STRATEGY_MIN_OFFSET_BIT,
++ &request))
++ {
++ if (metadata->GetAllocationOffset(request.allocHandle) < offset)
++ {
++ if (vector.CommitAllocationRequest(
++ request,
++ block,
++ moveData.alignment,
++ moveData.flags,
++ this,
++ moveData.type,
++ &moveData.move.dstTmpAllocation) == VK_SUCCESS)
++ {
++ m_Moves.push_back(moveData.move);
++ if (IncrementCounters(moveData.size))
++ return true;
++ }
++ }
++ }
++ }
++ }
++ return false;
++}
++
++bool VmaDefragmentationContext_T::AllocInOtherBlock(size_t start, size_t end, MoveAllocationData& data, VmaBlockVector& vector)
++{
++ for (; start < end; ++start)
++ {
++ VmaDeviceMemoryBlock* dstBlock = vector.GetBlock(start);
++ if (dstBlock->m_pMetadata->GetSumFreeSize() >= data.size)
++ {
++ if (vector.AllocateFromBlock(dstBlock,
++ data.size,
++ data.alignment,
++ data.flags,
++ this,
++ data.type,
++ 0,
++ &data.move.dstTmpAllocation) == VK_SUCCESS)
++ {
++ m_Moves.push_back(data.move);
++ if (IncrementCounters(data.size))
++ return true;
++ break;
++ }
++ }
++ }
++ return false;
++}
++
++bool VmaDefragmentationContext_T::ComputeDefragmentation_Fast(VmaBlockVector& vector)
++{
++ // Move only between blocks
++
++ // Go through allocations in last blocks and try to fit them inside first ones
++ for (size_t i = vector.GetBlockCount() - 1; i > m_ImmovableBlockCount; --i)
++ {
++ VmaBlockMetadata* metadata = vector.GetBlock(i)->m_pMetadata;
++
++ for (VmaAllocHandle handle = metadata->GetAllocationListBegin();
++ handle != VK_NULL_HANDLE;
++ handle = metadata->GetNextAllocation(handle))
++ {
++ MoveAllocationData moveData = GetMoveData(handle, metadata);
++ // Ignore newly created allocations by defragmentation algorithm
++ if (moveData.move.srcAllocation->GetUserData() == this)
++ continue;
++ switch (CheckCounters(moveData.move.srcAllocation->GetSize()))
++ {
++ case CounterStatus::Ignore:
++ continue;
++ case CounterStatus::End:
++ return true;
++ default:
++ VMA_ASSERT(0);
++ case CounterStatus::Pass:
++ break;
++ }
++
++ // Check all previous blocks for free space
++ if (AllocInOtherBlock(0, i, moveData, vector))
++ return true;
++ }
++ }
++ return false;
++}
++
++bool VmaDefragmentationContext_T::ComputeDefragmentation_Balanced(VmaBlockVector& vector, size_t index, bool update)
++{
++ // Go over every allocation and try to fit it in previous blocks at lowest offsets,
++ // if not possible: realloc within single block to minimize offset (exclude offset == 0),
++ // but only if there are noticable gaps between them (some heuristic, ex. average size of allocation in block)
++ VMA_ASSERT(m_AlgorithmState != VMA_NULL);
++
++ StateBalanced& vectorState = reinterpret_cast<StateBalanced*>(m_AlgorithmState)[index];
++ if (update && vectorState.avgAllocSize == UINT64_MAX)
++ UpdateVectorStatistics(vector, vectorState);
++
++ const size_t startMoveCount = m_Moves.size();
++ VkDeviceSize minimalFreeRegion = vectorState.avgFreeSize / 2;
++ for (size_t i = vector.GetBlockCount() - 1; i > m_ImmovableBlockCount; --i)
++ {
++ VmaDeviceMemoryBlock* block = vector.GetBlock(i);
++ VmaBlockMetadata* metadata = block->m_pMetadata;
++ VkDeviceSize prevFreeRegionSize = 0;
++
++ for (VmaAllocHandle handle = metadata->GetAllocationListBegin();
++ handle != VK_NULL_HANDLE;
++ handle = metadata->GetNextAllocation(handle))
++ {
++ MoveAllocationData moveData = GetMoveData(handle, metadata);
++ // Ignore newly created allocations by defragmentation algorithm
++ if (moveData.move.srcAllocation->GetUserData() == this)
++ continue;
++ switch (CheckCounters(moveData.move.srcAllocation->GetSize()))
++ {
++ case CounterStatus::Ignore:
++ continue;
++ case CounterStatus::End:
++ return true;
++ default:
++ VMA_ASSERT(0);
++ case CounterStatus::Pass:
++ break;
++ }
++
++ // Check all previous blocks for free space
++ const size_t prevMoveCount = m_Moves.size();
++ if (AllocInOtherBlock(0, i, moveData, vector))
++ return true;
++
++ VkDeviceSize nextFreeRegionSize = metadata->GetNextFreeRegionSize(handle);
++ // If no room found then realloc within block for lower offset
++ VkDeviceSize offset = moveData.move.srcAllocation->GetOffset();
++ if (prevMoveCount == m_Moves.size() && offset != 0 && metadata->GetSumFreeSize() >= moveData.size)
++ {
++ // Check if realloc will make sense
++ if (prevFreeRegionSize >= minimalFreeRegion ||
++ nextFreeRegionSize >= minimalFreeRegion ||
++ moveData.size <= vectorState.avgFreeSize ||
++ moveData.size <= vectorState.avgAllocSize)
++ {
++ VmaAllocationRequest request = {};
++ if (metadata->CreateAllocationRequest(
++ moveData.size,
++ moveData.alignment,
++ false,
++ moveData.type,
++ VMA_ALLOCATION_CREATE_STRATEGY_MIN_OFFSET_BIT,
++ &request))
++ {
++ if (metadata->GetAllocationOffset(request.allocHandle) < offset)
++ {
++ if (vector.CommitAllocationRequest(
++ request,
++ block,
++ moveData.alignment,
++ moveData.flags,
++ this,
++ moveData.type,
++ &moveData.move.dstTmpAllocation) == VK_SUCCESS)
++ {
++ m_Moves.push_back(moveData.move);
++ if (IncrementCounters(moveData.size))
++ return true;
++ }
++ }
++ }
++ }
++ }
++ prevFreeRegionSize = nextFreeRegionSize;
++ }
++ }
++
++ // No moves perfomed, update statistics to current vector state
++ if (startMoveCount == m_Moves.size() && !update)
++ {
++ vectorState.avgAllocSize = UINT64_MAX;
++ return ComputeDefragmentation_Balanced(vector, index, false);
++ }
++ return false;
++}
++
++bool VmaDefragmentationContext_T::ComputeDefragmentation_Full(VmaBlockVector& vector)
++{
++ // Go over every allocation and try to fit it in previous blocks at lowest offsets,
++ // if not possible: realloc within single block to minimize offset (exclude offset == 0)
++
++ for (size_t i = vector.GetBlockCount() - 1; i > m_ImmovableBlockCount; --i)
++ {
++ VmaDeviceMemoryBlock* block = vector.GetBlock(i);
++ VmaBlockMetadata* metadata = block->m_pMetadata;
++
++ for (VmaAllocHandle handle = metadata->GetAllocationListBegin();
++ handle != VK_NULL_HANDLE;
++ handle = metadata->GetNextAllocation(handle))
++ {
++ MoveAllocationData moveData = GetMoveData(handle, metadata);
++ // Ignore newly created allocations by defragmentation algorithm
++ if (moveData.move.srcAllocation->GetUserData() == this)
++ continue;
++ switch (CheckCounters(moveData.move.srcAllocation->GetSize()))
++ {
++ case CounterStatus::Ignore:
++ continue;
++ case CounterStatus::End:
++ return true;
++ default:
++ VMA_ASSERT(0);
++ case CounterStatus::Pass:
++ break;
++ }
++
++ // Check all previous blocks for free space
++ const size_t prevMoveCount = m_Moves.size();
++ if (AllocInOtherBlock(0, i, moveData, vector))
++ return true;
++
++ // If no room found then realloc within block for lower offset
++ VkDeviceSize offset = moveData.move.srcAllocation->GetOffset();
++ if (prevMoveCount == m_Moves.size() && offset != 0 && metadata->GetSumFreeSize() >= moveData.size)
++ {
++ VmaAllocationRequest request = {};
++ if (metadata->CreateAllocationRequest(
++ moveData.size,
++ moveData.alignment,
++ false,
++ moveData.type,
++ VMA_ALLOCATION_CREATE_STRATEGY_MIN_OFFSET_BIT,
++ &request))
++ {
++ if (metadata->GetAllocationOffset(request.allocHandle) < offset)
++ {
++ if (vector.CommitAllocationRequest(
++ request,
++ block,
++ moveData.alignment,
++ moveData.flags,
++ this,
++ moveData.type,
++ &moveData.move.dstTmpAllocation) == VK_SUCCESS)
++ {
++ m_Moves.push_back(moveData.move);
++ if (IncrementCounters(moveData.size))
++ return true;
++ }
++ }
++ }
++ }
++ }
++ }
++ return false;
++}
++
++bool VmaDefragmentationContext_T::ComputeDefragmentation_Extensive(VmaBlockVector& vector, size_t index)
++{
++ // First free single block, then populate it to the brim, then free another block, and so on
++
++ // Fallback to previous algorithm since without granularity conflicts it can achieve max packing
++ if (vector.m_BufferImageGranularity == 1)
++ return ComputeDefragmentation_Full(vector);
++
++ VMA_ASSERT(m_AlgorithmState != VMA_NULL);
++
++ StateExtensive& vectorState = reinterpret_cast<StateExtensive*>(m_AlgorithmState)[index];
++
++ bool texturePresent = false, bufferPresent = false, otherPresent = false;
++ switch (vectorState.operation)
++ {
++ case StateExtensive::Operation::Done: // Vector defragmented
++ return false;
++ case StateExtensive::Operation::FindFreeBlockBuffer:
++ case StateExtensive::Operation::FindFreeBlockTexture:
++ case StateExtensive::Operation::FindFreeBlockAll:
++ {
++ // No more blocks to free, just perform fast realloc and move to cleanup
++ if (vectorState.firstFreeBlock == 0)
++ {
++ vectorState.operation = StateExtensive::Operation::Cleanup;
++ return ComputeDefragmentation_Fast(vector);
++ }
++
++ // No free blocks, have to clear last one
++ size_t last = (vectorState.firstFreeBlock == SIZE_MAX ? vector.GetBlockCount() : vectorState.firstFreeBlock) - 1;
++ VmaBlockMetadata* freeMetadata = vector.GetBlock(last)->m_pMetadata;
++
++ const size_t prevMoveCount = m_Moves.size();
++ for (VmaAllocHandle handle = freeMetadata->GetAllocationListBegin();
++ handle != VK_NULL_HANDLE;
++ handle = freeMetadata->GetNextAllocation(handle))
++ {
++ MoveAllocationData moveData = GetMoveData(handle, freeMetadata);
++ switch (CheckCounters(moveData.move.srcAllocation->GetSize()))
++ {
++ case CounterStatus::Ignore:
++ continue;
++ case CounterStatus::End:
++ return true;
++ default:
++ VMA_ASSERT(0);
++ case CounterStatus::Pass:
++ break;
++ }
++
++ // Check all previous blocks for free space
++ if (AllocInOtherBlock(0, last, moveData, vector))
++ {
++ // Full clear performed already
++ if (prevMoveCount != m_Moves.size() && freeMetadata->GetNextAllocation(handle) == VK_NULL_HANDLE)
++ reinterpret_cast<size_t*>(m_AlgorithmState)[index] = last;
++ return true;
++ }
++ }
++
++ if (prevMoveCount == m_Moves.size())
++ {
++ // Cannot perform full clear, have to move data in other blocks around
++ if (last != 0)
++ {
++ for (size_t i = last - 1; i; --i)
++ {
++ if (ReallocWithinBlock(vector, vector.GetBlock(i)))
++ return true;
++ }
++ }
++
++ if (prevMoveCount == m_Moves.size())
++ {
++ // No possible reallocs within blocks, try to move them around fast
++ return ComputeDefragmentation_Fast(vector);
++ }
++ }
++ else
++ {
++ switch (vectorState.operation)
++ {
++ case StateExtensive::Operation::FindFreeBlockBuffer:
++ vectorState.operation = StateExtensive::Operation::MoveBuffers;
++ break;
++ default:
++ VMA_ASSERT(0);
++ case StateExtensive::Operation::FindFreeBlockTexture:
++ vectorState.operation = StateExtensive::Operation::MoveTextures;
++ break;
++ case StateExtensive::Operation::FindFreeBlockAll:
++ vectorState.operation = StateExtensive::Operation::MoveAll;
++ break;
++ }
++ vectorState.firstFreeBlock = last;
++ // Nothing done, block found without reallocations, can perform another reallocs in same pass
++ return ComputeDefragmentation_Extensive(vector, index);
++ }
++ break;
++ }
++ case StateExtensive::Operation::MoveTextures:
++ {
++ if (MoveDataToFreeBlocks(VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL, vector,
++ vectorState.firstFreeBlock, texturePresent, bufferPresent, otherPresent))
++ {
++ if (texturePresent)
++ {
++ vectorState.operation = StateExtensive::Operation::FindFreeBlockTexture;
++ return ComputeDefragmentation_Extensive(vector, index);
++ }
++
++ if (!bufferPresent && !otherPresent)
++ {
++ vectorState.operation = StateExtensive::Operation::Cleanup;
++ break;
++ }
++
++ // No more textures to move, check buffers
++ vectorState.operation = StateExtensive::Operation::MoveBuffers;
++ bufferPresent = false;
++ otherPresent = false;
++ }
++ else
++ break;
++ }
++ case StateExtensive::Operation::MoveBuffers:
++ {
++ if (MoveDataToFreeBlocks(VMA_SUBALLOCATION_TYPE_BUFFER, vector,
++ vectorState.firstFreeBlock, texturePresent, bufferPresent, otherPresent))
++ {
++ if (bufferPresent)
++ {
++ vectorState.operation = StateExtensive::Operation::FindFreeBlockBuffer;
++ return ComputeDefragmentation_Extensive(vector, index);
++ }
++
++ if (!otherPresent)
++ {
++ vectorState.operation = StateExtensive::Operation::Cleanup;
++ break;
++ }
++
++ // No more buffers to move, check all others
++ vectorState.operation = StateExtensive::Operation::MoveAll;
++ otherPresent = false;
++ }
++ else
++ break;
++ }
++ case StateExtensive::Operation::MoveAll:
++ {
++ if (MoveDataToFreeBlocks(VMA_SUBALLOCATION_TYPE_FREE, vector,
++ vectorState.firstFreeBlock, texturePresent, bufferPresent, otherPresent))
++ {
++ if (otherPresent)
++ {
++ vectorState.operation = StateExtensive::Operation::FindFreeBlockBuffer;
++ return ComputeDefragmentation_Extensive(vector, index);
++ }
++ // Everything moved
++ vectorState.operation = StateExtensive::Operation::Cleanup;
++ }
++ break;
++ }
++ case StateExtensive::Operation::Cleanup:
++ // Cleanup is handled below so that other operations may reuse the cleanup code. This case is here to prevent the unhandled enum value warning (C4062).
++ break;
++ }
++
++ if (vectorState.operation == StateExtensive::Operation::Cleanup)
++ {
++ // All other work done, pack data in blocks even tighter if possible
++ const size_t prevMoveCount = m_Moves.size();
++ for (size_t i = 0; i < vector.GetBlockCount(); ++i)
++ {
++ if (ReallocWithinBlock(vector, vector.GetBlock(i)))
++ return true;
++ }
++
++ if (prevMoveCount == m_Moves.size())
++ vectorState.operation = StateExtensive::Operation::Done;
++ }
++ return false;
++}
++
++void VmaDefragmentationContext_T::UpdateVectorStatistics(VmaBlockVector& vector, StateBalanced& state)
++{
++ size_t allocCount = 0;
++ size_t freeCount = 0;
++ state.avgFreeSize = 0;
++ state.avgAllocSize = 0;
++
++ for (size_t i = 0; i < vector.GetBlockCount(); ++i)
++ {
++ VmaBlockMetadata* metadata = vector.GetBlock(i)->m_pMetadata;
++
++ allocCount += metadata->GetAllocationCount();
++ freeCount += metadata->GetFreeRegionsCount();
++ state.avgFreeSize += metadata->GetSumFreeSize();
++ state.avgAllocSize += metadata->GetSize();
++ }
++
++ state.avgAllocSize = (state.avgAllocSize - state.avgFreeSize) / allocCount;
++ state.avgFreeSize /= freeCount;
++}
++
++bool VmaDefragmentationContext_T::MoveDataToFreeBlocks(VmaSuballocationType currentType,
++ VmaBlockVector& vector, size_t firstFreeBlock,
++ bool& texturePresent, bool& bufferPresent, bool& otherPresent)
++{
++ const size_t prevMoveCount = m_Moves.size();
++ for (size_t i = firstFreeBlock ; i;)
++ {
++ VmaDeviceMemoryBlock* block = vector.GetBlock(--i);
++ VmaBlockMetadata* metadata = block->m_pMetadata;
++
++ for (VmaAllocHandle handle = metadata->GetAllocationListBegin();
++ handle != VK_NULL_HANDLE;
++ handle = metadata->GetNextAllocation(handle))
++ {
++ MoveAllocationData moveData = GetMoveData(handle, metadata);
++ // Ignore newly created allocations by defragmentation algorithm
++ if (moveData.move.srcAllocation->GetUserData() == this)
++ continue;
++ switch (CheckCounters(moveData.move.srcAllocation->GetSize()))
++ {
++ case CounterStatus::Ignore:
++ continue;
++ case CounterStatus::End:
++ return true;
++ default:
++ VMA_ASSERT(0);
++ case CounterStatus::Pass:
++ break;
++ }
++
++ // Move only single type of resources at once
++ if (!VmaIsBufferImageGranularityConflict(moveData.type, currentType))
++ {
++ // Try to fit allocation into free blocks
++ if (AllocInOtherBlock(firstFreeBlock, vector.GetBlockCount(), moveData, vector))
++ return false;
++ }
++
++ if (!VmaIsBufferImageGranularityConflict(moveData.type, VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL))
++ texturePresent = true;
++ else if (!VmaIsBufferImageGranularityConflict(moveData.type, VMA_SUBALLOCATION_TYPE_BUFFER))
++ bufferPresent = true;
++ else
++ otherPresent = true;
++ }
++ }
++ return prevMoveCount == m_Moves.size();
++}
++#endif // _VMA_DEFRAGMENTATION_CONTEXT_FUNCTIONS
++
++#ifndef _VMA_POOL_T_FUNCTIONS
++VmaPool_T::VmaPool_T(
++ VmaAllocator hAllocator,
++ const VmaPoolCreateInfo& createInfo,
++ VkDeviceSize preferredBlockSize)
++ : m_BlockVector(
++ hAllocator,
++ this, // hParentPool
++ createInfo.memoryTypeIndex,
++ createInfo.blockSize != 0 ? createInfo.blockSize : preferredBlockSize,
++ createInfo.minBlockCount,
++ createInfo.maxBlockCount,
++ (createInfo.flags& VMA_POOL_CREATE_IGNORE_BUFFER_IMAGE_GRANULARITY_BIT) != 0 ? 1 : hAllocator->GetBufferImageGranularity(),
++ createInfo.blockSize != 0, // explicitBlockSize
++ createInfo.flags & VMA_POOL_CREATE_ALGORITHM_MASK, // algorithm
++ createInfo.priority,
++ VMA_MAX(hAllocator->GetMemoryTypeMinAlignment(createInfo.memoryTypeIndex), createInfo.minAllocationAlignment),
++ createInfo.pMemoryAllocateNext),
++ m_Id(0),
++ m_Name(VMA_NULL) {}
++
++VmaPool_T::~VmaPool_T()
++{
++ VMA_ASSERT(m_PrevPool == VMA_NULL && m_NextPool == VMA_NULL);
++}
++
++void VmaPool_T::SetName(const char* pName)
++{
++ const VkAllocationCallbacks* allocs = m_BlockVector.GetAllocator()->GetAllocationCallbacks();
++ VmaFreeString(allocs, m_Name);
++
++ if (pName != VMA_NULL)
++ {
++ m_Name = VmaCreateStringCopy(allocs, pName);
++ }
++ else
++ {
++ m_Name = VMA_NULL;
++ }
++}
++#endif // _VMA_POOL_T_FUNCTIONS
++
++#ifndef _VMA_ALLOCATOR_T_FUNCTIONS
++VmaAllocator_T::VmaAllocator_T(const VmaAllocatorCreateInfo* pCreateInfo) :
++ m_UseMutex((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT) == 0),
++ m_VulkanApiVersion(pCreateInfo->vulkanApiVersion != 0 ? pCreateInfo->vulkanApiVersion : VK_API_VERSION_1_0),
++ m_UseKhrDedicatedAllocation((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT) != 0),
++ m_UseKhrBindMemory2((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT) != 0),
++ m_UseExtMemoryBudget((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT) != 0),
++ m_UseAmdDeviceCoherentMemory((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_AMD_DEVICE_COHERENT_MEMORY_BIT) != 0),
++ m_UseKhrBufferDeviceAddress((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT) != 0),
++ m_UseExtMemoryPriority((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT) != 0),
++ m_hDevice(pCreateInfo->device),
++ m_hInstance(pCreateInfo->instance),
++ m_AllocationCallbacksSpecified(pCreateInfo->pAllocationCallbacks != VMA_NULL),
++ m_AllocationCallbacks(pCreateInfo->pAllocationCallbacks ?
++ *pCreateInfo->pAllocationCallbacks : VmaEmptyAllocationCallbacks),
++ m_AllocationObjectAllocator(&m_AllocationCallbacks),
++ m_HeapSizeLimitMask(0),
++ m_DeviceMemoryCount(0),
++ m_PreferredLargeHeapBlockSize(0),
++ m_PhysicalDevice(pCreateInfo->physicalDevice),
++ m_GpuDefragmentationMemoryTypeBits(UINT32_MAX),
++ m_NextPoolId(0),
++ m_GlobalMemoryTypeBits(UINT32_MAX)
++{
++ if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
++ {
++ m_UseKhrDedicatedAllocation = false;
++ m_UseKhrBindMemory2 = false;
++ }
++
++ if(VMA_DEBUG_DETECT_CORRUPTION)
++ {
++ // Needs to be multiply of uint32_t size because we are going to write VMA_CORRUPTION_DETECTION_MAGIC_VALUE to it.
++ VMA_ASSERT(VMA_DEBUG_MARGIN % sizeof(uint32_t) == 0);
++ }
++
++ VMA_ASSERT(pCreateInfo->physicalDevice && pCreateInfo->device && pCreateInfo->instance);
++
++ if(m_VulkanApiVersion < VK_MAKE_VERSION(1, 1, 0))
++ {
++#if !(VMA_DEDICATED_ALLOCATION)
++ if((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT) != 0)
++ {
++ VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT set but required extensions are disabled by preprocessor macros.");
++ }
++#endif
++#if !(VMA_BIND_MEMORY2)
++ if((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT) != 0)
++ {
++ VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT set but required extension is disabled by preprocessor macros.");
++ }
++#endif
++ }
++#if !(VMA_MEMORY_BUDGET)
++ if((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT) != 0)
++ {
++ VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT set but required extension is disabled by preprocessor macros.");
++ }
++#endif
++#if !(VMA_BUFFER_DEVICE_ADDRESS)
++ if(m_UseKhrBufferDeviceAddress)
++ {
++ VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT is set but required extension or Vulkan 1.2 is not available in your Vulkan header or its support in VMA has been disabled by a preprocessor macro.");
++ }
++#endif
++#if VMA_VULKAN_VERSION < 1002000
++ if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 2, 0))
++ {
++ VMA_ASSERT(0 && "vulkanApiVersion >= VK_API_VERSION_1_2 but required Vulkan version is disabled by preprocessor macros.");
++ }
++#endif
++#if VMA_VULKAN_VERSION < 1001000
++ if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
++ {
++ VMA_ASSERT(0 && "vulkanApiVersion >= VK_API_VERSION_1_1 but required Vulkan version is disabled by preprocessor macros.");
++ }
++#endif
++#if !(VMA_MEMORY_PRIORITY)
++ if(m_UseExtMemoryPriority)
++ {
++ VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT is set but required extension is not available in your Vulkan header or its support in VMA has been disabled by a preprocessor macro.");
++ }
++#endif
++
++ memset(&m_DeviceMemoryCallbacks, 0 ,sizeof(m_DeviceMemoryCallbacks));
++ memset(&m_PhysicalDeviceProperties, 0, sizeof(m_PhysicalDeviceProperties));
++ memset(&m_MemProps, 0, sizeof(m_MemProps));
++
++ memset(&m_pBlockVectors, 0, sizeof(m_pBlockVectors));
++ memset(&m_VulkanFunctions, 0, sizeof(m_VulkanFunctions));
++
++#if VMA_EXTERNAL_MEMORY
++ memset(&m_TypeExternalMemoryHandleTypes, 0, sizeof(m_TypeExternalMemoryHandleTypes));
++#endif // #if VMA_EXTERNAL_MEMORY
++
++ if(pCreateInfo->pDeviceMemoryCallbacks != VMA_NULL)
++ {
++ m_DeviceMemoryCallbacks.pUserData = pCreateInfo->pDeviceMemoryCallbacks->pUserData;
++ m_DeviceMemoryCallbacks.pfnAllocate = pCreateInfo->pDeviceMemoryCallbacks->pfnAllocate;
++ m_DeviceMemoryCallbacks.pfnFree = pCreateInfo->pDeviceMemoryCallbacks->pfnFree;
++ }
++
++ ImportVulkanFunctions(pCreateInfo->pVulkanFunctions);
++
++ (*m_VulkanFunctions.vkGetPhysicalDeviceProperties)(m_PhysicalDevice, &m_PhysicalDeviceProperties);
++ (*m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties)(m_PhysicalDevice, &m_MemProps);
++
++ VMA_ASSERT(VmaIsPow2(VMA_MIN_ALIGNMENT));
++ VMA_ASSERT(VmaIsPow2(VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY));
++ VMA_ASSERT(VmaIsPow2(m_PhysicalDeviceProperties.limits.bufferImageGranularity));
++ VMA_ASSERT(VmaIsPow2(m_PhysicalDeviceProperties.limits.nonCoherentAtomSize));
++
++ m_PreferredLargeHeapBlockSize = (pCreateInfo->preferredLargeHeapBlockSize != 0) ?
++ pCreateInfo->preferredLargeHeapBlockSize : static_cast<VkDeviceSize>(VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE);
++
++ m_GlobalMemoryTypeBits = CalculateGlobalMemoryTypeBits();
++
++#if VMA_EXTERNAL_MEMORY
++ if(pCreateInfo->pTypeExternalMemoryHandleTypes != VMA_NULL)
++ {
++ memcpy(m_TypeExternalMemoryHandleTypes, pCreateInfo->pTypeExternalMemoryHandleTypes,
++ sizeof(VkExternalMemoryHandleTypeFlagsKHR) * GetMemoryTypeCount());
++ }
++#endif // #if VMA_EXTERNAL_MEMORY
++
++ if(pCreateInfo->pHeapSizeLimit != VMA_NULL)
++ {
++ for(uint32_t heapIndex = 0; heapIndex < GetMemoryHeapCount(); ++heapIndex)
++ {
++ const VkDeviceSize limit = pCreateInfo->pHeapSizeLimit[heapIndex];
++ if(limit != VK_WHOLE_SIZE)
++ {
++ m_HeapSizeLimitMask |= 1u << heapIndex;
++ if(limit < m_MemProps.memoryHeaps[heapIndex].size)
++ {
++ m_MemProps.memoryHeaps[heapIndex].size = limit;
++ }
++ }
++ }
++ }
++
++ for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
++ {
++ // Create only supported types
++ if((m_GlobalMemoryTypeBits & (1u << memTypeIndex)) != 0)
++ {
++ const VkDeviceSize preferredBlockSize = CalcPreferredBlockSize(memTypeIndex);
++ m_pBlockVectors[memTypeIndex] = vma_new(this, VmaBlockVector)(
++ this,
++ VK_NULL_HANDLE, // hParentPool
++ memTypeIndex,
++ preferredBlockSize,
++ 0,
++ SIZE_MAX,
++ GetBufferImageGranularity(),
++ false, // explicitBlockSize
++ 0, // algorithm
++ 0.5f, // priority (0.5 is the default per Vulkan spec)
++ GetMemoryTypeMinAlignment(memTypeIndex), // minAllocationAlignment
++ VMA_NULL); // // pMemoryAllocateNext
++ // No need to call m_pBlockVectors[memTypeIndex][blockVectorTypeIndex]->CreateMinBlocks here,
++ // becase minBlockCount is 0.
++ }
++ }
++}
++
++VkResult VmaAllocator_T::Init(const VmaAllocatorCreateInfo* pCreateInfo)
++{
++ VkResult res = VK_SUCCESS;
++
++#if VMA_MEMORY_BUDGET
++ if(m_UseExtMemoryBudget)
++ {
++ UpdateVulkanBudget();
++ }
++#endif // #if VMA_MEMORY_BUDGET
++
++ return res;
++}
++
++VmaAllocator_T::~VmaAllocator_T()
++{
++ VMA_ASSERT(m_Pools.IsEmpty());
++
++ for(size_t memTypeIndex = GetMemoryTypeCount(); memTypeIndex--; )
++ {
++ vma_delete(this, m_pBlockVectors[memTypeIndex]);
++ }
++}
++
++void VmaAllocator_T::ImportVulkanFunctions(const VmaVulkanFunctions* pVulkanFunctions)
++{
++#if VMA_STATIC_VULKAN_FUNCTIONS == 1
++ ImportVulkanFunctions_Static();
++#endif
++
++ if(pVulkanFunctions != VMA_NULL)
++ {
++ ImportVulkanFunctions_Custom(pVulkanFunctions);
++ }
++
++#if VMA_DYNAMIC_VULKAN_FUNCTIONS == 1
++ ImportVulkanFunctions_Dynamic();
++#endif
++
++ ValidateVulkanFunctions();
++}
++
++#if VMA_STATIC_VULKAN_FUNCTIONS == 1
++
++void VmaAllocator_T::ImportVulkanFunctions_Static()
++{
++ // Vulkan 1.0
++ m_VulkanFunctions.vkGetInstanceProcAddr = (PFN_vkGetInstanceProcAddr)vkGetInstanceProcAddr;
++ m_VulkanFunctions.vkGetDeviceProcAddr = (PFN_vkGetDeviceProcAddr)vkGetDeviceProcAddr;
++ m_VulkanFunctions.vkGetPhysicalDeviceProperties = (PFN_vkGetPhysicalDeviceProperties)vkGetPhysicalDeviceProperties;
++ m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties = (PFN_vkGetPhysicalDeviceMemoryProperties)vkGetPhysicalDeviceMemoryProperties;
++ m_VulkanFunctions.vkAllocateMemory = (PFN_vkAllocateMemory)vkAllocateMemory;
++ m_VulkanFunctions.vkFreeMemory = (PFN_vkFreeMemory)vkFreeMemory;
++ m_VulkanFunctions.vkMapMemory = (PFN_vkMapMemory)vkMapMemory;
++ m_VulkanFunctions.vkUnmapMemory = (PFN_vkUnmapMemory)vkUnmapMemory;
++ m_VulkanFunctions.vkFlushMappedMemoryRanges = (PFN_vkFlushMappedMemoryRanges)vkFlushMappedMemoryRanges;
++ m_VulkanFunctions.vkInvalidateMappedMemoryRanges = (PFN_vkInvalidateMappedMemoryRanges)vkInvalidateMappedMemoryRanges;
++ m_VulkanFunctions.vkBindBufferMemory = (PFN_vkBindBufferMemory)vkBindBufferMemory;
++ m_VulkanFunctions.vkBindImageMemory = (PFN_vkBindImageMemory)vkBindImageMemory;
++ m_VulkanFunctions.vkGetBufferMemoryRequirements = (PFN_vkGetBufferMemoryRequirements)vkGetBufferMemoryRequirements;
++ m_VulkanFunctions.vkGetImageMemoryRequirements = (PFN_vkGetImageMemoryRequirements)vkGetImageMemoryRequirements;
++ m_VulkanFunctions.vkCreateBuffer = (PFN_vkCreateBuffer)vkCreateBuffer;
++ m_VulkanFunctions.vkDestroyBuffer = (PFN_vkDestroyBuffer)vkDestroyBuffer;
++ m_VulkanFunctions.vkCreateImage = (PFN_vkCreateImage)vkCreateImage;
++ m_VulkanFunctions.vkDestroyImage = (PFN_vkDestroyImage)vkDestroyImage;
++ m_VulkanFunctions.vkCmdCopyBuffer = (PFN_vkCmdCopyBuffer)vkCmdCopyBuffer;
++
++ // Vulkan 1.1
++#if VMA_VULKAN_VERSION >= 1001000
++ if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
++ {
++ m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR = (PFN_vkGetBufferMemoryRequirements2)vkGetBufferMemoryRequirements2;
++ m_VulkanFunctions.vkGetImageMemoryRequirements2KHR = (PFN_vkGetImageMemoryRequirements2)vkGetImageMemoryRequirements2;
++ m_VulkanFunctions.vkBindBufferMemory2KHR = (PFN_vkBindBufferMemory2)vkBindBufferMemory2;
++ m_VulkanFunctions.vkBindImageMemory2KHR = (PFN_vkBindImageMemory2)vkBindImageMemory2;
++ m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties2KHR = (PFN_vkGetPhysicalDeviceMemoryProperties2)vkGetPhysicalDeviceMemoryProperties2;
++ }
++#endif
++
++#if VMA_VULKAN_VERSION >= 1003000
++ if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 3, 0))
++ {
++ m_VulkanFunctions.vkGetDeviceBufferMemoryRequirements = (PFN_vkGetDeviceBufferMemoryRequirements)vkGetDeviceBufferMemoryRequirements;
++ m_VulkanFunctions.vkGetDeviceImageMemoryRequirements = (PFN_vkGetDeviceImageMemoryRequirements)vkGetDeviceImageMemoryRequirements;
++ }
++#endif
++}
++
++#endif // VMA_STATIC_VULKAN_FUNCTIONS == 1
++
++void VmaAllocator_T::ImportVulkanFunctions_Custom(const VmaVulkanFunctions* pVulkanFunctions)
++{
++ VMA_ASSERT(pVulkanFunctions != VMA_NULL);
++
++#define VMA_COPY_IF_NOT_NULL(funcName) \
++ if(pVulkanFunctions->funcName != VMA_NULL) m_VulkanFunctions.funcName = pVulkanFunctions->funcName;
++
++ VMA_COPY_IF_NOT_NULL(vkGetInstanceProcAddr);
++ VMA_COPY_IF_NOT_NULL(vkGetDeviceProcAddr);
++ VMA_COPY_IF_NOT_NULL(vkGetPhysicalDeviceProperties);
++ VMA_COPY_IF_NOT_NULL(vkGetPhysicalDeviceMemoryProperties);
++ VMA_COPY_IF_NOT_NULL(vkAllocateMemory);
++ VMA_COPY_IF_NOT_NULL(vkFreeMemory);
++ VMA_COPY_IF_NOT_NULL(vkMapMemory);
++ VMA_COPY_IF_NOT_NULL(vkUnmapMemory);
++ VMA_COPY_IF_NOT_NULL(vkFlushMappedMemoryRanges);
++ VMA_COPY_IF_NOT_NULL(vkInvalidateMappedMemoryRanges);
++ VMA_COPY_IF_NOT_NULL(vkBindBufferMemory);
++ VMA_COPY_IF_NOT_NULL(vkBindImageMemory);
++ VMA_COPY_IF_NOT_NULL(vkGetBufferMemoryRequirements);
++ VMA_COPY_IF_NOT_NULL(vkGetImageMemoryRequirements);
++ VMA_COPY_IF_NOT_NULL(vkCreateBuffer);
++ VMA_COPY_IF_NOT_NULL(vkDestroyBuffer);
++ VMA_COPY_IF_NOT_NULL(vkCreateImage);
++ VMA_COPY_IF_NOT_NULL(vkDestroyImage);
++ VMA_COPY_IF_NOT_NULL(vkCmdCopyBuffer);
++
++#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
++ VMA_COPY_IF_NOT_NULL(vkGetBufferMemoryRequirements2KHR);
++ VMA_COPY_IF_NOT_NULL(vkGetImageMemoryRequirements2KHR);
++#endif
++
++#if VMA_BIND_MEMORY2 || VMA_VULKAN_VERSION >= 1001000
++ VMA_COPY_IF_NOT_NULL(vkBindBufferMemory2KHR);
++ VMA_COPY_IF_NOT_NULL(vkBindImageMemory2KHR);
++#endif
++
++#if VMA_MEMORY_BUDGET
++ VMA_COPY_IF_NOT_NULL(vkGetPhysicalDeviceMemoryProperties2KHR);
++#endif
++
++#if VMA_VULKAN_VERSION >= 1003000
++ VMA_COPY_IF_NOT_NULL(vkGetDeviceBufferMemoryRequirements);
++ VMA_COPY_IF_NOT_NULL(vkGetDeviceImageMemoryRequirements);
++#endif
++
++#undef VMA_COPY_IF_NOT_NULL
++}
++
++#if VMA_DYNAMIC_VULKAN_FUNCTIONS == 1
++
++void VmaAllocator_T::ImportVulkanFunctions_Dynamic()
++{
++ VMA_ASSERT(m_VulkanFunctions.vkGetInstanceProcAddr && m_VulkanFunctions.vkGetDeviceProcAddr &&
++ "To use VMA_DYNAMIC_VULKAN_FUNCTIONS in new versions of VMA you now have to pass "
++ "VmaVulkanFunctions::vkGetInstanceProcAddr and vkGetDeviceProcAddr as VmaAllocatorCreateInfo::pVulkanFunctions. "
++ "Other members can be null.");
++
++#define VMA_FETCH_INSTANCE_FUNC(memberName, functionPointerType, functionNameString) \
++ if(m_VulkanFunctions.memberName == VMA_NULL) \
++ m_VulkanFunctions.memberName = \
++ (functionPointerType)m_VulkanFunctions.vkGetInstanceProcAddr(m_hInstance, functionNameString);
++#define VMA_FETCH_DEVICE_FUNC(memberName, functionPointerType, functionNameString) \
++ if(m_VulkanFunctions.memberName == VMA_NULL) \
++ m_VulkanFunctions.memberName = \
++ (functionPointerType)m_VulkanFunctions.vkGetDeviceProcAddr(m_hDevice, functionNameString);
++
++ VMA_FETCH_INSTANCE_FUNC(vkGetPhysicalDeviceProperties, PFN_vkGetPhysicalDeviceProperties, "vkGetPhysicalDeviceProperties");
++ VMA_FETCH_INSTANCE_FUNC(vkGetPhysicalDeviceMemoryProperties, PFN_vkGetPhysicalDeviceMemoryProperties, "vkGetPhysicalDeviceMemoryProperties");
++ VMA_FETCH_DEVICE_FUNC(vkAllocateMemory, PFN_vkAllocateMemory, "vkAllocateMemory");
++ VMA_FETCH_DEVICE_FUNC(vkFreeMemory, PFN_vkFreeMemory, "vkFreeMemory");
++ VMA_FETCH_DEVICE_FUNC(vkMapMemory, PFN_vkMapMemory, "vkMapMemory");
++ VMA_FETCH_DEVICE_FUNC(vkUnmapMemory, PFN_vkUnmapMemory, "vkUnmapMemory");
++ VMA_FETCH_DEVICE_FUNC(vkFlushMappedMemoryRanges, PFN_vkFlushMappedMemoryRanges, "vkFlushMappedMemoryRanges");
++ VMA_FETCH_DEVICE_FUNC(vkInvalidateMappedMemoryRanges, PFN_vkInvalidateMappedMemoryRanges, "vkInvalidateMappedMemoryRanges");
++ VMA_FETCH_DEVICE_FUNC(vkBindBufferMemory, PFN_vkBindBufferMemory, "vkBindBufferMemory");
++ VMA_FETCH_DEVICE_FUNC(vkBindImageMemory, PFN_vkBindImageMemory, "vkBindImageMemory");
++ VMA_FETCH_DEVICE_FUNC(vkGetBufferMemoryRequirements, PFN_vkGetBufferMemoryRequirements, "vkGetBufferMemoryRequirements");
++ VMA_FETCH_DEVICE_FUNC(vkGetImageMemoryRequirements, PFN_vkGetImageMemoryRequirements, "vkGetImageMemoryRequirements");
++ VMA_FETCH_DEVICE_FUNC(vkCreateBuffer, PFN_vkCreateBuffer, "vkCreateBuffer");
++ VMA_FETCH_DEVICE_FUNC(vkDestroyBuffer, PFN_vkDestroyBuffer, "vkDestroyBuffer");
++ VMA_FETCH_DEVICE_FUNC(vkCreateImage, PFN_vkCreateImage, "vkCreateImage");
++ VMA_FETCH_DEVICE_FUNC(vkDestroyImage, PFN_vkDestroyImage, "vkDestroyImage");
++ VMA_FETCH_DEVICE_FUNC(vkCmdCopyBuffer, PFN_vkCmdCopyBuffer, "vkCmdCopyBuffer");
++
++#if VMA_VULKAN_VERSION >= 1001000
++ if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
++ {
++ VMA_FETCH_DEVICE_FUNC(vkGetBufferMemoryRequirements2KHR, PFN_vkGetBufferMemoryRequirements2, "vkGetBufferMemoryRequirements2");
++ VMA_FETCH_DEVICE_FUNC(vkGetImageMemoryRequirements2KHR, PFN_vkGetImageMemoryRequirements2, "vkGetImageMemoryRequirements2");
++ VMA_FETCH_DEVICE_FUNC(vkBindBufferMemory2KHR, PFN_vkBindBufferMemory2, "vkBindBufferMemory2");
++ VMA_FETCH_DEVICE_FUNC(vkBindImageMemory2KHR, PFN_vkBindImageMemory2, "vkBindImageMemory2");
++ VMA_FETCH_INSTANCE_FUNC(vkGetPhysicalDeviceMemoryProperties2KHR, PFN_vkGetPhysicalDeviceMemoryProperties2, "vkGetPhysicalDeviceMemoryProperties2");
++ }
++#endif
++
++#if VMA_DEDICATED_ALLOCATION
++ if(m_UseKhrDedicatedAllocation)
++ {
++ VMA_FETCH_DEVICE_FUNC(vkGetBufferMemoryRequirements2KHR, PFN_vkGetBufferMemoryRequirements2KHR, "vkGetBufferMemoryRequirements2KHR");
++ VMA_FETCH_DEVICE_FUNC(vkGetImageMemoryRequirements2KHR, PFN_vkGetImageMemoryRequirements2KHR, "vkGetImageMemoryRequirements2KHR");
++ }
++#endif
++
++#if VMA_BIND_MEMORY2
++ if(m_UseKhrBindMemory2)
++ {
++ VMA_FETCH_DEVICE_FUNC(vkBindBufferMemory2KHR, PFN_vkBindBufferMemory2KHR, "vkBindBufferMemory2KHR");
++ VMA_FETCH_DEVICE_FUNC(vkBindImageMemory2KHR, PFN_vkBindImageMemory2KHR, "vkBindImageMemory2KHR");
++ }
++#endif // #if VMA_BIND_MEMORY2
++
++#if VMA_MEMORY_BUDGET
++ if(m_UseExtMemoryBudget)
++ {
++ VMA_FETCH_INSTANCE_FUNC(vkGetPhysicalDeviceMemoryProperties2KHR, PFN_vkGetPhysicalDeviceMemoryProperties2KHR, "vkGetPhysicalDeviceMemoryProperties2KHR");
++ }
++#endif // #if VMA_MEMORY_BUDGET
++
++#if VMA_VULKAN_VERSION >= 1003000
++ if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 3, 0))
++ {
++ VMA_FETCH_DEVICE_FUNC(vkGetDeviceBufferMemoryRequirements, PFN_vkGetDeviceBufferMemoryRequirements, "vkGetDeviceBufferMemoryRequirements");
++ VMA_FETCH_DEVICE_FUNC(vkGetDeviceImageMemoryRequirements, PFN_vkGetDeviceImageMemoryRequirements, "vkGetDeviceImageMemoryRequirements");
++ }
++#endif
++
++#undef VMA_FETCH_DEVICE_FUNC
++#undef VMA_FETCH_INSTANCE_FUNC
++}
++
++#endif // VMA_DYNAMIC_VULKAN_FUNCTIONS == 1
++
++void VmaAllocator_T::ValidateVulkanFunctions()
++{
++ VMA_ASSERT(m_VulkanFunctions.vkGetPhysicalDeviceProperties != VMA_NULL);
++ VMA_ASSERT(m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties != VMA_NULL);
++ VMA_ASSERT(m_VulkanFunctions.vkAllocateMemory != VMA_NULL);
++ VMA_ASSERT(m_VulkanFunctions.vkFreeMemory != VMA_NULL);
++ VMA_ASSERT(m_VulkanFunctions.vkMapMemory != VMA_NULL);
++ VMA_ASSERT(m_VulkanFunctions.vkUnmapMemory != VMA_NULL);
++ VMA_ASSERT(m_VulkanFunctions.vkFlushMappedMemoryRanges != VMA_NULL);
++ VMA_ASSERT(m_VulkanFunctions.vkInvalidateMappedMemoryRanges != VMA_NULL);
++ VMA_ASSERT(m_VulkanFunctions.vkBindBufferMemory != VMA_NULL);
++ VMA_ASSERT(m_VulkanFunctions.vkBindImageMemory != VMA_NULL);
++ VMA_ASSERT(m_VulkanFunctions.vkGetBufferMemoryRequirements != VMA_NULL);
++ VMA_ASSERT(m_VulkanFunctions.vkGetImageMemoryRequirements != VMA_NULL);
++ VMA_ASSERT(m_VulkanFunctions.vkCreateBuffer != VMA_NULL);
++ VMA_ASSERT(m_VulkanFunctions.vkDestroyBuffer != VMA_NULL);
++ VMA_ASSERT(m_VulkanFunctions.vkCreateImage != VMA_NULL);
++ VMA_ASSERT(m_VulkanFunctions.vkDestroyImage != VMA_NULL);
++ VMA_ASSERT(m_VulkanFunctions.vkCmdCopyBuffer != VMA_NULL);
++
++#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
++ if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0) || m_UseKhrDedicatedAllocation)
++ {
++ VMA_ASSERT(m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR != VMA_NULL);
++ VMA_ASSERT(m_VulkanFunctions.vkGetImageMemoryRequirements2KHR != VMA_NULL);
++ }
++#endif
++
++#if VMA_BIND_MEMORY2 || VMA_VULKAN_VERSION >= 1001000
++ if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0) || m_UseKhrBindMemory2)
++ {
++ VMA_ASSERT(m_VulkanFunctions.vkBindBufferMemory2KHR != VMA_NULL);
++ VMA_ASSERT(m_VulkanFunctions.vkBindImageMemory2KHR != VMA_NULL);
++ }
++#endif
++
++#if VMA_MEMORY_BUDGET || VMA_VULKAN_VERSION >= 1001000
++ if(m_UseExtMemoryBudget || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
++ {
++ VMA_ASSERT(m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties2KHR != VMA_NULL);
++ }
++#endif
++
++#if VMA_VULKAN_VERSION >= 1003000
++ if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 3, 0))
++ {
++ VMA_ASSERT(m_VulkanFunctions.vkGetDeviceBufferMemoryRequirements != VMA_NULL);
++ VMA_ASSERT(m_VulkanFunctions.vkGetDeviceImageMemoryRequirements != VMA_NULL);
++ }
++#endif
++}
++
++VkDeviceSize VmaAllocator_T::CalcPreferredBlockSize(uint32_t memTypeIndex)
++{
++ const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex);
++ const VkDeviceSize heapSize = m_MemProps.memoryHeaps[heapIndex].size;
++ const bool isSmallHeap = heapSize <= VMA_SMALL_HEAP_MAX_SIZE;
++ return VmaAlignUp(isSmallHeap ? (heapSize / 8) : m_PreferredLargeHeapBlockSize, (VkDeviceSize)32);
++}
++
++VkResult VmaAllocator_T::AllocateMemoryOfType(
++ VmaPool pool,
++ VkDeviceSize size,
++ VkDeviceSize alignment,
++ bool dedicatedPreferred,
++ VkBuffer dedicatedBuffer,
++ VkImage dedicatedImage,
++ VkFlags dedicatedBufferImageUsage,
++ const VmaAllocationCreateInfo& createInfo,
++ uint32_t memTypeIndex,
++ VmaSuballocationType suballocType,
++ VmaDedicatedAllocationList& dedicatedAllocations,
++ VmaBlockVector& blockVector,
++ size_t allocationCount,
++ VmaAllocation* pAllocations)
++{
++ VMA_ASSERT(pAllocations != VMA_NULL);
++ VMA_DEBUG_LOG(" AllocateMemory: MemoryTypeIndex=%u, AllocationCount=%zu, Size=%llu", memTypeIndex, allocationCount, size);
++
++ VmaAllocationCreateInfo finalCreateInfo = createInfo;
++ VkResult res = CalcMemTypeParams(
++ finalCreateInfo,
++ memTypeIndex,
++ size,
++ allocationCount);
++ if(res != VK_SUCCESS)
++ return res;
++
++ if((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0)
++ {
++ return AllocateDedicatedMemory(
++ pool,
++ size,
++ suballocType,
++ dedicatedAllocations,
++ memTypeIndex,
++ (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0,
++ (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0,
++ (finalCreateInfo.flags &
++ (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) != 0,
++ (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_CAN_ALIAS_BIT) != 0,
++ finalCreateInfo.pUserData,
++ finalCreateInfo.priority,
++ dedicatedBuffer,
++ dedicatedImage,
++ dedicatedBufferImageUsage,
++ allocationCount,
++ pAllocations,
++ blockVector.GetAllocationNextPtr());
++ }
++ else
++ {
++ const bool canAllocateDedicated =
++ (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) == 0 &&
++ (pool == VK_NULL_HANDLE || !blockVector.HasExplicitBlockSize());
++
++ if(canAllocateDedicated)
++ {
++ // Heuristics: Allocate dedicated memory if requested size if greater than half of preferred block size.
++ if(size > blockVector.GetPreferredBlockSize() / 2)
++ {
++ dedicatedPreferred = true;
++ }
++ // Protection against creating each allocation as dedicated when we reach or exceed heap size/budget,
++ // which can quickly deplete maxMemoryAllocationCount: Don't prefer dedicated allocations when above
++ // 3/4 of the maximum allocation count.
++ if(m_DeviceMemoryCount.load() > m_PhysicalDeviceProperties.limits.maxMemoryAllocationCount * 3 / 4)
++ {
++ dedicatedPreferred = false;
++ }
++
++ if(dedicatedPreferred)
++ {
++ res = AllocateDedicatedMemory(
++ pool,
++ size,
++ suballocType,
++ dedicatedAllocations,
++ memTypeIndex,
++ (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0,
++ (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0,
++ (finalCreateInfo.flags &
++ (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) != 0,
++ (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_CAN_ALIAS_BIT) != 0,
++ finalCreateInfo.pUserData,
++ finalCreateInfo.priority,
++ dedicatedBuffer,
++ dedicatedImage,
++ dedicatedBufferImageUsage,
++ allocationCount,
++ pAllocations,
++ blockVector.GetAllocationNextPtr());
++ if(res == VK_SUCCESS)
++ {
++ // Succeeded: AllocateDedicatedMemory function already filld pMemory, nothing more to do here.
++ VMA_DEBUG_LOG(" Allocated as DedicatedMemory");
++ return VK_SUCCESS;
++ }
++ }
++ }
++
++ res = blockVector.Allocate(
++ size,
++ alignment,
++ finalCreateInfo,
++ suballocType,
++ allocationCount,
++ pAllocations);
++ if(res == VK_SUCCESS)
++ return VK_SUCCESS;
++
++ // Try dedicated memory.
++ if(canAllocateDedicated && !dedicatedPreferred)
++ {
++ res = AllocateDedicatedMemory(
++ pool,
++ size,
++ suballocType,
++ dedicatedAllocations,
++ memTypeIndex,
++ (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0,
++ (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0,
++ (finalCreateInfo.flags &
++ (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) != 0,
++ (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_CAN_ALIAS_BIT) != 0,
++ finalCreateInfo.pUserData,
++ finalCreateInfo.priority,
++ dedicatedBuffer,
++ dedicatedImage,
++ dedicatedBufferImageUsage,
++ allocationCount,
++ pAllocations,
++ blockVector.GetAllocationNextPtr());
++ if(res == VK_SUCCESS)
++ {
++ // Succeeded: AllocateDedicatedMemory function already filld pMemory, nothing more to do here.
++ VMA_DEBUG_LOG(" Allocated as DedicatedMemory");
++ return VK_SUCCESS;
++ }
++ }
++ // Everything failed: Return error code.
++ VMA_DEBUG_LOG(" vkAllocateMemory FAILED");
++ return res;
++ }
++}
++
++VkResult VmaAllocator_T::AllocateDedicatedMemory(
++ VmaPool pool,
++ VkDeviceSize size,
++ VmaSuballocationType suballocType,
++ VmaDedicatedAllocationList& dedicatedAllocations,
++ uint32_t memTypeIndex,
++ bool map,
++ bool isUserDataString,
++ bool isMappingAllowed,
++ bool canAliasMemory,
++ void* pUserData,
++ float priority,
++ VkBuffer dedicatedBuffer,
++ VkImage dedicatedImage,
++ VkFlags dedicatedBufferImageUsage,
++ size_t allocationCount,
++ VmaAllocation* pAllocations,
++ const void* pNextChain)
++{
++ VMA_ASSERT(allocationCount > 0 && pAllocations);
++
++ VkMemoryAllocateInfo allocInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO };
++ allocInfo.memoryTypeIndex = memTypeIndex;
++ allocInfo.allocationSize = size;
++ allocInfo.pNext = pNextChain;
++
++#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
++ VkMemoryDedicatedAllocateInfoKHR dedicatedAllocInfo = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO_KHR };
++ if(!canAliasMemory)
++ {
++ if(m_UseKhrDedicatedAllocation || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
++ {
++ if(dedicatedBuffer != VK_NULL_HANDLE)
++ {
++ VMA_ASSERT(dedicatedImage == VK_NULL_HANDLE);
++ dedicatedAllocInfo.buffer = dedicatedBuffer;
++ VmaPnextChainPushFront(&allocInfo, &dedicatedAllocInfo);
++ }
++ else if(dedicatedImage != VK_NULL_HANDLE)
++ {
++ dedicatedAllocInfo.image = dedicatedImage;
++ VmaPnextChainPushFront(&allocInfo, &dedicatedAllocInfo);
++ }
++ }
++ }
++#endif // #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
++
++#if VMA_BUFFER_DEVICE_ADDRESS
++ VkMemoryAllocateFlagsInfoKHR allocFlagsInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO_KHR };
++ if(m_UseKhrBufferDeviceAddress)
++ {
++ bool canContainBufferWithDeviceAddress = true;
++ if(dedicatedBuffer != VK_NULL_HANDLE)
++ {
++ canContainBufferWithDeviceAddress = dedicatedBufferImageUsage == UINT32_MAX || // Usage flags unknown
++ (dedicatedBufferImageUsage & VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_EXT) != 0;
++ }
++ else if(dedicatedImage != VK_NULL_HANDLE)
++ {
++ canContainBufferWithDeviceAddress = false;
++ }
++ if(canContainBufferWithDeviceAddress)
++ {
++ allocFlagsInfo.flags = VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT_KHR;
++ VmaPnextChainPushFront(&allocInfo, &allocFlagsInfo);
++ }
++ }
++#endif // #if VMA_BUFFER_DEVICE_ADDRESS
++
++#if VMA_MEMORY_PRIORITY
++ VkMemoryPriorityAllocateInfoEXT priorityInfo = { VK_STRUCTURE_TYPE_MEMORY_PRIORITY_ALLOCATE_INFO_EXT };
++ if(m_UseExtMemoryPriority)
++ {
++ VMA_ASSERT(priority >= 0.f && priority <= 1.f);
++ priorityInfo.priority = priority;
++ VmaPnextChainPushFront(&allocInfo, &priorityInfo);
++ }
++#endif // #if VMA_MEMORY_PRIORITY
++
++#if VMA_EXTERNAL_MEMORY
++ // Attach VkExportMemoryAllocateInfoKHR if necessary.
++ VkExportMemoryAllocateInfoKHR exportMemoryAllocInfo = { VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO_KHR };
++ exportMemoryAllocInfo.handleTypes = GetExternalMemoryHandleTypeFlags(memTypeIndex);
++ if(exportMemoryAllocInfo.handleTypes != 0)
++ {
++ VmaPnextChainPushFront(&allocInfo, &exportMemoryAllocInfo);
++ }
++#endif // #if VMA_EXTERNAL_MEMORY
++
++ size_t allocIndex;
++ VkResult res = VK_SUCCESS;
++ for(allocIndex = 0; allocIndex < allocationCount; ++allocIndex)
++ {
++ res = AllocateDedicatedMemoryPage(
++ pool,
++ size,
++ suballocType,
++ memTypeIndex,
++ allocInfo,
++ map,
++ isUserDataString,
++ isMappingAllowed,
++ pUserData,
++ pAllocations + allocIndex);
++ if(res != VK_SUCCESS)
++ {
++ break;
++ }
++ }
++
++ if(res == VK_SUCCESS)
++ {
++ for (allocIndex = 0; allocIndex < allocationCount; ++allocIndex)
++ {
++ dedicatedAllocations.Register(pAllocations[allocIndex]);
++ }
++ VMA_DEBUG_LOG(" Allocated DedicatedMemory Count=%zu, MemoryTypeIndex=#%u", allocationCount, memTypeIndex);
++ }
++ else
++ {
++ // Free all already created allocations.
++ while(allocIndex--)
++ {
++ VmaAllocation currAlloc = pAllocations[allocIndex];
++ VkDeviceMemory hMemory = currAlloc->GetMemory();
++
++ /*
++ There is no need to call this, because Vulkan spec allows to skip vkUnmapMemory
++ before vkFreeMemory.
++
++ if(currAlloc->GetMappedData() != VMA_NULL)
++ {
++ (*m_VulkanFunctions.vkUnmapMemory)(m_hDevice, hMemory);
++ }
++ */
++
++ FreeVulkanMemory(memTypeIndex, currAlloc->GetSize(), hMemory);
++ m_Budget.RemoveAllocation(MemoryTypeIndexToHeapIndex(memTypeIndex), currAlloc->GetSize());
++ m_AllocationObjectAllocator.Free(currAlloc);
++ }
++
++ memset(pAllocations, 0, sizeof(VmaAllocation) * allocationCount);
++ }
++
++ return res;
++}
++
++VkResult VmaAllocator_T::AllocateDedicatedMemoryPage(
++ VmaPool pool,
++ VkDeviceSize size,
++ VmaSuballocationType suballocType,
++ uint32_t memTypeIndex,
++ const VkMemoryAllocateInfo& allocInfo,
++ bool map,
++ bool isUserDataString,
++ bool isMappingAllowed,
++ void* pUserData,
++ VmaAllocation* pAllocation)
++{
++ VkDeviceMemory hMemory = VK_NULL_HANDLE;
++ VkResult res = AllocateVulkanMemory(&allocInfo, &hMemory);
++ if(res < 0)
++ {
++ VMA_DEBUG_LOG(" vkAllocateMemory FAILED");
++ return res;
++ }
++
++ void* pMappedData = VMA_NULL;
++ if(map)
++ {
++ res = (*m_VulkanFunctions.vkMapMemory)(
++ m_hDevice,
++ hMemory,
++ 0,
++ VK_WHOLE_SIZE,
++ 0,
++ &pMappedData);
++ if(res < 0)
++ {
++ VMA_DEBUG_LOG(" vkMapMemory FAILED");
++ FreeVulkanMemory(memTypeIndex, size, hMemory);
++ return res;
++ }
++ }
++
++ *pAllocation = m_AllocationObjectAllocator.Allocate(isMappingAllowed);
++ (*pAllocation)->InitDedicatedAllocation(pool, memTypeIndex, hMemory, suballocType, pMappedData, size);
++ if (isUserDataString)
++ (*pAllocation)->SetName(this, (const char*)pUserData);
++ else
++ (*pAllocation)->SetUserData(this, pUserData);
++ m_Budget.AddAllocation(MemoryTypeIndexToHeapIndex(memTypeIndex), size);
++ if(VMA_DEBUG_INITIALIZE_ALLOCATIONS)
++ {
++ FillAllocation(*pAllocation, VMA_ALLOCATION_FILL_PATTERN_CREATED);
++ }
++
++ return VK_SUCCESS;
++}
++
++void VmaAllocator_T::GetBufferMemoryRequirements(
++ VkBuffer hBuffer,
++ VkMemoryRequirements& memReq,
++ bool& requiresDedicatedAllocation,
++ bool& prefersDedicatedAllocation) const
++{
++#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
++ if(m_UseKhrDedicatedAllocation || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
++ {
++ VkBufferMemoryRequirementsInfo2KHR memReqInfo = { VK_STRUCTURE_TYPE_BUFFER_MEMORY_REQUIREMENTS_INFO_2_KHR };
++ memReqInfo.buffer = hBuffer;
++
++ VkMemoryDedicatedRequirementsKHR memDedicatedReq = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR };
++
++ VkMemoryRequirements2KHR memReq2 = { VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2_KHR };
++ VmaPnextChainPushFront(&memReq2, &memDedicatedReq);
++
++ (*m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR)(m_hDevice, &memReqInfo, &memReq2);
++
++ memReq = memReq2.memoryRequirements;
++ requiresDedicatedAllocation = (memDedicatedReq.requiresDedicatedAllocation != VK_FALSE);
++ prefersDedicatedAllocation = (memDedicatedReq.prefersDedicatedAllocation != VK_FALSE);
++ }
++ else
++#endif // #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
++ {
++ (*m_VulkanFunctions.vkGetBufferMemoryRequirements)(m_hDevice, hBuffer, &memReq);
++ requiresDedicatedAllocation = false;
++ prefersDedicatedAllocation = false;
++ }
++}
++
++void VmaAllocator_T::GetImageMemoryRequirements(
++ VkImage hImage,
++ VkMemoryRequirements& memReq,
++ bool& requiresDedicatedAllocation,
++ bool& prefersDedicatedAllocation) const
++{
++#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
++ if(m_UseKhrDedicatedAllocation || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
++ {
++ VkImageMemoryRequirementsInfo2KHR memReqInfo = { VK_STRUCTURE_TYPE_IMAGE_MEMORY_REQUIREMENTS_INFO_2_KHR };
++ memReqInfo.image = hImage;
++
++ VkMemoryDedicatedRequirementsKHR memDedicatedReq = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR };
++
++ VkMemoryRequirements2KHR memReq2 = { VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2_KHR };
++ VmaPnextChainPushFront(&memReq2, &memDedicatedReq);
++
++ (*m_VulkanFunctions.vkGetImageMemoryRequirements2KHR)(m_hDevice, &memReqInfo, &memReq2);
++
++ memReq = memReq2.memoryRequirements;
++ requiresDedicatedAllocation = (memDedicatedReq.requiresDedicatedAllocation != VK_FALSE);
++ prefersDedicatedAllocation = (memDedicatedReq.prefersDedicatedAllocation != VK_FALSE);
++ }
++ else
++#endif // #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
++ {
++ (*m_VulkanFunctions.vkGetImageMemoryRequirements)(m_hDevice, hImage, &memReq);
++ requiresDedicatedAllocation = false;
++ prefersDedicatedAllocation = false;
++ }
++}
++
++VkResult VmaAllocator_T::FindMemoryTypeIndex(
++ uint32_t memoryTypeBits,
++ const VmaAllocationCreateInfo* pAllocationCreateInfo,
++ VkFlags bufImgUsage,
++ uint32_t* pMemoryTypeIndex) const
++{
++ memoryTypeBits &= GetGlobalMemoryTypeBits();
++
++ if(pAllocationCreateInfo->memoryTypeBits != 0)
++ {
++ memoryTypeBits &= pAllocationCreateInfo->memoryTypeBits;
++ }
++
++ VkMemoryPropertyFlags requiredFlags = 0, preferredFlags = 0, notPreferredFlags = 0;
++ if(!FindMemoryPreferences(
++ IsIntegratedGpu(),
++ *pAllocationCreateInfo,
++ bufImgUsage,
++ requiredFlags, preferredFlags, notPreferredFlags))
++ {
++ return VK_ERROR_FEATURE_NOT_PRESENT;
++ }
++
++ *pMemoryTypeIndex = UINT32_MAX;
++ uint32_t minCost = UINT32_MAX;
++ for(uint32_t memTypeIndex = 0, memTypeBit = 1;
++ memTypeIndex < GetMemoryTypeCount();
++ ++memTypeIndex, memTypeBit <<= 1)
++ {
++ // This memory type is acceptable according to memoryTypeBits bitmask.
++ if((memTypeBit & memoryTypeBits) != 0)
++ {
++ const VkMemoryPropertyFlags currFlags =
++ m_MemProps.memoryTypes[memTypeIndex].propertyFlags;
++ // This memory type contains requiredFlags.
++ if((requiredFlags & ~currFlags) == 0)
++ {
++ // Calculate cost as number of bits from preferredFlags not present in this memory type.
++ uint32_t currCost = VMA_COUNT_BITS_SET(preferredFlags & ~currFlags) +
++ VMA_COUNT_BITS_SET(currFlags & notPreferredFlags);
++ // Remember memory type with lowest cost.
++ if(currCost < minCost)
++ {
++ *pMemoryTypeIndex = memTypeIndex;
++ if(currCost == 0)
++ {
++ return VK_SUCCESS;
++ }
++ minCost = currCost;
++ }
++ }
++ }
++ }
++ return (*pMemoryTypeIndex != UINT32_MAX) ? VK_SUCCESS : VK_ERROR_FEATURE_NOT_PRESENT;
++}
++
++VkResult VmaAllocator_T::CalcMemTypeParams(
++ VmaAllocationCreateInfo& inoutCreateInfo,
++ uint32_t memTypeIndex,
++ VkDeviceSize size,
++ size_t allocationCount)
++{
++ // If memory type is not HOST_VISIBLE, disable MAPPED.
++ if((inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0 &&
++ (m_MemProps.memoryTypes[memTypeIndex].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0)
++ {
++ inoutCreateInfo.flags &= ~VMA_ALLOCATION_CREATE_MAPPED_BIT;
++ }
++
++ if((inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0 &&
++ (inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT) != 0)
++ {
++ const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex);
++ VmaBudget heapBudget = {};
++ GetHeapBudgets(&heapBudget, heapIndex, 1);
++ if(heapBudget.usage + size * allocationCount > heapBudget.budget)
++ {
++ return VK_ERROR_OUT_OF_DEVICE_MEMORY;
++ }
++ }
++ return VK_SUCCESS;
++}
++
++VkResult VmaAllocator_T::CalcAllocationParams(
++ VmaAllocationCreateInfo& inoutCreateInfo,
++ bool dedicatedRequired,
++ bool dedicatedPreferred)
++{
++ VMA_ASSERT((inoutCreateInfo.flags &
++ (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) !=
++ (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT) &&
++ "Specifying both flags VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT and VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT is incorrect.");
++ VMA_ASSERT((((inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_HOST_ACCESS_ALLOW_TRANSFER_INSTEAD_BIT) == 0 ||
++ (inoutCreateInfo.flags & (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) != 0)) &&
++ "Specifying VMA_ALLOCATION_CREATE_HOST_ACCESS_ALLOW_TRANSFER_INSTEAD_BIT requires also VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT.");
++ if(inoutCreateInfo.usage == VMA_MEMORY_USAGE_AUTO || inoutCreateInfo.usage == VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE || inoutCreateInfo.usage == VMA_MEMORY_USAGE_AUTO_PREFER_HOST)
++ {
++ if((inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0)
++ {
++ VMA_ASSERT((inoutCreateInfo.flags & (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) != 0 &&
++ "When using VMA_ALLOCATION_CREATE_MAPPED_BIT and usage = VMA_MEMORY_USAGE_AUTO*, you must also specify VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT.");
++ }
++ }
++
++ // If memory is lazily allocated, it should be always dedicated.
++ if(dedicatedRequired ||
++ inoutCreateInfo.usage == VMA_MEMORY_USAGE_GPU_LAZILY_ALLOCATED)
++ {
++ inoutCreateInfo.flags |= VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT;
++ }
++
++ if(inoutCreateInfo.pool != VK_NULL_HANDLE)
++ {
++ if(inoutCreateInfo.pool->m_BlockVector.HasExplicitBlockSize() &&
++ (inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0)
++ {
++ VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT while current custom pool doesn't support dedicated allocations.");
++ return VK_ERROR_FEATURE_NOT_PRESENT;
++ }
++ inoutCreateInfo.priority = inoutCreateInfo.pool->m_BlockVector.GetPriority();
++ }
++
++ if((inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0 &&
++ (inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0)
++ {
++ VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT together with VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT makes no sense.");
++ return VK_ERROR_FEATURE_NOT_PRESENT;
++ }
++
++ if(VMA_DEBUG_ALWAYS_DEDICATED_MEMORY &&
++ (inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0)
++ {
++ inoutCreateInfo.flags |= VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT;
++ }
++
++ // Non-auto USAGE values imply HOST_ACCESS flags.
++ // And so does VMA_MEMORY_USAGE_UNKNOWN because it is used with custom pools.
++ // Which specific flag is used doesn't matter. They change things only when used with VMA_MEMORY_USAGE_AUTO*.
++ // Otherwise they just protect from assert on mapping.
++ if(inoutCreateInfo.usage != VMA_MEMORY_USAGE_AUTO &&
++ inoutCreateInfo.usage != VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE &&
++ inoutCreateInfo.usage != VMA_MEMORY_USAGE_AUTO_PREFER_HOST)
++ {
++ if((inoutCreateInfo.flags & (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) == 0)
++ {
++ inoutCreateInfo.flags |= VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT;
++ }
++ }
++
++ return VK_SUCCESS;
++}
++
++VkResult VmaAllocator_T::AllocateMemory(
++ const VkMemoryRequirements& vkMemReq,
++ bool requiresDedicatedAllocation,
++ bool prefersDedicatedAllocation,
++ VkBuffer dedicatedBuffer,
++ VkImage dedicatedImage,
++ VkFlags dedicatedBufferImageUsage,
++ const VmaAllocationCreateInfo& createInfo,
++ VmaSuballocationType suballocType,
++ size_t allocationCount,
++ VmaAllocation* pAllocations)
++{
++ memset(pAllocations, 0, sizeof(VmaAllocation) * allocationCount);
++
++ VMA_ASSERT(VmaIsPow2(vkMemReq.alignment));
++
++ if(vkMemReq.size == 0)
++ {
++ return VK_ERROR_INITIALIZATION_FAILED;
++ }
++
++ VmaAllocationCreateInfo createInfoFinal = createInfo;
++ VkResult res = CalcAllocationParams(createInfoFinal, requiresDedicatedAllocation, prefersDedicatedAllocation);
++ if(res != VK_SUCCESS)
++ return res;
++
++ if(createInfoFinal.pool != VK_NULL_HANDLE)
++ {
++ VmaBlockVector& blockVector = createInfoFinal.pool->m_BlockVector;
++ return AllocateMemoryOfType(
++ createInfoFinal.pool,
++ vkMemReq.size,
++ vkMemReq.alignment,
++ prefersDedicatedAllocation,
++ dedicatedBuffer,
++ dedicatedImage,
++ dedicatedBufferImageUsage,
++ createInfoFinal,
++ blockVector.GetMemoryTypeIndex(),
++ suballocType,
++ createInfoFinal.pool->m_DedicatedAllocations,
++ blockVector,
++ allocationCount,
++ pAllocations);
++ }
++ else
++ {
++ // Bit mask of memory Vulkan types acceptable for this allocation.
++ uint32_t memoryTypeBits = vkMemReq.memoryTypeBits;
++ uint32_t memTypeIndex = UINT32_MAX;
++ res = FindMemoryTypeIndex(memoryTypeBits, &createInfoFinal, dedicatedBufferImageUsage, &memTypeIndex);
++ // Can't find any single memory type matching requirements. res is VK_ERROR_FEATURE_NOT_PRESENT.
++ if(res != VK_SUCCESS)
++ return res;
++ do
++ {
++ VmaBlockVector* blockVector = m_pBlockVectors[memTypeIndex];
++ VMA_ASSERT(blockVector && "Trying to use unsupported memory type!");
++ res = AllocateMemoryOfType(
++ VK_NULL_HANDLE,
++ vkMemReq.size,
++ vkMemReq.alignment,
++ requiresDedicatedAllocation || prefersDedicatedAllocation,
++ dedicatedBuffer,
++ dedicatedImage,
++ dedicatedBufferImageUsage,
++ createInfoFinal,
++ memTypeIndex,
++ suballocType,
++ m_DedicatedAllocations[memTypeIndex],
++ *blockVector,
++ allocationCount,
++ pAllocations);
++ // Allocation succeeded
++ if(res == VK_SUCCESS)
++ return VK_SUCCESS;
++
++ // Remove old memTypeIndex from list of possibilities.
++ memoryTypeBits &= ~(1u << memTypeIndex);
++ // Find alternative memTypeIndex.
++ res = FindMemoryTypeIndex(memoryTypeBits, &createInfoFinal, dedicatedBufferImageUsage, &memTypeIndex);
++ } while(res == VK_SUCCESS);
++
++ // No other matching memory type index could be found.
++ // Not returning res, which is VK_ERROR_FEATURE_NOT_PRESENT, because we already failed to allocate once.
++ return VK_ERROR_OUT_OF_DEVICE_MEMORY;
++ }
++}
++
++void VmaAllocator_T::FreeMemory(
++ size_t allocationCount,
++ const VmaAllocation* pAllocations)
++{
++ VMA_ASSERT(pAllocations);
++
++ for(size_t allocIndex = allocationCount; allocIndex--; )
++ {
++ VmaAllocation allocation = pAllocations[allocIndex];
++
++ if(allocation != VK_NULL_HANDLE)
++ {
++ if(VMA_DEBUG_INITIALIZE_ALLOCATIONS)
++ {
++ FillAllocation(allocation, VMA_ALLOCATION_FILL_PATTERN_DESTROYED);
++ }
++
++ allocation->FreeName(this);
++
++ switch(allocation->GetType())
++ {
++ case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:
++ {
++ VmaBlockVector* pBlockVector = VMA_NULL;
++ VmaPool hPool = allocation->GetParentPool();
++ if(hPool != VK_NULL_HANDLE)
++ {
++ pBlockVector = &hPool->m_BlockVector;
++ }
++ else
++ {
++ const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex();
++ pBlockVector = m_pBlockVectors[memTypeIndex];
++ VMA_ASSERT(pBlockVector && "Trying to free memory of unsupported type!");
++ }
++ pBlockVector->Free(allocation);
++ }
++ break;
++ case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
++ FreeDedicatedMemory(allocation);
++ break;
++ default:
++ VMA_ASSERT(0);
++ }
++ }
++ }
++}
++
++void VmaAllocator_T::CalculateStatistics(VmaTotalStatistics* pStats)
++{
++ // Initialize.
++ VmaClearDetailedStatistics(pStats->total);
++ for(uint32_t i = 0; i < VK_MAX_MEMORY_TYPES; ++i)
++ VmaClearDetailedStatistics(pStats->memoryType[i]);
++ for(uint32_t i = 0; i < VK_MAX_MEMORY_HEAPS; ++i)
++ VmaClearDetailedStatistics(pStats->memoryHeap[i]);
++
++ // Process default pools.
++ for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
++ {
++ VmaBlockVector* const pBlockVector = m_pBlockVectors[memTypeIndex];
++ if (pBlockVector != VMA_NULL)
++ pBlockVector->AddDetailedStatistics(pStats->memoryType[memTypeIndex]);
++ }
++
++ // Process custom pools.
++ {
++ VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex);
++ for(VmaPool pool = m_Pools.Front(); pool != VMA_NULL; pool = m_Pools.GetNext(pool))
++ {
++ VmaBlockVector& blockVector = pool->m_BlockVector;
++ const uint32_t memTypeIndex = blockVector.GetMemoryTypeIndex();
++ blockVector.AddDetailedStatistics(pStats->memoryType[memTypeIndex]);
++ pool->m_DedicatedAllocations.AddDetailedStatistics(pStats->memoryType[memTypeIndex]);
++ }
++ }
++
++ // Process dedicated allocations.
++ for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
++ {
++ m_DedicatedAllocations[memTypeIndex].AddDetailedStatistics(pStats->memoryType[memTypeIndex]);
++ }
++
++ // Sum from memory types to memory heaps.
++ for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
++ {
++ const uint32_t memHeapIndex = m_MemProps.memoryTypes[memTypeIndex].heapIndex;
++ VmaAddDetailedStatistics(pStats->memoryHeap[memHeapIndex], pStats->memoryType[memTypeIndex]);
++ }
++
++ // Sum from memory heaps to total.
++ for(uint32_t memHeapIndex = 0; memHeapIndex < GetMemoryHeapCount(); ++memHeapIndex)
++ VmaAddDetailedStatistics(pStats->total, pStats->memoryHeap[memHeapIndex]);
++
++ VMA_ASSERT(pStats->total.statistics.allocationCount == 0 ||
++ pStats->total.allocationSizeMax >= pStats->total.allocationSizeMin);
++ VMA_ASSERT(pStats->total.unusedRangeCount == 0 ||
++ pStats->total.unusedRangeSizeMax >= pStats->total.unusedRangeSizeMin);
++}
++
++void VmaAllocator_T::GetHeapBudgets(VmaBudget* outBudgets, uint32_t firstHeap, uint32_t heapCount)
++{
++#if VMA_MEMORY_BUDGET
++ if(m_UseExtMemoryBudget)
++ {
++ if(m_Budget.m_OperationsSinceBudgetFetch < 30)
++ {
++ VmaMutexLockRead lockRead(m_Budget.m_BudgetMutex, m_UseMutex);
++ for(uint32_t i = 0; i < heapCount; ++i, ++outBudgets)
++ {
++ const uint32_t heapIndex = firstHeap + i;
++
++ outBudgets->statistics.blockCount = m_Budget.m_BlockCount[heapIndex];
++ outBudgets->statistics.allocationCount = m_Budget.m_AllocationCount[heapIndex];
++ outBudgets->statistics.blockBytes = m_Budget.m_BlockBytes[heapIndex];
++ outBudgets->statistics.allocationBytes = m_Budget.m_AllocationBytes[heapIndex];
++
++ if(m_Budget.m_VulkanUsage[heapIndex] + outBudgets->statistics.blockBytes > m_Budget.m_BlockBytesAtBudgetFetch[heapIndex])
++ {
++ outBudgets->usage = m_Budget.m_VulkanUsage[heapIndex] +
++ outBudgets->statistics.blockBytes - m_Budget.m_BlockBytesAtBudgetFetch[heapIndex];
++ }
++ else
++ {
++ outBudgets->usage = 0;
++ }
++
++ // Have to take MIN with heap size because explicit HeapSizeLimit is included in it.
++ outBudgets->budget = VMA_MIN(
++ m_Budget.m_VulkanBudget[heapIndex], m_MemProps.memoryHeaps[heapIndex].size);
++ }
++ }
++ else
++ {
++ UpdateVulkanBudget(); // Outside of mutex lock
++ GetHeapBudgets(outBudgets, firstHeap, heapCount); // Recursion
++ }
++ }
++ else
++#endif
++ {
++ for(uint32_t i = 0; i < heapCount; ++i, ++outBudgets)
++ {
++ const uint32_t heapIndex = firstHeap + i;
++
++ outBudgets->statistics.blockCount = m_Budget.m_BlockCount[heapIndex];
++ outBudgets->statistics.allocationCount = m_Budget.m_AllocationCount[heapIndex];
++ outBudgets->statistics.blockBytes = m_Budget.m_BlockBytes[heapIndex];
++ outBudgets->statistics.allocationBytes = m_Budget.m_AllocationBytes[heapIndex];
++
++ outBudgets->usage = outBudgets->statistics.blockBytes;
++ outBudgets->budget = m_MemProps.memoryHeaps[heapIndex].size * 8 / 10; // 80% heuristics.
++ }
++ }
++}
++
++void VmaAllocator_T::GetAllocationInfo(VmaAllocation hAllocation, VmaAllocationInfo* pAllocationInfo)
++{
++ pAllocationInfo->memoryType = hAllocation->GetMemoryTypeIndex();
++ pAllocationInfo->deviceMemory = hAllocation->GetMemory();
++ pAllocationInfo->offset = hAllocation->GetOffset();
++ pAllocationInfo->size = hAllocation->GetSize();
++ pAllocationInfo->pMappedData = hAllocation->GetMappedData();
++ pAllocationInfo->pUserData = hAllocation->GetUserData();
++ pAllocationInfo->pName = hAllocation->GetName();
++}
++
++VkResult VmaAllocator_T::CreatePool(const VmaPoolCreateInfo* pCreateInfo, VmaPool* pPool)
++{
++ VMA_DEBUG_LOG(" CreatePool: MemoryTypeIndex=%u, flags=%u", pCreateInfo->memoryTypeIndex, pCreateInfo->flags);
++
++ VmaPoolCreateInfo newCreateInfo = *pCreateInfo;
++
++ // Protection against uninitialized new structure member. If garbage data are left there, this pointer dereference would crash.
++ if(pCreateInfo->pMemoryAllocateNext)
++ {
++ VMA_ASSERT(((const VkBaseInStructure*)pCreateInfo->pMemoryAllocateNext)->sType != 0);
++ }
++
++ if(newCreateInfo.maxBlockCount == 0)
++ {
++ newCreateInfo.maxBlockCount = SIZE_MAX;
++ }
++ if(newCreateInfo.minBlockCount > newCreateInfo.maxBlockCount)
++ {
++ return VK_ERROR_INITIALIZATION_FAILED;
++ }
++ // Memory type index out of range or forbidden.
++ if(pCreateInfo->memoryTypeIndex >= GetMemoryTypeCount() ||
++ ((1u << pCreateInfo->memoryTypeIndex) & m_GlobalMemoryTypeBits) == 0)
++ {
++ return VK_ERROR_FEATURE_NOT_PRESENT;
++ }
++ if(newCreateInfo.minAllocationAlignment > 0)
++ {
++ VMA_ASSERT(VmaIsPow2(newCreateInfo.minAllocationAlignment));
++ }
++
++ const VkDeviceSize preferredBlockSize = CalcPreferredBlockSize(newCreateInfo.memoryTypeIndex);
++
++ *pPool = vma_new(this, VmaPool_T)(this, newCreateInfo, preferredBlockSize);
++
++ VkResult res = (*pPool)->m_BlockVector.CreateMinBlocks();
++ if(res != VK_SUCCESS)
++ {
++ vma_delete(this, *pPool);
++ *pPool = VMA_NULL;
++ return res;
++ }
++
++ // Add to m_Pools.
++ {
++ VmaMutexLockWrite lock(m_PoolsMutex, m_UseMutex);
++ (*pPool)->SetId(m_NextPoolId++);
++ m_Pools.PushBack(*pPool);
++ }
++
++ return VK_SUCCESS;
++}
++
++void VmaAllocator_T::DestroyPool(VmaPool pool)
++{
++ // Remove from m_Pools.
++ {
++ VmaMutexLockWrite lock(m_PoolsMutex, m_UseMutex);
++ m_Pools.Remove(pool);
++ }
++
++ vma_delete(this, pool);
++}
++
++void VmaAllocator_T::GetPoolStatistics(VmaPool pool, VmaStatistics* pPoolStats)
++{
++ VmaClearStatistics(*pPoolStats);
++ pool->m_BlockVector.AddStatistics(*pPoolStats);
++ pool->m_DedicatedAllocations.AddStatistics(*pPoolStats);
++}
++
++void VmaAllocator_T::CalculatePoolStatistics(VmaPool pool, VmaDetailedStatistics* pPoolStats)
++{
++ VmaClearDetailedStatistics(*pPoolStats);
++ pool->m_BlockVector.AddDetailedStatistics(*pPoolStats);
++ pool->m_DedicatedAllocations.AddDetailedStatistics(*pPoolStats);
++}
++
++void VmaAllocator_T::SetCurrentFrameIndex(uint32_t frameIndex)
++{
++ m_CurrentFrameIndex.store(frameIndex);
++
++#if VMA_MEMORY_BUDGET
++ if(m_UseExtMemoryBudget)
++ {
++ UpdateVulkanBudget();
++ }
++#endif // #if VMA_MEMORY_BUDGET
++}
++
++VkResult VmaAllocator_T::CheckPoolCorruption(VmaPool hPool)
++{
++ return hPool->m_BlockVector.CheckCorruption();
++}
++
++VkResult VmaAllocator_T::CheckCorruption(uint32_t memoryTypeBits)
++{
++ VkResult finalRes = VK_ERROR_FEATURE_NOT_PRESENT;
++
++ // Process default pools.
++ for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
++ {
++ VmaBlockVector* const pBlockVector = m_pBlockVectors[memTypeIndex];
++ if(pBlockVector != VMA_NULL)
++ {
++ VkResult localRes = pBlockVector->CheckCorruption();
++ switch(localRes)
++ {
++ case VK_ERROR_FEATURE_NOT_PRESENT:
++ break;
++ case VK_SUCCESS:
++ finalRes = VK_SUCCESS;
++ break;
++ default:
++ return localRes;
++ }
++ }
++ }
++
++ // Process custom pools.
++ {
++ VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex);
++ for(VmaPool pool = m_Pools.Front(); pool != VMA_NULL; pool = m_Pools.GetNext(pool))
++ {
++ if(((1u << pool->m_BlockVector.GetMemoryTypeIndex()) & memoryTypeBits) != 0)
++ {
++ VkResult localRes = pool->m_BlockVector.CheckCorruption();
++ switch(localRes)
++ {
++ case VK_ERROR_FEATURE_NOT_PRESENT:
++ break;
++ case VK_SUCCESS:
++ finalRes = VK_SUCCESS;
++ break;
++ default:
++ return localRes;
++ }
++ }
++ }
++ }
++
++ return finalRes;
++}
++
++VkResult VmaAllocator_T::AllocateVulkanMemory(const VkMemoryAllocateInfo* pAllocateInfo, VkDeviceMemory* pMemory)
++{
++ AtomicTransactionalIncrement<uint32_t> deviceMemoryCountIncrement;
++ const uint64_t prevDeviceMemoryCount = deviceMemoryCountIncrement.Increment(&m_DeviceMemoryCount);
++#if VMA_DEBUG_DONT_EXCEED_MAX_MEMORY_ALLOCATION_COUNT
++ if(prevDeviceMemoryCount >= m_PhysicalDeviceProperties.limits.maxMemoryAllocationCount)
++ {
++ return VK_ERROR_TOO_MANY_OBJECTS;
++ }
++#endif
++
++ const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(pAllocateInfo->memoryTypeIndex);
++
++ // HeapSizeLimit is in effect for this heap.
++ if((m_HeapSizeLimitMask & (1u << heapIndex)) != 0)
++ {
++ const VkDeviceSize heapSize = m_MemProps.memoryHeaps[heapIndex].size;
++ VkDeviceSize blockBytes = m_Budget.m_BlockBytes[heapIndex];
++ for(;;)
++ {
++ const VkDeviceSize blockBytesAfterAllocation = blockBytes + pAllocateInfo->allocationSize;
++ if(blockBytesAfterAllocation > heapSize)
++ {
++ return VK_ERROR_OUT_OF_DEVICE_MEMORY;
++ }
++ if(m_Budget.m_BlockBytes[heapIndex].compare_exchange_strong(blockBytes, blockBytesAfterAllocation))
++ {
++ break;
++ }
++ }
++ }
++ else
++ {
++ m_Budget.m_BlockBytes[heapIndex] += pAllocateInfo->allocationSize;
++ }
++ ++m_Budget.m_BlockCount[heapIndex];
++
++ // VULKAN CALL vkAllocateMemory.
++ VkResult res = (*m_VulkanFunctions.vkAllocateMemory)(m_hDevice, pAllocateInfo, GetAllocationCallbacks(), pMemory);
++
++ if(res == VK_SUCCESS)
++ {
++#if VMA_MEMORY_BUDGET
++ ++m_Budget.m_OperationsSinceBudgetFetch;
++#endif
++
++ // Informative callback.
++ if(m_DeviceMemoryCallbacks.pfnAllocate != VMA_NULL)
++ {
++ (*m_DeviceMemoryCallbacks.pfnAllocate)(this, pAllocateInfo->memoryTypeIndex, *pMemory, pAllocateInfo->allocationSize, m_DeviceMemoryCallbacks.pUserData);
++ }
++
++ deviceMemoryCountIncrement.Commit();
++ }
++ else
++ {
++ --m_Budget.m_BlockCount[heapIndex];
++ m_Budget.m_BlockBytes[heapIndex] -= pAllocateInfo->allocationSize;
++ }
++
++ return res;
++}
++
++void VmaAllocator_T::FreeVulkanMemory(uint32_t memoryType, VkDeviceSize size, VkDeviceMemory hMemory)
++{
++ // Informative callback.
++ if(m_DeviceMemoryCallbacks.pfnFree != VMA_NULL)
++ {
++ (*m_DeviceMemoryCallbacks.pfnFree)(this, memoryType, hMemory, size, m_DeviceMemoryCallbacks.pUserData);
++ }
++
++ // VULKAN CALL vkFreeMemory.
++ (*m_VulkanFunctions.vkFreeMemory)(m_hDevice, hMemory, GetAllocationCallbacks());
++
++ const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(memoryType);
++ --m_Budget.m_BlockCount[heapIndex];
++ m_Budget.m_BlockBytes[heapIndex] -= size;
++
++ --m_DeviceMemoryCount;
++}
++
++VkResult VmaAllocator_T::BindVulkanBuffer(
++ VkDeviceMemory memory,
++ VkDeviceSize memoryOffset,
++ VkBuffer buffer,
++ const void* pNext)
++{
++ if(pNext != VMA_NULL)
++ {
++#if VMA_VULKAN_VERSION >= 1001000 || VMA_BIND_MEMORY2
++ if((m_UseKhrBindMemory2 || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) &&
++ m_VulkanFunctions.vkBindBufferMemory2KHR != VMA_NULL)
++ {
++ VkBindBufferMemoryInfoKHR bindBufferMemoryInfo = { VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO_KHR };
++ bindBufferMemoryInfo.pNext = pNext;
++ bindBufferMemoryInfo.buffer = buffer;
++ bindBufferMemoryInfo.memory = memory;
++ bindBufferMemoryInfo.memoryOffset = memoryOffset;
++ return (*m_VulkanFunctions.vkBindBufferMemory2KHR)(m_hDevice, 1, &bindBufferMemoryInfo);
++ }
++ else
++#endif // #if VMA_VULKAN_VERSION >= 1001000 || VMA_BIND_MEMORY2
++ {
++ return VK_ERROR_EXTENSION_NOT_PRESENT;
++ }
++ }
++ else
++ {
++ return (*m_VulkanFunctions.vkBindBufferMemory)(m_hDevice, buffer, memory, memoryOffset);
++ }
++}
++
++VkResult VmaAllocator_T::BindVulkanImage(
++ VkDeviceMemory memory,
++ VkDeviceSize memoryOffset,
++ VkImage image,
++ const void* pNext)
++{
++ if(pNext != VMA_NULL)
++ {
++#if VMA_VULKAN_VERSION >= 1001000 || VMA_BIND_MEMORY2
++ if((m_UseKhrBindMemory2 || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) &&
++ m_VulkanFunctions.vkBindImageMemory2KHR != VMA_NULL)
++ {
++ VkBindImageMemoryInfoKHR bindBufferMemoryInfo = { VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_INFO_KHR };
++ bindBufferMemoryInfo.pNext = pNext;
++ bindBufferMemoryInfo.image = image;
++ bindBufferMemoryInfo.memory = memory;
++ bindBufferMemoryInfo.memoryOffset = memoryOffset;
++ return (*m_VulkanFunctions.vkBindImageMemory2KHR)(m_hDevice, 1, &bindBufferMemoryInfo);
++ }
++ else
++#endif // #if VMA_BIND_MEMORY2
++ {
++ return VK_ERROR_EXTENSION_NOT_PRESENT;
++ }
++ }
++ else
++ {
++ return (*m_VulkanFunctions.vkBindImageMemory)(m_hDevice, image, memory, memoryOffset);
++ }
++}
++
++VkResult VmaAllocator_T::Map(VmaAllocation hAllocation, void** ppData)
++{
++ switch(hAllocation->GetType())
++ {
++ case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:
++ {
++ VmaDeviceMemoryBlock* const pBlock = hAllocation->GetBlock();
++ char *pBytes = VMA_NULL;
++ VkResult res = pBlock->Map(this, 1, (void**)&pBytes);
++ if(res == VK_SUCCESS)
++ {
++ *ppData = pBytes + (ptrdiff_t)hAllocation->GetOffset();
++ hAllocation->BlockAllocMap();
++ }
++ return res;
++ }
++ case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
++ return hAllocation->DedicatedAllocMap(this, ppData);
++ default:
++ VMA_ASSERT(0);
++ return VK_ERROR_MEMORY_MAP_FAILED;
++ }
++}
++
++void VmaAllocator_T::Unmap(VmaAllocation hAllocation)
++{
++ switch(hAllocation->GetType())
++ {
++ case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:
++ {
++ VmaDeviceMemoryBlock* const pBlock = hAllocation->GetBlock();
++ hAllocation->BlockAllocUnmap();
++ pBlock->Unmap(this, 1);
++ }
++ break;
++ case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
++ hAllocation->DedicatedAllocUnmap(this);
++ break;
++ default:
++ VMA_ASSERT(0);
++ }
++}
++
++VkResult VmaAllocator_T::BindBufferMemory(
++ VmaAllocation hAllocation,
++ VkDeviceSize allocationLocalOffset,
++ VkBuffer hBuffer,
++ const void* pNext)
++{
++ VkResult res = VK_SUCCESS;
++ switch(hAllocation->GetType())
++ {
++ case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
++ res = BindVulkanBuffer(hAllocation->GetMemory(), allocationLocalOffset, hBuffer, pNext);
++ break;
++ case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:
++ {
++ VmaDeviceMemoryBlock* const pBlock = hAllocation->GetBlock();
++ VMA_ASSERT(pBlock && "Binding buffer to allocation that doesn't belong to any block.");
++ res = pBlock->BindBufferMemory(this, hAllocation, allocationLocalOffset, hBuffer, pNext);
++ break;
++ }
++ default:
++ VMA_ASSERT(0);
++ }
++ return res;
++}
++
++VkResult VmaAllocator_T::BindImageMemory(
++ VmaAllocation hAllocation,
++ VkDeviceSize allocationLocalOffset,
++ VkImage hImage,
++ const void* pNext)
++{
++ VkResult res = VK_SUCCESS;
++ switch(hAllocation->GetType())
++ {
++ case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
++ res = BindVulkanImage(hAllocation->GetMemory(), allocationLocalOffset, hImage, pNext);
++ break;
++ case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:
++ {
++ VmaDeviceMemoryBlock* pBlock = hAllocation->GetBlock();
++ VMA_ASSERT(pBlock && "Binding image to allocation that doesn't belong to any block.");
++ res = pBlock->BindImageMemory(this, hAllocation, allocationLocalOffset, hImage, pNext);
++ break;
++ }
++ default:
++ VMA_ASSERT(0);
++ }
++ return res;
++}
++
++VkResult VmaAllocator_T::FlushOrInvalidateAllocation(
++ VmaAllocation hAllocation,
++ VkDeviceSize offset, VkDeviceSize size,
++ VMA_CACHE_OPERATION op)
++{
++ VkResult res = VK_SUCCESS;
++
++ VkMappedMemoryRange memRange = {};
++ if(GetFlushOrInvalidateRange(hAllocation, offset, size, memRange))
++ {
++ switch(op)
++ {
++ case VMA_CACHE_FLUSH:
++ res = (*GetVulkanFunctions().vkFlushMappedMemoryRanges)(m_hDevice, 1, &memRange);
++ break;
++ case VMA_CACHE_INVALIDATE:
++ res = (*GetVulkanFunctions().vkInvalidateMappedMemoryRanges)(m_hDevice, 1, &memRange);
++ break;
++ default:
++ VMA_ASSERT(0);
++ }
++ }
++ // else: Just ignore this call.
++ return res;
++}
++
++VkResult VmaAllocator_T::FlushOrInvalidateAllocations(
++ uint32_t allocationCount,
++ const VmaAllocation* allocations,
++ const VkDeviceSize* offsets, const VkDeviceSize* sizes,
++ VMA_CACHE_OPERATION op)
++{
++ typedef VmaStlAllocator<VkMappedMemoryRange> RangeAllocator;
++ typedef VmaSmallVector<VkMappedMemoryRange, RangeAllocator, 16> RangeVector;
++ RangeVector ranges = RangeVector(RangeAllocator(GetAllocationCallbacks()));
++
++ for(uint32_t allocIndex = 0; allocIndex < allocationCount; ++allocIndex)
++ {
++ const VmaAllocation alloc = allocations[allocIndex];
++ const VkDeviceSize offset = offsets != VMA_NULL ? offsets[allocIndex] : 0;
++ const VkDeviceSize size = sizes != VMA_NULL ? sizes[allocIndex] : VK_WHOLE_SIZE;
++ VkMappedMemoryRange newRange;
++ if(GetFlushOrInvalidateRange(alloc, offset, size, newRange))
++ {
++ ranges.push_back(newRange);
++ }
++ }
++
++ VkResult res = VK_SUCCESS;
++ if(!ranges.empty())
++ {
++ switch(op)
++ {
++ case VMA_CACHE_FLUSH:
++ res = (*GetVulkanFunctions().vkFlushMappedMemoryRanges)(m_hDevice, (uint32_t)ranges.size(), ranges.data());
++ break;
++ case VMA_CACHE_INVALIDATE:
++ res = (*GetVulkanFunctions().vkInvalidateMappedMemoryRanges)(m_hDevice, (uint32_t)ranges.size(), ranges.data());
++ break;
++ default:
++ VMA_ASSERT(0);
++ }
++ }
++ // else: Just ignore this call.
++ return res;
++}
++
++void VmaAllocator_T::FreeDedicatedMemory(const VmaAllocation allocation)
++{
++ VMA_ASSERT(allocation && allocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED);
++
++ const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex();
++ VmaPool parentPool = allocation->GetParentPool();
++ if(parentPool == VK_NULL_HANDLE)
++ {
++ // Default pool
++ m_DedicatedAllocations[memTypeIndex].Unregister(allocation);
++ }
++ else
++ {
++ // Custom pool
++ parentPool->m_DedicatedAllocations.Unregister(allocation);
++ }
++
++ VkDeviceMemory hMemory = allocation->GetMemory();
++
++ /*
++ There is no need to call this, because Vulkan spec allows to skip vkUnmapMemory
++ before vkFreeMemory.
++
++ if(allocation->GetMappedData() != VMA_NULL)
++ {
++ (*m_VulkanFunctions.vkUnmapMemory)(m_hDevice, hMemory);
++ }
++ */
++
++ FreeVulkanMemory(memTypeIndex, allocation->GetSize(), hMemory);
++
++ m_Budget.RemoveAllocation(MemoryTypeIndexToHeapIndex(allocation->GetMemoryTypeIndex()), allocation->GetSize());
++ m_AllocationObjectAllocator.Free(allocation);
++
++ VMA_DEBUG_LOG(" Freed DedicatedMemory MemoryTypeIndex=%u", memTypeIndex);
++}
++
++uint32_t VmaAllocator_T::CalculateGpuDefragmentationMemoryTypeBits() const
++{
++ VkBufferCreateInfo dummyBufCreateInfo;
++ VmaFillGpuDefragmentationBufferCreateInfo(dummyBufCreateInfo);
++
++ uint32_t memoryTypeBits = 0;
++
++ // Create buffer.
++ VkBuffer buf = VK_NULL_HANDLE;
++ VkResult res = (*GetVulkanFunctions().vkCreateBuffer)(
++ m_hDevice, &dummyBufCreateInfo, GetAllocationCallbacks(), &buf);
++ if(res == VK_SUCCESS)
++ {
++ // Query for supported memory types.
++ VkMemoryRequirements memReq;
++ (*GetVulkanFunctions().vkGetBufferMemoryRequirements)(m_hDevice, buf, &memReq);
++ memoryTypeBits = memReq.memoryTypeBits;
++
++ // Destroy buffer.
++ (*GetVulkanFunctions().vkDestroyBuffer)(m_hDevice, buf, GetAllocationCallbacks());
++ }
++
++ return memoryTypeBits;
++}
++
++uint32_t VmaAllocator_T::CalculateGlobalMemoryTypeBits() const
++{
++ // Make sure memory information is already fetched.
++ VMA_ASSERT(GetMemoryTypeCount() > 0);
++
++ uint32_t memoryTypeBits = UINT32_MAX;
++
++ if(!m_UseAmdDeviceCoherentMemory)
++ {
++ // Exclude memory types that have VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD.
++ for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
++ {
++ if((m_MemProps.memoryTypes[memTypeIndex].propertyFlags & VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY) != 0)
++ {
++ memoryTypeBits &= ~(1u << memTypeIndex);
++ }
++ }
++ }
++
++ return memoryTypeBits;
++}
++
++bool VmaAllocator_T::GetFlushOrInvalidateRange(
++ VmaAllocation allocation,
++ VkDeviceSize offset, VkDeviceSize size,
++ VkMappedMemoryRange& outRange) const
++{
++ const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex();
++ if(size > 0 && IsMemoryTypeNonCoherent(memTypeIndex))
++ {
++ const VkDeviceSize nonCoherentAtomSize = m_PhysicalDeviceProperties.limits.nonCoherentAtomSize;
++ const VkDeviceSize allocationSize = allocation->GetSize();
++ VMA_ASSERT(offset <= allocationSize);
++
++ outRange.sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE;
++ outRange.pNext = VMA_NULL;
++ outRange.memory = allocation->GetMemory();
++
++ switch(allocation->GetType())
++ {
++ case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
++ outRange.offset = VmaAlignDown(offset, nonCoherentAtomSize);
++ if(size == VK_WHOLE_SIZE)
++ {
++ outRange.size = allocationSize - outRange.offset;
++ }
++ else
++ {
++ VMA_ASSERT(offset + size <= allocationSize);
++ outRange.size = VMA_MIN(
++ VmaAlignUp(size + (offset - outRange.offset), nonCoherentAtomSize),
++ allocationSize - outRange.offset);
++ }
++ break;
++ case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:
++ {
++ // 1. Still within this allocation.
++ outRange.offset = VmaAlignDown(offset, nonCoherentAtomSize);
++ if(size == VK_WHOLE_SIZE)
++ {
++ size = allocationSize - offset;
++ }
++ else
++ {
++ VMA_ASSERT(offset + size <= allocationSize);
++ }
++ outRange.size = VmaAlignUp(size + (offset - outRange.offset), nonCoherentAtomSize);
++
++ // 2. Adjust to whole block.
++ const VkDeviceSize allocationOffset = allocation->GetOffset();
++ VMA_ASSERT(allocationOffset % nonCoherentAtomSize == 0);
++ const VkDeviceSize blockSize = allocation->GetBlock()->m_pMetadata->GetSize();
++ outRange.offset += allocationOffset;
++ outRange.size = VMA_MIN(outRange.size, blockSize - outRange.offset);
++
++ break;
++ }
++ default:
++ VMA_ASSERT(0);
++ }
++ return true;
++ }
++ return false;
++}
++
++#if VMA_MEMORY_BUDGET
++void VmaAllocator_T::UpdateVulkanBudget()
++{
++ VMA_ASSERT(m_UseExtMemoryBudget);
++
++ VkPhysicalDeviceMemoryProperties2KHR memProps = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_PROPERTIES_2_KHR };
++
++ VkPhysicalDeviceMemoryBudgetPropertiesEXT budgetProps = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT };
++ VmaPnextChainPushFront(&memProps, &budgetProps);
++
++ GetVulkanFunctions().vkGetPhysicalDeviceMemoryProperties2KHR(m_PhysicalDevice, &memProps);
++
++ {
++ VmaMutexLockWrite lockWrite(m_Budget.m_BudgetMutex, m_UseMutex);
++
++ for(uint32_t heapIndex = 0; heapIndex < GetMemoryHeapCount(); ++heapIndex)
++ {
++ m_Budget.m_VulkanUsage[heapIndex] = budgetProps.heapUsage[heapIndex];
++ m_Budget.m_VulkanBudget[heapIndex] = budgetProps.heapBudget[heapIndex];
++ m_Budget.m_BlockBytesAtBudgetFetch[heapIndex] = m_Budget.m_BlockBytes[heapIndex].load();
++
++ // Some bugged drivers return the budget incorrectly, e.g. 0 or much bigger than heap size.
++ if(m_Budget.m_VulkanBudget[heapIndex] == 0)
++ {
++ m_Budget.m_VulkanBudget[heapIndex] = m_MemProps.memoryHeaps[heapIndex].size * 8 / 10; // 80% heuristics.
++ }
++ else if(m_Budget.m_VulkanBudget[heapIndex] > m_MemProps.memoryHeaps[heapIndex].size)
++ {
++ m_Budget.m_VulkanBudget[heapIndex] = m_MemProps.memoryHeaps[heapIndex].size;
++ }
++ if(m_Budget.m_VulkanUsage[heapIndex] == 0 && m_Budget.m_BlockBytesAtBudgetFetch[heapIndex] > 0)
++ {
++ m_Budget.m_VulkanUsage[heapIndex] = m_Budget.m_BlockBytesAtBudgetFetch[heapIndex];
++ }
++ }
++ m_Budget.m_OperationsSinceBudgetFetch = 0;
++ }
++}
++#endif // VMA_MEMORY_BUDGET
++
++void VmaAllocator_T::FillAllocation(const VmaAllocation hAllocation, uint8_t pattern)
++{
++ if(VMA_DEBUG_INITIALIZE_ALLOCATIONS &&
++ (m_MemProps.memoryTypes[hAllocation->GetMemoryTypeIndex()].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0)
++ {
++ void* pData = VMA_NULL;
++ VkResult res = Map(hAllocation, &pData);
++ if(res == VK_SUCCESS)
++ {
++ memset(pData, (int)pattern, (size_t)hAllocation->GetSize());
++ FlushOrInvalidateAllocation(hAllocation, 0, VK_WHOLE_SIZE, VMA_CACHE_FLUSH);
++ Unmap(hAllocation);
++ }
++ else
++ {
++ VMA_ASSERT(0 && "VMA_DEBUG_INITIALIZE_ALLOCATIONS is enabled, but couldn't map memory to fill allocation.");
++ }
++ }
++}
++
++uint32_t VmaAllocator_T::GetGpuDefragmentationMemoryTypeBits()
++{
++ uint32_t memoryTypeBits = m_GpuDefragmentationMemoryTypeBits.load();
++ if(memoryTypeBits == UINT32_MAX)
++ {
++ memoryTypeBits = CalculateGpuDefragmentationMemoryTypeBits();
++ m_GpuDefragmentationMemoryTypeBits.store(memoryTypeBits);
++ }
++ return memoryTypeBits;
++}
++
++#if VMA_STATS_STRING_ENABLED
++void VmaAllocator_T::PrintDetailedMap(VmaJsonWriter& json)
++{
++ json.WriteString("DefaultPools");
++ json.BeginObject();
++ {
++ for (uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
++ {
++ VmaBlockVector* pBlockVector = m_pBlockVectors[memTypeIndex];
++ VmaDedicatedAllocationList& dedicatedAllocList = m_DedicatedAllocations[memTypeIndex];
++ if (pBlockVector != VMA_NULL)
++ {
++ json.BeginString("Type ");
++ json.ContinueString(memTypeIndex);
++ json.EndString();
++ json.BeginObject();
++ {
++ json.WriteString("PreferredBlockSize");
++ json.WriteNumber(pBlockVector->GetPreferredBlockSize());
++
++ json.WriteString("Blocks");
++ pBlockVector->PrintDetailedMap(json);
++
++ json.WriteString("DedicatedAllocations");
++ dedicatedAllocList.BuildStatsString(json);
++ }
++ json.EndObject();
++ }
++ }
++ }
++ json.EndObject();
++
++ json.WriteString("CustomPools");
++ json.BeginObject();
++ {
++ VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex);
++ if (!m_Pools.IsEmpty())
++ {
++ for (uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
++ {
++ bool displayType = true;
++ size_t index = 0;
++ for (VmaPool pool = m_Pools.Front(); pool != VMA_NULL; pool = m_Pools.GetNext(pool))
++ {
++ VmaBlockVector& blockVector = pool->m_BlockVector;
++ if (blockVector.GetMemoryTypeIndex() == memTypeIndex)
++ {
++ if (displayType)
++ {
++ json.BeginString("Type ");
++ json.ContinueString(memTypeIndex);
++ json.EndString();
++ json.BeginArray();
++ displayType = false;
++ }
++
++ json.BeginObject();
++ {
++ json.WriteString("Name");
++ json.BeginString();
++ json.ContinueString_Size(index++);
++ if (pool->GetName())
++ {
++ json.ContinueString(" - ");
++ json.ContinueString(pool->GetName());
++ }
++ json.EndString();
++
++ json.WriteString("PreferredBlockSize");
++ json.WriteNumber(blockVector.GetPreferredBlockSize());
++
++ json.WriteString("Blocks");
++ blockVector.PrintDetailedMap(json);
++
++ json.WriteString("DedicatedAllocations");
++ pool->m_DedicatedAllocations.BuildStatsString(json);
++ }
++ json.EndObject();
++ }
++ }
++
++ if (!displayType)
++ json.EndArray();
++ }
++ }
++ }
++ json.EndObject();
++}
++#endif // VMA_STATS_STRING_ENABLED
++#endif // _VMA_ALLOCATOR_T_FUNCTIONS
++
++
++#ifndef _VMA_PUBLIC_INTERFACE
++VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAllocator(
++ const VmaAllocatorCreateInfo* pCreateInfo,
++ VmaAllocator* pAllocator)
++{
++ VMA_ASSERT(pCreateInfo && pAllocator);
++ VMA_ASSERT(pCreateInfo->vulkanApiVersion == 0 ||
++ (VK_VERSION_MAJOR(pCreateInfo->vulkanApiVersion) == 1 && VK_VERSION_MINOR(pCreateInfo->vulkanApiVersion) <= 3));
++ VMA_DEBUG_LOG("vmaCreateAllocator");
++ *pAllocator = vma_new(pCreateInfo->pAllocationCallbacks, VmaAllocator_T)(pCreateInfo);
++ VkResult result = (*pAllocator)->Init(pCreateInfo);
++ if(result < 0)
++ {
++ vma_delete(pCreateInfo->pAllocationCallbacks, *pAllocator);
++ *pAllocator = VK_NULL_HANDLE;
++ }
++ return result;
++}
++
++VMA_CALL_PRE void VMA_CALL_POST vmaDestroyAllocator(
++ VmaAllocator allocator)
++{
++ if(allocator != VK_NULL_HANDLE)
++ {
++ VMA_DEBUG_LOG("vmaDestroyAllocator");
++ VkAllocationCallbacks allocationCallbacks = allocator->m_AllocationCallbacks; // Have to copy the callbacks when destroying.
++ vma_delete(&allocationCallbacks, allocator);
++ }
++}
++
++VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocatorInfo(VmaAllocator allocator, VmaAllocatorInfo* pAllocatorInfo)
++{
++ VMA_ASSERT(allocator && pAllocatorInfo);
++ pAllocatorInfo->instance = allocator->m_hInstance;
++ pAllocatorInfo->physicalDevice = allocator->GetPhysicalDevice();
++ pAllocatorInfo->device = allocator->m_hDevice;
++}
++
++VMA_CALL_PRE void VMA_CALL_POST vmaGetPhysicalDeviceProperties(
++ VmaAllocator allocator,
++ const VkPhysicalDeviceProperties **ppPhysicalDeviceProperties)
++{
++ VMA_ASSERT(allocator && ppPhysicalDeviceProperties);
++ *ppPhysicalDeviceProperties = &allocator->m_PhysicalDeviceProperties;
++}
++
++VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryProperties(
++ VmaAllocator allocator,
++ const VkPhysicalDeviceMemoryProperties** ppPhysicalDeviceMemoryProperties)
++{
++ VMA_ASSERT(allocator && ppPhysicalDeviceMemoryProperties);
++ *ppPhysicalDeviceMemoryProperties = &allocator->m_MemProps;
++}
++
++VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryTypeProperties(
++ VmaAllocator allocator,
++ uint32_t memoryTypeIndex,
++ VkMemoryPropertyFlags* pFlags)
++{
++ VMA_ASSERT(allocator && pFlags);
++ VMA_ASSERT(memoryTypeIndex < allocator->GetMemoryTypeCount());
++ *pFlags = allocator->m_MemProps.memoryTypes[memoryTypeIndex].propertyFlags;
++}
++
++VMA_CALL_PRE void VMA_CALL_POST vmaSetCurrentFrameIndex(
++ VmaAllocator allocator,
++ uint32_t frameIndex)
++{
++ VMA_ASSERT(allocator);
++
++ VMA_DEBUG_GLOBAL_MUTEX_LOCK
++
++ allocator->SetCurrentFrameIndex(frameIndex);
++}
++
++VMA_CALL_PRE void VMA_CALL_POST vmaCalculateStatistics(
++ VmaAllocator allocator,
++ VmaTotalStatistics* pStats)
++{
++ VMA_ASSERT(allocator && pStats);
++ VMA_DEBUG_GLOBAL_MUTEX_LOCK
++ allocator->CalculateStatistics(pStats);
++}
++
++VMA_CALL_PRE void VMA_CALL_POST vmaGetHeapBudgets(
++ VmaAllocator allocator,
++ VmaBudget* pBudgets)
++{
++ VMA_ASSERT(allocator && pBudgets);
++ VMA_DEBUG_GLOBAL_MUTEX_LOCK
++ allocator->GetHeapBudgets(pBudgets, 0, allocator->GetMemoryHeapCount());
++}
++
++#if VMA_STATS_STRING_ENABLED
++
++VMA_CALL_PRE void VMA_CALL_POST vmaBuildStatsString(
++ VmaAllocator allocator,
++ char** ppStatsString,
++ VkBool32 detailedMap)
++{
++ VMA_ASSERT(allocator && ppStatsString);
++ VMA_DEBUG_GLOBAL_MUTEX_LOCK
++
++ VmaStringBuilder sb(allocator->GetAllocationCallbacks());
++ {
++ VmaBudget budgets[VK_MAX_MEMORY_HEAPS];
++ allocator->GetHeapBudgets(budgets, 0, allocator->GetMemoryHeapCount());
++
++ VmaTotalStatistics stats;
++ allocator->CalculateStatistics(&stats);
++
++ VmaJsonWriter json(allocator->GetAllocationCallbacks(), sb);
++ json.BeginObject();
++ {
++ json.WriteString("General");
++ json.BeginObject();
++ {
++ const VkPhysicalDeviceProperties& deviceProperties = allocator->m_PhysicalDeviceProperties;
++ const VkPhysicalDeviceMemoryProperties& memoryProperties = allocator->m_MemProps;
++
++ json.WriteString("API");
++ json.WriteString("Vulkan");
++
++ json.WriteString("apiVersion");
++ json.BeginString();
++ json.ContinueString(VK_API_VERSION_MAJOR(deviceProperties.apiVersion));
++ json.ContinueString(".");
++ json.ContinueString(VK_API_VERSION_MINOR(deviceProperties.apiVersion));
++ json.ContinueString(".");
++ json.ContinueString(VK_API_VERSION_PATCH(deviceProperties.apiVersion));
++ json.EndString();
++
++ json.WriteString("GPU");
++ json.WriteString(deviceProperties.deviceName);
++ json.WriteString("deviceType");
++ json.WriteNumber(static_cast<uint32_t>(deviceProperties.deviceType));
++
++ json.WriteString("maxMemoryAllocationCount");
++ json.WriteNumber(deviceProperties.limits.maxMemoryAllocationCount);
++ json.WriteString("bufferImageGranularity");
++ json.WriteNumber(deviceProperties.limits.bufferImageGranularity);
++ json.WriteString("nonCoherentAtomSize");
++ json.WriteNumber(deviceProperties.limits.nonCoherentAtomSize);
++
++ json.WriteString("memoryHeapCount");
++ json.WriteNumber(memoryProperties.memoryHeapCount);
++ json.WriteString("memoryTypeCount");
++ json.WriteNumber(memoryProperties.memoryTypeCount);
++ }
++ json.EndObject();
++ }
++ {
++ json.WriteString("Total");
++ VmaPrintDetailedStatistics(json, stats.total);
++ }
++ {
++ json.WriteString("MemoryInfo");
++ json.BeginObject();
++ {
++ for (uint32_t heapIndex = 0; heapIndex < allocator->GetMemoryHeapCount(); ++heapIndex)
++ {
++ json.BeginString("Heap ");
++ json.ContinueString(heapIndex);
++ json.EndString();
++ json.BeginObject();
++ {
++ const VkMemoryHeap& heapInfo = allocator->m_MemProps.memoryHeaps[heapIndex];
++ json.WriteString("Flags");
++ json.BeginArray(true);
++ {
++ if (heapInfo.flags & VK_MEMORY_HEAP_DEVICE_LOCAL_BIT)
++ json.WriteString("DEVICE_LOCAL");
++ #if VMA_VULKAN_VERSION >= 1001000
++ if (heapInfo.flags & VK_MEMORY_HEAP_MULTI_INSTANCE_BIT)
++ json.WriteString("MULTI_INSTANCE");
++ #endif
++
++ VkMemoryHeapFlags flags = heapInfo.flags &
++ ~(VK_MEMORY_HEAP_DEVICE_LOCAL_BIT
++ #if VMA_VULKAN_VERSION >= 1001000
++ | VK_MEMORY_HEAP_MULTI_INSTANCE_BIT
++ #endif
++ );
++ if (flags != 0)
++ json.WriteNumber(flags);
++ }
++ json.EndArray();
++
++ json.WriteString("Size");
++ json.WriteNumber(heapInfo.size);
++
++ json.WriteString("Budget");
++ json.BeginObject();
++ {
++ json.WriteString("BudgetBytes");
++ json.WriteNumber(budgets[heapIndex].budget);
++ json.WriteString("UsageBytes");
++ json.WriteNumber(budgets[heapIndex].usage);
++ }
++ json.EndObject();
++
++ json.WriteString("Stats");
++ VmaPrintDetailedStatistics(json, stats.memoryHeap[heapIndex]);
++
++ json.WriteString("MemoryPools");
++ json.BeginObject();
++ {
++ for (uint32_t typeIndex = 0; typeIndex < allocator->GetMemoryTypeCount(); ++typeIndex)
++ {
++ if (allocator->MemoryTypeIndexToHeapIndex(typeIndex) == heapIndex)
++ {
++ json.BeginString("Type ");
++ json.ContinueString(typeIndex);
++ json.EndString();
++ json.BeginObject();
++ {
++ json.WriteString("Flags");
++ json.BeginArray(true);
++ {
++ VkMemoryPropertyFlags flags = allocator->m_MemProps.memoryTypes[typeIndex].propertyFlags;
++ if (flags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT)
++ json.WriteString("DEVICE_LOCAL");
++ if (flags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT)
++ json.WriteString("HOST_VISIBLE");
++ if (flags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)
++ json.WriteString("HOST_COHERENT");
++ if (flags & VK_MEMORY_PROPERTY_HOST_CACHED_BIT)
++ json.WriteString("HOST_CACHED");
++ if (flags & VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT)
++ json.WriteString("LAZILY_ALLOCATED");
++ #if VMA_VULKAN_VERSION >= 1001000
++ if (flags & VK_MEMORY_PROPERTY_PROTECTED_BIT)
++ json.WriteString("PROTECTED");
++ #endif
++ #if VK_AMD_device_coherent_memory
++ if (flags & VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY)
++ json.WriteString("DEVICE_COHERENT_AMD");
++ if (flags & VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD_COPY)
++ json.WriteString("DEVICE_UNCACHED_AMD");
++ #endif
++
++ flags &= ~(VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT
++ #if VMA_VULKAN_VERSION >= 1001000
++ | VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT
++ #endif
++ #if VK_AMD_device_coherent_memory
++ | VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY
++ | VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD_COPY
++ #endif
++ | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT
++ | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT
++ | VK_MEMORY_PROPERTY_HOST_CACHED_BIT);
++ if (flags != 0)
++ json.WriteNumber(flags);
++ }
++ json.EndArray();
++
++ json.WriteString("Stats");
++ VmaPrintDetailedStatistics(json, stats.memoryType[typeIndex]);
++ }
++ json.EndObject();
++ }
++ }
++
++ }
++ json.EndObject();
++ }
++ json.EndObject();
++ }
++ }
++ json.EndObject();
++ }
++
++ if (detailedMap == VK_TRUE)
++ allocator->PrintDetailedMap(json);
++
++ json.EndObject();
++ }
++
++ *ppStatsString = VmaCreateStringCopy(allocator->GetAllocationCallbacks(), sb.GetData(), sb.GetLength());
++}
++
++VMA_CALL_PRE void VMA_CALL_POST vmaFreeStatsString(
++ VmaAllocator allocator,
++ char* pStatsString)
++{
++ if(pStatsString != VMA_NULL)
++ {
++ VMA_ASSERT(allocator);
++ VmaFreeString(allocator->GetAllocationCallbacks(), pStatsString);
++ }
++}
++
++#endif // VMA_STATS_STRING_ENABLED
++
++/*
++This function is not protected by any mutex because it just reads immutable data.
++*/
++VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndex(
++ VmaAllocator allocator,
++ uint32_t memoryTypeBits,
++ const VmaAllocationCreateInfo* pAllocationCreateInfo,
++ uint32_t* pMemoryTypeIndex)
++{
++ VMA_ASSERT(allocator != VK_NULL_HANDLE);
++ VMA_ASSERT(pAllocationCreateInfo != VMA_NULL);
++ VMA_ASSERT(pMemoryTypeIndex != VMA_NULL);
++
++ return allocator->FindMemoryTypeIndex(memoryTypeBits, pAllocationCreateInfo, UINT32_MAX, pMemoryTypeIndex);
++}
++
++VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForBufferInfo(
++ VmaAllocator allocator,
++ const VkBufferCreateInfo* pBufferCreateInfo,
++ const VmaAllocationCreateInfo* pAllocationCreateInfo,
++ uint32_t* pMemoryTypeIndex)
++{
++ VMA_ASSERT(allocator != VK_NULL_HANDLE);
++ VMA_ASSERT(pBufferCreateInfo != VMA_NULL);
++ VMA_ASSERT(pAllocationCreateInfo != VMA_NULL);
++ VMA_ASSERT(pMemoryTypeIndex != VMA_NULL);
++
++ const VkDevice hDev = allocator->m_hDevice;
++ const VmaVulkanFunctions* funcs = &allocator->GetVulkanFunctions();
++ VkResult res;
++
++#if VMA_VULKAN_VERSION >= 1003000
++ if(funcs->vkGetDeviceBufferMemoryRequirements)
++ {
++ // Can query straight from VkBufferCreateInfo :)
++ VkDeviceBufferMemoryRequirements devBufMemReq = {VK_STRUCTURE_TYPE_DEVICE_BUFFER_MEMORY_REQUIREMENTS};
++ devBufMemReq.pCreateInfo = pBufferCreateInfo;
++
++ VkMemoryRequirements2 memReq = {VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2};
++ (*funcs->vkGetDeviceBufferMemoryRequirements)(hDev, &devBufMemReq, &memReq);
++
++ res = allocator->FindMemoryTypeIndex(
++ memReq.memoryRequirements.memoryTypeBits, pAllocationCreateInfo, pBufferCreateInfo->usage, pMemoryTypeIndex);
++ }
++ else
++#endif // #if VMA_VULKAN_VERSION >= 1003000
++ {
++ // Must create a dummy buffer to query :(
++ VkBuffer hBuffer = VK_NULL_HANDLE;
++ res = funcs->vkCreateBuffer(
++ hDev, pBufferCreateInfo, allocator->GetAllocationCallbacks(), &hBuffer);
++ if(res == VK_SUCCESS)
++ {
++ VkMemoryRequirements memReq = {};
++ funcs->vkGetBufferMemoryRequirements(hDev, hBuffer, &memReq);
++
++ res = allocator->FindMemoryTypeIndex(
++ memReq.memoryTypeBits, pAllocationCreateInfo, pBufferCreateInfo->usage, pMemoryTypeIndex);
++
++ funcs->vkDestroyBuffer(
++ hDev, hBuffer, allocator->GetAllocationCallbacks());
++ }
++ }
++ return res;
++}
++
++VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForImageInfo(
++ VmaAllocator allocator,
++ const VkImageCreateInfo* pImageCreateInfo,
++ const VmaAllocationCreateInfo* pAllocationCreateInfo,
++ uint32_t* pMemoryTypeIndex)
++{
++ VMA_ASSERT(allocator != VK_NULL_HANDLE);
++ VMA_ASSERT(pImageCreateInfo != VMA_NULL);
++ VMA_ASSERT(pAllocationCreateInfo != VMA_NULL);
++ VMA_ASSERT(pMemoryTypeIndex != VMA_NULL);
++
++ const VkDevice hDev = allocator->m_hDevice;
++ const VmaVulkanFunctions* funcs = &allocator->GetVulkanFunctions();
++ VkResult res;
++
++#if VMA_VULKAN_VERSION >= 1003000
++ if(funcs->vkGetDeviceImageMemoryRequirements)
++ {
++ // Can query straight from VkImageCreateInfo :)
++ VkDeviceImageMemoryRequirements devImgMemReq = {VK_STRUCTURE_TYPE_DEVICE_IMAGE_MEMORY_REQUIREMENTS};
++ devImgMemReq.pCreateInfo = pImageCreateInfo;
++ VMA_ASSERT(pImageCreateInfo->tiling != VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT_COPY && (pImageCreateInfo->flags & VK_IMAGE_CREATE_DISJOINT_BIT_COPY) == 0 &&
++ "Cannot use this VkImageCreateInfo with vmaFindMemoryTypeIndexForImageInfo as I don't know what to pass as VkDeviceImageMemoryRequirements::planeAspect.");
++
++ VkMemoryRequirements2 memReq = {VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2};
++ (*funcs->vkGetDeviceImageMemoryRequirements)(hDev, &devImgMemReq, &memReq);
++
++ res = allocator->FindMemoryTypeIndex(
++ memReq.memoryRequirements.memoryTypeBits, pAllocationCreateInfo, pImageCreateInfo->usage, pMemoryTypeIndex);
++ }
++ else
++#endif // #if VMA_VULKAN_VERSION >= 1003000
++ {
++ // Must create a dummy image to query :(
++ VkImage hImage = VK_NULL_HANDLE;
++ res = funcs->vkCreateImage(
++ hDev, pImageCreateInfo, allocator->GetAllocationCallbacks(), &hImage);
++ if(res == VK_SUCCESS)
++ {
++ VkMemoryRequirements memReq = {};
++ funcs->vkGetImageMemoryRequirements(hDev, hImage, &memReq);
++
++ res = allocator->FindMemoryTypeIndex(
++ memReq.memoryTypeBits, pAllocationCreateInfo, pImageCreateInfo->usage, pMemoryTypeIndex);
++
++ funcs->vkDestroyImage(
++ hDev, hImage, allocator->GetAllocationCallbacks());
++ }
++ }
++ return res;
++}
++
++VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreatePool(
++ VmaAllocator allocator,
++ const VmaPoolCreateInfo* pCreateInfo,
++ VmaPool* pPool)
++{
++ VMA_ASSERT(allocator && pCreateInfo && pPool);
++
++ VMA_DEBUG_LOG("vmaCreatePool");
++
++ VMA_DEBUG_GLOBAL_MUTEX_LOCK
++
++ return allocator->CreatePool(pCreateInfo, pPool);
++}
++
++VMA_CALL_PRE void VMA_CALL_POST vmaDestroyPool(
++ VmaAllocator allocator,
++ VmaPool pool)
++{
++ VMA_ASSERT(allocator);
++
++ if(pool == VK_NULL_HANDLE)
++ {
++ return;
++ }
++
++ VMA_DEBUG_LOG("vmaDestroyPool");
++
++ VMA_DEBUG_GLOBAL_MUTEX_LOCK
++
++ allocator->DestroyPool(pool);
++}
++
++VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolStatistics(
++ VmaAllocator allocator,
++ VmaPool pool,
++ VmaStatistics* pPoolStats)
++{
++ VMA_ASSERT(allocator && pool && pPoolStats);
++
++ VMA_DEBUG_GLOBAL_MUTEX_LOCK
++
++ allocator->GetPoolStatistics(pool, pPoolStats);
++}
++
++VMA_CALL_PRE void VMA_CALL_POST vmaCalculatePoolStatistics(
++ VmaAllocator allocator,
++ VmaPool pool,
++ VmaDetailedStatistics* pPoolStats)
++{
++ VMA_ASSERT(allocator && pool && pPoolStats);
++
++ VMA_DEBUG_GLOBAL_MUTEX_LOCK
++
++ allocator->CalculatePoolStatistics(pool, pPoolStats);
++}
++
++VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckPoolCorruption(VmaAllocator allocator, VmaPool pool)
++{
++ VMA_ASSERT(allocator && pool);
++
++ VMA_DEBUG_GLOBAL_MUTEX_LOCK
++
++ VMA_DEBUG_LOG("vmaCheckPoolCorruption");
++
++ return allocator->CheckPoolCorruption(pool);
++}
++
++VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolName(
++ VmaAllocator allocator,
++ VmaPool pool,
++ const char** ppName)
++{
++ VMA_ASSERT(allocator && pool && ppName);
++
++ VMA_DEBUG_LOG("vmaGetPoolName");
++
++ VMA_DEBUG_GLOBAL_MUTEX_LOCK
++
++ *ppName = pool->GetName();
++}
++
++VMA_CALL_PRE void VMA_CALL_POST vmaSetPoolName(
++ VmaAllocator allocator,
++ VmaPool pool,
++ const char* pName)
++{
++ VMA_ASSERT(allocator && pool);
++
++ VMA_DEBUG_LOG("vmaSetPoolName");
++
++ VMA_DEBUG_GLOBAL_MUTEX_LOCK
++
++ pool->SetName(pName);
++}
++
++VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemory(
++ VmaAllocator allocator,
++ const VkMemoryRequirements* pVkMemoryRequirements,
++ const VmaAllocationCreateInfo* pCreateInfo,
++ VmaAllocation* pAllocation,
++ VmaAllocationInfo* pAllocationInfo)
++{
++ VMA_ASSERT(allocator && pVkMemoryRequirements && pCreateInfo && pAllocation);
++
++ VMA_DEBUG_LOG("vmaAllocateMemory");
++
++ VMA_DEBUG_GLOBAL_MUTEX_LOCK
++
++ VkResult result = allocator->AllocateMemory(
++ *pVkMemoryRequirements,
++ false, // requiresDedicatedAllocation
++ false, // prefersDedicatedAllocation
++ VK_NULL_HANDLE, // dedicatedBuffer
++ VK_NULL_HANDLE, // dedicatedImage
++ UINT32_MAX, // dedicatedBufferImageUsage
++ *pCreateInfo,
++ VMA_SUBALLOCATION_TYPE_UNKNOWN,
++ 1, // allocationCount
++ pAllocation);
++
++ if(pAllocationInfo != VMA_NULL && result == VK_SUCCESS)
++ {
++ allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
++ }
++
++ return result;
++}
++
++VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryPages(
++ VmaAllocator allocator,
++ const VkMemoryRequirements* pVkMemoryRequirements,
++ const VmaAllocationCreateInfo* pCreateInfo,
++ size_t allocationCount,
++ VmaAllocation* pAllocations,
++ VmaAllocationInfo* pAllocationInfo)
++{
++ if(allocationCount == 0)
++ {
++ return VK_SUCCESS;
++ }
++
++ VMA_ASSERT(allocator && pVkMemoryRequirements && pCreateInfo && pAllocations);
++
++ VMA_DEBUG_LOG("vmaAllocateMemoryPages");
++
++ VMA_DEBUG_GLOBAL_MUTEX_LOCK
++
++ VkResult result = allocator->AllocateMemory(
++ *pVkMemoryRequirements,
++ false, // requiresDedicatedAllocation
++ false, // prefersDedicatedAllocation
++ VK_NULL_HANDLE, // dedicatedBuffer
++ VK_NULL_HANDLE, // dedicatedImage
++ UINT32_MAX, // dedicatedBufferImageUsage
++ *pCreateInfo,
++ VMA_SUBALLOCATION_TYPE_UNKNOWN,
++ allocationCount,
++ pAllocations);
++
++ if(pAllocationInfo != VMA_NULL && result == VK_SUCCESS)
++ {
++ for(size_t i = 0; i < allocationCount; ++i)
++ {
++ allocator->GetAllocationInfo(pAllocations[i], pAllocationInfo + i);
++ }
++ }
++
++ return result;
++}
++
++VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForBuffer(
++ VmaAllocator allocator,
++ VkBuffer buffer,
++ const VmaAllocationCreateInfo* pCreateInfo,
++ VmaAllocation* pAllocation,
++ VmaAllocationInfo* pAllocationInfo)
++{
++ VMA_ASSERT(allocator && buffer != VK_NULL_HANDLE && pCreateInfo && pAllocation);
++
++ VMA_DEBUG_LOG("vmaAllocateMemoryForBuffer");
++
++ VMA_DEBUG_GLOBAL_MUTEX_LOCK
++
++ VkMemoryRequirements vkMemReq = {};
++ bool requiresDedicatedAllocation = false;
++ bool prefersDedicatedAllocation = false;
++ allocator->GetBufferMemoryRequirements(buffer, vkMemReq,
++ requiresDedicatedAllocation,
++ prefersDedicatedAllocation);
++
++ VkResult result = allocator->AllocateMemory(
++ vkMemReq,
++ requiresDedicatedAllocation,
++ prefersDedicatedAllocation,
++ buffer, // dedicatedBuffer
++ VK_NULL_HANDLE, // dedicatedImage
++ UINT32_MAX, // dedicatedBufferImageUsage
++ *pCreateInfo,
++ VMA_SUBALLOCATION_TYPE_BUFFER,
++ 1, // allocationCount
++ pAllocation);
++
++ if(pAllocationInfo && result == VK_SUCCESS)
++ {
++ allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
++ }
++
++ return result;
++}
++
++VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForImage(
++ VmaAllocator allocator,
++ VkImage image,
++ const VmaAllocationCreateInfo* pCreateInfo,
++ VmaAllocation* pAllocation,
++ VmaAllocationInfo* pAllocationInfo)
++{
++ VMA_ASSERT(allocator && image != VK_NULL_HANDLE && pCreateInfo && pAllocation);
++
++ VMA_DEBUG_LOG("vmaAllocateMemoryForImage");
++
++ VMA_DEBUG_GLOBAL_MUTEX_LOCK
++
++ VkMemoryRequirements vkMemReq = {};
++ bool requiresDedicatedAllocation = false;
++ bool prefersDedicatedAllocation = false;
++ allocator->GetImageMemoryRequirements(image, vkMemReq,
++ requiresDedicatedAllocation, prefersDedicatedAllocation);
++
++ VkResult result = allocator->AllocateMemory(
++ vkMemReq,
++ requiresDedicatedAllocation,
++ prefersDedicatedAllocation,
++ VK_NULL_HANDLE, // dedicatedBuffer
++ image, // dedicatedImage
++ UINT32_MAX, // dedicatedBufferImageUsage
++ *pCreateInfo,
++ VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN,
++ 1, // allocationCount
++ pAllocation);
++
++ if(pAllocationInfo && result == VK_SUCCESS)
++ {
++ allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
++ }
++
++ return result;
++}
++
++VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemory(
++ VmaAllocator allocator,
++ VmaAllocation allocation)
++{
++ VMA_ASSERT(allocator);
++
++ if(allocation == VK_NULL_HANDLE)
++ {
++ return;
++ }
++
++ VMA_DEBUG_LOG("vmaFreeMemory");
++
++ VMA_DEBUG_GLOBAL_MUTEX_LOCK
++
++ allocator->FreeMemory(
++ 1, // allocationCount
++ &allocation);
++}
++
++VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemoryPages(
++ VmaAllocator allocator,
++ size_t allocationCount,
++ const VmaAllocation* pAllocations)
++{
++ if(allocationCount == 0)
++ {
++ return;
++ }
++
++ VMA_ASSERT(allocator);
++
++ VMA_DEBUG_LOG("vmaFreeMemoryPages");
++
++ VMA_DEBUG_GLOBAL_MUTEX_LOCK
++
++ allocator->FreeMemory(allocationCount, pAllocations);
++}
++
++VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocationInfo(
++ VmaAllocator allocator,
++ VmaAllocation allocation,
++ VmaAllocationInfo* pAllocationInfo)
++{
++ VMA_ASSERT(allocator && allocation && pAllocationInfo);
++
++ VMA_DEBUG_GLOBAL_MUTEX_LOCK
++
++ allocator->GetAllocationInfo(allocation, pAllocationInfo);
++}
++
++VMA_CALL_PRE void VMA_CALL_POST vmaSetAllocationUserData(
++ VmaAllocator allocator,
++ VmaAllocation allocation,
++ void* pUserData)
++{
++ VMA_ASSERT(allocator && allocation);
++
++ VMA_DEBUG_GLOBAL_MUTEX_LOCK
++
++ allocation->SetUserData(allocator, pUserData);
++}
++
++VMA_CALL_PRE void VMA_CALL_POST vmaSetAllocationName(
++ VmaAllocator VMA_NOT_NULL allocator,
++ VmaAllocation VMA_NOT_NULL allocation,
++ const char* VMA_NULLABLE pName)
++{
++ allocation->SetName(allocator, pName);
++}
++
++VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocationMemoryProperties(
++ VmaAllocator VMA_NOT_NULL allocator,
++ VmaAllocation VMA_NOT_NULL allocation,
++ VkMemoryPropertyFlags* VMA_NOT_NULL pFlags)
++{
++ VMA_ASSERT(allocator && allocation && pFlags);
++ const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex();
++ *pFlags = allocator->m_MemProps.memoryTypes[memTypeIndex].propertyFlags;
++}
++
++VMA_CALL_PRE VkResult VMA_CALL_POST vmaMapMemory(
++ VmaAllocator allocator,
++ VmaAllocation allocation,
++ void** ppData)
++{
++ VMA_ASSERT(allocator && allocation && ppData);
++
++ VMA_DEBUG_GLOBAL_MUTEX_LOCK
++
++ return allocator->Map(allocation, ppData);
++}
++
++VMA_CALL_PRE void VMA_CALL_POST vmaUnmapMemory(
++ VmaAllocator allocator,
++ VmaAllocation allocation)
++{
++ VMA_ASSERT(allocator && allocation);
++
++ VMA_DEBUG_GLOBAL_MUTEX_LOCK
++
++ allocator->Unmap(allocation);
++}
++
++VMA_CALL_PRE VkResult VMA_CALL_POST vmaFlushAllocation(
++ VmaAllocator allocator,
++ VmaAllocation allocation,
++ VkDeviceSize offset,
++ VkDeviceSize size)
++{
++ VMA_ASSERT(allocator && allocation);
++
++ VMA_DEBUG_LOG("vmaFlushAllocation");
++
++ VMA_DEBUG_GLOBAL_MUTEX_LOCK
++
++ const VkResult res = allocator->FlushOrInvalidateAllocation(allocation, offset, size, VMA_CACHE_FLUSH);
++
++ return res;
++}
++
++VMA_CALL_PRE VkResult VMA_CALL_POST vmaInvalidateAllocation(
++ VmaAllocator allocator,
++ VmaAllocation allocation,
++ VkDeviceSize offset,
++ VkDeviceSize size)
++{
++ VMA_ASSERT(allocator && allocation);
++
++ VMA_DEBUG_LOG("vmaInvalidateAllocation");
++
++ VMA_DEBUG_GLOBAL_MUTEX_LOCK
++
++ const VkResult res = allocator->FlushOrInvalidateAllocation(allocation, offset, size, VMA_CACHE_INVALIDATE);
++
++ return res;
++}
++
++VMA_CALL_PRE VkResult VMA_CALL_POST vmaFlushAllocations(
++ VmaAllocator allocator,
++ uint32_t allocationCount,
++ const VmaAllocation* allocations,
++ const VkDeviceSize* offsets,
++ const VkDeviceSize* sizes)
++{
++ VMA_ASSERT(allocator);
++
++ if(allocationCount == 0)
++ {
++ return VK_SUCCESS;
++ }
++
++ VMA_ASSERT(allocations);
++
++ VMA_DEBUG_LOG("vmaFlushAllocations");
++
++ VMA_DEBUG_GLOBAL_MUTEX_LOCK
++
++ const VkResult res = allocator->FlushOrInvalidateAllocations(allocationCount, allocations, offsets, sizes, VMA_CACHE_FLUSH);
++
++ return res;
++}
++
++VMA_CALL_PRE VkResult VMA_CALL_POST vmaInvalidateAllocations(
++ VmaAllocator allocator,
++ uint32_t allocationCount,
++ const VmaAllocation* allocations,
++ const VkDeviceSize* offsets,
++ const VkDeviceSize* sizes)
++{
++ VMA_ASSERT(allocator);
++
++ if(allocationCount == 0)
++ {
++ return VK_SUCCESS;
++ }
++
++ VMA_ASSERT(allocations);
++
++ VMA_DEBUG_LOG("vmaInvalidateAllocations");
++
++ VMA_DEBUG_GLOBAL_MUTEX_LOCK
++
++ const VkResult res = allocator->FlushOrInvalidateAllocations(allocationCount, allocations, offsets, sizes, VMA_CACHE_INVALIDATE);
++
++ return res;
++}
++
++VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckCorruption(
++ VmaAllocator allocator,
++ uint32_t memoryTypeBits)
++{
++ VMA_ASSERT(allocator);
++
++ VMA_DEBUG_LOG("vmaCheckCorruption");
++
++ VMA_DEBUG_GLOBAL_MUTEX_LOCK
++
++ return allocator->CheckCorruption(memoryTypeBits);
++}
++
++VMA_CALL_PRE VkResult VMA_CALL_POST vmaBeginDefragmentation(
++ VmaAllocator allocator,
++ const VmaDefragmentationInfo* pInfo,
++ VmaDefragmentationContext* pContext)
++{
++ VMA_ASSERT(allocator && pInfo && pContext);
++
++ VMA_DEBUG_LOG("vmaBeginDefragmentation");
++
++ if (pInfo->pool != VMA_NULL)
++ {
++ // Check if run on supported algorithms
++ if (pInfo->pool->m_BlockVector.GetAlgorithm() & VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT)
++ return VK_ERROR_FEATURE_NOT_PRESENT;
++ }
++
++ VMA_DEBUG_GLOBAL_MUTEX_LOCK
++
++ *pContext = vma_new(allocator, VmaDefragmentationContext_T)(allocator, *pInfo);
++ return VK_SUCCESS;
++}
++
++VMA_CALL_PRE void VMA_CALL_POST vmaEndDefragmentation(
++ VmaAllocator allocator,
++ VmaDefragmentationContext context,
++ VmaDefragmentationStats* pStats)
++{
++ VMA_ASSERT(allocator && context);
++
++ VMA_DEBUG_LOG("vmaEndDefragmentation");
++
++ VMA_DEBUG_GLOBAL_MUTEX_LOCK
++
++ if (pStats)
++ context->GetStats(*pStats);
++ vma_delete(allocator, context);
++}
++
++VMA_CALL_PRE VkResult VMA_CALL_POST vmaBeginDefragmentationPass(
++ VmaAllocator VMA_NOT_NULL allocator,
++ VmaDefragmentationContext VMA_NOT_NULL context,
++ VmaDefragmentationPassMoveInfo* VMA_NOT_NULL pPassInfo)
++{
++ VMA_ASSERT(context && pPassInfo);
++
++ VMA_DEBUG_LOG("vmaBeginDefragmentationPass");
++
++ VMA_DEBUG_GLOBAL_MUTEX_LOCK
++
++ return context->DefragmentPassBegin(*pPassInfo);
++}
++
++VMA_CALL_PRE VkResult VMA_CALL_POST vmaEndDefragmentationPass(
++ VmaAllocator VMA_NOT_NULL allocator,
++ VmaDefragmentationContext VMA_NOT_NULL context,
++ VmaDefragmentationPassMoveInfo* VMA_NOT_NULL pPassInfo)
++{
++ VMA_ASSERT(context && pPassInfo);
++
++ VMA_DEBUG_LOG("vmaEndDefragmentationPass");
++
++ VMA_DEBUG_GLOBAL_MUTEX_LOCK
++
++ return context->DefragmentPassEnd(*pPassInfo);
++}
++
++VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory(
++ VmaAllocator allocator,
++ VmaAllocation allocation,
++ VkBuffer buffer)
++{
++ VMA_ASSERT(allocator && allocation && buffer);
++
++ VMA_DEBUG_LOG("vmaBindBufferMemory");
++
++ VMA_DEBUG_GLOBAL_MUTEX_LOCK
++
++ return allocator->BindBufferMemory(allocation, 0, buffer, VMA_NULL);
++}
++
++VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory2(
++ VmaAllocator allocator,
++ VmaAllocation allocation,
++ VkDeviceSize allocationLocalOffset,
++ VkBuffer buffer,
++ const void* pNext)
++{
++ VMA_ASSERT(allocator && allocation && buffer);
++
++ VMA_DEBUG_LOG("vmaBindBufferMemory2");
++
++ VMA_DEBUG_GLOBAL_MUTEX_LOCK
++
++ return allocator->BindBufferMemory(allocation, allocationLocalOffset, buffer, pNext);
++}
++
++VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory(
++ VmaAllocator allocator,
++ VmaAllocation allocation,
++ VkImage image)
++{
++ VMA_ASSERT(allocator && allocation && image);
++
++ VMA_DEBUG_LOG("vmaBindImageMemory");
++
++ VMA_DEBUG_GLOBAL_MUTEX_LOCK
++
++ return allocator->BindImageMemory(allocation, 0, image, VMA_NULL);
++}
++
++VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory2(
++ VmaAllocator allocator,
++ VmaAllocation allocation,
++ VkDeviceSize allocationLocalOffset,
++ VkImage image,
++ const void* pNext)
++{
++ VMA_ASSERT(allocator && allocation && image);
++
++ VMA_DEBUG_LOG("vmaBindImageMemory2");
++
++ VMA_DEBUG_GLOBAL_MUTEX_LOCK
++
++ return allocator->BindImageMemory(allocation, allocationLocalOffset, image, pNext);
++}
++
++VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateBuffer(
++ VmaAllocator allocator,
++ const VkBufferCreateInfo* pBufferCreateInfo,
++ const VmaAllocationCreateInfo* pAllocationCreateInfo,
++ VkBuffer* pBuffer,
++ VmaAllocation* pAllocation,
++ VmaAllocationInfo* pAllocationInfo)
++{
++ VMA_ASSERT(allocator && pBufferCreateInfo && pAllocationCreateInfo && pBuffer && pAllocation);
++
++ if(pBufferCreateInfo->size == 0)
++ {
++ return VK_ERROR_INITIALIZATION_FAILED;
++ }
++ if((pBufferCreateInfo->usage & VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_COPY) != 0 &&
++ !allocator->m_UseKhrBufferDeviceAddress)
++ {
++ VMA_ASSERT(0 && "Creating a buffer with VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT is not valid if VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT was not used.");
++ return VK_ERROR_INITIALIZATION_FAILED;
++ }
++
++ VMA_DEBUG_LOG("vmaCreateBuffer");
++
++ VMA_DEBUG_GLOBAL_MUTEX_LOCK
++
++ *pBuffer = VK_NULL_HANDLE;
++ *pAllocation = VK_NULL_HANDLE;
++
++ // 1. Create VkBuffer.
++ VkResult res = (*allocator->GetVulkanFunctions().vkCreateBuffer)(
++ allocator->m_hDevice,
++ pBufferCreateInfo,
++ allocator->GetAllocationCallbacks(),
++ pBuffer);
++ if(res >= 0)
++ {
++ // 2. vkGetBufferMemoryRequirements.
++ VkMemoryRequirements vkMemReq = {};
++ bool requiresDedicatedAllocation = false;
++ bool prefersDedicatedAllocation = false;
++ allocator->GetBufferMemoryRequirements(*pBuffer, vkMemReq,
++ requiresDedicatedAllocation, prefersDedicatedAllocation);
++
++ // 3. Allocate memory using allocator.
++ res = allocator->AllocateMemory(
++ vkMemReq,
++ requiresDedicatedAllocation,
++ prefersDedicatedAllocation,
++ *pBuffer, // dedicatedBuffer
++ VK_NULL_HANDLE, // dedicatedImage
++ pBufferCreateInfo->usage, // dedicatedBufferImageUsage
++ *pAllocationCreateInfo,
++ VMA_SUBALLOCATION_TYPE_BUFFER,
++ 1, // allocationCount
++ pAllocation);
++
++ if(res >= 0)
++ {
++ // 3. Bind buffer with memory.
++ if((pAllocationCreateInfo->flags & VMA_ALLOCATION_CREATE_DONT_BIND_BIT) == 0)
++ {
++ res = allocator->BindBufferMemory(*pAllocation, 0, *pBuffer, VMA_NULL);
++ }
++ if(res >= 0)
++ {
++ // All steps succeeded.
++ #if VMA_STATS_STRING_ENABLED
++ (*pAllocation)->InitBufferImageUsage(pBufferCreateInfo->usage);
++ #endif
++ if(pAllocationInfo != VMA_NULL)
++ {
++ allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
++ }
++
++ return VK_SUCCESS;
++ }
++ allocator->FreeMemory(
++ 1, // allocationCount
++ pAllocation);
++ *pAllocation = VK_NULL_HANDLE;
++ (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks());
++ *pBuffer = VK_NULL_HANDLE;
++ return res;
++ }
++ (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks());
++ *pBuffer = VK_NULL_HANDLE;
++ return res;
++ }
++ return res;
++}
++
++VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateBufferWithAlignment(
++ VmaAllocator allocator,
++ const VkBufferCreateInfo* pBufferCreateInfo,
++ const VmaAllocationCreateInfo* pAllocationCreateInfo,
++ VkDeviceSize minAlignment,
++ VkBuffer* pBuffer,
++ VmaAllocation* pAllocation,
++ VmaAllocationInfo* pAllocationInfo)
++{
++ VMA_ASSERT(allocator && pBufferCreateInfo && pAllocationCreateInfo && VmaIsPow2(minAlignment) && pBuffer && pAllocation);
++
++ if(pBufferCreateInfo->size == 0)
++ {
++ return VK_ERROR_INITIALIZATION_FAILED;
++ }
++ if((pBufferCreateInfo->usage & VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_COPY) != 0 &&
++ !allocator->m_UseKhrBufferDeviceAddress)
++ {
++ VMA_ASSERT(0 && "Creating a buffer with VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT is not valid if VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT was not used.");
++ return VK_ERROR_INITIALIZATION_FAILED;
++ }
++
++ VMA_DEBUG_LOG("vmaCreateBufferWithAlignment");
++
++ VMA_DEBUG_GLOBAL_MUTEX_LOCK
++
++ *pBuffer = VK_NULL_HANDLE;
++ *pAllocation = VK_NULL_HANDLE;
++
++ // 1. Create VkBuffer.
++ VkResult res = (*allocator->GetVulkanFunctions().vkCreateBuffer)(
++ allocator->m_hDevice,
++ pBufferCreateInfo,
++ allocator->GetAllocationCallbacks(),
++ pBuffer);
++ if(res >= 0)
++ {
++ // 2. vkGetBufferMemoryRequirements.
++ VkMemoryRequirements vkMemReq = {};
++ bool requiresDedicatedAllocation = false;
++ bool prefersDedicatedAllocation = false;
++ allocator->GetBufferMemoryRequirements(*pBuffer, vkMemReq,
++ requiresDedicatedAllocation, prefersDedicatedAllocation);
++
++ // 2a. Include minAlignment
++ vkMemReq.alignment = VMA_MAX(vkMemReq.alignment, minAlignment);
++
++ // 3. Allocate memory using allocator.
++ res = allocator->AllocateMemory(
++ vkMemReq,
++ requiresDedicatedAllocation,
++ prefersDedicatedAllocation,
++ *pBuffer, // dedicatedBuffer
++ VK_NULL_HANDLE, // dedicatedImage
++ pBufferCreateInfo->usage, // dedicatedBufferImageUsage
++ *pAllocationCreateInfo,
++ VMA_SUBALLOCATION_TYPE_BUFFER,
++ 1, // allocationCount
++ pAllocation);
++
++ if(res >= 0)
++ {
++ // 3. Bind buffer with memory.
++ if((pAllocationCreateInfo->flags & VMA_ALLOCATION_CREATE_DONT_BIND_BIT) == 0)
++ {
++ res = allocator->BindBufferMemory(*pAllocation, 0, *pBuffer, VMA_NULL);
++ }
++ if(res >= 0)
++ {
++ // All steps succeeded.
++ #if VMA_STATS_STRING_ENABLED
++ (*pAllocation)->InitBufferImageUsage(pBufferCreateInfo->usage);
++ #endif
++ if(pAllocationInfo != VMA_NULL)
++ {
++ allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
++ }
++
++ return VK_SUCCESS;
++ }
++ allocator->FreeMemory(
++ 1, // allocationCount
++ pAllocation);
++ *pAllocation = VK_NULL_HANDLE;
++ (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks());
++ *pBuffer = VK_NULL_HANDLE;
++ return res;
++ }
++ (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks());
++ *pBuffer = VK_NULL_HANDLE;
++ return res;
++ }
++ return res;
++}
++
++VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAliasingBuffer(
++ VmaAllocator VMA_NOT_NULL allocator,
++ VmaAllocation VMA_NOT_NULL allocation,
++ const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo,
++ VkBuffer VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pBuffer)
++{
++ VMA_ASSERT(allocator && pBufferCreateInfo && pBuffer && allocation);
++
++ VMA_DEBUG_LOG("vmaCreateAliasingBuffer");
++
++ *pBuffer = VK_NULL_HANDLE;
++
++ if (pBufferCreateInfo->size == 0)
++ {
++ return VK_ERROR_INITIALIZATION_FAILED;
++ }
++ if ((pBufferCreateInfo->usage & VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_COPY) != 0 &&
++ !allocator->m_UseKhrBufferDeviceAddress)
++ {
++ VMA_ASSERT(0 && "Creating a buffer with VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT is not valid if VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT was not used.");
++ return VK_ERROR_INITIALIZATION_FAILED;
++ }
++
++ VMA_DEBUG_GLOBAL_MUTEX_LOCK
++
++ // 1. Create VkBuffer.
++ VkResult res = (*allocator->GetVulkanFunctions().vkCreateBuffer)(
++ allocator->m_hDevice,
++ pBufferCreateInfo,
++ allocator->GetAllocationCallbacks(),
++ pBuffer);
++ if (res >= 0)
++ {
++ // 2. Bind buffer with memory.
++ res = allocator->BindBufferMemory(allocation, 0, *pBuffer, VMA_NULL);
++ if (res >= 0)
++ {
++ return VK_SUCCESS;
++ }
++ (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks());
++ }
++ return res;
++}
++
++VMA_CALL_PRE void VMA_CALL_POST vmaDestroyBuffer(
++ VmaAllocator allocator,
++ VkBuffer buffer,
++ VmaAllocation allocation)
++{
++ VMA_ASSERT(allocator);
++
++ if(buffer == VK_NULL_HANDLE && allocation == VK_NULL_HANDLE)
++ {
++ return;
++ }
++
++ VMA_DEBUG_LOG("vmaDestroyBuffer");
++
++ VMA_DEBUG_GLOBAL_MUTEX_LOCK
++
++ if(buffer != VK_NULL_HANDLE)
++ {
++ (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, buffer, allocator->GetAllocationCallbacks());
++ }
++
++ if(allocation != VK_NULL_HANDLE)
++ {
++ allocator->FreeMemory(
++ 1, // allocationCount
++ &allocation);
++ }
++}
++
++VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateImage(
++ VmaAllocator allocator,
++ const VkImageCreateInfo* pImageCreateInfo,
++ const VmaAllocationCreateInfo* pAllocationCreateInfo,
++ VkImage* pImage,
++ VmaAllocation* pAllocation,
++ VmaAllocationInfo* pAllocationInfo)
++{
++ VMA_ASSERT(allocator && pImageCreateInfo && pAllocationCreateInfo && pImage && pAllocation);
++
++ if(pImageCreateInfo->extent.width == 0 ||
++ pImageCreateInfo->extent.height == 0 ||
++ pImageCreateInfo->extent.depth == 0 ||
++ pImageCreateInfo->mipLevels == 0 ||
++ pImageCreateInfo->arrayLayers == 0)
++ {
++ return VK_ERROR_INITIALIZATION_FAILED;
++ }
++
++ VMA_DEBUG_LOG("vmaCreateImage");
++
++ VMA_DEBUG_GLOBAL_MUTEX_LOCK
++
++ *pImage = VK_NULL_HANDLE;
++ *pAllocation = VK_NULL_HANDLE;
++
++ // 1. Create VkImage.
++ VkResult res = (*allocator->GetVulkanFunctions().vkCreateImage)(
++ allocator->m_hDevice,
++ pImageCreateInfo,
++ allocator->GetAllocationCallbacks(),
++ pImage);
++ if(res >= 0)
++ {
++ VmaSuballocationType suballocType = pImageCreateInfo->tiling == VK_IMAGE_TILING_OPTIMAL ?
++ VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL :
++ VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR;
++
++ // 2. Allocate memory using allocator.
++ VkMemoryRequirements vkMemReq = {};
++ bool requiresDedicatedAllocation = false;
++ bool prefersDedicatedAllocation = false;
++ allocator->GetImageMemoryRequirements(*pImage, vkMemReq,
++ requiresDedicatedAllocation, prefersDedicatedAllocation);
++
++ res = allocator->AllocateMemory(
++ vkMemReq,
++ requiresDedicatedAllocation,
++ prefersDedicatedAllocation,
++ VK_NULL_HANDLE, // dedicatedBuffer
++ *pImage, // dedicatedImage
++ pImageCreateInfo->usage, // dedicatedBufferImageUsage
++ *pAllocationCreateInfo,
++ suballocType,
++ 1, // allocationCount
++ pAllocation);
++
++ if(res >= 0)
++ {
++ // 3. Bind image with memory.
++ if((pAllocationCreateInfo->flags & VMA_ALLOCATION_CREATE_DONT_BIND_BIT) == 0)
++ {
++ res = allocator->BindImageMemory(*pAllocation, 0, *pImage, VMA_NULL);
++ }
++ if(res >= 0)
++ {
++ // All steps succeeded.
++ #if VMA_STATS_STRING_ENABLED
++ (*pAllocation)->InitBufferImageUsage(pImageCreateInfo->usage);
++ #endif
++ if(pAllocationInfo != VMA_NULL)
++ {
++ allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
++ }
++
++ return VK_SUCCESS;
++ }
++ allocator->FreeMemory(
++ 1, // allocationCount
++ pAllocation);
++ *pAllocation = VK_NULL_HANDLE;
++ (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, *pImage, allocator->GetAllocationCallbacks());
++ *pImage = VK_NULL_HANDLE;
++ return res;
++ }
++ (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, *pImage, allocator->GetAllocationCallbacks());
++ *pImage = VK_NULL_HANDLE;
++ return res;
++ }
++ return res;
++}
++
++VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAliasingImage(
++ VmaAllocator VMA_NOT_NULL allocator,
++ VmaAllocation VMA_NOT_NULL allocation,
++ const VkImageCreateInfo* VMA_NOT_NULL pImageCreateInfo,
++ VkImage VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pImage)
++{
++ VMA_ASSERT(allocator && pImageCreateInfo && pImage && allocation);
++
++ *pImage = VK_NULL_HANDLE;
++
++ VMA_DEBUG_LOG("vmaCreateImage");
++
++ if (pImageCreateInfo->extent.width == 0 ||
++ pImageCreateInfo->extent.height == 0 ||
++ pImageCreateInfo->extent.depth == 0 ||
++ pImageCreateInfo->mipLevels == 0 ||
++ pImageCreateInfo->arrayLayers == 0)
++ {
++ return VK_ERROR_INITIALIZATION_FAILED;
++ }
++
++ VMA_DEBUG_GLOBAL_MUTEX_LOCK
++
++ // 1. Create VkImage.
++ VkResult res = (*allocator->GetVulkanFunctions().vkCreateImage)(
++ allocator->m_hDevice,
++ pImageCreateInfo,
++ allocator->GetAllocationCallbacks(),
++ pImage);
++ if (res >= 0)
++ {
++ // 2. Bind image with memory.
++ res = allocator->BindImageMemory(allocation, 0, *pImage, VMA_NULL);
++ if (res >= 0)
++ {
++ return VK_SUCCESS;
++ }
++ (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, *pImage, allocator->GetAllocationCallbacks());
++ }
++ return res;
++}
++
++VMA_CALL_PRE void VMA_CALL_POST vmaDestroyImage(
++ VmaAllocator VMA_NOT_NULL allocator,
++ VkImage VMA_NULLABLE_NON_DISPATCHABLE image,
++ VmaAllocation VMA_NULLABLE allocation)
++{
++ VMA_ASSERT(allocator);
++
++ if(image == VK_NULL_HANDLE && allocation == VK_NULL_HANDLE)
++ {
++ return;
++ }
++
++ VMA_DEBUG_LOG("vmaDestroyImage");
++
++ VMA_DEBUG_GLOBAL_MUTEX_LOCK
++
++ if(image != VK_NULL_HANDLE)
++ {
++ (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, image, allocator->GetAllocationCallbacks());
++ }
++ if(allocation != VK_NULL_HANDLE)
++ {
++ allocator->FreeMemory(
++ 1, // allocationCount
++ &allocation);
++ }
++}
++
++VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateVirtualBlock(
++ const VmaVirtualBlockCreateInfo* VMA_NOT_NULL pCreateInfo,
++ VmaVirtualBlock VMA_NULLABLE * VMA_NOT_NULL pVirtualBlock)
++{
++ VMA_ASSERT(pCreateInfo && pVirtualBlock);
++ VMA_ASSERT(pCreateInfo->size > 0);
++ VMA_DEBUG_LOG("vmaCreateVirtualBlock");
++ VMA_DEBUG_GLOBAL_MUTEX_LOCK;
++ *pVirtualBlock = vma_new(pCreateInfo->pAllocationCallbacks, VmaVirtualBlock_T)(*pCreateInfo);
++ VkResult res = (*pVirtualBlock)->Init();
++ if(res < 0)
++ {
++ vma_delete(pCreateInfo->pAllocationCallbacks, *pVirtualBlock);
++ *pVirtualBlock = VK_NULL_HANDLE;
++ }
++ return res;
++}
++
++VMA_CALL_PRE void VMA_CALL_POST vmaDestroyVirtualBlock(VmaVirtualBlock VMA_NULLABLE virtualBlock)
++{
++ if(virtualBlock != VK_NULL_HANDLE)
++ {
++ VMA_DEBUG_LOG("vmaDestroyVirtualBlock");
++ VMA_DEBUG_GLOBAL_MUTEX_LOCK;
++ VkAllocationCallbacks allocationCallbacks = virtualBlock->m_AllocationCallbacks; // Have to copy the callbacks when destroying.
++ vma_delete(&allocationCallbacks, virtualBlock);
++ }
++}
++
++VMA_CALL_PRE VkBool32 VMA_CALL_POST vmaIsVirtualBlockEmpty(VmaVirtualBlock VMA_NOT_NULL virtualBlock)
++{
++ VMA_ASSERT(virtualBlock != VK_NULL_HANDLE);
++ VMA_DEBUG_LOG("vmaIsVirtualBlockEmpty");
++ VMA_DEBUG_GLOBAL_MUTEX_LOCK;
++ return virtualBlock->IsEmpty() ? VK_TRUE : VK_FALSE;
++}
++
++VMA_CALL_PRE void VMA_CALL_POST vmaGetVirtualAllocationInfo(VmaVirtualBlock VMA_NOT_NULL virtualBlock,
++ VmaVirtualAllocation VMA_NOT_NULL_NON_DISPATCHABLE allocation, VmaVirtualAllocationInfo* VMA_NOT_NULL pVirtualAllocInfo)
++{
++ VMA_ASSERT(virtualBlock != VK_NULL_HANDLE && pVirtualAllocInfo != VMA_NULL);
++ VMA_DEBUG_LOG("vmaGetVirtualAllocationInfo");
++ VMA_DEBUG_GLOBAL_MUTEX_LOCK;
++ virtualBlock->GetAllocationInfo(allocation, *pVirtualAllocInfo);
++}
++
++VMA_CALL_PRE VkResult VMA_CALL_POST vmaVirtualAllocate(VmaVirtualBlock VMA_NOT_NULL virtualBlock,
++ const VmaVirtualAllocationCreateInfo* VMA_NOT_NULL pCreateInfo, VmaVirtualAllocation VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pAllocation,
++ VkDeviceSize* VMA_NULLABLE pOffset)
++{
++ VMA_ASSERT(virtualBlock != VK_NULL_HANDLE && pCreateInfo != VMA_NULL && pAllocation != VMA_NULL);
++ VMA_DEBUG_LOG("vmaVirtualAllocate");
++ VMA_DEBUG_GLOBAL_MUTEX_LOCK;
++ return virtualBlock->Allocate(*pCreateInfo, *pAllocation, pOffset);
++}
++
++VMA_CALL_PRE void VMA_CALL_POST vmaVirtualFree(VmaVirtualBlock VMA_NOT_NULL virtualBlock, VmaVirtualAllocation VMA_NULLABLE_NON_DISPATCHABLE allocation)
++{
++ if(allocation != VK_NULL_HANDLE)
++ {
++ VMA_ASSERT(virtualBlock != VK_NULL_HANDLE);
++ VMA_DEBUG_LOG("vmaVirtualFree");
++ VMA_DEBUG_GLOBAL_MUTEX_LOCK;
++ virtualBlock->Free(allocation);
++ }
++}
++
++VMA_CALL_PRE void VMA_CALL_POST vmaClearVirtualBlock(VmaVirtualBlock VMA_NOT_NULL virtualBlock)
++{
++ VMA_ASSERT(virtualBlock != VK_NULL_HANDLE);
++ VMA_DEBUG_LOG("vmaClearVirtualBlock");
++ VMA_DEBUG_GLOBAL_MUTEX_LOCK;
++ virtualBlock->Clear();
++}
++
++VMA_CALL_PRE void VMA_CALL_POST vmaSetVirtualAllocationUserData(VmaVirtualBlock VMA_NOT_NULL virtualBlock,
++ VmaVirtualAllocation VMA_NOT_NULL_NON_DISPATCHABLE allocation, void* VMA_NULLABLE pUserData)
++{
++ VMA_ASSERT(virtualBlock != VK_NULL_HANDLE);
++ VMA_DEBUG_LOG("vmaSetVirtualAllocationUserData");
++ VMA_DEBUG_GLOBAL_MUTEX_LOCK;
++ virtualBlock->SetAllocationUserData(allocation, pUserData);
++}
++
++VMA_CALL_PRE void VMA_CALL_POST vmaGetVirtualBlockStatistics(VmaVirtualBlock VMA_NOT_NULL virtualBlock,
++ VmaStatistics* VMA_NOT_NULL pStats)
++{
++ VMA_ASSERT(virtualBlock != VK_NULL_HANDLE && pStats != VMA_NULL);
++ VMA_DEBUG_LOG("vmaGetVirtualBlockStatistics");
++ VMA_DEBUG_GLOBAL_MUTEX_LOCK;
++ virtualBlock->GetStatistics(*pStats);
++}
++
++VMA_CALL_PRE void VMA_CALL_POST vmaCalculateVirtualBlockStatistics(VmaVirtualBlock VMA_NOT_NULL virtualBlock,
++ VmaDetailedStatistics* VMA_NOT_NULL pStats)
++{
++ VMA_ASSERT(virtualBlock != VK_NULL_HANDLE && pStats != VMA_NULL);
++ VMA_DEBUG_LOG("vmaCalculateVirtualBlockStatistics");
++ VMA_DEBUG_GLOBAL_MUTEX_LOCK;
++ virtualBlock->CalculateDetailedStatistics(*pStats);
++}
++
++#if VMA_STATS_STRING_ENABLED
++
++VMA_CALL_PRE void VMA_CALL_POST vmaBuildVirtualBlockStatsString(VmaVirtualBlock VMA_NOT_NULL virtualBlock,
++ char* VMA_NULLABLE * VMA_NOT_NULL ppStatsString, VkBool32 detailedMap)
++{
++ VMA_ASSERT(virtualBlock != VK_NULL_HANDLE && ppStatsString != VMA_NULL);
++ VMA_DEBUG_GLOBAL_MUTEX_LOCK;
++ const VkAllocationCallbacks* allocationCallbacks = virtualBlock->GetAllocationCallbacks();
++ VmaStringBuilder sb(allocationCallbacks);
++ virtualBlock->BuildStatsString(detailedMap != VK_FALSE, sb);
++ *ppStatsString = VmaCreateStringCopy(allocationCallbacks, sb.GetData(), sb.GetLength());
++}
++
++VMA_CALL_PRE void VMA_CALL_POST vmaFreeVirtualBlockStatsString(VmaVirtualBlock VMA_NOT_NULL virtualBlock,
++ char* VMA_NULLABLE pStatsString)
++{
++ if(pStatsString != VMA_NULL)
++ {
++ VMA_ASSERT(virtualBlock != VK_NULL_HANDLE);
++ VMA_DEBUG_GLOBAL_MUTEX_LOCK;
++ VmaFreeString(virtualBlock->GetAllocationCallbacks(), pStatsString);
++ }
++}
++#endif // VMA_STATS_STRING_ENABLED
++#endif // _VMA_PUBLIC_INTERFACE
++#endif // VMA_IMPLEMENTATION
++
++/**
++\page quick_start Quick start
++
++\section quick_start_project_setup Project setup
++
++Vulkan Memory Allocator comes in form of a "stb-style" single header file.
++You don't need to build it as a separate library project.
++You can add this file directly to your project and submit it to code repository next to your other source files.
++
++"Single header" doesn't mean that everything is contained in C/C++ declarations,
++like it tends to be in case of inline functions or C++ templates.
++It means that implementation is bundled with interface in a single file and needs to be extracted using preprocessor macro.
++If you don't do it properly, you will get linker errors.
++
++To do it properly:
++
++-# Include "vk_mem_alloc.h" file in each CPP file where you want to use the library.
++ This includes declarations of all members of the library.
++-# In exactly one CPP file define following macro before this include.
++ It enables also internal definitions.
++
++\code
++#define VMA_IMPLEMENTATION
++#include "vk_mem_alloc.h"
++\endcode
++
++It may be a good idea to create dedicated CPP file just for this purpose.
++
++This library includes header `<vulkan/vulkan.h>`, which in turn
++includes `<windows.h>` on Windows. If you need some specific macros defined
++before including these headers (like `WIN32_LEAN_AND_MEAN` or
++`WINVER` for Windows, `VK_USE_PLATFORM_WIN32_KHR` for Vulkan), you must define
++them before every `#include` of this library.
++
++This library is written in C++, but has C-compatible interface.
++Thus you can include and use vk_mem_alloc.h in C or C++ code, but full
++implementation with `VMA_IMPLEMENTATION` macro must be compiled as C++, NOT as C.
++Some features of C++14 used. STL containers, RTTI, or C++ exceptions are not used.
++
++
++\section quick_start_initialization Initialization
++
++At program startup:
++
++-# Initialize Vulkan to have `VkPhysicalDevice`, `VkDevice` and `VkInstance` object.
++-# Fill VmaAllocatorCreateInfo structure and create #VmaAllocator object by
++ calling vmaCreateAllocator().
++
++Only members `physicalDevice`, `device`, `instance` are required.
++However, you should inform the library which Vulkan version do you use by setting
++VmaAllocatorCreateInfo::vulkanApiVersion and which extensions did you enable
++by setting VmaAllocatorCreateInfo::flags (like #VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT for VK_KHR_buffer_device_address).
++Otherwise, VMA would use only features of Vulkan 1.0 core with no extensions.
++
++You may need to configure importing Vulkan functions. There are 3 ways to do this:
++
++-# **If you link with Vulkan static library** (e.g. "vulkan-1.lib" on Windows):
++ - You don't need to do anything.
++ - VMA will use these, as macro `VMA_STATIC_VULKAN_FUNCTIONS` is defined to 1 by default.
++-# **If you want VMA to fetch pointers to Vulkan functions dynamically** using `vkGetInstanceProcAddr`,
++ `vkGetDeviceProcAddr` (this is the option presented in the example below):
++ - Define `VMA_STATIC_VULKAN_FUNCTIONS` to 0, `VMA_DYNAMIC_VULKAN_FUNCTIONS` to 1.
++ - Provide pointers to these two functions via VmaVulkanFunctions::vkGetInstanceProcAddr,
++ VmaVulkanFunctions::vkGetDeviceProcAddr.
++ - The library will fetch pointers to all other functions it needs internally.
++-# **If you fetch pointers to all Vulkan functions in a custom way**, e.g. using some loader like
++ [Volk](https://github.com/zeux/volk):
++ - Define `VMA_STATIC_VULKAN_FUNCTIONS` and `VMA_DYNAMIC_VULKAN_FUNCTIONS` to 0.
++ - Pass these pointers via structure #VmaVulkanFunctions.
++
++\code
++VmaVulkanFunctions vulkanFunctions = {};
++vulkanFunctions.vkGetInstanceProcAddr = &vkGetInstanceProcAddr;
++vulkanFunctions.vkGetDeviceProcAddr = &vkGetDeviceProcAddr;
++
++VmaAllocatorCreateInfo allocatorCreateInfo = {};
++allocatorCreateInfo.vulkanApiVersion = VK_API_VERSION_1_2;
++allocatorCreateInfo.physicalDevice = physicalDevice;
++allocatorCreateInfo.device = device;
++allocatorCreateInfo.instance = instance;
++allocatorCreateInfo.pVulkanFunctions = &vulkanFunctions;
++
++VmaAllocator allocator;
++vmaCreateAllocator(&allocatorCreateInfo, &allocator);
++\endcode
++
++
++\section quick_start_resource_allocation Resource allocation
++
++When you want to create a buffer or image:
++
++-# Fill `VkBufferCreateInfo` / `VkImageCreateInfo` structure.
++-# Fill VmaAllocationCreateInfo structure.
++-# Call vmaCreateBuffer() / vmaCreateImage() to get `VkBuffer`/`VkImage` with memory
++ already allocated and bound to it, plus #VmaAllocation objects that represents its underlying memory.
++
++\code
++VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
++bufferInfo.size = 65536;
++bufferInfo.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
++
++VmaAllocationCreateInfo allocInfo = {};
++allocInfo.usage = VMA_MEMORY_USAGE_AUTO;
++
++VkBuffer buffer;
++VmaAllocation allocation;
++vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr);
++\endcode
++
++Don't forget to destroy your objects when no longer needed:
++
++\code
++vmaDestroyBuffer(allocator, buffer, allocation);
++vmaDestroyAllocator(allocator);
++\endcode
++
++
++\page choosing_memory_type Choosing memory type
++
++Physical devices in Vulkan support various combinations of memory heaps and
++types. Help with choosing correct and optimal memory type for your specific
++resource is one of the key features of this library. You can use it by filling
++appropriate members of VmaAllocationCreateInfo structure, as described below.
++You can also combine multiple methods.
++
++-# If you just want to find memory type index that meets your requirements, you
++ can use function: vmaFindMemoryTypeIndexForBufferInfo(),
++ vmaFindMemoryTypeIndexForImageInfo(), vmaFindMemoryTypeIndex().
++-# If you want to allocate a region of device memory without association with any
++ specific image or buffer, you can use function vmaAllocateMemory(). Usage of
++ this function is not recommended and usually not needed.
++ vmaAllocateMemoryPages() function is also provided for creating multiple allocations at once,
++ which may be useful for sparse binding.
++-# If you already have a buffer or an image created, you want to allocate memory
++ for it and then you will bind it yourself, you can use function
++ vmaAllocateMemoryForBuffer(), vmaAllocateMemoryForImage().
++ For binding you should use functions: vmaBindBufferMemory(), vmaBindImageMemory()
++ or their extended versions: vmaBindBufferMemory2(), vmaBindImageMemory2().
++-# **This is the easiest and recommended way to use this library:**
++ If you want to create a buffer or an image, allocate memory for it and bind
++ them together, all in one call, you can use function vmaCreateBuffer(),
++ vmaCreateImage().
++
++When using 3. or 4., the library internally queries Vulkan for memory types
++supported for that buffer or image (function `vkGetBufferMemoryRequirements()`)
++and uses only one of these types.
++
++If no memory type can be found that meets all the requirements, these functions
++return `VK_ERROR_FEATURE_NOT_PRESENT`.
++
++You can leave VmaAllocationCreateInfo structure completely filled with zeros.
++It means no requirements are specified for memory type.
++It is valid, although not very useful.
++
++\section choosing_memory_type_usage Usage
++
++The easiest way to specify memory requirements is to fill member
++VmaAllocationCreateInfo::usage using one of the values of enum #VmaMemoryUsage.
++It defines high level, common usage types.
++Since version 3 of the library, it is recommended to use #VMA_MEMORY_USAGE_AUTO to let it select best memory type for your resource automatically.
++
++For example, if you want to create a uniform buffer that will be filled using
++transfer only once or infrequently and then used for rendering every frame as a uniform buffer, you can
++do it using following code. The buffer will most likely end up in a memory type with
++`VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT` to be fast to access by the GPU device.
++
++\code
++VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
++bufferInfo.size = 65536;
++bufferInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
++
++VmaAllocationCreateInfo allocInfo = {};
++allocInfo.usage = VMA_MEMORY_USAGE_AUTO;
++
++VkBuffer buffer;
++VmaAllocation allocation;
++vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr);
++\endcode
++
++If you have a preference for putting the resource in GPU (device) memory or CPU (host) memory
++on systems with discrete graphics card that have the memories separate, you can use
++#VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE or #VMA_MEMORY_USAGE_AUTO_PREFER_HOST.
++
++When using `VMA_MEMORY_USAGE_AUTO*` while you want to map the allocated memory,
++you also need to specify one of the host access flags:
++#VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT.
++This will help the library decide about preferred memory type to ensure it has `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT`
++so you can map it.
++
++For example, a staging buffer that will be filled via mapped pointer and then
++used as a source of transfer to the buffer decribed previously can be created like this.
++It will likely and up in a memory type that is `HOST_VISIBLE` and `HOST_COHERENT`
++but not `HOST_CACHED` (meaning uncached, write-combined) and not `DEVICE_LOCAL` (meaning system RAM).
++
++\code
++VkBufferCreateInfo stagingBufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
++stagingBufferInfo.size = 65536;
++stagingBufferInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
++
++VmaAllocationCreateInfo stagingAllocInfo = {};
++stagingAllocInfo.usage = VMA_MEMORY_USAGE_AUTO;
++stagingAllocInfo.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT;
++
++VkBuffer stagingBuffer;
++VmaAllocation stagingAllocation;
++vmaCreateBuffer(allocator, &stagingBufferInfo, &stagingAllocInfo, &stagingBuffer, &stagingAllocation, nullptr);
++\endcode
++
++For more examples of creating different kinds of resources, see chapter \ref usage_patterns.
++
++Usage values `VMA_MEMORY_USAGE_AUTO*` are legal to use only when the library knows
++about the resource being created by having `VkBufferCreateInfo` / `VkImageCreateInfo` passed,
++so they work with functions like: vmaCreateBuffer(), vmaCreateImage(), vmaFindMemoryTypeIndexForBufferInfo() etc.
++If you allocate raw memory using function vmaAllocateMemory(), you have to use other means of selecting
++memory type, as decribed below.
++
++\note
++Old usage values (`VMA_MEMORY_USAGE_GPU_ONLY`, `VMA_MEMORY_USAGE_CPU_ONLY`,
++`VMA_MEMORY_USAGE_CPU_TO_GPU`, `VMA_MEMORY_USAGE_GPU_TO_CPU`, `VMA_MEMORY_USAGE_CPU_COPY`)
++are still available and work same way as in previous versions of the library
++for backward compatibility, but they are not recommended.
++
++\section choosing_memory_type_required_preferred_flags Required and preferred flags
++
++You can specify more detailed requirements by filling members
++VmaAllocationCreateInfo::requiredFlags and VmaAllocationCreateInfo::preferredFlags
++with a combination of bits from enum `VkMemoryPropertyFlags`. For example,
++if you want to create a buffer that will be persistently mapped on host (so it
++must be `HOST_VISIBLE`) and preferably will also be `HOST_COHERENT` and `HOST_CACHED`,
++use following code:
++
++\code
++VmaAllocationCreateInfo allocInfo = {};
++allocInfo.requiredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
++allocInfo.preferredFlags = VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT;
++allocInfo.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT | VMA_ALLOCATION_CREATE_MAPPED_BIT;
++
++VkBuffer buffer;
++VmaAllocation allocation;
++vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr);
++\endcode
++
++A memory type is chosen that has all the required flags and as many preferred
++flags set as possible.
++
++Value passed in VmaAllocationCreateInfo::usage is internally converted to a set of required and preferred flags,
++plus some extra "magic" (heuristics).
++
++\section choosing_memory_type_explicit_memory_types Explicit memory types
++
++If you inspected memory types available on the physical device and you have
++a preference for memory types that you want to use, you can fill member
++VmaAllocationCreateInfo::memoryTypeBits. It is a bit mask, where each bit set
++means that a memory type with that index is allowed to be used for the
++allocation. Special value 0, just like `UINT32_MAX`, means there are no
++restrictions to memory type index.
++
++Please note that this member is NOT just a memory type index.
++Still you can use it to choose just one, specific memory type.
++For example, if you already determined that your buffer should be created in
++memory type 2, use following code:
++
++\code
++uint32_t memoryTypeIndex = 2;
++
++VmaAllocationCreateInfo allocInfo = {};
++allocInfo.memoryTypeBits = 1u << memoryTypeIndex;
++
++VkBuffer buffer;
++VmaAllocation allocation;
++vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr);
++\endcode
++
++
++\section choosing_memory_type_custom_memory_pools Custom memory pools
++
++If you allocate from custom memory pool, all the ways of specifying memory
++requirements described above are not applicable and the aforementioned members
++of VmaAllocationCreateInfo structure are ignored. Memory type is selected
++explicitly when creating the pool and then used to make all the allocations from
++that pool. For further details, see \ref custom_memory_pools.
++
++\section choosing_memory_type_dedicated_allocations Dedicated allocations
++
++Memory for allocations is reserved out of larger block of `VkDeviceMemory`
++allocated from Vulkan internally. That is the main feature of this whole library.
++You can still request a separate memory block to be created for an allocation,
++just like you would do in a trivial solution without using any allocator.
++In that case, a buffer or image is always bound to that memory at offset 0.
++This is called a "dedicated allocation".
++You can explicitly request it by using flag #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT.
++The library can also internally decide to use dedicated allocation in some cases, e.g.:
++
++- When the size of the allocation is large.
++- When [VK_KHR_dedicated_allocation](@ref vk_khr_dedicated_allocation) extension is enabled
++ and it reports that dedicated allocation is required or recommended for the resource.
++- When allocation of next big memory block fails due to not enough device memory,
++ but allocation with the exact requested size succeeds.
++
++
++\page memory_mapping Memory mapping
++
++To "map memory" in Vulkan means to obtain a CPU pointer to `VkDeviceMemory`,
++to be able to read from it or write to it in CPU code.
++Mapping is possible only of memory allocated from a memory type that has
++`VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` flag.
++Functions `vkMapMemory()`, `vkUnmapMemory()` are designed for this purpose.
++You can use them directly with memory allocated by this library,
++but it is not recommended because of following issue:
++Mapping the same `VkDeviceMemory` block multiple times is illegal - only one mapping at a time is allowed.
++This includes mapping disjoint regions. Mapping is not reference-counted internally by Vulkan.
++Because of this, Vulkan Memory Allocator provides following facilities:
++
++\note If you want to be able to map an allocation, you need to specify one of the flags
++#VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT
++in VmaAllocationCreateInfo::flags. These flags are required for an allocation to be mappable
++when using #VMA_MEMORY_USAGE_AUTO or other `VMA_MEMORY_USAGE_AUTO*` enum values.
++For other usage values they are ignored and every such allocation made in `HOST_VISIBLE` memory type is mappable,
++but they can still be used for consistency.
++
++\section memory_mapping_mapping_functions Mapping functions
++
++The library provides following functions for mapping of a specific #VmaAllocation: vmaMapMemory(), vmaUnmapMemory().
++They are safer and more convenient to use than standard Vulkan functions.
++You can map an allocation multiple times simultaneously - mapping is reference-counted internally.
++You can also map different allocations simultaneously regardless of whether they use the same `VkDeviceMemory` block.
++The way it is implemented is that the library always maps entire memory block, not just region of the allocation.
++For further details, see description of vmaMapMemory() function.
++Example:
++
++\code
++// Having these objects initialized:
++struct ConstantBuffer
++{
++ ...
++};
++ConstantBuffer constantBufferData = ...
++
++VmaAllocator allocator = ...
++VkBuffer constantBuffer = ...
++VmaAllocation constantBufferAllocation = ...
++
++// You can map and fill your buffer using following code:
++
++void* mappedData;
++vmaMapMemory(allocator, constantBufferAllocation, &mappedData);
++memcpy(mappedData, &constantBufferData, sizeof(constantBufferData));
++vmaUnmapMemory(allocator, constantBufferAllocation);
++\endcode
++
++When mapping, you may see a warning from Vulkan validation layer similar to this one:
++
++<i>Mapping an image with layout VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL can result in undefined behavior if this memory is used by the device. Only GENERAL or PREINITIALIZED should be used.</i>
++
++It happens because the library maps entire `VkDeviceMemory` block, where different
++types of images and buffers may end up together, especially on GPUs with unified memory like Intel.
++You can safely ignore it if you are sure you access only memory of the intended
++object that you wanted to map.
++
++
++\section memory_mapping_persistently_mapped_memory Persistently mapped memory
++
++Kepping your memory persistently mapped is generally OK in Vulkan.
++You don't need to unmap it before using its data on the GPU.
++The library provides a special feature designed for that:
++Allocations made with #VMA_ALLOCATION_CREATE_MAPPED_BIT flag set in
++VmaAllocationCreateInfo::flags stay mapped all the time,
++so you can just access CPU pointer to it any time
++without a need to call any "map" or "unmap" function.
++Example:
++
++\code
++VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
++bufCreateInfo.size = sizeof(ConstantBuffer);
++bufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
++
++VmaAllocationCreateInfo allocCreateInfo = {};
++allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO;
++allocCreateInfo.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT |
++ VMA_ALLOCATION_CREATE_MAPPED_BIT;
++
++VkBuffer buf;
++VmaAllocation alloc;
++VmaAllocationInfo allocInfo;
++vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo);
++
++// Buffer is already mapped. You can access its memory.
++memcpy(allocInfo.pMappedData, &constantBufferData, sizeof(constantBufferData));
++\endcode
++
++\note #VMA_ALLOCATION_CREATE_MAPPED_BIT by itself doesn't guarantee that the allocation will end up
++in a mappable memory type.
++For this, you need to also specify #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or
++#VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT.
++#VMA_ALLOCATION_CREATE_MAPPED_BIT only guarantees that if the memory is `HOST_VISIBLE`, the allocation will be mapped on creation.
++For an example of how to make use of this fact, see section \ref usage_patterns_advanced_data_uploading.
++
++\section memory_mapping_cache_control Cache flush and invalidate
++
++Memory in Vulkan doesn't need to be unmapped before using it on GPU,
++but unless a memory types has `VK_MEMORY_PROPERTY_HOST_COHERENT_BIT` flag set,
++you need to manually **invalidate** cache before reading of mapped pointer
++and **flush** cache after writing to mapped pointer.
++Map/unmap operations don't do that automatically.
++Vulkan provides following functions for this purpose `vkFlushMappedMemoryRanges()`,
++`vkInvalidateMappedMemoryRanges()`, but this library provides more convenient
++functions that refer to given allocation object: vmaFlushAllocation(),
++vmaInvalidateAllocation(),
++or multiple objects at once: vmaFlushAllocations(), vmaInvalidateAllocations().
++
++Regions of memory specified for flush/invalidate must be aligned to
++`VkPhysicalDeviceLimits::nonCoherentAtomSize`. This is automatically ensured by the library.
++In any memory type that is `HOST_VISIBLE` but not `HOST_COHERENT`, all allocations
++within blocks are aligned to this value, so their offsets are always multiply of
++`nonCoherentAtomSize` and two different allocations never share same "line" of this size.
++
++Also, Windows drivers from all 3 PC GPU vendors (AMD, Intel, NVIDIA)
++currently provide `HOST_COHERENT` flag on all memory types that are
++`HOST_VISIBLE`, so on PC you may not need to bother.
++
++
++\page staying_within_budget Staying within budget
++
++When developing a graphics-intensive game or program, it is important to avoid allocating
++more GPU memory than it is physically available. When the memory is over-committed,
++various bad things can happen, depending on the specific GPU, graphics driver, and
++operating system:
++
++- It may just work without any problems.
++- The application may slow down because some memory blocks are moved to system RAM
++ and the GPU has to access them through PCI Express bus.
++- A new allocation may take very long time to complete, even few seconds, and possibly
++ freeze entire system.
++- The new allocation may fail with `VK_ERROR_OUT_OF_DEVICE_MEMORY`.
++- It may even result in GPU crash (TDR), observed as `VK_ERROR_DEVICE_LOST`
++ returned somewhere later.
++
++\section staying_within_budget_querying_for_budget Querying for budget
++
++To query for current memory usage and available budget, use function vmaGetHeapBudgets().
++Returned structure #VmaBudget contains quantities expressed in bytes, per Vulkan memory heap.
++
++Please note that this function returns different information and works faster than
++vmaCalculateStatistics(). vmaGetHeapBudgets() can be called every frame or even before every
++allocation, while vmaCalculateStatistics() is intended to be used rarely,
++only to obtain statistical information, e.g. for debugging purposes.
++
++It is recommended to use <b>VK_EXT_memory_budget</b> device extension to obtain information
++about the budget from Vulkan device. VMA is able to use this extension automatically.
++When not enabled, the allocator behaves same way, but then it estimates current usage
++and available budget based on its internal information and Vulkan memory heap sizes,
++which may be less precise. In order to use this extension:
++
++1. Make sure extensions VK_EXT_memory_budget and VK_KHR_get_physical_device_properties2
++ required by it are available and enable them. Please note that the first is a device
++ extension and the second is instance extension!
++2. Use flag #VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT when creating #VmaAllocator object.
++3. Make sure to call vmaSetCurrentFrameIndex() every frame. Budget is queried from
++ Vulkan inside of it to avoid overhead of querying it with every allocation.
++
++\section staying_within_budget_controlling_memory_usage Controlling memory usage
++
++There are many ways in which you can try to stay within the budget.
++
++First, when making new allocation requires allocating a new memory block, the library
++tries not to exceed the budget automatically. If a block with default recommended size
++(e.g. 256 MB) would go over budget, a smaller block is allocated, possibly even
++dedicated memory for just this resource.
++
++If the size of the requested resource plus current memory usage is more than the
++budget, by default the library still tries to create it, leaving it to the Vulkan
++implementation whether the allocation succeeds or fails. You can change this behavior
++by using #VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT flag. With it, the allocation is
++not made if it would exceed the budget or if the budget is already exceeded.
++VMA then tries to make the allocation from the next eligible Vulkan memory type.
++The all of them fail, the call then fails with `VK_ERROR_OUT_OF_DEVICE_MEMORY`.
++Example usage pattern may be to pass the #VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT flag
++when creating resources that are not essential for the application (e.g. the texture
++of a specific object) and not to pass it when creating critically important resources
++(e.g. render targets).
++
++On AMD graphics cards there is a custom vendor extension available: <b>VK_AMD_memory_overallocation_behavior</b>
++that allows to control the behavior of the Vulkan implementation in out-of-memory cases -
++whether it should fail with an error code or still allow the allocation.
++Usage of this extension involves only passing extra structure on Vulkan device creation,
++so it is out of scope of this library.
++
++Finally, you can also use #VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT flag to make sure
++a new allocation is created only when it fits inside one of the existing memory blocks.
++If it would require to allocate a new block, if fails instead with `VK_ERROR_OUT_OF_DEVICE_MEMORY`.
++This also ensures that the function call is very fast because it never goes to Vulkan
++to obtain a new block.
++
++\note Creating \ref custom_memory_pools with VmaPoolCreateInfo::minBlockCount
++set to more than 0 will currently try to allocate memory blocks without checking whether they
++fit within budget.
++
++
++\page resource_aliasing Resource aliasing (overlap)
++
++New explicit graphics APIs (Vulkan and Direct3D 12), thanks to manual memory
++management, give an opportunity to alias (overlap) multiple resources in the
++same region of memory - a feature not available in the old APIs (Direct3D 11, OpenGL).
++It can be useful to save video memory, but it must be used with caution.
++
++For example, if you know the flow of your whole render frame in advance, you
++are going to use some intermediate textures or buffers only during a small range of render passes,
++and you know these ranges don't overlap in time, you can bind these resources to
++the same place in memory, even if they have completely different parameters (width, height, format etc.).
++
++![Resource aliasing (overlap)](../gfx/Aliasing.png)
++
++Such scenario is possible using VMA, but you need to create your images manually.
++Then you need to calculate parameters of an allocation to be made using formula:
++
++- allocation size = max(size of each image)
++- allocation alignment = max(alignment of each image)
++- allocation memoryTypeBits = bitwise AND(memoryTypeBits of each image)
++
++Following example shows two different images bound to the same place in memory,
++allocated to fit largest of them.
++
++\code
++// A 512x512 texture to be sampled.
++VkImageCreateInfo img1CreateInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO };
++img1CreateInfo.imageType = VK_IMAGE_TYPE_2D;
++img1CreateInfo.extent.width = 512;
++img1CreateInfo.extent.height = 512;
++img1CreateInfo.extent.depth = 1;
++img1CreateInfo.mipLevels = 10;
++img1CreateInfo.arrayLayers = 1;
++img1CreateInfo.format = VK_FORMAT_R8G8B8A8_SRGB;
++img1CreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
++img1CreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
++img1CreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
++img1CreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
++
++// A full screen texture to be used as color attachment.
++VkImageCreateInfo img2CreateInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO };
++img2CreateInfo.imageType = VK_IMAGE_TYPE_2D;
++img2CreateInfo.extent.width = 1920;
++img2CreateInfo.extent.height = 1080;
++img2CreateInfo.extent.depth = 1;
++img2CreateInfo.mipLevels = 1;
++img2CreateInfo.arrayLayers = 1;
++img2CreateInfo.format = VK_FORMAT_R8G8B8A8_UNORM;
++img2CreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
++img2CreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
++img2CreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
++img2CreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
++
++VkImage img1;
++res = vkCreateImage(device, &img1CreateInfo, nullptr, &img1);
++VkImage img2;
++res = vkCreateImage(device, &img2CreateInfo, nullptr, &img2);
++
++VkMemoryRequirements img1MemReq;
++vkGetImageMemoryRequirements(device, img1, &img1MemReq);
++VkMemoryRequirements img2MemReq;
++vkGetImageMemoryRequirements(device, img2, &img2MemReq);
++
++VkMemoryRequirements finalMemReq = {};
++finalMemReq.size = std::max(img1MemReq.size, img2MemReq.size);
++finalMemReq.alignment = std::max(img1MemReq.alignment, img2MemReq.alignment);
++finalMemReq.memoryTypeBits = img1MemReq.memoryTypeBits & img2MemReq.memoryTypeBits;
++// Validate if(finalMemReq.memoryTypeBits != 0)
++
++VmaAllocationCreateInfo allocCreateInfo = {};
++allocCreateInfo.preferredFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
++
++VmaAllocation alloc;
++res = vmaAllocateMemory(allocator, &finalMemReq, &allocCreateInfo, &alloc, nullptr);
++
++res = vmaBindImageMemory(allocator, alloc, img1);
++res = vmaBindImageMemory(allocator, alloc, img2);
++
++// You can use img1, img2 here, but not at the same time!
++
++vmaFreeMemory(allocator, alloc);
++vkDestroyImage(allocator, img2, nullptr);
++vkDestroyImage(allocator, img1, nullptr);
++\endcode
++
++Remember that using resources that alias in memory requires proper synchronization.
++You need to issue a memory barrier to make sure commands that use `img1` and `img2`
++don't overlap on GPU timeline.
++You also need to treat a resource after aliasing as uninitialized - containing garbage data.
++For example, if you use `img1` and then want to use `img2`, you need to issue
++an image memory barrier for `img2` with `oldLayout` = `VK_IMAGE_LAYOUT_UNDEFINED`.
++
++Additional considerations:
++
++- Vulkan also allows to interpret contents of memory between aliasing resources consistently in some cases.
++See chapter 11.8. "Memory Aliasing" of Vulkan specification or `VK_IMAGE_CREATE_ALIAS_BIT` flag.
++- You can create more complex layout where different images and buffers are bound
++at different offsets inside one large allocation. For example, one can imagine
++a big texture used in some render passes, aliasing with a set of many small buffers
++used between in some further passes. To bind a resource at non-zero offset in an allocation,
++use vmaBindBufferMemory2() / vmaBindImageMemory2().
++- Before allocating memory for the resources you want to alias, check `memoryTypeBits`
++returned in memory requirements of each resource to make sure the bits overlap.
++Some GPUs may expose multiple memory types suitable e.g. only for buffers or
++images with `COLOR_ATTACHMENT` usage, so the sets of memory types supported by your
++resources may be disjoint. Aliasing them is not possible in that case.
++
++
++\page custom_memory_pools Custom memory pools
++
++A memory pool contains a number of `VkDeviceMemory` blocks.
++The library automatically creates and manages default pool for each memory type available on the device.
++Default memory pool automatically grows in size.
++Size of allocated blocks is also variable and managed automatically.
++
++You can create custom pool and allocate memory out of it.
++It can be useful if you want to:
++
++- Keep certain kind of allocations separate from others.
++- Enforce particular, fixed size of Vulkan memory blocks.
++- Limit maximum amount of Vulkan memory allocated for that pool.
++- Reserve minimum or fixed amount of Vulkan memory always preallocated for that pool.
++- Use extra parameters for a set of your allocations that are available in #VmaPoolCreateInfo but not in
++ #VmaAllocationCreateInfo - e.g., custom minimum alignment, custom `pNext` chain.
++- Perform defragmentation on a specific subset of your allocations.
++
++To use custom memory pools:
++
++-# Fill VmaPoolCreateInfo structure.
++-# Call vmaCreatePool() to obtain #VmaPool handle.
++-# When making an allocation, set VmaAllocationCreateInfo::pool to this handle.
++ You don't need to specify any other parameters of this structure, like `usage`.
++
++Example:
++
++\code
++// Find memoryTypeIndex for the pool.
++VkBufferCreateInfo sampleBufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
++sampleBufCreateInfo.size = 0x10000; // Doesn't matter.
++sampleBufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
++
++VmaAllocationCreateInfo sampleAllocCreateInfo = {};
++sampleAllocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO;
++
++uint32_t memTypeIndex;
++VkResult res = vmaFindMemoryTypeIndexForBufferInfo(allocator,
++ &sampleBufCreateInfo, &sampleAllocCreateInfo, &memTypeIndex);
++// Check res...
++
++// Create a pool that can have at most 2 blocks, 128 MiB each.
++VmaPoolCreateInfo poolCreateInfo = {};
++poolCreateInfo.memoryTypeIndex = memTypeIndex;
++poolCreateInfo.blockSize = 128ull * 1024 * 1024;
++poolCreateInfo.maxBlockCount = 2;
++
++VmaPool pool;
++res = vmaCreatePool(allocator, &poolCreateInfo, &pool);
++// Check res...
++
++// Allocate a buffer out of it.
++VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
++bufCreateInfo.size = 1024;
++bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
++
++VmaAllocationCreateInfo allocCreateInfo = {};
++allocCreateInfo.pool = pool;
++
++VkBuffer buf;
++VmaAllocation alloc;
++res = vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, nullptr);
++// Check res...
++\endcode
++
++You have to free all allocations made from this pool before destroying it.
++
++\code
++vmaDestroyBuffer(allocator, buf, alloc);
++vmaDestroyPool(allocator, pool);
++\endcode
++
++New versions of this library support creating dedicated allocations in custom pools.
++It is supported only when VmaPoolCreateInfo::blockSize = 0.
++To use this feature, set VmaAllocationCreateInfo::pool to the pointer to your custom pool and
++VmaAllocationCreateInfo::flags to #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT.
++
++\note Excessive use of custom pools is a common mistake when using this library.
++Custom pools may be useful for special purposes - when you want to
++keep certain type of resources separate e.g. to reserve minimum amount of memory
++for them or limit maximum amount of memory they can occupy. For most
++resources this is not needed and so it is not recommended to create #VmaPool
++objects and allocations out of them. Allocating from the default pool is sufficient.
++
++
++\section custom_memory_pools_MemTypeIndex Choosing memory type index
++
++When creating a pool, you must explicitly specify memory type index.
++To find the one suitable for your buffers or images, you can use helper functions
++vmaFindMemoryTypeIndexForBufferInfo(), vmaFindMemoryTypeIndexForImageInfo().
++You need to provide structures with example parameters of buffers or images
++that you are going to create in that pool.
++
++\code
++VkBufferCreateInfo exampleBufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
++exampleBufCreateInfo.size = 1024; // Doesn't matter
++exampleBufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
++
++VmaAllocationCreateInfo allocCreateInfo = {};
++allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO;
++
++uint32_t memTypeIndex;
++vmaFindMemoryTypeIndexForBufferInfo(allocator, &exampleBufCreateInfo, &allocCreateInfo, &memTypeIndex);
++
++VmaPoolCreateInfo poolCreateInfo = {};
++poolCreateInfo.memoryTypeIndex = memTypeIndex;
++// ...
++\endcode
++
++When creating buffers/images allocated in that pool, provide following parameters:
++
++- `VkBufferCreateInfo`: Prefer to pass same parameters as above.
++ Otherwise you risk creating resources in a memory type that is not suitable for them, which may result in undefined behavior.
++ Using different `VK_BUFFER_USAGE_` flags may work, but you shouldn't create images in a pool intended for buffers
++ or the other way around.
++- VmaAllocationCreateInfo: You don't need to pass same parameters. Fill only `pool` member.
++ Other members are ignored anyway.
++
++\section linear_algorithm Linear allocation algorithm
++
++Each Vulkan memory block managed by this library has accompanying metadata that
++keeps track of used and unused regions. By default, the metadata structure and
++algorithm tries to find best place for new allocations among free regions to
++optimize memory usage. This way you can allocate and free objects in any order.
++
++![Default allocation algorithm](../gfx/Linear_allocator_1_algo_default.png)
++
++Sometimes there is a need to use simpler, linear allocation algorithm. You can
++create custom pool that uses such algorithm by adding flag
++#VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT to VmaPoolCreateInfo::flags while creating
++#VmaPool object. Then an alternative metadata management is used. It always
++creates new allocations after last one and doesn't reuse free regions after
++allocations freed in the middle. It results in better allocation performance and
++less memory consumed by metadata.
++
++![Linear allocation algorithm](../gfx/Linear_allocator_2_algo_linear.png)
++
++With this one flag, you can create a custom pool that can be used in many ways:
++free-at-once, stack, double stack, and ring buffer. See below for details.
++You don't need to specify explicitly which of these options you are going to use - it is detected automatically.
++
++\subsection linear_algorithm_free_at_once Free-at-once
++
++In a pool that uses linear algorithm, you still need to free all the allocations
++individually, e.g. by using vmaFreeMemory() or vmaDestroyBuffer(). You can free
++them in any order. New allocations are always made after last one - free space
++in the middle is not reused. However, when you release all the allocation and
++the pool becomes empty, allocation starts from the beginning again. This way you
++can use linear algorithm to speed up creation of allocations that you are going
++to release all at once.
++
++![Free-at-once](../gfx/Linear_allocator_3_free_at_once.png)
++
++This mode is also available for pools created with VmaPoolCreateInfo::maxBlockCount
++value that allows multiple memory blocks.
++
++\subsection linear_algorithm_stack Stack
++
++When you free an allocation that was created last, its space can be reused.
++Thanks to this, if you always release allocations in the order opposite to their
++creation (LIFO - Last In First Out), you can achieve behavior of a stack.
++
++![Stack](../gfx/Linear_allocator_4_stack.png)
++
++This mode is also available for pools created with VmaPoolCreateInfo::maxBlockCount
++value that allows multiple memory blocks.
++
++\subsection linear_algorithm_double_stack Double stack
++
++The space reserved by a custom pool with linear algorithm may be used by two
++stacks:
++
++- First, default one, growing up from offset 0.
++- Second, "upper" one, growing down from the end towards lower offsets.
++
++To make allocation from the upper stack, add flag #VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT
++to VmaAllocationCreateInfo::flags.
++
++![Double stack](../gfx/Linear_allocator_7_double_stack.png)
++
++Double stack is available only in pools with one memory block -
++VmaPoolCreateInfo::maxBlockCount must be 1. Otherwise behavior is undefined.
++
++When the two stacks' ends meet so there is not enough space between them for a
++new allocation, such allocation fails with usual
++`VK_ERROR_OUT_OF_DEVICE_MEMORY` error.
++
++\subsection linear_algorithm_ring_buffer Ring buffer
++
++When you free some allocations from the beginning and there is not enough free space
++for a new one at the end of a pool, allocator's "cursor" wraps around to the
++beginning and starts allocation there. Thanks to this, if you always release
++allocations in the same order as you created them (FIFO - First In First Out),
++you can achieve behavior of a ring buffer / queue.
++
++![Ring buffer](../gfx/Linear_allocator_5_ring_buffer.png)
++
++Ring buffer is available only in pools with one memory block -
++VmaPoolCreateInfo::maxBlockCount must be 1. Otherwise behavior is undefined.
++
++\note \ref defragmentation is not supported in custom pools created with #VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT.
++
++
++\page defragmentation Defragmentation
++
++Interleaved allocations and deallocations of many objects of varying size can
++cause fragmentation over time, which can lead to a situation where the library is unable
++to find a continuous range of free memory for a new allocation despite there is
++enough free space, just scattered across many small free ranges between existing
++allocations.
++
++To mitigate this problem, you can use defragmentation feature.
++It doesn't happen automatically though and needs your cooperation,
++because VMA is a low level library that only allocates memory.
++It cannot recreate buffers and images in a new place as it doesn't remember the contents of `VkBufferCreateInfo` / `VkImageCreateInfo` structures.
++It cannot copy their contents as it doesn't record any commands to a command buffer.
++
++Example:
++
++\code
++VmaDefragmentationInfo defragInfo = {};
++defragInfo.pool = myPool;
++defragInfo.flags = VMA_DEFRAGMENTATION_FLAG_ALGORITHM_FAST_BIT;
++
++VmaDefragmentationContext defragCtx;
++VkResult res = vmaBeginDefragmentation(allocator, &defragInfo, &defragCtx);
++// Check res...
++
++for(;;)
++{
++ VmaDefragmentationPassMoveInfo pass;
++ res = vmaBeginDefragmentationPass(allocator, defragCtx, &pass);
++ if(res == VK_SUCCESS)
++ break;
++ else if(res != VK_INCOMPLETE)
++ // Handle error...
++
++ for(uint32_t i = 0; i < pass.moveCount; ++i)
++ {
++ // Inspect pass.pMoves[i].srcAllocation, identify what buffer/image it represents.
++ VmaAllocationInfo allocInfo;
++ vmaGetAllocationInfo(allocator, pMoves[i].srcAllocation, &allocInfo);
++ MyEngineResourceData* resData = (MyEngineResourceData*)allocInfo.pUserData;
++
++ // Recreate and bind this buffer/image at: pass.pMoves[i].dstMemory, pass.pMoves[i].dstOffset.
++ VkImageCreateInfo imgCreateInfo = ...
++ VkImage newImg;
++ res = vkCreateImage(device, &imgCreateInfo, nullptr, &newImg);
++ // Check res...
++ res = vmaBindImageMemory(allocator, pMoves[i].dstTmpAllocation, newImg);
++ // Check res...
++
++ // Issue a vkCmdCopyBuffer/vkCmdCopyImage to copy its content to the new place.
++ vkCmdCopyImage(cmdBuf, resData->img, ..., newImg, ...);
++ }
++
++ // Make sure the copy commands finished executing.
++ vkWaitForFences(...);
++
++ // Destroy old buffers/images bound with pass.pMoves[i].srcAllocation.
++ for(uint32_t i = 0; i < pass.moveCount; ++i)
++ {
++ // ...
++ vkDestroyImage(device, resData->img, nullptr);
++ }
++
++ // Update appropriate descriptors to point to the new places...
++
++ res = vmaEndDefragmentationPass(allocator, defragCtx, &pass);
++ if(res == VK_SUCCESS)
++ break;
++ else if(res != VK_INCOMPLETE)
++ // Handle error...
++}
++
++vmaEndDefragmentation(allocator, defragCtx, nullptr);
++\endcode
++
++Although functions like vmaCreateBuffer(), vmaCreateImage(), vmaDestroyBuffer(), vmaDestroyImage()
++create/destroy an allocation and a buffer/image at once, these are just a shortcut for
++creating the resource, allocating memory, and binding them together.
++Defragmentation works on memory allocations only. You must handle the rest manually.
++Defragmentation is an iterative process that should repreat "passes" as long as related functions
++return `VK_INCOMPLETE` not `VK_SUCCESS`.
++In each pass:
++
++1. vmaBeginDefragmentationPass() function call:
++ - Calculates and returns the list of allocations to be moved in this pass.
++ Note this can be a time-consuming process.
++ - Reserves destination memory for them by creating temporary destination allocations
++ that you can query for their `VkDeviceMemory` + offset using vmaGetAllocationInfo().
++2. Inside the pass, **you should**:
++ - Inspect the returned list of allocations to be moved.
++ - Create new buffers/images and bind them at the returned destination temporary allocations.
++ - Copy data from source to destination resources if necessary.
++ - Destroy the source buffers/images, but NOT their allocations.
++3. vmaEndDefragmentationPass() function call:
++ - Frees the source memory reserved for the allocations that are moved.
++ - Modifies source #VmaAllocation objects that are moved to point to the destination reserved memory.
++ - Frees `VkDeviceMemory` blocks that became empty.
++
++Unlike in previous iterations of the defragmentation API, there is no list of "movable" allocations passed as a parameter.
++Defragmentation algorithm tries to move all suitable allocations.
++You can, however, refuse to move some of them inside a defragmentation pass, by setting
++`pass.pMoves[i].operation` to #VMA_DEFRAGMENTATION_MOVE_OPERATION_IGNORE.
++This is not recommended and may result in suboptimal packing of the allocations after defragmentation.
++If you cannot ensure any allocation can be moved, it is better to keep movable allocations separate in a custom pool.
++
++Inside a pass, for each allocation that should be moved:
++
++- You should copy its data from the source to the destination place by calling e.g. `vkCmdCopyBuffer()`, `vkCmdCopyImage()`.
++ - You need to make sure these commands finished executing before destroying the source buffers/images and before calling vmaEndDefragmentationPass().
++- If a resource doesn't contain any meaningful data, e.g. it is a transient color attachment image to be cleared,
++ filled, and used temporarily in each rendering frame, you can just recreate this image
++ without copying its data.
++- If the resource is in `HOST_VISIBLE` and `HOST_CACHED` memory, you can copy its data on the CPU
++ using `memcpy()`.
++- If you cannot move the allocation, you can set `pass.pMoves[i].operation` to #VMA_DEFRAGMENTATION_MOVE_OPERATION_IGNORE.
++ This will cancel the move.
++ - vmaEndDefragmentationPass() will then free the destination memory
++ not the source memory of the allocation, leaving it unchanged.
++- If you decide the allocation is unimportant and can be destroyed instead of moved (e.g. it wasn't used for long time),
++ you can set `pass.pMoves[i].operation` to #VMA_DEFRAGMENTATION_MOVE_OPERATION_DESTROY.
++ - vmaEndDefragmentationPass() will then free both source and destination memory, and will destroy the source #VmaAllocation object.
++
++You can defragment a specific custom pool by setting VmaDefragmentationInfo::pool
++(like in the example above) or all the default pools by setting this member to null.
++
++Defragmentation is always performed in each pool separately.
++Allocations are never moved between different Vulkan memory types.
++The size of the destination memory reserved for a moved allocation is the same as the original one.
++Alignment of an allocation as it was determined using `vkGetBufferMemoryRequirements()` etc. is also respected after defragmentation.
++Buffers/images should be recreated with the same `VkBufferCreateInfo` / `VkImageCreateInfo` parameters as the original ones.
++
++You can perform the defragmentation incrementally to limit the number of allocations and bytes to be moved
++in each pass, e.g. to call it in sync with render frames and not to experience too big hitches.
++See members: VmaDefragmentationInfo::maxBytesPerPass, VmaDefragmentationInfo::maxAllocationsPerPass.
++
++It is also safe to perform the defragmentation asynchronously to render frames and other Vulkan and VMA
++usage, possibly from multiple threads, with the exception that allocations
++returned in VmaDefragmentationPassMoveInfo::pMoves shouldn't be destroyed until the defragmentation pass is ended.
++
++<b>Mapping</b> is preserved on allocations that are moved during defragmentation.
++Whether through #VMA_ALLOCATION_CREATE_MAPPED_BIT or vmaMapMemory(), the allocations
++are mapped at their new place. Of course, pointer to the mapped data changes, so it needs to be queried
++using VmaAllocationInfo::pMappedData.
++
++\note Defragmentation is not supported in custom pools created with #VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT.
++
++
++\page statistics Statistics
++
++This library contains several functions that return information about its internal state,
++especially the amount of memory allocated from Vulkan.
++
++\section statistics_numeric_statistics Numeric statistics
++
++If you need to obtain basic statistics about memory usage per heap, together with current budget,
++you can call function vmaGetHeapBudgets() and inspect structure #VmaBudget.
++This is useful to keep track of memory usage and stay withing budget
++(see also \ref staying_within_budget).
++Example:
++
++\code
++uint32_t heapIndex = ...
++
++VmaBudget budgets[VK_MAX_MEMORY_HEAPS];
++vmaGetHeapBudgets(allocator, budgets);
++
++printf("My heap currently has %u allocations taking %llu B,\n",
++ budgets[heapIndex].statistics.allocationCount,
++ budgets[heapIndex].statistics.allocationBytes);
++printf("allocated out of %u Vulkan device memory blocks taking %llu B,\n",
++ budgets[heapIndex].statistics.blockCount,
++ budgets[heapIndex].statistics.blockBytes);
++printf("Vulkan reports total usage %llu B with budget %llu B.\n",
++ budgets[heapIndex].usage,
++ budgets[heapIndex].budget);
++\endcode
++
++You can query for more detailed statistics per memory heap, type, and totals,
++including minimum and maximum allocation size and unused range size,
++by calling function vmaCalculateStatistics() and inspecting structure #VmaTotalStatistics.
++This function is slower though, as it has to traverse all the internal data structures,
++so it should be used only for debugging purposes.
++
++You can query for statistics of a custom pool using function vmaGetPoolStatistics()
++or vmaCalculatePoolStatistics().
++
++You can query for information about a specific allocation using function vmaGetAllocationInfo().
++It fill structure #VmaAllocationInfo.
++
++\section statistics_json_dump JSON dump
++
++You can dump internal state of the allocator to a string in JSON format using function vmaBuildStatsString().
++The result is guaranteed to be correct JSON.
++It uses ANSI encoding.
++Any strings provided by user (see [Allocation names](@ref allocation_names))
++are copied as-is and properly escaped for JSON, so if they use UTF-8, ISO-8859-2 or any other encoding,
++this JSON string can be treated as using this encoding.
++It must be freed using function vmaFreeStatsString().
++
++The format of this JSON string is not part of official documentation of the library,
++but it will not change in backward-incompatible way without increasing library major version number
++and appropriate mention in changelog.
++
++The JSON string contains all the data that can be obtained using vmaCalculateStatistics().
++It can also contain detailed map of allocated memory blocks and their regions -
++free and occupied by allocations.
++This allows e.g. to visualize the memory or assess fragmentation.
++
++
++\page allocation_annotation Allocation names and user data
++
++\section allocation_user_data Allocation user data
++
++You can annotate allocations with your own information, e.g. for debugging purposes.
++To do that, fill VmaAllocationCreateInfo::pUserData field when creating
++an allocation. It is an opaque `void*` pointer. You can use it e.g. as a pointer,
++some handle, index, key, ordinal number or any other value that would associate
++the allocation with your custom metadata.
++It it useful to identify appropriate data structures in your engine given #VmaAllocation,
++e.g. when doing \ref defragmentation.
++
++\code
++VkBufferCreateInfo bufCreateInfo = ...
++
++MyBufferMetadata* pMetadata = CreateBufferMetadata();
++
++VmaAllocationCreateInfo allocCreateInfo = {};
++allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO;
++allocCreateInfo.pUserData = pMetadata;
++
++VkBuffer buffer;
++VmaAllocation allocation;
++vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buffer, &allocation, nullptr);
++\endcode
++
++The pointer may be later retrieved as VmaAllocationInfo::pUserData:
++
++\code
++VmaAllocationInfo allocInfo;
++vmaGetAllocationInfo(allocator, allocation, &allocInfo);
++MyBufferMetadata* pMetadata = (MyBufferMetadata*)allocInfo.pUserData;
++\endcode
++
++It can also be changed using function vmaSetAllocationUserData().
++
++Values of (non-zero) allocations' `pUserData` are printed in JSON report created by
++vmaBuildStatsString() in hexadecimal form.
++
++\section allocation_names Allocation names
++
++An allocation can also carry a null-terminated string, giving a name to the allocation.
++To set it, call vmaSetAllocationName().
++The library creates internal copy of the string, so the pointer you pass doesn't need
++to be valid for whole lifetime of the allocation. You can free it after the call.
++
++\code
++std::string imageName = "Texture: ";
++imageName += fileName;
++vmaSetAllocationName(allocator, allocation, imageName.c_str());
++\endcode
++
++The string can be later retrieved by inspecting VmaAllocationInfo::pName.
++It is also printed in JSON report created by vmaBuildStatsString().
++
++\note Setting string name to VMA allocation doesn't automatically set it to the Vulkan buffer or image created with it.
++You must do it manually using an extension like VK_EXT_debug_utils, which is independent of this library.
++
++
++\page virtual_allocator Virtual allocator
++
++As an extra feature, the core allocation algorithm of the library is exposed through a simple and convenient API of "virtual allocator".
++It doesn't allocate any real GPU memory. It just keeps track of used and free regions of a "virtual block".
++You can use it to allocate your own memory or other objects, even completely unrelated to Vulkan.
++A common use case is sub-allocation of pieces of one large GPU buffer.
++
++\section virtual_allocator_creating_virtual_block Creating virtual block
++
++To use this functionality, there is no main "allocator" object.
++You don't need to have #VmaAllocator object created.
++All you need to do is to create a separate #VmaVirtualBlock object for each block of memory you want to be managed by the allocator:
++
++-# Fill in #VmaVirtualBlockCreateInfo structure.
++-# Call vmaCreateVirtualBlock(). Get new #VmaVirtualBlock object.
++
++Example:
++
++\code
++VmaVirtualBlockCreateInfo blockCreateInfo = {};
++blockCreateInfo.size = 1048576; // 1 MB
++
++VmaVirtualBlock block;
++VkResult res = vmaCreateVirtualBlock(&blockCreateInfo, &block);
++\endcode
++
++\section virtual_allocator_making_virtual_allocations Making virtual allocations
++
++#VmaVirtualBlock object contains internal data structure that keeps track of free and occupied regions
++using the same code as the main Vulkan memory allocator.
++Similarly to #VmaAllocation for standard GPU allocations, there is #VmaVirtualAllocation type
++that represents an opaque handle to an allocation withing the virtual block.
++
++In order to make such allocation:
++
++-# Fill in #VmaVirtualAllocationCreateInfo structure.
++-# Call vmaVirtualAllocate(). Get new #VmaVirtualAllocation object that represents the allocation.
++ You can also receive `VkDeviceSize offset` that was assigned to the allocation.
++
++Example:
++
++\code
++VmaVirtualAllocationCreateInfo allocCreateInfo = {};
++allocCreateInfo.size = 4096; // 4 KB
++
++VmaVirtualAllocation alloc;
++VkDeviceSize offset;
++res = vmaVirtualAllocate(block, &allocCreateInfo, &alloc, &offset);
++if(res == VK_SUCCESS)
++{
++ // Use the 4 KB of your memory starting at offset.
++}
++else
++{
++ // Allocation failed - no space for it could be found. Handle this error!
++}
++\endcode
++
++\section virtual_allocator_deallocation Deallocation
++
++When no longer needed, an allocation can be freed by calling vmaVirtualFree().
++You can only pass to this function an allocation that was previously returned by vmaVirtualAllocate()
++called for the same #VmaVirtualBlock.
++
++When whole block is no longer needed, the block object can be released by calling vmaDestroyVirtualBlock().
++All allocations must be freed before the block is destroyed, which is checked internally by an assert.
++However, if you don't want to call vmaVirtualFree() for each allocation, you can use vmaClearVirtualBlock() to free them all at once -
++a feature not available in normal Vulkan memory allocator. Example:
++
++\code
++vmaVirtualFree(block, alloc);
++vmaDestroyVirtualBlock(block);
++\endcode
++
++\section virtual_allocator_allocation_parameters Allocation parameters
++
++You can attach a custom pointer to each allocation by using vmaSetVirtualAllocationUserData().
++Its default value is null.
++It can be used to store any data that needs to be associated with that allocation - e.g. an index, a handle, or a pointer to some
++larger data structure containing more information. Example:
++
++\code
++struct CustomAllocData
++{
++ std::string m_AllocName;
++};
++CustomAllocData* allocData = new CustomAllocData();
++allocData->m_AllocName = "My allocation 1";
++vmaSetVirtualAllocationUserData(block, alloc, allocData);
++\endcode
++
++The pointer can later be fetched, along with allocation offset and size, by passing the allocation handle to function
++vmaGetVirtualAllocationInfo() and inspecting returned structure #VmaVirtualAllocationInfo.
++If you allocated a new object to be used as the custom pointer, don't forget to delete that object before freeing the allocation!
++Example:
++
++\code
++VmaVirtualAllocationInfo allocInfo;
++vmaGetVirtualAllocationInfo(block, alloc, &allocInfo);
++delete (CustomAllocData*)allocInfo.pUserData;
++
++vmaVirtualFree(block, alloc);
++\endcode
++
++\section virtual_allocator_alignment_and_units Alignment and units
++
++It feels natural to express sizes and offsets in bytes.
++If an offset of an allocation needs to be aligned to a multiply of some number (e.g. 4 bytes), you can fill optional member
++VmaVirtualAllocationCreateInfo::alignment to request it. Example:
++
++\code
++VmaVirtualAllocationCreateInfo allocCreateInfo = {};
++allocCreateInfo.size = 4096; // 4 KB
++allocCreateInfo.alignment = 4; // Returned offset must be a multiply of 4 B
++
++VmaVirtualAllocation alloc;
++res = vmaVirtualAllocate(block, &allocCreateInfo, &alloc, nullptr);
++\endcode
++
++Alignments of different allocations made from one block may vary.
++However, if all alignments and sizes are always multiply of some size e.g. 4 B or `sizeof(MyDataStruct)`,
++you can express all sizes, alignments, and offsets in multiples of that size instead of individual bytes.
++It might be more convenient, but you need to make sure to use this new unit consistently in all the places:
++
++- VmaVirtualBlockCreateInfo::size
++- VmaVirtualAllocationCreateInfo::size and VmaVirtualAllocationCreateInfo::alignment
++- Using offset returned by vmaVirtualAllocate() or in VmaVirtualAllocationInfo::offset
++
++\section virtual_allocator_statistics Statistics
++
++You can obtain statistics of a virtual block using vmaGetVirtualBlockStatistics()
++(to get brief statistics that are fast to calculate)
++or vmaCalculateVirtualBlockStatistics() (to get more detailed statistics, slower to calculate).
++The functions fill structures #VmaStatistics, #VmaDetailedStatistics respectively - same as used by the normal Vulkan memory allocator.
++Example:
++
++\code
++VmaStatistics stats;
++vmaGetVirtualBlockStatistics(block, &stats);
++printf("My virtual block has %llu bytes used by %u virtual allocations\n",
++ stats.allocationBytes, stats.allocationCount);
++\endcode
++
++You can also request a full list of allocations and free regions as a string in JSON format by calling
++vmaBuildVirtualBlockStatsString().
++Returned string must be later freed using vmaFreeVirtualBlockStatsString().
++The format of this string differs from the one returned by the main Vulkan allocator, but it is similar.
++
++\section virtual_allocator_additional_considerations Additional considerations
++
++The "virtual allocator" functionality is implemented on a level of individual memory blocks.
++Keeping track of a whole collection of blocks, allocating new ones when out of free space,
++deleting empty ones, and deciding which one to try first for a new allocation must be implemented by the user.
++
++Alternative allocation algorithms are supported, just like in custom pools of the real GPU memory.
++See enum #VmaVirtualBlockCreateFlagBits to learn how to specify them (e.g. #VMA_VIRTUAL_BLOCK_CREATE_LINEAR_ALGORITHM_BIT).
++You can find their description in chapter \ref custom_memory_pools.
++Allocation strategies are also supported.
++See enum #VmaVirtualAllocationCreateFlagBits to learn how to specify them (e.g. #VMA_VIRTUAL_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT).
++
++Following features are supported only by the allocator of the real GPU memory and not by virtual allocations:
++buffer-image granularity, `VMA_DEBUG_MARGIN`, `VMA_MIN_ALIGNMENT`.
++
++
++\page debugging_memory_usage Debugging incorrect memory usage
++
++If you suspect a bug with memory usage, like usage of uninitialized memory or
++memory being overwritten out of bounds of an allocation,
++you can use debug features of this library to verify this.
++
++\section debugging_memory_usage_initialization Memory initialization
++
++If you experience a bug with incorrect and nondeterministic data in your program and you suspect uninitialized memory to be used,
++you can enable automatic memory initialization to verify this.
++To do it, define macro `VMA_DEBUG_INITIALIZE_ALLOCATIONS` to 1.
++
++\code
++#define VMA_DEBUG_INITIALIZE_ALLOCATIONS 1
++#include "vk_mem_alloc.h"
++\endcode
++
++It makes memory of all new allocations initialized to bit pattern `0xDCDCDCDC`.
++Before an allocation is destroyed, its memory is filled with bit pattern `0xEFEFEFEF`.
++Memory is automatically mapped and unmapped if necessary.
++
++If you find these values while debugging your program, good chances are that you incorrectly
++read Vulkan memory that is allocated but not initialized, or already freed, respectively.
++
++Memory initialization works only with memory types that are `HOST_VISIBLE`.
++It works also with dedicated allocations.
++
++\section debugging_memory_usage_margins Margins
++
++By default, allocations are laid out in memory blocks next to each other if possible
++(considering required alignment, `bufferImageGranularity`, and `nonCoherentAtomSize`).
++
++![Allocations without margin](../gfx/Margins_1.png)
++
++Define macro `VMA_DEBUG_MARGIN` to some non-zero value (e.g. 16) to enforce specified
++number of bytes as a margin after every allocation.
++
++\code
++#define VMA_DEBUG_MARGIN 16
++#include "vk_mem_alloc.h"
++\endcode
++
++![Allocations with margin](../gfx/Margins_2.png)
++
++If your bug goes away after enabling margins, it means it may be caused by memory
++being overwritten outside of allocation boundaries. It is not 100% certain though.
++Change in application behavior may also be caused by different order and distribution
++of allocations across memory blocks after margins are applied.
++
++Margins work with all types of memory.
++
++Margin is applied only to allocations made out of memory blocks and not to dedicated
++allocations, which have their own memory block of specific size.
++It is thus not applied to allocations made using #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT flag
++or those automatically decided to put into dedicated allocations, e.g. due to its
++large size or recommended by VK_KHR_dedicated_allocation extension.
++
++Margins appear in [JSON dump](@ref statistics_json_dump) as part of free space.
++
++Note that enabling margins increases memory usage and fragmentation.
++
++Margins do not apply to \ref virtual_allocator.
++
++\section debugging_memory_usage_corruption_detection Corruption detection
++
++You can additionally define macro `VMA_DEBUG_DETECT_CORRUPTION` to 1 to enable validation
++of contents of the margins.
++
++\code
++#define VMA_DEBUG_MARGIN 16
++#define VMA_DEBUG_DETECT_CORRUPTION 1
++#include "vk_mem_alloc.h"
++\endcode
++
++When this feature is enabled, number of bytes specified as `VMA_DEBUG_MARGIN`
++(it must be multiply of 4) after every allocation is filled with a magic number.
++This idea is also know as "canary".
++Memory is automatically mapped and unmapped if necessary.
++
++This number is validated automatically when the allocation is destroyed.
++If it is not equal to the expected value, `VMA_ASSERT()` is executed.
++It clearly means that either CPU or GPU overwritten the memory outside of boundaries of the allocation,
++which indicates a serious bug.
++
++You can also explicitly request checking margins of all allocations in all memory blocks
++that belong to specified memory types by using function vmaCheckCorruption(),
++or in memory blocks that belong to specified custom pool, by using function
++vmaCheckPoolCorruption().
++
++Margin validation (corruption detection) works only for memory types that are
++`HOST_VISIBLE` and `HOST_COHERENT`.
++
++
++\page opengl_interop OpenGL Interop
++
++VMA provides some features that help with interoperability with OpenGL.
++
++\section opengl_interop_exporting_memory Exporting memory
++
++If you want to attach `VkExportMemoryAllocateInfoKHR` structure to `pNext` chain of memory allocations made by the library:
++
++It is recommended to create \ref custom_memory_pools for such allocations.
++Define and fill in your `VkExportMemoryAllocateInfoKHR` structure and attach it to VmaPoolCreateInfo::pMemoryAllocateNext
++while creating the custom pool.
++Please note that the structure must remain alive and unchanged for the whole lifetime of the #VmaPool,
++not only while creating it, as no copy of the structure is made,
++but its original pointer is used for each allocation instead.
++
++If you want to export all memory allocated by the library from certain memory types,
++also dedicated allocations or other allocations made from default pools,
++an alternative solution is to fill in VmaAllocatorCreateInfo::pTypeExternalMemoryHandleTypes.
++It should point to an array with `VkExternalMemoryHandleTypeFlagsKHR` to be automatically passed by the library
++through `VkExportMemoryAllocateInfoKHR` on each allocation made from a specific memory type.
++Please note that new versions of the library also support dedicated allocations created in custom pools.
++
++You should not mix these two methods in a way that allows to apply both to the same memory type.
++Otherwise, `VkExportMemoryAllocateInfoKHR` structure would be attached twice to the `pNext` chain of `VkMemoryAllocateInfo`.
++
++
++\section opengl_interop_custom_alignment Custom alignment
++
++Buffers or images exported to a different API like OpenGL may require a different alignment,
++higher than the one used by the library automatically, queried from functions like `vkGetBufferMemoryRequirements`.
++To impose such alignment:
++
++It is recommended to create \ref custom_memory_pools for such allocations.
++Set VmaPoolCreateInfo::minAllocationAlignment member to the minimum alignment required for each allocation
++to be made out of this pool.
++The alignment actually used will be the maximum of this member and the alignment returned for the specific buffer or image
++from a function like `vkGetBufferMemoryRequirements`, which is called by VMA automatically.
++
++If you want to create a buffer with a specific minimum alignment out of default pools,
++use special function vmaCreateBufferWithAlignment(), which takes additional parameter `minAlignment`.
++
++Note the problem of alignment affects only resources placed inside bigger `VkDeviceMemory` blocks and not dedicated
++allocations, as these, by definition, always have alignment = 0 because the resource is bound to the beginning of its dedicated block.
++Contrary to Direct3D 12, Vulkan doesn't have a concept of alignment of the entire memory block passed on its allocation.
++
++
++\page usage_patterns Recommended usage patterns
++
++Vulkan gives great flexibility in memory allocation.
++This chapter shows the most common patterns.
++
++See also slides from talk:
++[Sawicki, Adam. Advanced Graphics Techniques Tutorial: Memory management in Vulkan and DX12. Game Developers Conference, 2018](https://www.gdcvault.com/play/1025458/Advanced-Graphics-Techniques-Tutorial-New)
++
++
++\section usage_patterns_gpu_only GPU-only resource
++
++<b>When:</b>
++Any resources that you frequently write and read on GPU,
++e.g. images used as color attachments (aka "render targets"), depth-stencil attachments,
++images/buffers used as storage image/buffer (aka "Unordered Access View (UAV)").
++
++<b>What to do:</b>
++Let the library select the optimal memory type, which will likely have `VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT`.
++
++\code
++VkImageCreateInfo imgCreateInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO };
++imgCreateInfo.imageType = VK_IMAGE_TYPE_2D;
++imgCreateInfo.extent.width = 3840;
++imgCreateInfo.extent.height = 2160;
++imgCreateInfo.extent.depth = 1;
++imgCreateInfo.mipLevels = 1;
++imgCreateInfo.arrayLayers = 1;
++imgCreateInfo.format = VK_FORMAT_R8G8B8A8_UNORM;
++imgCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
++imgCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
++imgCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
++imgCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
++
++VmaAllocationCreateInfo allocCreateInfo = {};
++allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO;
++allocCreateInfo.flags = VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT;
++allocCreateInfo.priority = 1.0f;
++
++VkImage img;
++VmaAllocation alloc;
++vmaCreateImage(allocator, &imgCreateInfo, &allocCreateInfo, &img, &alloc, nullptr);
++\endcode
++
++<b>Also consider:</b>
++Consider creating them as dedicated allocations using #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT,
++especially if they are large or if you plan to destroy and recreate them with different sizes
++e.g. when display resolution changes.
++Prefer to create such resources first and all other GPU resources (like textures and vertex buffers) later.
++When VK_EXT_memory_priority extension is enabled, it is also worth setting high priority to such allocation
++to decrease chances to be evicted to system memory by the operating system.
++
++\section usage_patterns_staging_copy_upload Staging copy for upload
++
++<b>When:</b>
++A "staging" buffer than you want to map and fill from CPU code, then use as a source od transfer
++to some GPU resource.
++
++<b>What to do:</b>
++Use flag #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT.
++Let the library select the optimal memory type, which will always have `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT`.
++
++\code
++VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
++bufCreateInfo.size = 65536;
++bufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
++
++VmaAllocationCreateInfo allocCreateInfo = {};
++allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO;
++allocCreateInfo.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT |
++ VMA_ALLOCATION_CREATE_MAPPED_BIT;
++
++VkBuffer buf;
++VmaAllocation alloc;
++VmaAllocationInfo allocInfo;
++vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo);
++
++...
++
++memcpy(allocInfo.pMappedData, myData, myDataSize);
++\endcode
++
++<b>Also consider:</b>
++You can map the allocation using vmaMapMemory() or you can create it as persistenly mapped
++using #VMA_ALLOCATION_CREATE_MAPPED_BIT, as in the example above.
++
++
++\section usage_patterns_readback Readback
++
++<b>When:</b>
++Buffers for data written by or transferred from the GPU that you want to read back on the CPU,
++e.g. results of some computations.
++
++<b>What to do:</b>
++Use flag #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT.
++Let the library select the optimal memory type, which will always have `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT`
++and `VK_MEMORY_PROPERTY_HOST_CACHED_BIT`.
++
++\code
++VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
++bufCreateInfo.size = 65536;
++bufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_DST_BIT;
++
++VmaAllocationCreateInfo allocCreateInfo = {};
++allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO;
++allocCreateInfo.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT |
++ VMA_ALLOCATION_CREATE_MAPPED_BIT;
++
++VkBuffer buf;
++VmaAllocation alloc;
++VmaAllocationInfo allocInfo;
++vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo);
++
++...
++
++const float* downloadedData = (const float*)allocInfo.pMappedData;
++\endcode
++
++
++\section usage_patterns_advanced_data_uploading Advanced data uploading
++
++For resources that you frequently write on CPU via mapped pointer and
++freqnently read on GPU e.g. as a uniform buffer (also called "dynamic"), multiple options are possible:
++
++-# Easiest solution is to have one copy of the resource in `HOST_VISIBLE` memory,
++ even if it means system RAM (not `DEVICE_LOCAL`) on systems with a discrete graphics card,
++ and make the device reach out to that resource directly.
++ - Reads performed by the device will then go through PCI Express bus.
++ The performace of this access may be limited, but it may be fine depending on the size
++ of this resource (whether it is small enough to quickly end up in GPU cache) and the sparsity
++ of access.
++-# On systems with unified memory (e.g. AMD APU or Intel integrated graphics, mobile chips),
++ a memory type may be available that is both `HOST_VISIBLE` (available for mapping) and `DEVICE_LOCAL`
++ (fast to access from the GPU). Then, it is likely the best choice for such type of resource.
++-# Systems with a discrete graphics card and separate video memory may or may not expose
++ a memory type that is both `HOST_VISIBLE` and `DEVICE_LOCAL`, also known as Base Address Register (BAR).
++ If they do, it represents a piece of VRAM (or entire VRAM, if ReBAR is enabled in the motherboard BIOS)
++ that is available to CPU for mapping.
++ - Writes performed by the host to that memory go through PCI Express bus.
++ The performance of these writes may be limited, but it may be fine, especially on PCIe 4.0,
++ as long as rules of using uncached and write-combined memory are followed - only sequential writes and no reads.
++-# Finally, you may need or prefer to create a separate copy of the resource in `DEVICE_LOCAL` memory,
++ a separate "staging" copy in `HOST_VISIBLE` memory and perform an explicit transfer command between them.
++
++Thankfully, VMA offers an aid to create and use such resources in the the way optimal
++for the current Vulkan device. To help the library make the best choice,
++use flag #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT together with
++#VMA_ALLOCATION_CREATE_HOST_ACCESS_ALLOW_TRANSFER_INSTEAD_BIT.
++It will then prefer a memory type that is both `DEVICE_LOCAL` and `HOST_VISIBLE` (integrated memory or BAR),
++but if no such memory type is available or allocation from it fails
++(PC graphics cards have only 256 MB of BAR by default, unless ReBAR is supported and enabled in BIOS),
++it will fall back to `DEVICE_LOCAL` memory for fast GPU access.
++It is then up to you to detect that the allocation ended up in a memory type that is not `HOST_VISIBLE`,
++so you need to create another "staging" allocation and perform explicit transfers.
++
++\code
++VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
++bufCreateInfo.size = 65536;
++bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
++
++VmaAllocationCreateInfo allocCreateInfo = {};
++allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO;
++allocCreateInfo.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT |
++ VMA_ALLOCATION_CREATE_HOST_ACCESS_ALLOW_TRANSFER_INSTEAD_BIT |
++ VMA_ALLOCATION_CREATE_MAPPED_BIT;
++
++VkBuffer buf;
++VmaAllocation alloc;
++VmaAllocationInfo allocInfo;
++vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo);
++
++VkMemoryPropertyFlags memPropFlags;
++vmaGetAllocationMemoryProperties(allocator, alloc, &memPropFlags);
++
++if(memPropFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT)
++{
++ // Allocation ended up in a mappable memory and is already mapped - write to it directly.
++
++ // [Executed in runtime]:
++ memcpy(allocInfo.pMappedData, myData, myDataSize);
++}
++else
++{
++ // Allocation ended up in a non-mappable memory - need to transfer.
++ VkBufferCreateInfo stagingBufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
++ stagingBufCreateInfo.size = 65536;
++ stagingBufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
++
++ VmaAllocationCreateInfo stagingAllocCreateInfo = {};
++ stagingAllocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO;
++ stagingAllocCreateInfo.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT |
++ VMA_ALLOCATION_CREATE_MAPPED_BIT;
++
++ VkBuffer stagingBuf;
++ VmaAllocation stagingAlloc;
++ VmaAllocationInfo stagingAllocInfo;
++ vmaCreateBuffer(allocator, &stagingBufCreateInfo, &stagingAllocCreateInfo,
++ &stagingBuf, &stagingAlloc, stagingAllocInfo);
++
++ // [Executed in runtime]:
++ memcpy(stagingAllocInfo.pMappedData, myData, myDataSize);
++ //vkCmdPipelineBarrier: VK_ACCESS_HOST_WRITE_BIT --> VK_ACCESS_TRANSFER_READ_BIT
++ VkBufferCopy bufCopy = {
++ 0, // srcOffset
++ 0, // dstOffset,
++ myDataSize); // size
++ vkCmdCopyBuffer(cmdBuf, stagingBuf, buf, 1, &bufCopy);
++}
++\endcode
++
++\section usage_patterns_other_use_cases Other use cases
++
++Here are some other, less obvious use cases and their recommended settings:
++
++- An image that is used only as transfer source and destination, but it should stay on the device,
++ as it is used to temporarily store a copy of some texture, e.g. from the current to the next frame,
++ for temporal antialiasing or other temporal effects.
++ - Use `VkImageCreateInfo::usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT`
++ - Use VmaAllocationCreateInfo::usage = #VMA_MEMORY_USAGE_AUTO
++- An image that is used only as transfer source and destination, but it should be placed
++ in the system RAM despite it doesn't need to be mapped, because it serves as a "swap" copy to evict
++ least recently used textures from VRAM.
++ - Use `VkImageCreateInfo::usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT`
++ - Use VmaAllocationCreateInfo::usage = #VMA_MEMORY_USAGE_AUTO_PREFER_HOST,
++ as VMA needs a hint here to differentiate from the previous case.
++- A buffer that you want to map and write from the CPU, directly read from the GPU
++ (e.g. as a uniform or vertex buffer), but you have a clear preference to place it in device or
++ host memory due to its large size.
++ - Use `VkBufferCreateInfo::usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT`
++ - Use VmaAllocationCreateInfo::usage = #VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE or #VMA_MEMORY_USAGE_AUTO_PREFER_HOST
++ - Use VmaAllocationCreateInfo::flags = #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT
++
++
++\page configuration Configuration
++
++Please check "CONFIGURATION SECTION" in the code to find macros that you can define
++before each include of this file or change directly in this file to provide
++your own implementation of basic facilities like assert, `min()` and `max()` functions,
++mutex, atomic etc.
++The library uses its own implementation of containers by default, but you can switch to using
++STL containers instead.
++
++For example, define `VMA_ASSERT(expr)` before including the library to provide
++custom implementation of the assertion, compatible with your project.
++By default it is defined to standard C `assert(expr)` in `_DEBUG` configuration
++and empty otherwise.
++
++\section config_Vulkan_functions Pointers to Vulkan functions
++
++There are multiple ways to import pointers to Vulkan functions in the library.
++In the simplest case you don't need to do anything.
++If the compilation or linking of your program or the initialization of the #VmaAllocator
++doesn't work for you, you can try to reconfigure it.
++
++First, the allocator tries to fetch pointers to Vulkan functions linked statically,
++like this:
++
++\code
++m_VulkanFunctions.vkAllocateMemory = (PFN_vkAllocateMemory)vkAllocateMemory;
++\endcode
++
++If you want to disable this feature, set configuration macro: `#define VMA_STATIC_VULKAN_FUNCTIONS 0`.
++
++Second, you can provide the pointers yourself by setting member VmaAllocatorCreateInfo::pVulkanFunctions.
++You can fetch them e.g. using functions `vkGetInstanceProcAddr` and `vkGetDeviceProcAddr` or
++by using a helper library like [volk](https://github.com/zeux/volk).
++
++Third, VMA tries to fetch remaining pointers that are still null by calling
++`vkGetInstanceProcAddr` and `vkGetDeviceProcAddr` on its own.
++You need to only fill in VmaVulkanFunctions::vkGetInstanceProcAddr and VmaVulkanFunctions::vkGetDeviceProcAddr.
++Other pointers will be fetched automatically.
++If you want to disable this feature, set configuration macro: `#define VMA_DYNAMIC_VULKAN_FUNCTIONS 0`.
++
++Finally, all the function pointers required by the library (considering selected
++Vulkan version and enabled extensions) are checked with `VMA_ASSERT` if they are not null.
++
++
++\section custom_memory_allocator Custom host memory allocator
++
++If you use custom allocator for CPU memory rather than default operator `new`
++and `delete` from C++, you can make this library using your allocator as well
++by filling optional member VmaAllocatorCreateInfo::pAllocationCallbacks. These
++functions will be passed to Vulkan, as well as used by the library itself to
++make any CPU-side allocations.
++
++\section allocation_callbacks Device memory allocation callbacks
++
++The library makes calls to `vkAllocateMemory()` and `vkFreeMemory()` internally.
++You can setup callbacks to be informed about these calls, e.g. for the purpose
++of gathering some statistics. To do it, fill optional member
++VmaAllocatorCreateInfo::pDeviceMemoryCallbacks.
++
++\section heap_memory_limit Device heap memory limit
++
++When device memory of certain heap runs out of free space, new allocations may
++fail (returning error code) or they may succeed, silently pushing some existing_
++memory blocks from GPU VRAM to system RAM (which degrades performance). This
++behavior is implementation-dependent - it depends on GPU vendor and graphics
++driver.
++
++On AMD cards it can be controlled while creating Vulkan device object by using
++VK_AMD_memory_overallocation_behavior extension, if available.
++
++Alternatively, if you want to test how your program behaves with limited amount of Vulkan device
++memory available without switching your graphics card to one that really has
++smaller VRAM, you can use a feature of this library intended for this purpose.
++To do it, fill optional member VmaAllocatorCreateInfo::pHeapSizeLimit.
++
++
++
++\page vk_khr_dedicated_allocation VK_KHR_dedicated_allocation
++
++VK_KHR_dedicated_allocation is a Vulkan extension which can be used to improve
++performance on some GPUs. It augments Vulkan API with possibility to query
++driver whether it prefers particular buffer or image to have its own, dedicated
++allocation (separate `VkDeviceMemory` block) for better efficiency - to be able
++to do some internal optimizations. The extension is supported by this library.
++It will be used automatically when enabled.
++
++It has been promoted to core Vulkan 1.1, so if you use eligible Vulkan version
++and inform VMA about it by setting VmaAllocatorCreateInfo::vulkanApiVersion,
++you are all set.
++
++Otherwise, if you want to use it as an extension:
++
++1 . When creating Vulkan device, check if following 2 device extensions are
++supported (call `vkEnumerateDeviceExtensionProperties()`).
++If yes, enable them (fill `VkDeviceCreateInfo::ppEnabledExtensionNames`).
++
++- VK_KHR_get_memory_requirements2
++- VK_KHR_dedicated_allocation
++
++If you enabled these extensions:
++
++2 . Use #VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT flag when creating
++your #VmaAllocator to inform the library that you enabled required extensions
++and you want the library to use them.
++
++\code
++allocatorInfo.flags |= VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT;
++
++vmaCreateAllocator(&allocatorInfo, &allocator);
++\endcode
++
++That is all. The extension will be automatically used whenever you create a
++buffer using vmaCreateBuffer() or image using vmaCreateImage().
++
++When using the extension together with Vulkan Validation Layer, you will receive
++warnings like this:
++
++_vkBindBufferMemory(): Binding memory to buffer 0x33 but vkGetBufferMemoryRequirements() has not been called on that buffer._
++
++It is OK, you should just ignore it. It happens because you use function
++`vkGetBufferMemoryRequirements2KHR()` instead of standard
++`vkGetBufferMemoryRequirements()`, while the validation layer seems to be
++unaware of it.
++
++To learn more about this extension, see:
++
++- [VK_KHR_dedicated_allocation in Vulkan specification](https://www.khronos.org/registry/vulkan/specs/1.2-extensions/html/chap50.html#VK_KHR_dedicated_allocation)
++- [VK_KHR_dedicated_allocation unofficial manual](http://asawicki.info/articles/VK_KHR_dedicated_allocation.php5)
++
++
++
++\page vk_ext_memory_priority VK_EXT_memory_priority
++
++VK_EXT_memory_priority is a device extension that allows to pass additional "priority"
++value to Vulkan memory allocations that the implementation may use prefer certain
++buffers and images that are critical for performance to stay in device-local memory
++in cases when the memory is over-subscribed, while some others may be moved to the system memory.
++
++VMA offers convenient usage of this extension.
++If you enable it, you can pass "priority" parameter when creating allocations or custom pools
++and the library automatically passes the value to Vulkan using this extension.
++
++If you want to use this extension in connection with VMA, follow these steps:
++
++\section vk_ext_memory_priority_initialization Initialization
++
++1) Call `vkEnumerateDeviceExtensionProperties` for the physical device.
++Check if the extension is supported - if returned array of `VkExtensionProperties` contains "VK_EXT_memory_priority".
++
++2) Call `vkGetPhysicalDeviceFeatures2` for the physical device instead of old `vkGetPhysicalDeviceFeatures`.
++Attach additional structure `VkPhysicalDeviceMemoryPriorityFeaturesEXT` to `VkPhysicalDeviceFeatures2::pNext` to be returned.
++Check if the device feature is really supported - check if `VkPhysicalDeviceMemoryPriorityFeaturesEXT::memoryPriority` is true.
++
++3) While creating device with `vkCreateDevice`, enable this extension - add "VK_EXT_memory_priority"
++to the list passed as `VkDeviceCreateInfo::ppEnabledExtensionNames`.
++
++4) While creating the device, also don't set `VkDeviceCreateInfo::pEnabledFeatures`.
++Fill in `VkPhysicalDeviceFeatures2` structure instead and pass it as `VkDeviceCreateInfo::pNext`.
++Enable this device feature - attach additional structure `VkPhysicalDeviceMemoryPriorityFeaturesEXT` to
++`VkPhysicalDeviceFeatures2::pNext` chain and set its member `memoryPriority` to `VK_TRUE`.
++
++5) While creating #VmaAllocator with vmaCreateAllocator() inform VMA that you
++have enabled this extension and feature - add #VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT
++to VmaAllocatorCreateInfo::flags.
++
++\section vk_ext_memory_priority_usage Usage
++
++When using this extension, you should initialize following member:
++
++- VmaAllocationCreateInfo::priority when creating a dedicated allocation with #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT.
++- VmaPoolCreateInfo::priority when creating a custom pool.
++
++It should be a floating-point value between `0.0f` and `1.0f`, where recommended default is `0.5f`.
++Memory allocated with higher value can be treated by the Vulkan implementation as higher priority
++and so it can have lower chances of being pushed out to system memory, experiencing degraded performance.
++
++It might be a good idea to create performance-critical resources like color-attachment or depth-stencil images
++as dedicated and set high priority to them. For example:
++
++\code
++VkImageCreateInfo imgCreateInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO };
++imgCreateInfo.imageType = VK_IMAGE_TYPE_2D;
++imgCreateInfo.extent.width = 3840;
++imgCreateInfo.extent.height = 2160;
++imgCreateInfo.extent.depth = 1;
++imgCreateInfo.mipLevels = 1;
++imgCreateInfo.arrayLayers = 1;
++imgCreateInfo.format = VK_FORMAT_R8G8B8A8_UNORM;
++imgCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
++imgCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
++imgCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
++imgCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
++
++VmaAllocationCreateInfo allocCreateInfo = {};
++allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO;
++allocCreateInfo.flags = VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT;
++allocCreateInfo.priority = 1.0f;
++
++VkImage img;
++VmaAllocation alloc;
++vmaCreateImage(allocator, &imgCreateInfo, &allocCreateInfo, &img, &alloc, nullptr);
++\endcode
++
++`priority` member is ignored in the following situations:
++
++- Allocations created in custom pools: They inherit the priority, along with all other allocation parameters
++ from the parametrs passed in #VmaPoolCreateInfo when the pool was created.
++- Allocations created in default pools: They inherit the priority from the parameters
++ VMA used when creating default pools, which means `priority == 0.5f`.
++
++
++\page vk_amd_device_coherent_memory VK_AMD_device_coherent_memory
++
++VK_AMD_device_coherent_memory is a device extension that enables access to
++additional memory types with `VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD` and
++`VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD` flag. It is useful mostly for
++allocation of buffers intended for writing "breadcrumb markers" in between passes
++or draw calls, which in turn are useful for debugging GPU crash/hang/TDR cases.
++
++When the extension is available but has not been enabled, Vulkan physical device
++still exposes those memory types, but their usage is forbidden. VMA automatically
++takes care of that - it returns `VK_ERROR_FEATURE_NOT_PRESENT` when an attempt
++to allocate memory of such type is made.
++
++If you want to use this extension in connection with VMA, follow these steps:
++
++\section vk_amd_device_coherent_memory_initialization Initialization
++
++1) Call `vkEnumerateDeviceExtensionProperties` for the physical device.
++Check if the extension is supported - if returned array of `VkExtensionProperties` contains "VK_AMD_device_coherent_memory".
++
++2) Call `vkGetPhysicalDeviceFeatures2` for the physical device instead of old `vkGetPhysicalDeviceFeatures`.
++Attach additional structure `VkPhysicalDeviceCoherentMemoryFeaturesAMD` to `VkPhysicalDeviceFeatures2::pNext` to be returned.
++Check if the device feature is really supported - check if `VkPhysicalDeviceCoherentMemoryFeaturesAMD::deviceCoherentMemory` is true.
++
++3) While creating device with `vkCreateDevice`, enable this extension - add "VK_AMD_device_coherent_memory"
++to the list passed as `VkDeviceCreateInfo::ppEnabledExtensionNames`.
++
++4) While creating the device, also don't set `VkDeviceCreateInfo::pEnabledFeatures`.
++Fill in `VkPhysicalDeviceFeatures2` structure instead and pass it as `VkDeviceCreateInfo::pNext`.
++Enable this device feature - attach additional structure `VkPhysicalDeviceCoherentMemoryFeaturesAMD` to
++`VkPhysicalDeviceFeatures2::pNext` and set its member `deviceCoherentMemory` to `VK_TRUE`.
++
++5) While creating #VmaAllocator with vmaCreateAllocator() inform VMA that you
++have enabled this extension and feature - add #VMA_ALLOCATOR_CREATE_AMD_DEVICE_COHERENT_MEMORY_BIT
++to VmaAllocatorCreateInfo::flags.
++
++\section vk_amd_device_coherent_memory_usage Usage
++
++After following steps described above, you can create VMA allocations and custom pools
++out of the special `DEVICE_COHERENT` and `DEVICE_UNCACHED` memory types on eligible
++devices. There are multiple ways to do it, for example:
++
++- You can request or prefer to allocate out of such memory types by adding
++ `VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD` to VmaAllocationCreateInfo::requiredFlags
++ or VmaAllocationCreateInfo::preferredFlags. Those flags can be freely mixed with
++ other ways of \ref choosing_memory_type, like setting VmaAllocationCreateInfo::usage.
++- If you manually found memory type index to use for this purpose, force allocation
++ from this specific index by setting VmaAllocationCreateInfo::memoryTypeBits `= 1u << index`.
++
++\section vk_amd_device_coherent_memory_more_information More information
++
++To learn more about this extension, see [VK_AMD_device_coherent_memory in Vulkan specification](https://www.khronos.org/registry/vulkan/specs/1.2-extensions/man/html/VK_AMD_device_coherent_memory.html)
++
++Example use of this extension can be found in the code of the sample and test suite
++accompanying this library.
++
++
++\page enabling_buffer_device_address Enabling buffer device address
++
++Device extension VK_KHR_buffer_device_address
++allow to fetch raw GPU pointer to a buffer and pass it for usage in a shader code.
++It has been promoted to core Vulkan 1.2.
++
++If you want to use this feature in connection with VMA, follow these steps:
++
++\section enabling_buffer_device_address_initialization Initialization
++
++1) (For Vulkan version < 1.2) Call `vkEnumerateDeviceExtensionProperties` for the physical device.
++Check if the extension is supported - if returned array of `VkExtensionProperties` contains
++"VK_KHR_buffer_device_address".
++
++2) Call `vkGetPhysicalDeviceFeatures2` for the physical device instead of old `vkGetPhysicalDeviceFeatures`.
++Attach additional structure `VkPhysicalDeviceBufferDeviceAddressFeatures*` to `VkPhysicalDeviceFeatures2::pNext` to be returned.
++Check if the device feature is really supported - check if `VkPhysicalDeviceBufferDeviceAddressFeatures::bufferDeviceAddress` is true.
++
++3) (For Vulkan version < 1.2) While creating device with `vkCreateDevice`, enable this extension - add
++"VK_KHR_buffer_device_address" to the list passed as `VkDeviceCreateInfo::ppEnabledExtensionNames`.
++
++4) While creating the device, also don't set `VkDeviceCreateInfo::pEnabledFeatures`.
++Fill in `VkPhysicalDeviceFeatures2` structure instead and pass it as `VkDeviceCreateInfo::pNext`.
++Enable this device feature - attach additional structure `VkPhysicalDeviceBufferDeviceAddressFeatures*` to
++`VkPhysicalDeviceFeatures2::pNext` and set its member `bufferDeviceAddress` to `VK_TRUE`.
++
++5) While creating #VmaAllocator with vmaCreateAllocator() inform VMA that you
++have enabled this feature - add #VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT
++to VmaAllocatorCreateInfo::flags.
++
++\section enabling_buffer_device_address_usage Usage
++
++After following steps described above, you can create buffers with `VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT*` using VMA.
++The library automatically adds `VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT*` to
++allocated memory blocks wherever it might be needed.
++
++Please note that the library supports only `VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT*`.
++The second part of this functionality related to "capture and replay" is not supported,
++as it is intended for usage in debugging tools like RenderDoc, not in everyday Vulkan usage.
++
++\section enabling_buffer_device_address_more_information More information
++
++To learn more about this extension, see [VK_KHR_buffer_device_address in Vulkan specification](https://www.khronos.org/registry/vulkan/specs/1.2-extensions/html/chap46.html#VK_KHR_buffer_device_address)
++
++Example use of this extension can be found in the code of the sample and test suite
++accompanying this library.
++
++\page general_considerations General considerations
++
++\section general_considerations_thread_safety Thread safety
++
++- The library has no global state, so separate #VmaAllocator objects can be used
++ independently.
++ There should be no need to create multiple such objects though - one per `VkDevice` is enough.
++- By default, all calls to functions that take #VmaAllocator as first parameter
++ are safe to call from multiple threads simultaneously because they are
++ synchronized internally when needed.
++ This includes allocation and deallocation from default memory pool, as well as custom #VmaPool.
++- When the allocator is created with #VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT
++ flag, calls to functions that take such #VmaAllocator object must be
++ synchronized externally.
++- Access to a #VmaAllocation object must be externally synchronized. For example,
++ you must not call vmaGetAllocationInfo() and vmaMapMemory() from different
++ threads at the same time if you pass the same #VmaAllocation object to these
++ functions.
++- #VmaVirtualBlock is not safe to be used from multiple threads simultaneously.
++
++\section general_considerations_versioning_and_compatibility Versioning and compatibility
++
++The library uses [**Semantic Versioning**](https://semver.org/),
++which means version numbers follow convention: Major.Minor.Patch (e.g. 2.3.0), where:
++
++- Incremented Patch version means a release is backward- and forward-compatible,
++ introducing only some internal improvements, bug fixes, optimizations etc.
++ or changes that are out of scope of the official API described in this documentation.
++- Incremented Minor version means a release is backward-compatible,
++ so existing code that uses the library should continue to work, while some new
++ symbols could have been added: new structures, functions, new values in existing
++ enums and bit flags, new structure members, but not new function parameters.
++- Incrementing Major version means a release could break some backward compatibility.
++
++All changes between official releases are documented in file "CHANGELOG.md".
++
++\warning Backward compatiblity is considered on the level of C++ source code, not binary linkage.
++Adding new members to existing structures is treated as backward compatible if initializing
++the new members to binary zero results in the old behavior.
++You should always fully initialize all library structures to zeros and not rely on their
++exact binary size.
++
++\section general_considerations_validation_layer_warnings Validation layer warnings
++
++When using this library, you can meet following types of warnings issued by
++Vulkan validation layer. They don't necessarily indicate a bug, so you may need
++to just ignore them.
++
++- *vkBindBufferMemory(): Binding memory to buffer 0xeb8e4 but vkGetBufferMemoryRequirements() has not been called on that buffer.*
++ - It happens when VK_KHR_dedicated_allocation extension is enabled.
++ `vkGetBufferMemoryRequirements2KHR` function is used instead, while validation layer seems to be unaware of it.
++- *Mapping an image with layout VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL can result in undefined behavior if this memory is used by the device. Only GENERAL or PREINITIALIZED should be used.*
++ - It happens when you map a buffer or image, because the library maps entire
++ `VkDeviceMemory` block, where different types of images and buffers may end
++ up together, especially on GPUs with unified memory like Intel.
++- *Non-linear image 0xebc91 is aliased with linear buffer 0xeb8e4 which may indicate a bug.*
++ - It may happen when you use [defragmentation](@ref defragmentation).
++
++\section general_considerations_allocation_algorithm Allocation algorithm
++
++The library uses following algorithm for allocation, in order:
++
++-# Try to find free range of memory in existing blocks.
++-# If failed, try to create a new block of `VkDeviceMemory`, with preferred block size.
++-# If failed, try to create such block with size / 2, size / 4, size / 8.
++-# If failed, try to allocate separate `VkDeviceMemory` for this allocation,
++ just like when you use #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT.
++-# If failed, choose other memory type that meets the requirements specified in
++ VmaAllocationCreateInfo and go to point 1.
++-# If failed, return `VK_ERROR_OUT_OF_DEVICE_MEMORY`.
++
++\section general_considerations_features_not_supported Features not supported
++
++Features deliberately excluded from the scope of this library:
++
++-# **Data transfer.** Uploading (streaming) and downloading data of buffers and images
++ between CPU and GPU memory and related synchronization is responsibility of the user.
++ Defining some "texture" object that would automatically stream its data from a
++ staging copy in CPU memory to GPU memory would rather be a feature of another,
++ higher-level library implemented on top of VMA.
++ VMA doesn't record any commands to a `VkCommandBuffer`. It just allocates memory.
++-# **Recreation of buffers and images.** Although the library has functions for
++ buffer and image creation: vmaCreateBuffer(), vmaCreateImage(), you need to
++ recreate these objects yourself after defragmentation. That is because the big
++ structures `VkBufferCreateInfo`, `VkImageCreateInfo` are not stored in
++ #VmaAllocation object.
++-# **Handling CPU memory allocation failures.** When dynamically creating small C++
++ objects in CPU memory (not Vulkan memory), allocation failures are not checked
++ and handled gracefully, because that would complicate code significantly and
++ is usually not needed in desktop PC applications anyway.
++ Success of an allocation is just checked with an assert.
++-# **Code free of any compiler warnings.** Maintaining the library to compile and
++ work correctly on so many different platforms is hard enough. Being free of
++ any warnings, on any version of any compiler, is simply not feasible.
++ There are many preprocessor macros that make some variables unused, function parameters unreferenced,
++ or conditional expressions constant in some configurations.
++ The code of this library should not be bigger or more complicated just to silence these warnings.
++ It is recommended to disable such warnings instead.
++-# This is a C++ library with C interface. **Bindings or ports to any other programming languages** are welcome as external projects but
++ are not going to be included into this repository.
++*/
diff --git a/external/skia/windows-do-not-modify-logfont.patch.0 b/external/skia/windows-do-not-modify-logfont.patch.0
new file mode 100644
index 000000000..30c5c1e96
--- /dev/null
+++ b/external/skia/windows-do-not-modify-logfont.patch.0
@@ -0,0 +1,29 @@
+--- ./src/ports/SkFontHost_win.cpp
++++ ./src/ports/SkFontHost_win.cpp
+@@ -349,7 +349,7 @@ static bool FindByLogFont(SkTypeface* face, void* ctx) {
+ */
+ SkTypeface* SkCreateTypefaceFromLOGFONT(const LOGFONT& origLF) {
+ LOGFONT lf = origLF;
+- make_canonical(&lf);
++// make_canonical(&lf);
+ sk_sp<SkTypeface> face = SkTypefaceCache::FindByProcAndRef(FindByLogFont, &lf);
+ if (!face) {
+ face = LogFontTypeface::Make(lf);
+@@ -363,7 +363,7 @@ SkTypeface* SkCreateTypefaceFromLOGFONT(const LOGFONT& origLF) {
+ */
+ sk_sp<SkTypeface> SkCreateFontMemResourceTypefaceFromLOGFONT(const LOGFONT& origLF, HANDLE fontMemResource) {
+ LOGFONT lf = origLF;
+- make_canonical(&lf);
++// make_canonical(&lf);
+ // We'll never get a cache hit, so no point in putting this in SkTypefaceCache.
+ return FontMemResourceTypeface::Make(lf, fontMemResource);
+ }
+@@ -686,7 +686,7 @@ SkScalerContext_GDI::SkScalerContext_GDI(sk_sp<LogFontTypeface> rawTypeface,
+
+ LOGFONT lf = typeface->fLogFont;
+ lf.lfHeight = -SkScalarTruncToInt(gdiTextSize);
+- lf.lfQuality = compute_quality(fRec);
++// lf.lfQuality = compute_quality(fRec);
+ fFont = CreateFontIndirect(&lf);
+ if (!fFont) {
+ return;
diff --git a/external/skia/windows-force-unicode-api.patch.0 b/external/skia/windows-force-unicode-api.patch.0
new file mode 100644
index 000000000..f73de176d
--- /dev/null
+++ b/external/skia/windows-force-unicode-api.patch.0
@@ -0,0 +1,31 @@
+diff --git a/include/ports/SkTypeface_win.h b/include/ports/SkTypeface_win.h
+index f659adf0e9..34446fc7a1 100644
+--- ./include/ports/SkTypeface_win.h
++++ ./include/ports/SkTypeface_win.h
+@@ -26,7 +26,7 @@ typedef LOGFONTA LOGFONT;
+ * corresponding typeface for the specified logfont. The caller is responsible
+ * for calling unref() when it is finished.
+ */
+-SK_API SkTypeface* SkCreateTypefaceFromLOGFONT(const LOGFONT&);
++SK_API SkTypeface* SkCreateTypefaceFromLOGFONT(const LOGFONTW&);
+
+ /**
+ * Copy the LOGFONT associated with this typeface into the lf parameter. Note
+@@ -34,7 +34,7 @@ SK_API SkTypeface* SkCreateTypefaceFromLOGFONT(const LOGFONT&);
+ * not track this (the paint does).
+ * typeface may be NULL, in which case we return the logfont for the default font.
+ */
+-SK_API void SkLOGFONTFromTypeface(const SkTypeface* typeface, LOGFONT* lf);
++SK_API void SkLOGFONTFromTypeface(const SkTypeface* typeface, LOGFONTW* lf);
+
+ /**
+ * Set an optional callback to ensure that the data behind a LOGFONT is loaded.
+@@ -42,7 +42,7 @@ SK_API void SkLOGFONTFromTypeface(const SkTypeface* typeface, LOGFONT* lf);
+ * Normally this is null, and is only required if the font data needs to be
+ * remotely (re)loaded.
+ */
+-SK_API void SkTypeface_SetEnsureLOGFONTAccessibleProc(void (*)(const LOGFONT&));
++SK_API void SkTypeface_SetEnsureLOGFONTAccessibleProc(void (*)(const LOGFONTW&));
+
+ // Experimental!
+ //
diff --git a/external/skia/windows-libraries-system32.patch.1 b/external/skia/windows-libraries-system32.patch.1
new file mode 100644
index 000000000..45c0e35d1
--- /dev/null
+++ b/external/skia/windows-libraries-system32.patch.1
@@ -0,0 +1,13 @@
+diff --git a/src/ports/SkOSLibrary_win.cpp b/src/ports/SkOSLibrary_win.cpp
+index d2dcbe0af6..c288bbf177 100644
+--- a/src/ports/SkOSLibrary_win.cpp
++++ b/src/ports/SkOSLibrary_win.cpp
+@@ -11,7 +11,7 @@
+ #include "src/ports/SkOSLibrary.h"
+
+ void* SkLoadDynamicLibrary(const char* libraryName) {
+- return LoadLibraryA(libraryName);
++ return LoadLibraryExA(libraryName, nullptr, LOAD_LIBRARY_SEARCH_SYSTEM32);
+ }
+
+ void* SkGetProcedureAddress(void* library, const char* functionName) {
diff --git a/external/skia/windows-raster-surface-no-copies.patch.1 b/external/skia/windows-raster-surface-no-copies.patch.1
new file mode 100644
index 000000000..0c5804d85
--- /dev/null
+++ b/external/skia/windows-raster-surface-no-copies.patch.1
@@ -0,0 +1,39 @@
+diff --git a/tools/sk_app/win/RasterWindowContext_win.cpp b/tools/sk_app/win/RasterWindowContext_win.cpp
+index 9548220ce6..49f1f9ed17 100644
+--- a/tools/sk_app/win/RasterWindowContext_win.cpp
++++ b/tools/sk_app/win/RasterWindowContext_win.cpp
+@@ -55,7 +55,7 @@ void RasterWindowContext_win::resize(int w, int h) {
+ fWidth = w;
+ fHeight = h;
+ fBackbufferSurface.reset();
+- const size_t bmpSize = sizeof(BITMAPINFOHEADER) + w * h * sizeof(uint32_t);
++ const size_t bmpSize = sizeof(BITMAPINFO);
+ fSurfaceMemory.reset(bmpSize);
+ BITMAPINFO* bmpInfo = reinterpret_cast<BITMAPINFO*>(fSurfaceMemory.get());
+ ZeroMemory(bmpInfo, sizeof(BITMAPINFO));
+@@ -65,11 +65,12 @@ void RasterWindowContext_win::resize(int w, int h) {
+ bmpInfo->bmiHeader.biPlanes = 1;
+ bmpInfo->bmiHeader.biBitCount = 32;
+ bmpInfo->bmiHeader.biCompression = BI_RGB;
+- void* pixels = bmpInfo->bmiColors;
++ // Do not use a packed DIB bitmap, SkSurface_Raster::onNewImageSnapshot() does
++ // a deep copy if it does not own the pixels.
+
+ SkImageInfo info = SkImageInfo::Make(w, h, fDisplayParams.fColorType, kPremul_SkAlphaType,
+ fDisplayParams.fColorSpace);
+- fBackbufferSurface = SkSurface::MakeRasterDirect(info, pixels, sizeof(uint32_t) * w);
++ fBackbufferSurface = SkSurface::MakeRaster(info);
+ }
+
+ sk_sp<SkSurface> RasterWindowContext_win::getBackbufferSurface() { return fBackbufferSurface; }
+@@ -77,7 +78,9 @@ sk_sp<SkSurface> RasterWindowContext_win::getBackbufferSurface() { return fBackb
+ void RasterWindowContext_win::swapBuffers() {
+ BITMAPINFO* bmpInfo = reinterpret_cast<BITMAPINFO*>(fSurfaceMemory.get());
+ HDC dc = GetDC(fWnd);
+- StretchDIBits(dc, 0, 0, fWidth, fHeight, 0, 0, fWidth, fHeight, bmpInfo->bmiColors, bmpInfo,
++ SkPixmap pixmap;
++ fBackbufferSurface->peekPixels(&pixmap);
++ StretchDIBits(dc, 0, 0, fWidth, fHeight, 0, 0, fWidth, fHeight, pixmap.addr(), bmpInfo,
+ DIB_RGB_COLORS, SRCCOPY);
+ ReleaseDC(fWnd, dc);
+ }
diff --git a/external/skia/windows-text-gamma.patch.0 b/external/skia/windows-text-gamma.patch.0
new file mode 100644
index 000000000..624636b7d
--- /dev/null
+++ b/external/skia/windows-text-gamma.patch.0
@@ -0,0 +1,70 @@
+--- ./src/ports/SkFontHost_win.cpp.sav 2020-03-18 10:26:52.470184300 +0100
++++ ./src/ports/SkFontHost_win.cpp 2020-03-18 12:08:04.598406700 +0100
+@@ -1215,17 +1215,23 @@
+ // since the caller may require A8 for maskfilters, we can't check for BW
+ // ... until we have the caller tell us that explicitly
+ const SkGdiRGB* src = (const SkGdiRGB*)bits;
++#if defined(SK_GAMMA_APPLY_TO_A8)
+ if (fPreBlend.isApplicable()) {
+ RGBToA8<true>(src, srcRB, glyph, fPreBlend.fG);
+- } else {
++ } else
++#endif
++ {
+ RGBToA8<false>(src, srcRB, glyph, fPreBlend.fG);
+ }
+ } else { // LCD16
+ const SkGdiRGB* src = (const SkGdiRGB*)bits;
+ SkASSERT(SkMask::kLCD16_Format == glyph.fMaskFormat);
++#if defined(SK_GAMMA_APPLY_TO_A8)
+ if (fPreBlend.isApplicable()) {
+ RGBToLcd16<true>(src, srcRB, glyph, fPreBlend.fR, fPreBlend.fG, fPreBlend.fB);
+- } else {
++ } else
++#endif
++ {
+ RGBToLcd16<false>(src, srcRB, glyph, fPreBlend.fR, fPreBlend.fG, fPreBlend.fB);
+ }
+ }
+--- ./src/ports/SkScalerContext_win_dw.cpp
++++ ./src/ports/SkScalerContext_win_dw.cpp
+@@ -1132,27 +1132,36 @@ void SkScalerContext_DW::generateImage(const SkGlyph& glyph) {
+ BilevelToBW(src, glyph);
+ } else if (!isLCD(fRec)) {
+ if (textureType == DWRITE_TEXTURE_ALIASED_1x1) {
++#if defined(SK_GAMMA_APPLY_TO_A8)
+ if (fPreBlend.isApplicable()) {
+ GrayscaleToA8<true>(src, glyph, fPreBlend.fG);
+- } else {
++ } else
++#endif
++ {
+ GrayscaleToA8<false>(src, glyph, fPreBlend.fG);
+ }
+ } else {
++#if defined(SK_GAMMA_APPLY_TO_A8)
+ if (fPreBlend.isApplicable()) {
+ RGBToA8<true>(src, glyph, fPreBlend.fG);
+- } else {
++ } else
++#endif
++ {
+ RGBToA8<false>(src, glyph, fPreBlend.fG);
+ }
+ }
+ } else {
+ SkASSERT(SkMask::kLCD16_Format == glyph.fMaskFormat);
++#if defined(SK_GAMMA_APPLY_TO_A8)
+ if (fPreBlend.isApplicable()) {
+ if (fRec.fFlags & SkScalerContext::kLCD_BGROrder_Flag) {
+ RGBToLcd16<true, false>(src, glyph, fPreBlend.fR, fPreBlend.fG, fPreBlend.fB);
+ } else {
+ RGBToLcd16<true, true>(src, glyph, fPreBlend.fR, fPreBlend.fG, fPreBlend.fB);
+ }
+- } else {
++ } else
++#endif
++ {
+ if (fRec.fFlags & SkScalerContext::kLCD_BGROrder_Flag) {
+ RGBToLcd16<false, false>(src, glyph, fPreBlend.fR, fPreBlend.fG, fPreBlend.fB);
+ } else {
diff --git a/external/skia/windows-typeface-directwrite.patch.0 b/external/skia/windows-typeface-directwrite.patch.0
new file mode 100644
index 000000000..56e8209ce
--- /dev/null
+++ b/external/skia/windows-typeface-directwrite.patch.0
@@ -0,0 +1,48 @@
+--- ./include/ports/SkTypeface_win.h
++++ ./include/ports/SkTypeface_win.h
+@@ -75,5 +75,13 @@ SK_API sk_sp<SkFontMgr> SkFontMgr_New_DirectWriteRenderer(sk_sp<SkRemotableFontM
+ */
+ SK_API sk_sp<SkRemotableFontMgr> SkRemotableFontMgr_New_DirectWrite();
+
++struct IDWriteFontFace;
++struct IDWriteFont;
++struct IDWriteFontFamily;
++SK_API SkTypeface* SkCreateTypefaceDirectWrite(sk_sp<SkFontMgr> fontMgr,
++ IDWriteFontFace* fontFace,
++ IDWriteFont* font,
++ IDWriteFontFamily* fontFamily);
++
+ #endif // SK_BUILD_FOR_WIN
+ #endif // SkTypeface_win_DEFINED
+--- ./src/ports/SkFontMgr_win_dw.cpp
++++ ./src/ports/SkFontMgr_win_dw.cpp
+@@ -320,6 +320,10 @@ private:
+
+ friend class SkFontStyleSet_DirectWrite;
+ friend class FontFallbackRenderer;
++ friend SK_API SkTypeface* SkCreateTypefaceDirectWrite(sk_sp<SkFontMgr> fontMgr,
++ IDWriteFontFace* fontFace,
++ IDWriteFont* font,
++ IDWriteFontFamily* fontFamily);
+ };
+
+ class SkFontStyleSet_DirectWrite : public SkFontStyleSet {
+@@ -1215,6 +1219,18 @@ SK_API sk_sp<SkFontMgr> SkFontMgr_New_DirectWrite(IDWriteFactory* factory,
+ defaultFamilyName, defaultFamilyNameLen);
+ }
+
++SkTypeface* SkCreateTypefaceDirectWrite(sk_sp<SkFontMgr> fontMgr,
++ IDWriteFontFace* fontFace,
++ IDWriteFont* font,
++ IDWriteFontFamily* fontFamily)
++{
++ SkFontMgr_DirectWrite* mgr = dynamic_cast<SkFontMgr_DirectWrite*>(fontMgr.get());
++ if(!mgr)
++ return nullptr;
++ sk_sp<SkTypeface> typeface = mgr->makeTypefaceFromDWriteFont(fontFace, font, fontFamily);
++ return typeface.release();
++}
++
+ #include "include/ports/SkFontMgr_indirect.h"
+ SK_API sk_sp<SkFontMgr> SkFontMgr_New_DirectWriteRenderer(sk_sp<SkRemotableFontMgr> proxy) {
+ sk_sp<SkFontMgr> impl(SkFontMgr_New_DirectWrite());