1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
|
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4; fill-column: 100 -*- */
/*
* libfixmath is Copyright (c) 2011-2021 Flatmush <Flatmush@gmail.com>,
* Petteri Aimonen <Petteri.Aimonen@gmail.com>, & libfixmath AUTHORS
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <tools/fix16.hxx>
const fix16_t fix16_minimum = 0x80000000; /*!< the minimum value of fix16_t */
const fix16_t fix16_overflow = 0x80000000; /*!< the value used to indicate overflows */
static inline uint32_t fix_abs(fix16_t in)
{
if (in == fix16_minimum)
{
// minimum negative number has same representation as
// its absolute value in unsigned
return 0x80000000;
}
else
{
return (in >= 0) ? in : -in;
}
}
/* 64-bit implementation for fix16_mul. Fastest version for e.g. ARM Cortex M3.
* Performs a 32*32 -> 64bit multiplication. The middle 32 bits are the result,
* bottom 16 bits are used for rounding, and upper 16 bits are used for overflow
* detection.
*/
fix16_t fix16_mul(fix16_t inArg0, fix16_t inArg1)
{
int64_t product = static_cast<int64_t>(inArg0) * inArg1;
// The upper 17 bits should all be the same (the sign).
uint32_t upper = (product >> 47);
if (product < 0)
{
if (~upper)
return fix16_overflow;
// This adjustment is required in order to round -1/2 correctly
product--;
}
else
{
if (upper)
return fix16_overflow;
}
fix16_t result = product >> 16;
result += (product & 0x8000) >> 15;
return result;
}
/* 32-bit implementation of fix16_div. Fastest version for e.g. ARM Cortex M3.
* Performs 32-bit divisions repeatedly to reduce the remainder. For this to
* be efficient, the processor has to have 32-bit hardware division.
*/
#ifdef __GNUC__
// Count leading zeros, using processor-specific instruction if available.
#define clz(x) (__builtin_clzl(x) - (8 * sizeof(long) - 32))
#else
static uint8_t clz(uint32_t x)
{
uint8_t result = 0;
if (x == 0)
return 32;
while (!(x & 0xF0000000))
{
result += 4;
x <<= 4;
}
while (!(x & 0x80000000))
{
result += 1;
x <<= 1;
}
return result;
}
#endif
fix16_t fix16_div(fix16_t a, fix16_t b)
{
// This uses a hardware 32/32 bit division multiple times, until we have
// computed all the bits in (a<<17)/b. Usually this takes 1-3 iterations.
if (b == 0)
return fix16_minimum;
uint32_t remainder = fix_abs(a);
uint32_t divider = fix_abs(b);
uint64_t quotient = 0;
int bit_pos = 17;
// Kick-start the division a bit.
// This improves speed in the worst-case scenarios where N and D are large
// It gets a lower estimate for the result by N/(D >> 17 + 1).
if (divider & 0xFFF00000)
{
uint32_t shifted_div = (divider >> 17) + 1;
quotient = remainder / shifted_div;
uint64_t tmp = (quotient * static_cast<uint64_t>(divider)) >> 17;
remainder -= static_cast<uint32_t>(tmp);
}
// If the divider is divisible by 2^n, take advantage of it.
while (!(divider & 0xF) && bit_pos >= 4)
{
divider >>= 4;
bit_pos -= 4;
}
while (remainder && bit_pos >= 0)
{
// Shift remainder as much as we can without overflowing
int shift = clz(remainder);
if (shift > bit_pos)
shift = bit_pos;
remainder <<= shift;
bit_pos -= shift;
uint32_t div = remainder / divider;
remainder = remainder % divider;
quotient += static_cast<uint64_t>(div) << bit_pos;
if (div & ~(0xFFFFFFFF >> bit_pos))
return fix16_overflow;
remainder <<= 1;
bit_pos--;
}
// Quotient is always positive so rounding is easy
quotient++;
fix16_t result = quotient >> 1;
// Figure out the sign of the result
if ((a ^ b) & 0x80000000)
{
if (result == fix16_minimum)
return fix16_overflow;
result = -result;
}
return result;
}
/* vim:set shiftwidth=4 softtabstop=4 expandtab cinoptions=b1,g0,N-s cinkeys+=0=break: */
|