diff options
Diffstat (limited to 'sc/source/core/tool/interpr8.cxx')
-rw-r--r-- | sc/source/core/tool/interpr8.cxx | 2008 |
1 files changed, 2008 insertions, 0 deletions
diff --git a/sc/source/core/tool/interpr8.cxx b/sc/source/core/tool/interpr8.cxx new file mode 100644 index 000000000..df75c92d4 --- /dev/null +++ b/sc/source/core/tool/interpr8.cxx @@ -0,0 +1,2008 @@ +/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ +/* + * This file is part of the LibreOffice project. + * + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. + * + */ + +#include <interpre.hxx> +#include <cellvalue.hxx> +#include <scmatrix.hxx> +#include <comphelper/random.hxx> +#include <formula/token.hxx> +#include <sal/log.hxx> +#include <svl/numformat.hxx> + +#include <cmath> +#include <memory> +#include <vector> + +using namespace formula; + +namespace { + +struct DataPoint +{ + double X, Y; + + DataPoint( double rX, double rY ) : X( rX ), Y( rY ) {}; +}; + +} + +static bool lcl_SortByX( const DataPoint &lhs, const DataPoint &rhs ) { return lhs.X < rhs.X; } + +/* + * ScETSForecastCalculation + * + * Class is set up to be used with Calc's FORECAST.ETS + * functions and with chart extrapolations (not yet implemented). + * + * Triple Exponential Smoothing (Holt-Winters method) + * + * Forecasting of a linear change in data over time (y=a+b*x) with + * superimposed absolute or relative seasonal deviations, using additive + * respectively multiplicative Holt-Winters method. + * + * Initialisation and forecasting calculations are based on + * Engineering Statistics Handbook, 6.4.3.5 Triple Exponential Smoothing + * see "http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc435.htm" + * Further to the above is that initial calculation of Seasonal effect + * is corrected for trend. + * + * Prediction Interval calculations are based on + * Yar & Chatfield, Prediction Intervals for the Holt-Winters forecasting + * procedure, International Journal of Forecasting, 1990, Vol.6, pp127-137 + * The calculation here is a simplified numerical approximation of the above, + * using random distributions. + * + * Double Exponential Smoothing (Holt-Winters method) + * + * Forecasting of a linear change in data over time (y=a+b*x), using + * the Holt-Winters method. + * + * Initialisation and forecasting calculations are based on + * Engineering Statistics Handbook, 6.4.3.3 Double Exponential Smoothing + * see "http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc433.htm" + * + * Prediction Interval calculations are based on + * Statistical Methods for Forecasting, Bovas & Ledolter, 2009, 3.8 Prediction + * Intervals for Future Values + * + */ + +namespace { + +class ScETSForecastCalculation +{ +private: + SvNumberFormatter* mpFormatter; + std::vector< DataPoint > maRange; // data (X, Y) + std::unique_ptr<double[]> mpBase; // calculated base value array + std::unique_ptr<double[]> mpTrend; // calculated trend factor array + std::unique_ptr<double[]> mpPerIdx; // calculated periodical deviation array, not used with eds + std::unique_ptr<double[]> mpForecast; // forecasted value array + SCSIZE mnSmplInPrd; // samples per period + double mfStepSize; // increment of X in maRange + double mfAlpha, mfBeta, mfGamma; // constants to minimize the RMSE in the ES-equations + SCSIZE mnCount; // No of data points + bool mbInitialised; + int mnMonthDay; // n-month X-interval, value is day of month + // accuracy indicators + double mfMAE; // mean absolute error + double mfMASE; // mean absolute scaled error + double mfMSE; // mean squared error (variation) + double mfRMSE; // root mean squared error (standard deviation) + double mfSMAPE; // symmetric mean absolute error + FormulaError mnErrorValue; + bool bAdditive; // true: additive method, false: multiplicative method + bool bEDS; // true: EDS, false: ETS + + // constants used in determining best fit for alpha, beta, gamma + static constexpr double cfMinABCResolution = 0.001; // minimum change of alpha, beta, gamma + static const SCSIZE cnScenarios = 1000; // No. of scenarios to calculate for PI calculations + + bool initData(); + void prefillBaseData(); + bool prefillTrendData(); + bool prefillPerIdx(); + void initCalc(); + void refill(); + SCSIZE CalcPeriodLen(); + void CalcAlphaBetaGamma(); + void CalcBetaGamma(); + void CalcGamma(); + void calcAccuracyIndicators(); + void GetForecast( double fTarget, double& rForecast ); + double RandDev(); + double convertXtoMonths( double x ); + +public: + ScETSForecastCalculation( SCSIZE nSize, SvNumberFormatter* pFormatter ); + + bool PreprocessDataRange( const ScMatrixRef& rMatX, const ScMatrixRef& rMatY, int nSmplInPrd, + bool bDataCompletion, int nAggregation, const ScMatrixRef& rTMat, + ScETSType eETSType ); + FormulaError GetError() const { return mnErrorValue; }; + void GetForecastRange( const ScMatrixRef& rTMat, const ScMatrixRef& rFcMat ); + void GetStatisticValue( const ScMatrixRef& rTypeMat, const ScMatrixRef& rStatMat ); + void GetSamplesInPeriod( double& rVal ); + void GetEDSPredictionIntervals( const ScMatrixRef& rTMat, const ScMatrixRef& rPIMat, double fPILevel ); + void GetETSPredictionIntervals( const ScMatrixRef& rTMat, const ScMatrixRef& rPIMat, double fPILevel ); +}; + +} + +ScETSForecastCalculation::ScETSForecastCalculation( SCSIZE nSize, SvNumberFormatter* pFormatter ) + : mpFormatter(pFormatter) + , mnSmplInPrd(0) + , mfStepSize(0.0) + , mfAlpha(0.0) + , mfBeta(0.0) + , mfGamma(0.0) + , mnCount(nSize) + , mbInitialised(false) + , mnMonthDay(0) + , mfMAE(0.0) + , mfMASE(0.0) + , mfMSE(0.0) + , mfRMSE(0.0) + , mfSMAPE(0.0) + , mnErrorValue(FormulaError::NONE) + , bAdditive(false) + , bEDS(false) +{ + maRange.reserve( mnCount ); +} + +bool ScETSForecastCalculation::PreprocessDataRange( const ScMatrixRef& rMatX, const ScMatrixRef& rMatY, int nSmplInPrd, + bool bDataCompletion, int nAggregation, const ScMatrixRef& rTMat, + ScETSType eETSType ) +{ + bEDS = ( nSmplInPrd == 0 ); + bAdditive = ( eETSType == etsAdd || eETSType == etsPIAdd || eETSType == etsStatAdd ); + + // maRange needs to be sorted by X + for ( SCSIZE i = 0; i < mnCount; i++ ) + maRange.emplace_back( rMatX->GetDouble( i ), rMatY->GetDouble( i ) ); + sort( maRange.begin(), maRange.end(), lcl_SortByX ); + + if ( rTMat ) + { + if ( eETSType != etsPIAdd && eETSType != etsPIMult ) + { + if ( rTMat->GetDouble( 0 ) < maRange[ 0 ].X ) + { + // target cannot be less than start of X-range + mnErrorValue = FormulaError::IllegalFPOperation; + return false; + } + } + else + { + if ( rTMat->GetDouble( 0 ) < maRange[ mnCount - 1 ].X ) + { + // target cannot be before end of X-range + mnErrorValue = FormulaError::IllegalFPOperation; + return false; + } + } + } + + // Month intervals don't have exact stepsize, so first + // detect if month interval is used. + // Method: assume there is an month interval and verify. + // If month interval is used, replace maRange.X with month values + // for ease of calculations. + Date aNullDate = mpFormatter->GetNullDate(); + Date aDate = aNullDate + static_cast< sal_Int32 >( maRange[ 0 ].X ); + mnMonthDay = aDate.GetDay(); + for ( SCSIZE i = 1; i < mnCount && mnMonthDay; i++ ) + { + Date aDate1 = aNullDate + static_cast< sal_Int32 >( maRange[ i ].X ); + if ( aDate != aDate1 ) + { + if ( aDate1.GetDay() != mnMonthDay ) + mnMonthDay = 0; + } + } + + mfStepSize = ::std::numeric_limits<double>::max(); + if ( mnMonthDay ) + { + for ( SCSIZE i = 0; i < mnCount; i++ ) + { + aDate = aNullDate + static_cast< sal_Int32 >( maRange[ i ].X ); + maRange[ i ].X = aDate.GetYear() * 12 + aDate.GetMonth(); + } + } + for ( SCSIZE i = 1; i < mnCount; i++ ) + { + double fStep = maRange[ i ].X - maRange[ i - 1 ].X; + if ( fStep == 0.0 ) + { + if ( nAggregation == 0 ) + { + // identical X-values are not allowed + mnErrorValue = FormulaError::NoValue; + return false; + } + double fTmp = maRange[ i - 1 ].Y; + SCSIZE nCounter = 1; + switch ( nAggregation ) + { + case 1 : // AVERAGE (default) + while ( i < mnCount && maRange[ i ].X == maRange[ i - 1 ].X ) + { + maRange.erase( maRange.begin() + i ); + --mnCount; + } + break; + case 7 : // SUM + while ( i < mnCount && maRange[ i ].X == maRange[ i - 1 ].X ) + { + fTmp += maRange[ i ].Y; + maRange.erase( maRange.begin() + i ); + --mnCount; + } + maRange[ i - 1 ].Y = fTmp; + break; + + case 2 : // COUNT + case 3 : // COUNTA (same as COUNT as there are no non-numeric Y-values) + while ( i < mnCount && maRange[ i ].X == maRange[ i - 1 ].X ) + { + nCounter++; + maRange.erase( maRange.begin() + i ); + --mnCount; + } + maRange[ i - 1 ].Y = nCounter; + break; + + case 4 : // MAX + while ( i < mnCount && maRange[ i ].X == maRange[ i - 1 ].X ) + { + if ( maRange[ i ].Y > fTmp ) + fTmp = maRange[ i ].Y; + maRange.erase( maRange.begin() + i ); + --mnCount; + } + maRange[ i - 1 ].Y = fTmp; + break; + + case 5 : // MEDIAN + { + std::vector< double > aTmp { maRange[ i - 1 ].Y }; + while ( i < mnCount && maRange[ i ].X == maRange[ i - 1 ].X ) + { + aTmp.push_back( maRange[ i ].Y ); + nCounter++; + maRange.erase( maRange.begin() + i ); + --mnCount; + } + sort( aTmp.begin(), aTmp.end() ); + + if ( nCounter % 2 ) + maRange[ i - 1 ].Y = aTmp[ nCounter / 2 ]; + else + maRange[ i - 1 ].Y = ( aTmp[ nCounter / 2 ] + aTmp[ nCounter / 2 - 1 ] ) / 2.0; + } + break; + + case 6 : // MIN + while ( i < mnCount && maRange[ i ].X == maRange[ i - 1 ].X ) + { + if ( maRange[ i ].Y < fTmp ) + fTmp = maRange[ i ].Y; + maRange.erase( maRange.begin() + i ); + --mnCount; + } + maRange[ i - 1 ].Y = fTmp; + break; + } + if ( i < mnCount - 1 ) + fStep = maRange[ i ].X - maRange[ i - 1 ].X; + else + fStep = mfStepSize; + } + if ( fStep > 0 && fStep < mfStepSize ) + mfStepSize = fStep; + } + + // step must be constant (or gap multiple of step) + bool bHasGap = false; + for ( SCSIZE i = 1; i < mnCount && !bHasGap; i++ ) + { + double fStep = maRange[ i ].X - maRange[ i - 1 ].X; + + if ( fStep != mfStepSize ) + { + if ( fmod( fStep, mfStepSize ) != 0.0 ) + { + // step not constant nor multiple of mfStepSize in case of gaps + mnErrorValue = FormulaError::NoValue; + return false; + } + bHasGap = true; + } + } + + // fill gaps with values depending on bDataCompletion + if ( bHasGap ) + { + SCSIZE nMissingXCount = 0; + double fOriginalCount = static_cast< double >( mnCount ); + if ( mnMonthDay ) + aDate = aNullDate + static_cast< sal_Int32 >( maRange[ 0 ].X ); + for ( SCSIZE i = 1; i < mnCount; i++ ) + { + double fDist; + if ( mnMonthDay ) + { + Date aDate1 = aNullDate + static_cast< sal_Int32 >( maRange[ i ].X ); + fDist = 12 * ( aDate1.GetYear() - aDate.GetYear() ) + + ( aDate1.GetMonth() - aDate.GetMonth() ); + aDate = aDate1; + } + else + fDist = maRange[ i ].X - maRange[ i - 1 ].X; + if ( fDist > mfStepSize ) + { + // gap, insert missing data points + double fYGap = ( maRange[ i ].Y + maRange[ i - 1 ].Y ) / 2.0; + for ( KahanSum fXGap = maRange[ i - 1].X + mfStepSize; fXGap < maRange[ i ].X; fXGap += mfStepSize ) + { + maRange.insert( maRange.begin() + i, DataPoint( fXGap.get(), ( bDataCompletion ? fYGap : 0.0 ) ) ); + i++; + mnCount++; + nMissingXCount++; + if ( static_cast< double >( nMissingXCount ) / fOriginalCount > 0.3 ) + { + // maximum of 30% missing points exceeded + mnErrorValue = FormulaError::NoValue; + return false; + } + } + } + } + } + + if ( nSmplInPrd != 1 ) + mnSmplInPrd = nSmplInPrd; + else + { + mnSmplInPrd = CalcPeriodLen(); + if ( mnSmplInPrd == 1 ) + bEDS = true; // period length 1 means no periodic data: EDS suffices + } + + if ( !initData() ) + return false; // note: mnErrorValue is set in called function(s) + + return true; +} + +bool ScETSForecastCalculation::initData( ) +{ + // give various vectors size and initial value + mpBase.reset( new double[ mnCount ] ); + mpTrend.reset( new double[ mnCount ] ); + if ( !bEDS ) + mpPerIdx.reset( new double[ mnCount ] ); + mpForecast.reset( new double[ mnCount ] ); + mpForecast[ 0 ] = maRange[ 0 ].Y; + + if ( prefillTrendData() ) + { + if ( prefillPerIdx() ) + { + prefillBaseData(); + return true; + } + } + return false; +} + +bool ScETSForecastCalculation::prefillTrendData() +{ + if ( bEDS ) + mpTrend[ 0 ] = ( maRange[ mnCount - 1 ].Y - maRange[ 0 ].Y ) / static_cast< double >( mnCount - 1 ); + else + { + // we need at least 2 periods in the data range + if ( mnCount < 2 * mnSmplInPrd ) + { + mnErrorValue = FormulaError::NoValue; + return false; + } + + KahanSum fSum = 0.0; + for ( SCSIZE i = 0; i < mnSmplInPrd; i++ ) + { + fSum += maRange[ i + mnSmplInPrd ].Y; + fSum -= maRange[ i ].Y; + } + double fTrend = fSum.get() / static_cast< double >( mnSmplInPrd * mnSmplInPrd ); + + mpTrend[ 0 ] = fTrend; + } + + return true; +} + +bool ScETSForecastCalculation::prefillPerIdx() +{ + if ( !bEDS ) + { + // use as many complete periods as available + if ( mnSmplInPrd == 0 ) + { + // should never happen; if mnSmplInPrd equals 0, bEDS is true + mnErrorValue = FormulaError::UnknownState; + return false; + } + SCSIZE nPeriods = mnCount / mnSmplInPrd; + std::vector< KahanSum > aPeriodAverage( nPeriods, 0.0 ); + for ( SCSIZE i = 0; i < nPeriods ; i++ ) + { + for ( SCSIZE j = 0; j < mnSmplInPrd; j++ ) + aPeriodAverage[ i ] += maRange[ i * mnSmplInPrd + j ].Y; + aPeriodAverage[ i ] /= static_cast< double >( mnSmplInPrd ); + if ( aPeriodAverage[ i ] == 0.0 ) + { + SAL_WARN( "sc.core", "prefillPerIdx(), average of 0 will cause divide by zero error, quitting calculation" ); + mnErrorValue = FormulaError::DivisionByZero; + return false; + } + } + + for ( SCSIZE j = 0; j < mnSmplInPrd; j++ ) + { + KahanSum fI = 0.0; + for ( SCSIZE i = 0; i < nPeriods ; i++ ) + { + // adjust average value for position within period + if ( bAdditive ) + fI += maRange[ i * mnSmplInPrd + j ].Y - + ( aPeriodAverage[ i ].get() + ( static_cast< double >( j ) - 0.5 * ( mnSmplInPrd - 1 ) ) * + mpTrend[ 0 ] ); + else + fI += maRange[ i * mnSmplInPrd + j ].Y / + ( aPeriodAverage[ i ].get() + ( static_cast< double >( j ) - 0.5 * ( mnSmplInPrd - 1 ) ) * + mpTrend[ 0 ] ); + } + mpPerIdx[ j ] = fI.get() / nPeriods; + } + if (mnSmplInPrd < mnCount) + mpPerIdx[mnSmplInPrd] = 0.0; + } + return true; +} + +void ScETSForecastCalculation::prefillBaseData() +{ + if ( bEDS ) + mpBase[ 0 ] = maRange[ 0 ].Y; + else + mpBase[ 0 ] = maRange[ 0 ].Y / mpPerIdx[ 0 ]; +} + +void ScETSForecastCalculation::initCalc() +{ + if ( !mbInitialised ) + { + CalcAlphaBetaGamma(); + + mbInitialised = true; + calcAccuracyIndicators(); + } +} + +void ScETSForecastCalculation::calcAccuracyIndicators() +{ + KahanSum fSumAbsErr = 0.0; + KahanSum fSumDivisor = 0.0; + KahanSum fSumErrSq = 0.0; + KahanSum fSumAbsPercErr = 0.0; + + for ( SCSIZE i = 1; i < mnCount; i++ ) + { + double fError = mpForecast[ i ] - maRange[ i ].Y; + fSumAbsErr += fabs( fError ); + fSumErrSq += fError * fError; + fSumAbsPercErr += fabs( fError ) / ( fabs( mpForecast[ i ] ) + fabs( maRange[ i ].Y ) ); + } + + for ( SCSIZE i = 2; i < mnCount; i++ ) + fSumDivisor += fabs( maRange[ i ].Y - maRange[ i - 1 ].Y ); + + int nCalcCount = mnCount - 1; + mfMAE = fSumAbsErr.get() / nCalcCount; + mfMASE = fSumAbsErr.get() / ( nCalcCount * fSumDivisor.get() / ( nCalcCount - 1 ) ); + mfMSE = fSumErrSq.get() / nCalcCount; + mfRMSE = sqrt( mfMSE ); + mfSMAPE = fSumAbsPercErr.get() * 2.0 / nCalcCount; +} + +/* + * CalcPeriodLen() calculates the most likely length of a period. + * + * Method used: for all possible values (between mnCount/2 and 2) compare for + * each (sample-previous sample) with next period and calculate mean error. + * Use as much samples as possible for each period length and the most recent samples + * Return the period length with the lowest mean error. + */ +SCSIZE ScETSForecastCalculation::CalcPeriodLen() +{ + SCSIZE nBestVal = mnCount; + double fBestME = ::std::numeric_limits<double>::max(); + + for ( SCSIZE nPeriodLen = mnCount / 2; nPeriodLen >= 1; nPeriodLen-- ) + { + KahanSum fMeanError = 0.0; + SCSIZE nPeriods = mnCount / nPeriodLen; + SCSIZE nStart = mnCount - ( nPeriods * nPeriodLen ) + 1; + for ( SCSIZE i = nStart; i < ( mnCount - nPeriodLen ); i++ ) + { + fMeanError += fabs( ( maRange[ i ].Y - maRange[ i - 1 ].Y ) - + ( maRange[ nPeriodLen + i ].Y - maRange[ nPeriodLen + i - 1 ].Y ) ); + } + double fMeanErrorGet = fMeanError.get(); + fMeanErrorGet /= static_cast< double >( ( nPeriods - 1 ) * nPeriodLen - 1 ); + + if ( fMeanErrorGet <= fBestME || fMeanErrorGet == 0.0 ) + { + nBestVal = nPeriodLen; + fBestME = fMeanErrorGet; + } + } + return nBestVal; +} + +void ScETSForecastCalculation::CalcAlphaBetaGamma() +{ + double f0 = 0.0; + mfAlpha = f0; + if ( bEDS ) + { + mfBeta = 0.0; // beta is not used with EDS + CalcGamma(); + } + else + CalcBetaGamma(); + refill(); + double fE0 = mfMSE; + + double f2 = 1.0; + mfAlpha = f2; + if ( bEDS ) + CalcGamma(); + else + CalcBetaGamma(); + refill(); + double fE2 = mfMSE; + + double f1 = 0.5; + mfAlpha = f1; + if ( bEDS ) + CalcGamma(); + else + CalcBetaGamma(); + refill(); + + if ( fE0 == mfMSE && mfMSE == fE2 ) + { + mfAlpha = 0; + if ( bEDS ) + CalcGamma(); + else + CalcBetaGamma(); + refill(); + return; + } + while ( ( f2 - f1 ) > cfMinABCResolution ) + { + if ( fE2 > fE0 ) + { + f2 = f1; + fE2 = mfMSE; + f1 = ( f0 + f1 ) / 2; + } + else + { + f0 = f1; + fE0 = mfMSE; + f1 = ( f1 + f2 ) / 2; + } + mfAlpha = f1; + if ( bEDS ) + CalcGamma(); + else + CalcBetaGamma(); + refill(); + } + if ( fE2 > fE0 ) + { + if ( fE0 < mfMSE ) + { + mfAlpha = f0; + if ( bEDS ) + CalcGamma(); + else + CalcBetaGamma(); + refill(); + } + } + else + { + if ( fE2 < mfMSE ) + { + mfAlpha = f2; + if ( bEDS ) + CalcGamma(); + else + CalcBetaGamma(); + refill(); + } + } + calcAccuracyIndicators(); +} + +void ScETSForecastCalculation::CalcBetaGamma() +{ + double f0 = 0.0; + mfBeta = f0; + CalcGamma(); + refill(); + double fE0 = mfMSE; + + double f2 = 1.0; + mfBeta = f2; + CalcGamma(); + refill(); + double fE2 = mfMSE; + + double f1 = 0.5; + mfBeta = f1; + CalcGamma(); + refill(); + + if ( fE0 == mfMSE && mfMSE == fE2 ) + { + mfBeta = 0; + CalcGamma(); + refill(); + return; + } + while ( ( f2 - f1 ) > cfMinABCResolution ) + { + if ( fE2 > fE0 ) + { + f2 = f1; + fE2 = mfMSE; + f1 = ( f0 + f1 ) / 2; + } + else + { + f0 = f1; + fE0 = mfMSE; + f1 = ( f1 + f2 ) / 2; + } + mfBeta = f1; + CalcGamma(); + refill(); + } + if ( fE2 > fE0 ) + { + if ( fE0 < mfMSE ) + { + mfBeta = f0; + CalcGamma(); + refill(); + } + } + else + { + if ( fE2 < mfMSE ) + { + mfBeta = f2; + CalcGamma(); + refill(); + } + } +} + +void ScETSForecastCalculation::CalcGamma() +{ + double f0 = 0.0; + mfGamma = f0; + refill(); + double fE0 = mfMSE; + + double f2 = 1.0; + mfGamma = f2; + refill(); + double fE2 = mfMSE; + + double f1 = 0.5; + mfGamma = f1; + refill(); + + if ( fE0 == mfMSE && mfMSE == fE2 ) + { + mfGamma = 0; + refill(); + return; + } + while ( ( f2 - f1 ) > cfMinABCResolution ) + { + if ( fE2 > fE0 ) + { + f2 = f1; + fE2 = mfMSE; + f1 = ( f0 + f1 ) / 2; + } + else + { + f0 = f1; + fE0 = mfMSE; + f1 = ( f1 + f2 ) / 2; + } + mfGamma = f1; + refill(); + } + if ( fE2 > fE0 ) + { + if ( fE0 < mfMSE ) + { + mfGamma = f0; + refill(); + } + } + else + { + if ( fE2 < mfMSE ) + { + mfGamma = f2; + refill(); + } + } +} + +void ScETSForecastCalculation::refill() +{ + // refill mpBase, mpTrend, mpPerIdx and mpForecast with values + // using the calculated mfAlpha, (mfBeta), mfGamma + // forecast 1 step ahead + for ( SCSIZE i = 1; i < mnCount; i++ ) + { + if ( bEDS ) + { + mpBase[ i ] = mfAlpha * maRange[ i ].Y + + ( 1 - mfAlpha ) * ( mpBase[ i - 1 ] + mpTrend[ i - 1 ] ); + mpTrend[ i ] = mfGamma * ( mpBase[ i ] - mpBase[ i - 1 ] ) + + ( 1 - mfGamma ) * mpTrend[ i - 1 ]; + mpForecast[ i ] = mpBase[ i - 1 ] + mpTrend[ i - 1 ]; + } + else + { + SCSIZE nIdx; + if ( bAdditive ) + { + nIdx = ( i > mnSmplInPrd ? i - mnSmplInPrd : i ); + mpBase[ i ] = mfAlpha * ( maRange[ i ].Y - mpPerIdx[ nIdx ] ) + + ( 1 - mfAlpha ) * ( mpBase[ i - 1 ] + mpTrend[ i - 1 ] ); + mpPerIdx[ i ] = mfBeta * ( maRange[ i ].Y - mpBase[ i ] ) + + ( 1 - mfBeta ) * mpPerIdx[ nIdx ]; + } + else + { + nIdx = ( i >= mnSmplInPrd ? i - mnSmplInPrd : i ); + mpBase[ i ] = mfAlpha * ( maRange[ i ].Y / mpPerIdx[ nIdx ] ) + + ( 1 - mfAlpha ) * ( mpBase[ i - 1 ] + mpTrend[ i - 1 ] ); + mpPerIdx[ i ] = mfBeta * ( maRange[ i ].Y / mpBase[ i ] ) + + ( 1 - mfBeta ) * mpPerIdx[ nIdx ]; + } + mpTrend[ i ] = mfGamma * ( mpBase[ i ] - mpBase[ i - 1 ] ) + + ( 1 - mfGamma ) * mpTrend[ i - 1 ]; + + if ( bAdditive ) + mpForecast[ i ] = mpBase[ i - 1 ] + mpTrend[ i - 1 ] + mpPerIdx[ nIdx ]; + else + mpForecast[ i ] = ( mpBase[ i - 1 ] + mpTrend[ i - 1 ] ) * mpPerIdx[ nIdx ]; + } + } + calcAccuracyIndicators(); +} + +double ScETSForecastCalculation::convertXtoMonths( double x ) +{ + Date aDate = mpFormatter->GetNullDate() + static_cast< sal_Int32 >( x ); + int nYear = aDate.GetYear(); + int nMonth = aDate.GetMonth(); + double fMonthLength; + switch ( nMonth ) + { + case 1 : + case 3 : + case 5 : + case 7 : + case 8 : + case 10 : + case 12 : + fMonthLength = 31.0; + break; + case 2 : + fMonthLength = ( aDate.IsLeapYear() ? 29.0 : 28.0 ); + break; + default : + fMonthLength = 30.0; + } + return ( 12.0 * nYear + nMonth + ( aDate.GetDay() - mnMonthDay ) / fMonthLength ); +} + +void ScETSForecastCalculation::GetForecast( double fTarget, double& rForecast ) +{ + initCalc(); + + if ( fTarget <= maRange[ mnCount - 1 ].X ) + { + SCSIZE n = ( fTarget - maRange[ 0 ].X ) / mfStepSize; + double fInterpolate = fmod( fTarget - maRange[ 0 ].X, mfStepSize ); + rForecast = maRange[ n ].Y; + + if ( fInterpolate >= cfMinABCResolution ) + { + double fInterpolateFactor = fInterpolate / mfStepSize; + double fFc_1 = mpForecast[ n + 1 ]; + rForecast = rForecast + fInterpolateFactor * ( fFc_1 - rForecast ); + } + } + else + { + SCSIZE n = ( fTarget - maRange[ mnCount - 1 ].X ) / mfStepSize; + double fInterpolate = fmod( fTarget - maRange[ mnCount - 1 ].X, mfStepSize ); + + if ( bEDS ) + rForecast = mpBase[ mnCount - 1 ] + n * mpTrend[ mnCount - 1 ]; + else if ( bAdditive ) + rForecast = mpBase[ mnCount - 1 ] + n * mpTrend[ mnCount - 1 ] + + mpPerIdx[ mnCount - 1 - mnSmplInPrd + ( n % mnSmplInPrd ) ]; + else + rForecast = ( mpBase[ mnCount - 1 ] + n * mpTrend[ mnCount - 1 ] ) * + mpPerIdx[ mnCount - 1 - mnSmplInPrd + ( n % mnSmplInPrd ) ]; + + if ( fInterpolate >= cfMinABCResolution ) + { + double fInterpolateFactor = fInterpolate / mfStepSize; + double fFc_1; + if ( bEDS ) + fFc_1 = mpBase[ mnCount - 1 ] + ( n + 1 ) * mpTrend[ mnCount - 1 ]; + else if ( bAdditive ) + fFc_1 = mpBase[ mnCount - 1 ] + ( n + 1 ) * mpTrend[ mnCount - 1 ] + + mpPerIdx[ mnCount - 1 - mnSmplInPrd + ( ( n + 1 ) % mnSmplInPrd ) ]; + else + fFc_1 = ( mpBase[ mnCount - 1 ] + ( n + 1 ) * mpTrend[ mnCount - 1 ] ) * + mpPerIdx[ mnCount - 1 - mnSmplInPrd + ( ( n + 1 ) % mnSmplInPrd ) ]; + rForecast = rForecast + fInterpolateFactor * ( fFc_1 - rForecast ); + } + } +} + +void ScETSForecastCalculation::GetForecastRange( const ScMatrixRef& rTMat, const ScMatrixRef& rFcMat ) +{ + SCSIZE nC, nR; + rTMat->GetDimensions( nC, nR ); + + for ( SCSIZE i = 0; i < nR; i++ ) + { + for ( SCSIZE j = 0; j < nC; j++ ) + { + double fTarget; + if ( mnMonthDay ) + fTarget = convertXtoMonths( rTMat->GetDouble( j, i ) ); + else + fTarget = rTMat->GetDouble( j, i ); + double fForecast; + GetForecast( fTarget, fForecast ); + rFcMat->PutDouble( fForecast, j, i ); + } + } +} + +void ScETSForecastCalculation::GetStatisticValue( const ScMatrixRef& rTypeMat, const ScMatrixRef& rStatMat ) +{ + initCalc(); + + SCSIZE nC, nR; + rTypeMat->GetDimensions( nC, nR ); + for ( SCSIZE i = 0; i < nR; i++ ) + { + for ( SCSIZE j = 0; j < nC; j++ ) + { + switch ( static_cast< int >( rTypeMat->GetDouble( j, i ) ) ) + { + case 1 : // alpha + rStatMat->PutDouble( mfAlpha, j, i ); + break; + case 2 : // gamma + rStatMat->PutDouble( mfGamma, j, i ); + break; + case 3 : // beta + rStatMat->PutDouble( mfBeta, j, i ); + break; + case 4 : // MASE + rStatMat->PutDouble( mfMASE, j, i ); + break; + case 5 : // SMAPE + rStatMat->PutDouble( mfSMAPE, j, i ); + break; + case 6 : // MAE + rStatMat->PutDouble( mfMAE, j, i ); + break; + case 7 : // RMSE + rStatMat->PutDouble( mfRMSE, j, i ); + break; + case 8 : // step size + rStatMat->PutDouble( mfStepSize, j, i ); + break; + case 9 : // samples in period + rStatMat->PutDouble( mnSmplInPrd, j, i ); + break; + } + } + } +} + +void ScETSForecastCalculation::GetSamplesInPeriod( double& rVal ) +{ + rVal = mnSmplInPrd; +} + +double ScETSForecastCalculation::RandDev() +{ + // return a random deviation given the standard deviation + return ( mfRMSE * ScInterpreter::gaussinv( + ::comphelper::rng::uniform_real_distribution( 0.5, 1.0 ) ) ); +} + +void ScETSForecastCalculation::GetETSPredictionIntervals( const ScMatrixRef& rTMat, const ScMatrixRef& rPIMat, double fPILevel ) +{ + initCalc(); + + SCSIZE nC, nR; + rTMat->GetDimensions( nC, nR ); + + // find maximum target value and calculate size of scenario-arrays + double fMaxTarget = rTMat->GetDouble( 0, 0 ); + for ( SCSIZE i = 0; i < nR; i++ ) + { + for ( SCSIZE j = 0; j < nC; j++ ) + { + if ( fMaxTarget < rTMat->GetDouble( j, i ) ) + fMaxTarget = rTMat->GetDouble( j, i ); + } + } + if ( mnMonthDay ) + fMaxTarget = convertXtoMonths( fMaxTarget ) - maRange[ mnCount - 1 ].X; + else + fMaxTarget -= maRange[ mnCount - 1 ].X; + SCSIZE nSize = fMaxTarget / mfStepSize; + if ( fmod( fMaxTarget, mfStepSize ) != 0.0 ) + nSize++; + + if (nSize == 0) + { + mnErrorValue = FormulaError::IllegalArgument; + return; + } + + std::unique_ptr< double[] > xScenRange( new double[nSize]); + std::unique_ptr< double[] > xScenBase( new double[nSize]); + std::unique_ptr< double[] > xScenTrend( new double[nSize]); + std::unique_ptr< double[] > xScenPerIdx( new double[nSize]); + std::vector< std::vector< double > > aPredictions( nSize, std::vector< double >( cnScenarios ) ); + + // fill scenarios + for ( SCSIZE k = 0; k < cnScenarios; k++ ) + { + // fill array with forecasts, with RandDev() added to xScenRange + if ( bAdditive ) + { + double nPIdx = !bEDS ? mpPerIdx[mnCount - mnSmplInPrd] : 0.0; + // calculation based on additive model + xScenRange[ 0 ] = mpBase[ mnCount - 1 ] + mpTrend[ mnCount - 1 ] + + nPIdx + + RandDev(); + aPredictions[ 0 ][ k ] = xScenRange[ 0 ]; + xScenBase[ 0 ] = mfAlpha * ( xScenRange[ 0 ] - nPIdx ) + + ( 1 - mfAlpha ) * ( mpBase[ mnCount - 1 ] + mpTrend[ mnCount - 1 ] ); + xScenTrend[ 0 ] = mfGamma * ( xScenBase[ 0 ] - mpBase[ mnCount - 1 ] ) + + ( 1 - mfGamma ) * mpTrend[ mnCount - 1 ]; + xScenPerIdx[ 0 ] = mfBeta * ( xScenRange[ 0 ] - xScenBase[ 0 ] ) + + ( 1 - mfBeta ) * nPIdx; + for ( SCSIZE i = 1; i < nSize; i++ ) + { + double fPerIdx; + if ( i < mnSmplInPrd ) + fPerIdx = mpPerIdx[ mnCount + i - mnSmplInPrd ]; + else + fPerIdx = xScenPerIdx[ i - mnSmplInPrd ]; + xScenRange[ i ] = xScenBase[ i - 1 ] + xScenTrend[ i - 1 ] + fPerIdx + RandDev(); + aPredictions[ i ][ k ] = xScenRange[ i ]; + xScenBase[ i ] = mfAlpha * ( xScenRange[ i ] - fPerIdx ) + + ( 1 - mfAlpha ) * ( xScenBase[ i - 1 ] + xScenTrend[ i - 1 ] ); + xScenTrend[ i ] = mfGamma * ( xScenBase[ i ] - xScenBase[ i - 1 ] ) + + ( 1 - mfGamma ) * xScenTrend[ i - 1 ]; + xScenPerIdx[ i ] = mfBeta * ( xScenRange[ i ] - xScenBase[ i ] ) + + ( 1 - mfBeta ) * fPerIdx; + } + } + else + { + // calculation based on multiplicative model + xScenRange[ 0 ] = ( mpBase[ mnCount - 1 ] + mpTrend[ mnCount - 1 ] ) * + mpPerIdx[ mnCount - mnSmplInPrd ] + + RandDev(); + aPredictions[ 0 ][ k ] = xScenRange[ 0 ]; + xScenBase[ 0 ] = mfAlpha * ( xScenRange[ 0 ] / mpPerIdx[ mnCount - mnSmplInPrd ] ) + + ( 1 - mfAlpha ) * ( mpBase[ mnCount - 1 ] + mpTrend[ mnCount - 1 ] ); + xScenTrend[ 0 ] = mfGamma * ( xScenBase[ 0 ] - mpBase[ mnCount - 1 ] ) + + ( 1 - mfGamma ) * mpTrend[ mnCount - 1 ]; + xScenPerIdx[ 0 ] = mfBeta * ( xScenRange[ 0 ] / xScenBase[ 0 ] ) + + ( 1 - mfBeta ) * mpPerIdx[ mnCount - mnSmplInPrd ]; + for ( SCSIZE i = 1; i < nSize; i++ ) + { + double fPerIdx; + if ( i < mnSmplInPrd ) + fPerIdx = mpPerIdx[ mnCount + i - mnSmplInPrd ]; + else + fPerIdx = xScenPerIdx[ i - mnSmplInPrd ]; + xScenRange[ i ] = ( xScenBase[ i - 1 ] + xScenTrend[ i - 1 ] ) * fPerIdx + RandDev(); + aPredictions[ i ][ k ] = xScenRange[ i ]; + xScenBase[ i ] = mfAlpha * ( xScenRange[ i ] / fPerIdx ) + + ( 1 - mfAlpha ) * ( xScenBase[ i - 1 ] + xScenTrend[ i - 1 ] ); + xScenTrend[ i ] = mfGamma * ( xScenBase[ i ] - xScenBase[ i - 1 ] ) + + ( 1 - mfGamma ) * xScenTrend[ i - 1 ]; + xScenPerIdx[ i ] = mfBeta * ( xScenRange[ i ] / xScenBase[ i ] ) + + ( 1 - mfBeta ) * fPerIdx; + } + } + } + + // create array of Percentile values; + std::unique_ptr< double[] > xPercentile( new double[nSize]); + for ( SCSIZE i = 0; i < nSize; i++ ) + { + xPercentile[ i ] = ScInterpreter::GetPercentile( aPredictions[ i ], ( 1 + fPILevel ) / 2 ) - + ScInterpreter::GetPercentile( aPredictions[ i ], 0.5 ); + } + + for ( SCSIZE i = 0; i < nR; i++ ) + { + for ( SCSIZE j = 0; j < nC; j++ ) + { + double fTarget; + if ( mnMonthDay ) + fTarget = convertXtoMonths( rTMat->GetDouble( j, i ) ) - maRange[ mnCount - 1 ].X; + else + fTarget = rTMat->GetDouble( j, i ) - maRange[ mnCount - 1 ].X; + SCSIZE nSteps = ( fTarget / mfStepSize ) - 1; + double fFactor = fmod( fTarget, mfStepSize ); + double fPI = xPercentile[ nSteps ]; + if ( fFactor != 0.0 ) + { + // interpolate + double fPI1 = xPercentile[ nSteps + 1 ]; + fPI = fPI + fFactor * ( fPI1 - fPI ); + } + rPIMat->PutDouble( fPI, j, i ); + } + } +} + + +void ScETSForecastCalculation::GetEDSPredictionIntervals( const ScMatrixRef& rTMat, const ScMatrixRef& rPIMat, double fPILevel ) +{ + initCalc(); + + SCSIZE nC, nR; + rTMat->GetDimensions( nC, nR ); + + // find maximum target value and calculate size of coefficient- array c + double fMaxTarget = rTMat->GetDouble( 0, 0 ); + for ( SCSIZE i = 0; i < nR; i++ ) + { + for ( SCSIZE j = 0; j < nC; j++ ) + { + if ( fMaxTarget < rTMat->GetDouble( j, i ) ) + fMaxTarget = rTMat->GetDouble( j, i ); + } + } + if ( mnMonthDay ) + fMaxTarget = convertXtoMonths( fMaxTarget ) - maRange[ mnCount - 1 ].X; + else + fMaxTarget -= maRange[ mnCount - 1 ].X; + SCSIZE nSize = fMaxTarget / mfStepSize; + if ( fmod( fMaxTarget, mfStepSize ) != 0.0 ) + nSize++; + + if (nSize == 0) + { + mnErrorValue = FormulaError::IllegalArgument; + return; + } + + double z = ScInterpreter::gaussinv( ( 1.0 + fPILevel ) / 2.0 ); + double o = 1 - fPILevel; + std::vector< double > c( nSize ); + for ( SCSIZE i = 0; i < nSize; i++ ) + { + c[ i ] = sqrt( 1 + ( fPILevel / pow( 1 + o, 3.0 ) ) * + ( ( 1 + 4 * o + 5 * o * o ) + + 2 * static_cast< double >( i ) * fPILevel * ( 1 + 3 * o ) + + 2 * static_cast< double >( i * i ) * fPILevel * fPILevel ) ); + } + + + for ( SCSIZE i = 0; i < nR; i++ ) + { + for ( SCSIZE j = 0; j < nC; j++ ) + { + double fTarget; + if ( mnMonthDay ) + fTarget = convertXtoMonths( rTMat->GetDouble( j, i ) ) - maRange[ mnCount - 1 ].X; + else + fTarget = rTMat->GetDouble( j, i ) - maRange[ mnCount - 1 ].X; + SCSIZE nSteps = ( fTarget / mfStepSize ) - 1; + double fFactor = fmod( fTarget, mfStepSize ); + double fPI = z * mfRMSE * c[ nSteps ] / c[ 0 ]; + if ( fFactor != 0.0 ) + { + // interpolate + double fPI1 = z * mfRMSE * c[ nSteps + 1 ] / c[ 0 ]; + fPI = fPI + fFactor * ( fPI1 - fPI ); + } + rPIMat->PutDouble( fPI, j, i ); + } + } +} + + +void ScInterpreter::ScForecast_Ets( ScETSType eETSType ) +{ + sal_uInt8 nParamCount = GetByte(); + switch ( eETSType ) + { + case etsAdd : + case etsMult : + case etsStatAdd : + case etsStatMult : + if ( !MustHaveParamCount( nParamCount, 3, 6 ) ) + return; + break; + case etsPIAdd : + case etsPIMult : + if ( !MustHaveParamCount( nParamCount, 3, 7 ) ) + { + return; + } + break; + case etsSeason : + if ( !MustHaveParamCount( nParamCount, 2, 4 ) ) + return; + break; + } + + int nAggregation; + if ( ( nParamCount == 6 && eETSType != etsPIAdd && eETSType != etsPIMult ) || + ( nParamCount == 4 && eETSType == etsSeason ) || + nParamCount == 7 ) + nAggregation = static_cast< int >( GetDoubleWithDefault( 1.0 ) ); + else + nAggregation = 1; + if ( nAggregation < 1 || nAggregation > 7 ) + { + PushIllegalArgument(); + return; + } + + bool bDataCompletion; + if ( ( nParamCount >= 5 && eETSType != etsPIAdd && eETSType != etsPIMult ) || + ( nParamCount >= 3 && eETSType == etsSeason ) || + ( nParamCount >= 6 && ( eETSType == etsPIAdd || eETSType == etsPIMult ) ) ) + { + int nTemp = static_cast< int >( GetDoubleWithDefault( 1.0 ) ); + if ( nTemp == 0 || nTemp == 1 ) + bDataCompletion = nTemp; + else + { + PushIllegalArgument(); + return; + } + } + else + bDataCompletion = true; + + int nSmplInPrd; + if ( ( ( nParamCount >= 4 && eETSType != etsPIAdd && eETSType != etsPIMult ) || + ( nParamCount >= 5 && ( eETSType == etsPIAdd || eETSType == etsPIMult ) ) ) && + eETSType != etsSeason ) + { + double fVal = GetDoubleWithDefault( 1.0 ); + if ( fmod( fVal, 1.0 ) != 0 || fVal < 0.0 ) + { + PushError( FormulaError::IllegalFPOperation ); + return; + } + nSmplInPrd = static_cast< int >( fVal ); + } + else + nSmplInPrd = 1; + + // required arguments + double fPILevel = 0.0; + if ( nParamCount < 3 && ( nParamCount != 2 || eETSType != etsSeason ) ) + { + PushParameterExpected(); + return; + } + + if ( eETSType == etsPIAdd || eETSType == etsPIMult ) + { + fPILevel = (nParamCount < 4 ? 0.95 : GetDoubleWithDefault( 0.95 )); + if ( fPILevel < 0 || fPILevel > 1 ) + { + PushIllegalArgument(); + return; + } + } + + ScMatrixRef pTypeMat; + if ( eETSType == etsStatAdd || eETSType == etsStatMult ) + { + pTypeMat = GetMatrix(); + SCSIZE nC, nR; + pTypeMat->GetDimensions( nC, nR ); + for ( SCSIZE i = 0; i < nR; i++ ) + { + for ( SCSIZE j = 0; j < nC; j++ ) + { + if ( static_cast< int >( pTypeMat->GetDouble( j, i ) ) < 1 || + static_cast< int >( pTypeMat->GetDouble( j, i ) ) > 9 ) + { + PushIllegalArgument(); + return; + } + } + } + } + + ScMatrixRef pMatX = GetMatrix(); + ScMatrixRef pMatY = GetMatrix(); + if ( !pMatX || !pMatY ) + { + PushIllegalParameter(); + return; + } + SCSIZE nCX, nCY; + SCSIZE nRX, nRY; + pMatX->GetDimensions( nCX, nRX ); + pMatY->GetDimensions( nCY, nRY ); + if ( nRX != nRY || nCX != nCY || + !pMatX->IsNumeric() || !pMatY->IsNumeric() ) + { + PushIllegalArgument(); + return; + } + + ScMatrixRef pTMat; + if ( eETSType != etsStatAdd && eETSType != etsStatMult && eETSType != etsSeason ) + { + pTMat = GetMatrix(); + if ( !pTMat ) + { + PushIllegalArgument(); + return; + } + } + + ScETSForecastCalculation aETSCalc( pMatX->GetElementCount(), pFormatter ); + if ( !aETSCalc.PreprocessDataRange( pMatX, pMatY, nSmplInPrd, bDataCompletion, + nAggregation, + ( eETSType != etsStatAdd && eETSType != etsStatMult ? pTMat : nullptr ), + eETSType ) ) + { + PushError( aETSCalc.GetError() ); + return; + } + + switch ( eETSType ) + { + case etsAdd : + case etsMult : + { + SCSIZE nC, nR; + pTMat->GetDimensions( nC, nR ); + ScMatrixRef pFcMat = GetNewMat( nC, nR, /*bEmpty*/true ); + aETSCalc.GetForecastRange( pTMat, pFcMat ); + if (aETSCalc.GetError() != FormulaError::NONE) + PushError( aETSCalc.GetError()); // explicitly push error, PushMatrix() does not + else + PushMatrix( pFcMat ); + } + break; + case etsPIAdd : + case etsPIMult : + { + SCSIZE nC, nR; + pTMat->GetDimensions( nC, nR ); + ScMatrixRef pPIMat = GetNewMat( nC, nR, /*bEmpty*/true ); + if ( nSmplInPrd == 0 ) + { + aETSCalc.GetEDSPredictionIntervals( pTMat, pPIMat, fPILevel ); + } + else + { + aETSCalc.GetETSPredictionIntervals( pTMat, pPIMat, fPILevel ); + } + if (aETSCalc.GetError() != FormulaError::NONE) + PushError( aETSCalc.GetError()); // explicitly push error, PushMatrix() does not + else + PushMatrix( pPIMat ); + } + break; + case etsStatAdd : + case etsStatMult : + { + SCSIZE nC, nR; + pTypeMat->GetDimensions( nC, nR ); + ScMatrixRef pStatMat = GetNewMat( nC, nR, /*bEmpty*/true ); + aETSCalc.GetStatisticValue( pTypeMat, pStatMat ); + if (aETSCalc.GetError() != FormulaError::NONE) + PushError( aETSCalc.GetError()); // explicitly push error, PushMatrix() does not + else + PushMatrix( pStatMat ); + } + break; + case etsSeason : + { + double rVal; + aETSCalc.GetSamplesInPeriod( rVal ); + SetError( aETSCalc.GetError() ); + PushDouble( rVal ); + } + break; + } +} + +void ScInterpreter::ScConcat_MS() +{ + OUStringBuffer aResBuf; + short nParamCount = GetByte(); + + //reverse order of parameter stack to simplify concatenation: + ReverseStack( nParamCount ); + + size_t nRefInList = 0; + while ( nParamCount-- > 0 && nGlobalError == FormulaError::NONE ) + { + switch ( GetStackType() ) + { + case svString: + case svDouble: + { + const OUString& rStr = GetString().getString(); + if (CheckStringResultLen(aResBuf, rStr.getLength())) + aResBuf.append( rStr); + } + break; + case svSingleRef : + { + ScAddress aAdr; + PopSingleRef( aAdr ); + if ( nGlobalError != FormulaError::NONE ) + break; + ScRefCellValue aCell( mrDoc, aAdr ); + if (!aCell.hasEmptyValue()) + { + svl::SharedString aSS; + GetCellString( aSS, aCell); + const OUString& rStr = aSS.getString(); + if (CheckStringResultLen(aResBuf, rStr.getLength())) + aResBuf.append( rStr); + } + } + break; + case svDoubleRef : + case svRefList : + { + ScRange aRange; + PopDoubleRef( aRange, nParamCount, nRefInList); + if ( nGlobalError != FormulaError::NONE ) + break; + // we need to read row for row, so we can't use ScCellIter + SCCOL nCol1, nCol2; + SCROW nRow1, nRow2; + SCTAB nTab1, nTab2; + aRange.GetVars( nCol1, nRow1, nTab1, nCol2, nRow2, nTab2 ); + if ( nTab1 != nTab2 ) + { + SetError( FormulaError::IllegalParameter); + break; + } + PutInOrder( nRow1, nRow2 ); + PutInOrder( nCol1, nCol2 ); + ScAddress aAdr; + aAdr.SetTab( nTab1 ); + for ( SCROW nRow = nRow1; nRow <= nRow2; nRow++ ) + { + for ( SCCOL nCol = nCol1; nCol <= nCol2; nCol++ ) + { + aAdr.SetRow( nRow ); + aAdr.SetCol( nCol ); + ScRefCellValue aCell( mrDoc, aAdr ); + if (!aCell.hasEmptyValue() ) + { + svl::SharedString aSS; + GetCellString( aSS, aCell); + const OUString& rStr = aSS.getString(); + if (CheckStringResultLen(aResBuf, rStr.getLength())) + aResBuf.append( rStr); + } + } + } + } + break; + case svMatrix : + case svExternalSingleRef: + case svExternalDoubleRef: + { + ScMatrixRef pMat = GetMatrix(); + if (pMat) + { + SCSIZE nC, nR; + pMat->GetDimensions(nC, nR); + if (nC == 0 || nR == 0) + SetError(FormulaError::IllegalArgument); + else + { + for (SCSIZE k = 0; k < nR; ++k) + { + for (SCSIZE j = 0; j < nC; ++j) + { + if ( pMat->IsStringOrEmpty( j, k ) ) + { + const OUString& rStr = pMat->GetString( j, k ).getString(); + if (CheckStringResultLen(aResBuf, rStr.getLength())) + aResBuf.append( rStr); + } + else + { + if ( pMat->IsValue( j, k ) ) + { + const OUString& rStr = pMat->GetString( *pFormatter, j, k ).getString(); + if (CheckStringResultLen(aResBuf, rStr.getLength())) + aResBuf.append( rStr); + } + } + } + } + } + } + } + break; + default: + PopError(); + SetError( FormulaError::IllegalArgument); + break; + } + } + PushString( aResBuf.makeStringAndClear() ); +} + +void ScInterpreter::ScTextJoin_MS() +{ + short nParamCount = GetByte(); + + if ( !MustHaveParamCountMin( nParamCount, 3 ) ) + return; + + //reverse order of parameter stack to simplify processing + ReverseStack( nParamCount ); + + // get aDelimiters and bSkipEmpty + std::vector< OUString > aDelimiters; + size_t nRefInList = 0; + switch ( GetStackType() ) + { + case svString: + case svDouble: + aDelimiters.push_back( GetString().getString() ); + break; + case svSingleRef : + { + ScAddress aAdr; + PopSingleRef( aAdr ); + if ( nGlobalError != FormulaError::NONE ) + break; + ScRefCellValue aCell( mrDoc, aAdr ); + if (aCell.hasEmptyValue()) + aDelimiters.emplace_back(""); + else + { + svl::SharedString aSS; + GetCellString( aSS, aCell); + aDelimiters.push_back( aSS.getString()); + } + } + break; + case svDoubleRef : + case svRefList : + { + ScRange aRange; + PopDoubleRef( aRange, nParamCount, nRefInList); + if ( nGlobalError != FormulaError::NONE ) + break; + // we need to read row for row, so we can't use ScCellIterator + SCCOL nCol1, nCol2; + SCROW nRow1, nRow2; + SCTAB nTab1, nTab2; + aRange.GetVars( nCol1, nRow1, nTab1, nCol2, nRow2, nTab2 ); + if ( nTab1 != nTab2 ) + { + SetError( FormulaError::IllegalParameter); + break; + } + PutInOrder( nRow1, nRow2 ); + PutInOrder( nCol1, nCol2 ); + ScAddress aAdr; + aAdr.SetTab( nTab1 ); + for ( SCROW nRow = nRow1; nRow <= nRow2; nRow++ ) + { + for ( SCCOL nCol = nCol1; nCol <= nCol2; nCol++ ) + { + aAdr.SetRow( nRow ); + aAdr.SetCol( nCol ); + ScRefCellValue aCell( mrDoc, aAdr ); + if (aCell.hasEmptyValue()) + aDelimiters.emplace_back(""); + else + { + svl::SharedString aSS; + GetCellString( aSS, aCell); + aDelimiters.push_back( aSS.getString()); + } + } + } + } + break; + case svMatrix : + case svExternalSingleRef: + case svExternalDoubleRef: + { + ScMatrixRef pMat = GetMatrix(); + if (pMat) + { + SCSIZE nC, nR; + pMat->GetDimensions(nC, nR); + if (nC == 0 || nR == 0) + SetError(FormulaError::IllegalArgument); + else + { + for (SCSIZE k = 0; k < nR; ++k) + { + for (SCSIZE j = 0; j < nC; ++j) + { + if (pMat->IsEmpty( j, k )) + aDelimiters.emplace_back(""); + else if (pMat->IsStringOrEmpty( j, k )) + aDelimiters.push_back( pMat->GetString( j, k ).getString() ); + else if (pMat->IsValue( j, k )) + aDelimiters.push_back( pMat->GetString( *pFormatter, j, k ).getString() ); + else + { + assert(!"should this really happen?"); + aDelimiters.emplace_back(""); + } + } + } + } + } + } + break; + default: + PopError(); + SetError( FormulaError::IllegalArgument); + break; + } + if ( aDelimiters.empty() ) + { + PushIllegalArgument(); + return; + } + SCSIZE nSize = aDelimiters.size(); + bool bSkipEmpty = static_cast< bool >( GetDouble() ); + nParamCount -= 2; + + OUStringBuffer aResBuf; + bool bFirst = true; + SCSIZE nIdx = 0; + nRefInList = 0; + // get the strings to be joined + while ( nParamCount-- > 0 && nGlobalError == FormulaError::NONE ) + { + switch ( GetStackType() ) + { + case svString: + case svDouble: + { + OUString aStr = GetString().getString(); + if ( !aStr.isEmpty() || !bSkipEmpty ) + { + if ( !bFirst ) + { + aResBuf.append( aDelimiters[ nIdx ] ); + if ( nSize > 1 ) + { + if ( ++nIdx >= nSize ) + nIdx = 0; + } + } + else + bFirst = false; + if (CheckStringResultLen(aResBuf, aStr.getLength())) + aResBuf.append( aStr ); + } + } + break; + case svSingleRef : + { + ScAddress aAdr; + PopSingleRef( aAdr ); + if ( nGlobalError != FormulaError::NONE ) + break; + ScRefCellValue aCell( mrDoc, aAdr ); + OUString aStr; + if (!aCell.hasEmptyValue()) + { + svl::SharedString aSS; + GetCellString( aSS, aCell); + aStr = aSS.getString(); + } + if ( !aStr.isEmpty() || !bSkipEmpty ) + { + if ( !bFirst ) + { + aResBuf.append( aDelimiters[ nIdx ] ); + if ( nSize > 1 ) + { + if ( ++nIdx >= nSize ) + nIdx = 0; + } + } + else + bFirst = false; + if (CheckStringResultLen(aResBuf, aStr.getLength())) + aResBuf.append( aStr ); + } + } + break; + case svDoubleRef : + case svRefList : + { + ScRange aRange; + PopDoubleRef( aRange, nParamCount, nRefInList); + if ( nGlobalError != FormulaError::NONE ) + break; + // we need to read row for row, so we can't use ScCellIterator + SCCOL nCol1, nCol2; + SCROW nRow1, nRow2; + SCTAB nTab1, nTab2; + aRange.GetVars( nCol1, nRow1, nTab1, nCol2, nRow2, nTab2 ); + if ( nTab1 != nTab2 ) + { + SetError( FormulaError::IllegalParameter); + break; + } + PutInOrder( nRow1, nRow2 ); + PutInOrder( nCol1, nCol2 ); + ScAddress aAdr; + aAdr.SetTab( nTab1 ); + OUString aStr; + for ( SCROW nRow = nRow1; nRow <= nRow2; nRow++ ) + { + for ( SCCOL nCol = nCol1; nCol <= nCol2; nCol++ ) + { + aAdr.SetRow( nRow ); + aAdr.SetCol( nCol ); + ScRefCellValue aCell( mrDoc, aAdr ); + if (aCell.hasEmptyValue()) + aStr.clear(); + else + { + svl::SharedString aSS; + GetCellString( aSS, aCell); + aStr = aSS.getString(); + } + if ( !aStr.isEmpty() || !bSkipEmpty ) + { + if ( !bFirst ) + { + aResBuf.append( aDelimiters[ nIdx ] ); + if ( nSize > 1 ) + { + if ( ++nIdx >= nSize ) + nIdx = 0; + } + } + else + bFirst = false; + if (CheckStringResultLen(aResBuf, aStr.getLength())) + aResBuf.append( aStr ); + } + } + } + } + break; + case svMatrix : + case svExternalSingleRef: + case svExternalDoubleRef: + { + ScMatrixRef pMat = GetMatrix(); + if (pMat) + { + SCSIZE nC, nR; + pMat->GetDimensions(nC, nR); + if (nC == 0 || nR == 0) + SetError(FormulaError::IllegalArgument); + else + { + OUString aStr; + for (SCSIZE k = 0; k < nR; ++k) + { + for (SCSIZE j = 0; j < nC; ++j) + { + if (pMat->IsEmpty( j, k ) ) + aStr.clear(); + else if (pMat->IsStringOrEmpty( j, k )) + aStr = pMat->GetString( j, k ).getString(); + else if (pMat->IsValue( j, k )) + aStr = pMat->GetString( *pFormatter, j, k ).getString(); + else + { + assert(!"should this really happen?"); + aStr.clear(); + } + if ( !aStr.isEmpty() || !bSkipEmpty ) + { + if ( !bFirst ) + { + aResBuf.append( aDelimiters[ nIdx ] ); + if ( nSize > 1 ) + { + if ( ++nIdx >= nSize ) + nIdx = 0; + } + } + else + bFirst = false; + if (CheckStringResultLen(aResBuf, aStr.getLength())) + aResBuf.append( aStr ); + } + } + } + } + } + } + break; + case svMissing : + { + if ( !bSkipEmpty ) + { + if ( !bFirst ) + { + aResBuf.append( aDelimiters[ nIdx ] ); + if ( nSize > 1 ) + { + if ( ++nIdx >= nSize ) + nIdx = 0; + } + } + else + bFirst = false; + } + } + break; + default: + PopError(); + SetError( FormulaError::IllegalArgument); + break; + } + } + PushString( aResBuf.makeStringAndClear() ); +} + + +void ScInterpreter::ScIfs_MS() +{ + short nParamCount = GetByte(); + + ReverseStack( nParamCount ); + + nGlobalError = FormulaError::NONE; // propagate only for condition or active result path + bool bFinished = false; + while ( nParamCount > 0 && !bFinished && nGlobalError == FormulaError::NONE ) + { + bool bVal = GetBool(); + nParamCount--; + if ( bVal ) + { + // TRUE + if ( nParamCount < 1 ) + { + // no parameter given for THEN + PushParameterExpected(); + return; + } + bFinished = true; + } + else + { + // FALSE + if ( nParamCount >= 3 ) + { + // ELSEIF path + Pop(); + nParamCount--; + } + else + { + // no parameter given for ELSE + PushNA(); + return; + } + } + } + + if ( nGlobalError != FormulaError::NONE || !bFinished ) + { + if ( !bFinished ) + PushNA(); // no true expression found + if ( nGlobalError != FormulaError::NONE ) + PushNoValue(); // expression returned something other than true or false + return; + } + + //push result : + FormulaConstTokenRef xToken( PopToken() ); + if ( xToken ) + { + // Remove unused arguments of IFS from the stack before pushing the result. + while ( nParamCount > 1 ) + { + Pop(); + nParamCount--; + } + PushTokenRef( xToken ); + } + else + PushError( FormulaError::UnknownStackVariable ); +} + + +void ScInterpreter::ScSwitch_MS() +{ + short nParamCount = GetByte(); + + if (!MustHaveParamCountMin( nParamCount, 3)) + return; + + ReverseStack( nParamCount ); + + nGlobalError = FormulaError::NONE; // propagate only for match or active result path + bool isValue = false; + double fRefVal = 0; + svl::SharedString aRefStr; + switch ( GetStackType() ) + { + case svDouble: + isValue = true; + fRefVal = GetDouble(); + break; + case svString: + isValue = false; + aRefStr = GetString(); + break; + case svSingleRef : + case svDoubleRef : + { + ScAddress aAdr; + if (!PopDoubleRefOrSingleRef( aAdr )) + break; + ScRefCellValue aCell( mrDoc, aAdr ); + isValue = !( aCell.hasString() || aCell.hasEmptyValue() || aCell.isEmpty() ); + if ( isValue ) + fRefVal = GetCellValue( aAdr, aCell); + else + GetCellString( aRefStr, aCell); + } + break; + case svExternalSingleRef: + case svExternalDoubleRef: + case svMatrix: + isValue = ScMatrix::IsValueType( GetDoubleOrStringFromMatrix( fRefVal, aRefStr ) ); + break; + default : + PopError(); + PushIllegalArgument(); + return; + } + nParamCount--; + bool bFinished = false; + while ( nParamCount > 1 && !bFinished && nGlobalError == FormulaError::NONE ) + { + double fVal = 0; + svl::SharedString aStr; + if ( isValue ) + fVal = GetDouble(); + else + aStr = GetString(); + nParamCount--; + if ((nGlobalError != FormulaError::NONE && nParamCount < 2) + || (isValue && rtl::math::approxEqual( fRefVal, fVal)) + || (!isValue && aRefStr.getDataIgnoreCase() == aStr.getDataIgnoreCase())) + { + // TRUE + bFinished = true; + } + else + { + // FALSE + if ( nParamCount >= 2 ) + { + // ELSEIF path + Pop(); + nParamCount--; + // if nParamCount equals 1: default value to be returned + bFinished = ( nParamCount == 1 ); + } + else + { + // no parameter given for ELSE + PushNA(); + return; + } + nGlobalError = FormulaError::NONE; + } + } + + if ( nGlobalError != FormulaError::NONE || !bFinished ) + { + if ( !bFinished ) + PushNA(); // no true expression found + else + PushError( nGlobalError ); + return; + } + + // push result + FormulaConstTokenRef xToken( PopToken() ); + if ( xToken ) + { + // Remove unused arguments of SWITCH from the stack before pushing the result. + while ( nParamCount > 1 ) + { + Pop(); + nParamCount--; + } + PushTokenRef( xToken ); + } + else + PushError( FormulaError::UnknownStackVariable ); +} + +/* vim:set shiftwidth=4 softtabstop=4 expandtab: */ |