1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
|
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#include <sal/config.h>
#include <algorithm>
#include <tools/diagnose_ex.h>
#include "activitybase.hxx"
namespace slideshow::internal
{
// TODO(P1): Elide some virtual function calls, by templifying this
// static hierarchy
ActivityBase::ActivityBase( const ActivityParameters& rParms ) :
mpEndEvent( rParms.mrEndEvent ),
mrEventQueue( rParms.mrEventQueue ),
mpShape(),
mpAttributeLayer(),
maRepeats( rParms.mrRepeats ),
mnAccelerationFraction( rParms.mnAccelerationFraction ),
mnDecelerationFraction( rParms.mnDecelerationFraction ),
mbAutoReverse( rParms.mbAutoReverse ),
mbFirstPerformCall( true ),
mbIsActive( true ) {}
void ActivityBase::dispose()
{
// deactivate
mbIsActive = false;
// dispose event
if( mpEndEvent )
mpEndEvent->dispose();
// release references
mpEndEvent.reset();
mpShape.reset();
mpAttributeLayer.reset();
}
double ActivityBase::calcTimeLag() const
{
// TODO(Q1): implement different init process!
if (isActive() && mbFirstPerformCall)
{
mbFirstPerformCall = false;
// notify derived classes that we're
// starting now
const_cast<ActivityBase *>(this)->startAnimation();
}
return 0.0;
}
bool ActivityBase::perform()
{
// still active?
if( !isActive() )
return false; // no, early exit.
OSL_ASSERT( ! mbFirstPerformCall );
return true;
}
bool ActivityBase::isActive() const
{
return mbIsActive;
}
void ActivityBase::setTargets( const AnimatableShapeSharedPtr& rShape,
const ShapeAttributeLayerSharedPtr& rAttrLayer )
{
ENSURE_OR_THROW( rShape,
"ActivityBase::setTargets(): Invalid shape" );
ENSURE_OR_THROW( rAttrLayer,
"ActivityBase::setTargets(): Invalid attribute layer" );
mpShape = rShape;
mpAttributeLayer = rAttrLayer;
}
void ActivityBase::endActivity()
{
// this is a regular activity end
mbIsActive = false;
// Activity is ending, queue event, then
if( mpEndEvent )
mrEventQueue.addEvent( mpEndEvent );
// release references
mpEndEvent.reset();
}
void ActivityBase::dequeued()
{
// xxx todo:
// // ignored here, if we're still active. Discrete
// // activities are dequeued after every perform() call,
// // thus, the call is only significant when isActive() ==
// // false.
if( !isActive() )
endAnimation();
}
void ActivityBase::end()
{
if (!isActive() || isDisposed())
return;
// assure animation is started:
if (mbFirstPerformCall) {
mbFirstPerformCall = false;
// notify derived classes that we're starting now
startAnimation();
}
performEnd(); // calling private virtual
endAnimation();
endActivity();
}
double ActivityBase::calcAcceleratedTime( double nT ) const
{
// Handle acceleration/deceleration
// ================================
// clamp nT to permissible [0,1] range
nT = std::clamp( nT, 0.0, 1.0 );
// take acceleration/deceleration into account. if the sum
// of mnAccelerationFraction and mnDecelerationFraction
// exceeds 1.0, ignore both (that's according to SMIL spec)
if( (mnAccelerationFraction > 0.0 ||
mnDecelerationFraction > 0.0) &&
mnAccelerationFraction + mnDecelerationFraction <= 1.0 )
{
/*
// calc accelerated/decelerated time.
// We have three intervals:
// 1 [0,a]
// 2 [a,d]
// 3 [d,1] (with a and d being acceleration/deceleration
// fraction, resp.)
// The change rate during interval 1 is constantly
// increasing, reaching 1 at a. It then stays at 1,
// starting a linear decrease at d, ending with 0 at
// time 1. The integral of this function is the
// required new time nT'.
// As we arbitrarily assumed 1 as the upper value of
// the change rate, the integral must be normalized to
// reach nT'=1 at the end of the interval. This
// normalization constant is:
// c = 1 - 0.5a - 0.5d
// The integral itself then amounts to:
// 0.5 nT^2 / a + (nT-a) + (nT - 0.5 nT^2 / d)
// (where each of the three summands correspond to the
// three intervals above, and are applied only if nT
// has reached the corresponding interval)
// The graph of the change rate is a trapezoid:
// |
// 1| /--------------\
// | / \
// | / \
// | / \
// -----------------------------
// 0 a d 1
//*/
const double nC( 1.0 - 0.5*mnAccelerationFraction - 0.5*mnDecelerationFraction );
// this variable accumulates the new time value
double nTPrime(0.0);
if( nT < mnAccelerationFraction )
{
nTPrime += 0.5*nT*nT/mnAccelerationFraction; // partial first interval
}
else
{
nTPrime += 0.5*mnAccelerationFraction; // full first interval
if( nT <= 1.0-mnDecelerationFraction )
{
nTPrime += nT-mnAccelerationFraction; // partial second interval
}
else
{
nTPrime += 1.0 - mnAccelerationFraction - mnDecelerationFraction; // full second interval
const double nTRelative( nT - 1.0 + mnDecelerationFraction );
nTPrime += nTRelative - 0.5*nTRelative*nTRelative / mnDecelerationFraction;
}
}
// normalize, and assign to work variable
nT = nTPrime / nC;
}
return nT;
}
}
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
|