From ed5640d8b587fbcfed7dd7967f3de04b37a76f26 Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Sun, 7 Apr 2024 11:06:44 +0200 Subject: Adding upstream version 4:7.4.7. Signed-off-by: Daniel Baumann --- helpcontent2/source/text/scalc/01/04060116.xhp | 428 +++++++++++++++++++++++++ 1 file changed, 428 insertions(+) create mode 100644 helpcontent2/source/text/scalc/01/04060116.xhp (limited to 'helpcontent2/source/text/scalc/01/04060116.xhp') diff --git a/helpcontent2/source/text/scalc/01/04060116.xhp b/helpcontent2/source/text/scalc/01/04060116.xhp new file mode 100644 index 000000000..ad42560a0 --- /dev/null +++ b/helpcontent2/source/text/scalc/01/04060116.xhp @@ -0,0 +1,428 @@ + + + + + + + + + Add-in Functions, List of Analysis Functions Part Two + /text/scalc/01/04060116.xhp + + + +imaginary numbers in analysis functions + complex numbers in analysis functions + +

Add-in Functions, List of Analysis Functions Part Two

+The Add-in functions are supplied by the UNO com.sun.star.sheet.addin.Analysis service. +
+ +
+ +
+ +IMABS function + + +

IMABS

+ The result is the absolute value of a complex number. + + IMABS("ComplexNumber") + ComplexNumber is a complex number that is entered in the form "x+yi" or "x+yj". +no blanks allowed, see i82522 + + + =IMABS("5+12j") returns 13. +
+
+IMAGINARY function + + +

IMAGINARY

+ The result is the imaginary coefficient of a complex number. + + IMAGINARY("ComplexNumber") + + + + =IMAGINARY("4+3j") returns 3. +
+
+IMPOWER function + + +

IMPOWER

+ The result is the ComplexNumber raised to the power of Number. + + IMPOWER("ComplexNumber"; Number) + + + Number is the exponent. + + + =IMPOWER("2+3i";2) returns -5+12i. +
+
+IMARGUMENT function + + +

IMARGUMENT

+ The result is the argument (the phi angle) of a complex number. + + IMARGUMENT("ComplexNumber") + + + + =IMARGUMENT("3+4j") returns 0.927295. +
+
+

+ +

+ + + +
+
+

+ +

+ + + +
+
+

+ +

+ + + +
+
+

+ +

+ + + +
+
+

+ +

+ + + +
+
+IMDIV function + + +

IMDIV

+ The result is the division of two complex numbers. + + IMDIV("Numerator"; "Denominator") + + Numerator, Denominator are complex numbers that are entered in the form "x+yi" or "x+yj". + + + =IMDIV("-238+240i";"10+24i") returns 5+12i. +
+
+IMEXP function + + +

IMEXP

+ The result is the power of e and the complex number. The constant e has a value of approximately 2.71828182845904. + + IMEXP("ComplexNumber") + + + + =IMEXP("1+j") returns 1.47+2.29j (rounded). +
+
+IMCONJUGATE function + + +

IMCONJUGATE

+ The result is the conjugated complex complement to a complex number. + + IMCONJUGATE("ComplexNumber") + + + + =IMCONJUGATE("1+j") returns 1-j. +
+
+IMLN function + + +

IMLN

+ The result is the natural logarithm (to the base e) of a complex number. The constant e has a value of approximately 2.71828182845904. + + IMLN("ComplexNumber") + + + + =IMLN("1+j") returns 0.35+0.79j (rounded). +
+
+IMLOG10 function + + +

IMLOG10

+ The result is the common logarithm (to the base 10) of a complex number. + + IMLOG10("ComplexNumber") + + + + =IMLOG10("1+j") returns 0.15+0.34j (rounded). +
+
+IMLOG2 function + + +

IMLOG2

+ The result is the binary logarithm of a complex number. + + IMLOG2("ComplexNumber") + + + + =IMLOG2("1+j") returns 0.50+1.13j (rounded). +
+
+IMPRODUCT function + + +

IMPRODUCT

+ The result is the product of a set of complex numbers. + + IMPRODUCT() + + + + =IMPRODUCT("3+4j";"5-3j") returns 27+11j. +
+
+IMREAL function + + +

IMREAL

+ The result is the real coefficient of a complex number. + + IMREAL("ComplexNumber") + + + + =IMREAL("1+3j") returns 1. +
+
+

+ +

+ + + +
+
+

+ +

+ + + +
+
+

+ +

+ + + +
+
+

+ +

+ + + +
+
+

+ +

+ + + +
+
+IMSUB function + + +

IMSUB

+ The result is the subtraction of two complex numbers. + + IMSUB("ComplexNumber1"; "ComplexNumber2") + + + + =IMSUB("13+4j";"5+3j") returns 8+j. +
+
+IMSUM function + + +

IMSUM

+ The result is the sum of a set of complex numbers. + + IMSUM() + + + + =IMSUM("13+4j";"5+3j") returns 18+7j. +
+
+IMSQRT function + + +

IMSQRT

+ The result is the square root of a complex number. + + IMSQRT("ComplexNumber") + + + + =IMSQRT("3+4i") returns 2+1i. +
+
+COMPLEX function + + +

COMPLEX

+ The result is a complex number which is returned from a real coefficient and an imaginary coefficient. + + COMPLEX(RealNum; INum [; Suffix]) + + RealNum is the real coefficient of the complex number. + + INum is the imaginary coefficient of the complex number. + + Suffix is a list of options, "i" or "j". + + + =COMPLEX(3;4;"j") returns 3+4j. +
+
+OCT2BIN function + converting;octal numbers, into binary numbers +mw added one entry + +

OCT2BIN

+ The result is the string representing the number in binary (base-2) form for the octal number string entered. + + OCT2BIN(Number [; Places]) + + Number is a string that represents an octal number. It can have a maximum of 10 places. The most significant bit is the sign bit, the following bits return the value. Negative numbers are entered as two's complement. + + Places is the number of places to be output. + + + =OCT2BIN("3";3) returns "011". +
+
+OCT2DEC function + converting;octal numbers, into decimal numbers +mw added one entry + +

OCT2DEC

+ The result is the number for the octal number string entered. + + OCT2DEC(Number) + + Number is a string that represents an octal number. It can have a maximum of 10 places. The most significant bit is the sign bit, the following bits return the value. Negative numbers are entered as two's complement. + + + =OCT2DEC("144") returns 100. +
+
+OCT2HEX function + converting;octal numbers, into hexadecimal numbers +mw added one entry + +

OCT2HEX

+ The result is the string representing the number in hexadecimal form for the octal number string entered. + + OCT2HEX(Number [; Places]) + + Number is a string that represents an octal number. It can have a maximum of 10 places. The most significant bit is the sign bit, the following bits return the value. Negative numbers are entered as two's complement. + + Places is the number of places to be output. + + + =OCT2HEX("144";4) returns "0064". +
+ +
+

+ +

+ + + +
+ +
+FACTDOUBLE function + factorials;numbers with increments of two +mw added one entry + +

FACTDOUBLE

+ Returns the double factorial of a number. + + FACTDOUBLE(Number) + Returns Number + !!, the double factorial of Number, where Number is an integer greater than or equal to zero. + For even numbers FACTDOUBLE(n) returns: + 2*4*6*8* ... *n + For odd numbers FACTDOUBLE(n) returns: + 1*3*5*7* ... *n + FACTDOUBLE(0) returns 1 by definition. + + + =FACTDOUBLE(5) returns 15. + + =FACTDOUBLE(6) returns 48. + + =FACTDOUBLE(0) returns 1.see also FACT, MULTINOMIAL, PRODUCT +
+
+
+ + + + +
+ +
-- cgit v1.2.3