1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
|
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#include <skia/salbmp.hxx>
#include <o3tl/safeint.hxx>
#include <tools/helpers.hxx>
#include <boost/smart_ptr/make_shared.hpp>
#include <salgdi.hxx>
#include <salinst.hxx>
#include <scanlinewriter.hxx>
#include <svdata.hxx>
#include <bitmap/bmpfast.hxx>
#include <vcl/BitmapReadAccess.hxx>
#include <skia/utils.hxx>
#include <skia/zone.hxx>
#include <SkCanvas.h>
#include <SkImage.h>
#include <SkPixelRef.h>
#include <SkSurface.h>
#include <SkSwizzle.h>
#include <SkColorFilter.h>
#include <SkColorMatrix.h>
#include <skia_opts.hxx>
#ifdef DBG_UTIL
#include <fstream>
#define CANARY "skia-canary"
#endif
using namespace SkiaHelper;
// As constexpr here, evaluating it directly in code makes Clang warn about unreachable code.
constexpr bool kN32_SkColorTypeIsBGRA = (kN32_SkColorType == kBGRA_8888_SkColorType);
SkiaSalBitmap::SkiaSalBitmap() {}
SkiaSalBitmap::~SkiaSalBitmap() {}
SkiaSalBitmap::SkiaSalBitmap(const sk_sp<SkImage>& image)
{
ResetAllData();
mImage = image;
mPalette = BitmapPalette();
#if SKIA_USE_BITMAP32
mBitCount = 32;
#else
mBitCount = 24;
#endif
mSize = mPixelsSize = Size(image->width(), image->height());
ComputeScanlineSize();
mAnyAccessCount = 0;
#ifdef DBG_UTIL
mWriteAccessCount = 0;
#endif
SAL_INFO("vcl.skia.trace", "bitmapfromimage(" << this << ")");
}
bool SkiaSalBitmap::Create(const Size& rSize, vcl::PixelFormat ePixelFormat,
const BitmapPalette& rPal)
{
assert(mAnyAccessCount == 0);
ResetAllData();
if (ePixelFormat == vcl::PixelFormat::INVALID)
return false;
mPalette = rPal;
mBitCount = vcl::pixelFormatBitCount(ePixelFormat);
mSize = rSize;
ResetPendingScaling();
if (!ComputeScanlineSize())
{
mBitCount = 0;
mSize = mPixelsSize = Size();
mScanlineSize = 0;
mPalette = BitmapPalette();
return false;
}
SAL_INFO("vcl.skia.trace", "create(" << this << ")");
return true;
}
bool SkiaSalBitmap::ComputeScanlineSize()
{
int bitScanlineWidth;
if (o3tl::checked_multiply<int>(mPixelsSize.Width(), mBitCount, bitScanlineWidth))
{
SAL_WARN("vcl.skia", "checked multiply failed");
return false;
}
mScanlineSize = AlignedWidth4Bytes(bitScanlineWidth);
return true;
}
void SkiaSalBitmap::CreateBitmapData()
{
assert(!mBuffer);
// Make sure code has not missed calling ComputeScanlineSize().
assert(mScanlineSize == int(AlignedWidth4Bytes(mPixelsSize.Width() * mBitCount)));
// The pixels could be stored in SkBitmap, but Skia only supports 8bit gray, 16bit and 32bit formats
// (e.g. 24bpp is actually stored as 32bpp). But some of our code accessing the bitmap assumes that
// when it asked for 24bpp, the format really will be 24bpp (e.g. the png loader), so we cannot use
// SkBitmap to store the data. And even 8bpp is problematic, since Skia does not support palettes
// and a VCL bitmap can change its grayscale status simply by changing the palette.
// Moreover creating SkImage from SkBitmap does a data copy unless the bitmap is immutable.
// So just always store pixels in our buffer and convert as necessary.
if (mScanlineSize == 0 || mPixelsSize.Height() == 0)
return;
size_t allocate = mScanlineSize * mPixelsSize.Height();
#ifdef DBG_UTIL
allocate += sizeof(CANARY);
#endif
mBuffer = boost::make_shared_noinit<sal_uInt8[]>(allocate);
#ifdef DBG_UTIL
// fill with random garbage
sal_uInt8* buffer = mBuffer.get();
for (size_t i = 0; i < allocate; i++)
buffer[i] = (i & 0xFF);
memcpy(buffer + allocate - sizeof(CANARY), CANARY, sizeof(CANARY));
#endif
}
bool SkiaSalBitmap::Create(const SalBitmap& rSalBmp)
{
return Create(rSalBmp, vcl::bitDepthToPixelFormat(rSalBmp.GetBitCount()));
}
bool SkiaSalBitmap::Create(const SalBitmap& rSalBmp, SalGraphics* pGraphics)
{
auto ePixelFormat = vcl::PixelFormat::INVALID;
if (pGraphics)
ePixelFormat = vcl::bitDepthToPixelFormat(pGraphics->GetBitCount());
else
ePixelFormat = vcl::bitDepthToPixelFormat(rSalBmp.GetBitCount());
return Create(rSalBmp, ePixelFormat);
}
bool SkiaSalBitmap::Create(const SalBitmap& rSalBmp, vcl::PixelFormat eNewPixelFormat)
{
assert(mAnyAccessCount == 0);
assert(&rSalBmp != this);
ResetAllData();
const SkiaSalBitmap& src = static_cast<const SkiaSalBitmap&>(rSalBmp);
mImage = src.mImage;
mAlphaImage = src.mAlphaImage;
mBuffer = src.mBuffer;
mPalette = src.mPalette;
mBitCount = src.mBitCount;
mSize = src.mSize;
mPixelsSize = src.mPixelsSize;
mScanlineSize = src.mScanlineSize;
mScaleQuality = src.mScaleQuality;
mEraseColorSet = src.mEraseColorSet;
mEraseColor = src.mEraseColor;
if (vcl::pixelFormatBitCount(eNewPixelFormat) != src.GetBitCount())
{
// This appears to be unused(?). Implement this just in case, but be lazy
// about it and rely on EnsureBitmapData() doing the conversion from mImage
// if needed, even if that may need unnecessary to- and from- SkImage
// conversion.
ResetToSkImage(GetSkImage());
}
SAL_INFO("vcl.skia.trace", "create(" << this << "): (" << &src << ")");
return true;
}
bool SkiaSalBitmap::Create(const css::uno::Reference<css::rendering::XBitmapCanvas>&, Size&, bool)
{
return false;
}
void SkiaSalBitmap::Destroy()
{
SAL_INFO("vcl.skia.trace", "destroy(" << this << ")");
#ifdef DBG_UTIL
assert(mWriteAccessCount == 0);
#endif
assert(mAnyAccessCount == 0);
ResetAllData();
}
Size SkiaSalBitmap::GetSize() const { return mSize; }
sal_uInt16 SkiaSalBitmap::GetBitCount() const { return mBitCount; }
BitmapBuffer* SkiaSalBitmap::AcquireBuffer(BitmapAccessMode nMode)
{
switch (nMode)
{
case BitmapAccessMode::Write:
EnsureBitmapUniqueData();
if (!mBuffer)
return nullptr;
assert(mPixelsSize == mSize);
assert(!mEraseColorSet);
break;
case BitmapAccessMode::Read:
EnsureBitmapData();
if (!mBuffer)
return nullptr;
assert(mPixelsSize == mSize);
assert(!mEraseColorSet);
break;
case BitmapAccessMode::Info:
break;
}
#ifdef DBG_UTIL
// BitmapWriteAccess stores also a copy of the palette and it can
// be modified, so concurrent reading of it might result in inconsistencies.
assert(mWriteAccessCount == 0 || nMode == BitmapAccessMode::Write);
#endif
BitmapBuffer* buffer = new BitmapBuffer;
buffer->mnWidth = mSize.Width();
buffer->mnHeight = mSize.Height();
buffer->mnBitCount = mBitCount;
buffer->maPalette = mPalette;
if (nMode != BitmapAccessMode::Info)
buffer->mpBits = mBuffer.get();
else
buffer->mpBits = nullptr;
if (mPixelsSize == mSize)
buffer->mnScanlineSize = mScanlineSize;
else
{
// The value of mScanlineSize is based on internal mPixelsSize, but the outside
// world cares about mSize, the size that the report as the size of the bitmap,
// regardless of any internal state. So report scanline size for that size.
Size savedPixelsSize = mPixelsSize;
mPixelsSize = mSize;
ComputeScanlineSize();
buffer->mnScanlineSize = mScanlineSize;
mPixelsSize = savedPixelsSize;
ComputeScanlineSize();
}
switch (mBitCount)
{
case 1:
buffer->mnFormat = ScanlineFormat::N1BitMsbPal;
break;
case 8:
buffer->mnFormat = ScanlineFormat::N8BitPal;
break;
case 24:
// Make the RGB/BGR format match the default Skia 32bpp format, to allow
// easy conversion later.
buffer->mnFormat = kN32_SkColorTypeIsBGRA ? ScanlineFormat::N24BitTcBgr
: ScanlineFormat::N24BitTcRgb;
break;
case 32:
buffer->mnFormat = kN32_SkColorTypeIsBGRA ? ScanlineFormat::N32BitTcBgra
: ScanlineFormat::N32BitTcRgba;
break;
default:
abort();
}
buffer->mnFormat |= ScanlineFormat::TopDown;
++mAnyAccessCount;
#ifdef DBG_UTIL
if (nMode == BitmapAccessMode::Write)
++mWriteAccessCount;
#endif
return buffer;
}
void SkiaSalBitmap::ReleaseBuffer(BitmapBuffer* pBuffer, BitmapAccessMode nMode)
{
ReleaseBuffer(pBuffer, nMode, false);
}
void SkiaSalBitmap::ReleaseBuffer(BitmapBuffer* pBuffer, BitmapAccessMode nMode,
bool dontChangeToErase)
{
if (nMode == BitmapAccessMode::Write)
{
#ifdef DBG_UTIL
assert(mWriteAccessCount > 0);
--mWriteAccessCount;
#endif
mPalette = pBuffer->maPalette;
ResetToBuffer();
DataChanged();
}
assert(mAnyAccessCount > 0);
--mAnyAccessCount;
// Are there any more ground movements underneath us ?
assert(pBuffer->mnWidth == mSize.Width());
assert(pBuffer->mnHeight == mSize.Height());
assert(pBuffer->mnBitCount == mBitCount);
assert(pBuffer->mpBits == mBuffer.get() || nMode == BitmapAccessMode::Info);
verify();
delete pBuffer;
if (nMode == BitmapAccessMode::Write && !dontChangeToErase)
{
// This saves memory and is also used by IsFullyOpaqueAsAlpha() to avoid unnecessary
// alpha blending.
if (IsAllBlack())
{
SAL_INFO("vcl.skia.trace", "releasebuffer(" << this << "): erasing to black");
EraseInternal(COL_BLACK);
}
}
}
static bool isAllZero(const sal_uInt8* data, size_t size)
{ // For performance, check in larger data chunks.
#ifdef UINT64_MAX
const int64_t* d = reinterpret_cast<const int64_t*>(data);
#else
const int32_t* d = reinterpret_cast<const int32_t*>(data);
#endif
constexpr size_t step = sizeof(*d) * 8;
for (size_t i = 0; i < size / step; ++i)
{ // Unrolled loop.
if (d[0] != 0)
return false;
if (d[1] != 0)
return false;
if (d[2] != 0)
return false;
if (d[3] != 0)
return false;
if (d[4] != 0)
return false;
if (d[5] != 0)
return false;
if (d[6] != 0)
return false;
if (d[7] != 0)
return false;
d += 8;
}
for (size_t i = size / step * step; i < size; ++i)
if (data[i] != 0)
return false;
return true;
}
bool SkiaSalBitmap::IsAllBlack() const
{
if (mBitCount % 8 != 0 || (!!mPalette && mPalette[0] != COL_BLACK))
return false; // Don't bother.
if (mSize.Width() * mBitCount / 8 == mScanlineSize)
return isAllZero(mBuffer.get(), mScanlineSize * mSize.Height());
for (tools::Long y = 0; y < mSize.Height(); ++y)
if (!isAllZero(mBuffer.get() + mScanlineSize * y, mSize.Width() * mBitCount / 8))
return false;
return true;
}
bool SkiaSalBitmap::GetSystemData(BitmapSystemData&)
{
#ifdef DBG_UTIL
assert(mWriteAccessCount == 0);
#endif
return false;
}
bool SkiaSalBitmap::ScalingSupported() const { return true; }
bool SkiaSalBitmap::Scale(const double& rScaleX, const double& rScaleY, BmpScaleFlag nScaleFlag)
{
SkiaZone zone;
#ifdef DBG_UTIL
assert(mWriteAccessCount == 0);
#endif
Size newSize(FRound(mSize.Width() * rScaleX), FRound(mSize.Height() * rScaleY));
if (mSize == newSize)
return true;
SAL_INFO("vcl.skia.trace", "scale(" << this << "): " << mSize << "/" << mBitCount << "->"
<< newSize << ":" << static_cast<int>(nScaleFlag));
if (mEraseColorSet)
{ // Simple.
mSize = newSize;
ResetPendingScaling();
EraseInternal(mEraseColor);
return true;
}
if (mBitCount < 24 && !mPalette.IsGreyPalette8Bit())
{
// Scaling can introduce additional colors not present in the original
// bitmap (e.g. when smoothing). If the bitmap is indexed (has non-trivial palette),
// this would break the bitmap, because the actual scaling is done only somewhen later.
// Linear 8bit palette (grey) is ok, since there we use directly the values as colors.
SAL_INFO("vcl.skia.trace", "scale(" << this << "): indexed bitmap");
return false;
}
// The idea here is that the actual scaling will be delayed until the result
// is actually needed. Usually the scaled bitmap will be drawn somewhere,
// so delaying will mean the scaling can be done as a part of GetSkImage().
// That means it can be GPU-accelerated, while done here directly it would need
// to be either done by CPU, or with the CPU->GPU->CPU roundtrip required
// by GPU-accelerated scaling.
// Pending scaling is detected by 'mSize != mPixelsSize' for mBuffer,
// and 'imageSize(mImage) != mSize' for mImage. It is not intended to have 3 different
// sizes though, code below keeps only mBuffer or mImage. Note that imageSize(mImage)
// may or may not be equal to mPixelsSize, depending on whether mImage is set here
// (sizes will be equal) or whether it's set in GetSkImage() (will not be equal).
// Pending scaling is considered "done" by the time mBuffer is resized (or created).
// Resizing of mImage is somewhat independent of this, since mImage is primarily
// considered to be a cached object (although sometimes it's the only data available).
// If there is already one scale() pending, use the lowest quality of all requested.
switch (nScaleFlag)
{
case BmpScaleFlag::Fast:
mScaleQuality = nScaleFlag;
break;
case BmpScaleFlag::NearestNeighbor:
// We handle this the same way as Fast by mapping to Skia's nearest-neighbor,
// and it's needed for unittests (mScaling and testTdf132367()).
mScaleQuality = nScaleFlag;
break;
case BmpScaleFlag::Default:
if (mScaleQuality == BmpScaleFlag::BestQuality)
mScaleQuality = nScaleFlag;
break;
case BmpScaleFlag::BestQuality:
// Best is the maximum, set by default.
break;
default:
SAL_INFO("vcl.skia.trace", "scale(" << this << "): unsupported scale algorithm");
return false;
}
mSize = newSize;
// If we have both mBuffer and mImage, prefer mImage, since it likely will be drawn later.
// We could possibly try to keep the buffer as well, but that would complicate things
// with two different data structures to be scaled on-demand, and it's a question
// if that'd realistically help with anything.
if (mImage)
ResetToSkImage(mImage);
else
ResetToBuffer();
DataChanged();
// The rest will be handled when the scaled bitmap is actually needed,
// such as in EnsureBitmapData() or GetSkImage().
return true;
}
bool SkiaSalBitmap::Replace(const Color&, const Color&, sal_uInt8)
{
#ifdef DBG_UTIL
assert(mWriteAccessCount == 0);
#endif
return false;
}
bool SkiaSalBitmap::ConvertToGreyscale()
{
#ifdef DBG_UTIL
assert(mWriteAccessCount == 0);
#endif
// Normally this would need to convert contents of mBuffer for all possible formats,
// so just let the VCL algorithm do it.
// Avoid the costly SkImage->buffer->SkImage conversion.
if (!mBuffer && mImage && !mEraseColorSet)
{
if (mBitCount == 8 && mPalette.IsGreyPalette8Bit())
return true;
sk_sp<SkSurface> surface
= createSkSurface(imageSize(mImage), mImage->imageInfo().alphaType());
SkPaint paint;
paint.setBlendMode(SkBlendMode::kSrc); // set as is, including alpha
// VCL uses different coefficients for conversion to gray than Skia, so use the VCL
// values from Bitmap::ImplMakeGreyscales(). Do not use kGray_8_SkColorType,
// Skia would use its gray conversion formula.
// NOTE: The matrix is 4x5 organized as columns (i.e. each line is a column, not a row).
constexpr SkColorMatrix toGray(77 / 256.0, 151 / 256.0, 28 / 256.0, 0, 0, // R column
77 / 256.0, 151 / 256.0, 28 / 256.0, 0, 0, // G column
77 / 256.0, 151 / 256.0, 28 / 256.0, 0, 0, // B column
0, 0, 0, 1, 0); // don't modify alpha
paint.setColorFilter(SkColorFilters::Matrix(toGray));
surface->getCanvas()->drawImage(mImage, 0, 0, SkSamplingOptions(), &paint);
mBitCount = 8;
ComputeScanlineSize();
mPalette = Bitmap::GetGreyPalette(256);
ResetToSkImage(makeCheckedImageSnapshot(surface));
DataChanged();
SAL_INFO("vcl.skia.trace", "converttogreyscale(" << this << ")");
return true;
}
return false;
}
bool SkiaSalBitmap::InterpretAs8Bit()
{
#ifdef DBG_UTIL
assert(mWriteAccessCount == 0);
#endif
if (mBitCount == 8 && mPalette.IsGreyPalette8Bit())
return true;
if (mEraseColorSet)
{
mBitCount = 8;
ComputeScanlineSize();
mPalette = Bitmap::GetGreyPalette(256);
EraseInternal(mEraseColor);
SAL_INFO("vcl.skia.trace", "interpretas8bit(" << this << ") with erase color");
return true;
}
// This is usually used by AlphaMask, the point is just to treat
// the content as an alpha channel. This is often used
// by the horrible separate-alpha-outdev hack, where the bitmap comes
// from SkiaSalGraphicsImpl::GetBitmap(), so only mImage is set,
// and that is followed by a later call to GetAlphaSkImage().
// Avoid the costly SkImage->buffer->SkImage conversion and simply
// just treat the SkImage as being for 8bit bitmap. EnsureBitmapData()
// will do the conversion if needed, but the normal case will be
// GetAlphaSkImage() creating kAlpha_8_SkColorType SkImage from it.
if (mImage)
{
mBitCount = 8;
ComputeScanlineSize();
mPalette = Bitmap::GetGreyPalette(256);
ResetToSkImage(mImage); // keep mImage, it will be interpreted as 8bit if needed
DataChanged();
SAL_INFO("vcl.skia.trace", "interpretas8bit(" << this << ") with image");
return true;
}
SAL_INFO("vcl.skia.trace", "interpretas8bit(" << this << ") with pixel data, ignoring");
return false;
}
bool SkiaSalBitmap::Erase(const Color& color)
{
#ifdef DBG_UTIL
assert(mWriteAccessCount == 0);
#endif
// Optimized variant, just remember the color and apply it when needed,
// which may save having to do format conversions (e.g. GetSkImage()
// may directly erase the SkImage).
EraseInternal(color);
SAL_INFO("vcl.skia.trace", "erase(" << this << ")");
return true;
}
void SkiaSalBitmap::EraseInternal(const Color& color)
{
ResetAllData();
mEraseColorSet = true;
mEraseColor = color;
}
bool SkiaSalBitmap::AlphaBlendWith(const SalBitmap& rSalBmp)
{
#ifdef DBG_UTIL
assert(mWriteAccessCount == 0);
#endif
const SkiaSalBitmap* otherBitmap = dynamic_cast<const SkiaSalBitmap*>(&rSalBmp);
if (!otherBitmap)
return false;
if (mSize != otherBitmap->mSize)
return false;
// We're called from AlphaMask, which should ensure 8bit.
assert(GetBitCount() == 8 && mPalette.IsGreyPalette8Bit());
// If neither bitmap have Skia images, then AlphaMask::BlendWith() will be faster,
// as it will operate on mBuffer pixel buffers, while for Skia we'd need to convert it.
// If one has and one doesn't, do it using Skia, under the assumption that after this
// the resulting Skia image will be needed for drawing.
if (!(mImage || mEraseColorSet) && !(otherBitmap->mImage || otherBitmap->mEraseColorSet))
return false;
// This is for AlphaMask, which actually stores the alpha as the pixel values.
// I.e. take value of the color channel (one of them, if >8bit, they should be the same).
if (mEraseColorSet && otherBitmap->mEraseColorSet)
{
const sal_uInt16 nGrey1 = mEraseColor.GetRed();
const sal_uInt16 nGrey2 = otherBitmap->mEraseColor.GetRed();
const sal_uInt8 nGrey = static_cast<sal_uInt8>(nGrey1 + nGrey2 - nGrey1 * nGrey2 / 255);
mEraseColor = Color(nGrey, nGrey, nGrey);
DataChanged();
SAL_INFO("vcl.skia.trace",
"alphablendwith(" << this << ") : with erase color " << otherBitmap);
return true;
}
std::unique_ptr<SkiaSalBitmap> otherBitmapAllocated;
if (otherBitmap->GetBitCount() != 8 || !otherBitmap->mPalette.IsGreyPalette8Bit())
{ // Convert/interpret as 8bit if needed.
otherBitmapAllocated = std::make_unique<SkiaSalBitmap>();
if (!otherBitmapAllocated->Create(*otherBitmap) || !otherBitmapAllocated->InterpretAs8Bit())
return false;
otherBitmap = otherBitmapAllocated.get();
}
// This is 8-bit bitmap serving as mask, so the image itself needs no alpha.
sk_sp<SkSurface> surface = createSkSurface(mSize, kOpaque_SkAlphaType);
SkPaint paint;
paint.setBlendMode(SkBlendMode::kSrc); // set as is
surface->getCanvas()->drawImage(GetSkImage(), 0, 0, SkSamplingOptions(), &paint);
paint.setBlendMode(SkBlendMode::kScreen); // src+dest - src*dest/255 (in 0..1)
surface->getCanvas()->drawImage(otherBitmap->GetSkImage(), 0, 0, SkSamplingOptions(), &paint);
ResetToSkImage(makeCheckedImageSnapshot(surface));
DataChanged();
SAL_INFO("vcl.skia.trace", "alphablendwith(" << this << ") : with image " << otherBitmap);
return true;
}
SkBitmap SkiaSalBitmap::GetAsSkBitmap() const
{
#ifdef DBG_UTIL
assert(mWriteAccessCount == 0);
#endif
EnsureBitmapData();
assert(mSize == mPixelsSize); // data has already been scaled if needed
SkiaZone zone;
SkBitmap bitmap;
if (mBuffer)
{
if (mBitCount == 32)
{
// Make a copy, the bitmap should be immutable (otherwise converting it
// to SkImage will make a copy anyway).
const size_t bytes = mPixelsSize.Height() * mScanlineSize;
std::unique_ptr<sal_uInt8[]> data(new sal_uInt8[bytes]);
memcpy(data.get(), mBuffer.get(), bytes);
if (!bitmap.installPixels(
SkImageInfo::MakeS32(mPixelsSize.Width(), mPixelsSize.Height(), alphaType()),
data.release(), mScanlineSize,
[](void* addr, void*) { delete[] static_cast<sal_uInt8*>(addr); }, nullptr))
abort();
}
else if (mBitCount == 24)
{
// Convert 24bpp RGB/BGR to 32bpp RGBA/BGRA.
std::unique_ptr<uint32_t[]> data(
new uint32_t[mPixelsSize.Height() * mPixelsSize.Width()]);
uint32_t* dest = data.get();
// SkConvertRGBToRGBA() also works as BGR to BGRA (the function extends 3 bytes to 4
// by adding 0xFF alpha, so position of B and R doesn't matter).
if (mPixelsSize.Width() * 3 == mScanlineSize)
SkConvertRGBToRGBA(dest, mBuffer.get(), mPixelsSize.Height() * mPixelsSize.Width());
else
{
for (tools::Long y = 0; y < mPixelsSize.Height(); ++y)
{
const sal_uInt8* src = mBuffer.get() + mScanlineSize * y;
SkConvertRGBToRGBA(dest, src, mPixelsSize.Width());
dest += mPixelsSize.Width();
}
}
if (!bitmap.installPixels(
SkImageInfo::MakeS32(mPixelsSize.Width(), mPixelsSize.Height(),
kOpaque_SkAlphaType),
data.release(), mPixelsSize.Width() * 4,
[](void* addr, void*) { delete[] static_cast<sal_uInt8*>(addr); }, nullptr))
abort();
}
else if (mBitCount == 8 && mPalette.IsGreyPalette8Bit())
{
// Convert 8bpp gray to 32bpp RGBA/BGRA.
// There's also kGray_8_SkColorType, but it's probably simpler to make
// GetAsSkBitmap() always return 32bpp SkBitmap and then assume mImage
// is always 32bpp too.
std::unique_ptr<uint32_t[]> data(
new uint32_t[mPixelsSize.Height() * mPixelsSize.Width()]);
uint32_t* dest = data.get();
if (mPixelsSize.Width() * 1 == mScanlineSize)
SkConvertGrayToRGBA(dest, mBuffer.get(),
mPixelsSize.Height() * mPixelsSize.Width());
else
{
for (tools::Long y = 0; y < mPixelsSize.Height(); ++y)
{
const sal_uInt8* src = mBuffer.get() + mScanlineSize * y;
SkConvertGrayToRGBA(dest, src, mPixelsSize.Width());
dest += mPixelsSize.Width();
}
}
if (!bitmap.installPixels(
SkImageInfo::MakeS32(mPixelsSize.Width(), mPixelsSize.Height(),
kOpaque_SkAlphaType),
data.release(), mPixelsSize.Width() * 4,
[](void* addr, void*) { delete[] static_cast<sal_uInt8*>(addr); }, nullptr))
abort();
}
else
{
std::unique_ptr<sal_uInt8[]> data = convertDataBitCount(
mBuffer.get(), mPixelsSize.Width(), mPixelsSize.Height(), mBitCount, mScanlineSize,
mPalette, kN32_SkColorTypeIsBGRA ? BitConvert::BGRA : BitConvert::RGBA);
if (!bitmap.installPixels(
SkImageInfo::MakeS32(mPixelsSize.Width(), mPixelsSize.Height(),
kOpaque_SkAlphaType),
data.release(), mPixelsSize.Width() * 4,
[](void* addr, void*) { delete[] static_cast<sal_uInt8*>(addr); }, nullptr))
abort();
}
}
bitmap.setImmutable();
return bitmap;
}
// If mEraseColor is set, this is the color to use when the bitmap is used as alpha bitmap.
// E.g. COL_BLACK actually means fully opaque and COL_WHITE means fully transparent.
// This is because the alpha value is set as the color itself, not the alpha of the color.
// Additionally VCL actually uses transparency and not opacity, so we should use "255 - value",
// but we account for this by doing SkBlendMode::kDstOut when using alpha images (which
// basically does another "255 - alpha"), so do not do it here.
static SkColor fromEraseColorToAlphaImageColor(Color color)
{
return SkColorSetARGB(color.GetBlue(), 0, 0, 0);
}
// SkiaSalBitmap can store data in both the SkImage and our mBuffer, which with large
// images can waste quite a lot of memory. Ideally we should store the data in Skia's
// SkBitmap, but LO wants us to support data formats that Skia doesn't support.
// So try to conserve memory by keeping the data only once in that was the most
// recently wanted storage, and drop the other one. Usually the other one won't be needed
// for a long time, and especially with raster the conversion is usually fast.
// Do this only with raster, to avoid GPU->CPU transfer in GPU mode (exception is 32bit
// builds, where memory is more important). Also don't do this with paletted bitmaps,
// where EnsureBitmapData() would be expensive.
// Ideally SalBitmap should be able to say which bitmap formats it supports
// and VCL code should oblige, which would allow reusing the same data.
bool SkiaSalBitmap::ConserveMemory() const
{
static bool keepBitmapBuffer = getenv("SAL_SKIA_KEEP_BITMAP_BUFFER") != nullptr;
constexpr bool is32Bit = sizeof(void*) == 4;
// 16MiB bitmap data at least (set to 0 for easy testing).
constexpr tools::Long maxBufferSize = 2000 * 2000 * 4;
return !keepBitmapBuffer && (renderMethodToUse() == RenderRaster || is32Bit)
&& mPixelsSize.Height() * mScanlineSize > maxBufferSize
&& (mBitCount > 8 || (mBitCount == 8 && mPalette.IsGreyPalette8Bit()));
}
const sk_sp<SkImage>& SkiaSalBitmap::GetSkImage(DirectImage direct) const
{
#ifdef DBG_UTIL
assert(mWriteAccessCount == 0);
#endif
if (direct == DirectImage::Yes)
return mImage;
if (mEraseColorSet)
{
if (mImage)
{
assert(imageSize(mImage) == mSize);
return mImage;
}
SkiaZone zone;
sk_sp<SkSurface> surface = createSkSurface(
mSize, mEraseColor.IsTransparent() ? kPremul_SkAlphaType : kOpaque_SkAlphaType);
assert(surface);
surface->getCanvas()->clear(toSkColor(mEraseColor));
SkiaSalBitmap* thisPtr = const_cast<SkiaSalBitmap*>(this);
thisPtr->mImage = makeCheckedImageSnapshot(surface);
SAL_INFO("vcl.skia.trace", "getskimage(" << this << ") from erase color " << mEraseColor);
return mImage;
}
if (mPixelsSize != mSize && !mImage && renderMethodToUse() != RenderRaster)
{
// The bitmap has a pending scaling, but no image. This function would below call GetAsSkBitmap(),
// which would do CPU-based pixel scaling, and then it would get converted to an image.
// Be more efficient, first convert to an image and then the block below will scale on the GPU.
SAL_INFO("vcl.skia.trace", "getskimage(" << this << "): shortcut image scaling "
<< mPixelsSize << "->" << mSize);
SkiaSalBitmap* thisPtr = const_cast<SkiaSalBitmap*>(this);
Size savedSize = mSize;
thisPtr->mSize = mPixelsSize; // block scaling
SkiaZone zone;
sk_sp<SkImage> image = createSkImage(GetAsSkBitmap());
assert(image);
thisPtr->mSize = savedSize;
thisPtr->ResetToSkImage(image);
}
if (mImage)
{
if (imageSize(mImage) != mSize)
{
assert(!mBuffer); // This code should be only called if only mImage holds data.
SkiaZone zone;
sk_sp<SkSurface> surface = createSkSurface(mSize, mImage->imageInfo().alphaType());
assert(surface);
SkPaint paint;
paint.setBlendMode(SkBlendMode::kSrc); // set as is, including alpha
surface->getCanvas()->drawImageRect(
mImage, SkRect::MakeWH(mSize.Width(), mSize.Height()),
makeSamplingOptions(mScaleQuality, imageSize(mImage), mSize, 1), &paint);
SAL_INFO("vcl.skia.trace", "getskimage(" << this << "): image scaled "
<< Size(mImage->width(), mImage->height())
<< "->" << mSize << ":"
<< static_cast<int>(mScaleQuality));
SkiaSalBitmap* thisPtr = const_cast<SkiaSalBitmap*>(this);
thisPtr->mImage = makeCheckedImageSnapshot(surface);
}
return mImage;
}
SkiaZone zone;
sk_sp<SkImage> image = createSkImage(GetAsSkBitmap());
assert(image);
SkiaSalBitmap* thisPtr = const_cast<SkiaSalBitmap*>(this);
thisPtr->mImage = image;
// The data is now stored both in the SkImage and in our mBuffer, so drop the buffer
// if conserving memory. It'll be converted back by EnsureBitmapData() if needed.
if (ConserveMemory() && mAnyAccessCount == 0)
{
SAL_INFO("vcl.skia.trace", "getskimage(" << this << "): dropping buffer");
thisPtr->ResetToSkImage(mImage);
}
SAL_INFO("vcl.skia.trace", "getskimage(" << this << ")");
return mImage;
}
const sk_sp<SkImage>& SkiaSalBitmap::GetAlphaSkImage(DirectImage direct) const
{
#ifdef DBG_UTIL
assert(mWriteAccessCount == 0);
#endif
if (direct == DirectImage::Yes)
return mAlphaImage;
if (mEraseColorSet)
{
if (mAlphaImage)
{
assert(imageSize(mAlphaImage) == mSize);
return mAlphaImage;
}
SkiaZone zone;
sk_sp<SkSurface> surface = createSkSurface(mSize, kAlpha_8_SkColorType);
assert(surface);
surface->getCanvas()->clear(fromEraseColorToAlphaImageColor(mEraseColor));
SkiaSalBitmap* thisPtr = const_cast<SkiaSalBitmap*>(this);
thisPtr->mAlphaImage = makeCheckedImageSnapshot(surface);
SAL_INFO("vcl.skia.trace",
"getalphaskimage(" << this << ") from erase color " << mEraseColor);
return mAlphaImage;
}
if (mAlphaImage)
{
if (imageSize(mAlphaImage) == mSize)
return mAlphaImage;
}
if (mImage)
{
SkiaZone zone;
const bool scaling = imageSize(mImage) != mSize;
SkPixmap pixmap;
// Note: We cannot do this when 'scaling' because SkCanvas::drawImageRect()
// with kAlpha_8_SkColorType as source and destination would act as SkBlendMode::kSrcOver
// despite SkBlendMode::kSrc set (https://bugs.chromium.org/p/skia/issues/detail?id=9692).
if (mImage->peekPixels(&pixmap) && !scaling)
{
assert(pixmap.colorType() == kN32_SkColorType);
// In non-GPU mode, convert 32bit data to 8bit alpha, this is faster than
// the SkColorFilter below. Since this is the VCL alpha-vdev alpha, where
// all R,G,B are the same and in fact mean alpha, this means we simply take one
// 8bit channel from the input, and that's the output.
SkBitmap bitmap;
if (!bitmap.installPixels(pixmap))
abort();
SkBitmap alphaBitmap;
if (!alphaBitmap.tryAllocPixels(SkImageInfo::MakeA8(bitmap.width(), bitmap.height())))
abort();
if (int(bitmap.rowBytes()) == bitmap.width() * 4)
{
SkConvertRGBAToR(alphaBitmap.getAddr8(0, 0), bitmap.getAddr32(0, 0),
bitmap.width() * bitmap.height());
}
else
{
for (tools::Long y = 0; y < bitmap.height(); ++y)
SkConvertRGBAToR(alphaBitmap.getAddr8(0, y), bitmap.getAddr32(0, y),
bitmap.width());
}
alphaBitmap.setImmutable();
sk_sp<SkImage> alphaImage = createSkImage(alphaBitmap);
assert(alphaImage);
SAL_INFO("vcl.skia.trace", "getalphaskimage(" << this << ") from raster image");
// Don't bother here with ConserveMemory(), mImage -> mAlphaImage conversions should
// generally only happen with the separate-alpha-outdev hack, and those bitmaps should
// be temporary.
SkiaSalBitmap* thisPtr = const_cast<SkiaSalBitmap*>(this);
thisPtr->mAlphaImage = alphaImage;
return mAlphaImage;
}
// Move the R channel value to the alpha channel. This seems to be the only
// way to reinterpret data in SkImage as an alpha SkImage without accessing the pixels.
// NOTE: The matrix is 4x5 organized as columns (i.e. each line is a column, not a row).
constexpr SkColorMatrix redToAlpha(0, 0, 0, 0, 0, // R column
0, 0, 0, 0, 0, // G column
0, 0, 0, 0, 0, // B column
1, 0, 0, 0, 0); // A column
SkPaint paint;
paint.setColorFilter(SkColorFilters::Matrix(redToAlpha));
if (scaling)
assert(!mBuffer); // This code should be only called if only mImage holds data.
sk_sp<SkSurface> surface = createSkSurface(mSize, kAlpha_8_SkColorType);
assert(surface);
paint.setBlendMode(SkBlendMode::kSrc); // set as is, including alpha
surface->getCanvas()->drawImageRect(
mImage, SkRect::MakeWH(mSize.Width(), mSize.Height()),
scaling ? makeSamplingOptions(mScaleQuality, imageSize(mImage), mSize, 1)
: SkSamplingOptions(),
&paint);
if (scaling)
SAL_INFO("vcl.skia.trace", "getalphaskimage(" << this << "): image scaled "
<< Size(mImage->width(), mImage->height())
<< "->" << mSize << ":"
<< static_cast<int>(mScaleQuality));
else
SAL_INFO("vcl.skia.trace", "getalphaskimage(" << this << ") from image");
// Don't bother here with ConserveMemory(), mImage -> mAlphaImage conversions should
// generally only happen with the separate-alpha-outdev hack, and those bitmaps should
// be temporary.
SkiaSalBitmap* thisPtr = const_cast<SkiaSalBitmap*>(this);
thisPtr->mAlphaImage = makeCheckedImageSnapshot(surface);
return mAlphaImage;
}
SkiaZone zone;
EnsureBitmapData();
assert(mSize == mPixelsSize); // data has already been scaled if needed
SkBitmap alphaBitmap;
if (mBuffer && mBitCount <= 8)
{
assert(mBuffer.get());
verify();
std::unique_ptr<sal_uInt8[]> data
= convertDataBitCount(mBuffer.get(), mSize.Width(), mSize.Height(), mBitCount,
mScanlineSize, mPalette, BitConvert::A8);
if (!alphaBitmap.installPixels(
SkImageInfo::MakeA8(mSize.Width(), mSize.Height()), data.release(), mSize.Width(),
[](void* addr, void*) { delete[] static_cast<sal_uInt8*>(addr); }, nullptr))
abort();
alphaBitmap.setImmutable();
sk_sp<SkImage> image = createSkImage(alphaBitmap);
assert(image);
const_cast<sk_sp<SkImage>&>(mAlphaImage) = image;
}
else
{
sk_sp<SkSurface> surface = createSkSurface(mSize, kAlpha_8_SkColorType);
assert(surface);
SkPaint paint;
paint.setBlendMode(SkBlendMode::kSrc); // set as is, including alpha
// Move the R channel value to the alpha channel. This seems to be the only
// way to reinterpret data in SkImage as an alpha SkImage without accessing the pixels.
// NOTE: The matrix is 4x5 organized as columns (i.e. each line is a column, not a row).
constexpr SkColorMatrix redToAlpha(0, 0, 0, 0, 0, // R column
0, 0, 0, 0, 0, // G column
0, 0, 0, 0, 0, // B column
1, 0, 0, 0, 0); // A column
paint.setColorFilter(SkColorFilters::Matrix(redToAlpha));
surface->getCanvas()->drawImage(GetAsSkBitmap().asImage(), 0, 0, SkSamplingOptions(),
&paint);
SkiaSalBitmap* thisPtr = const_cast<SkiaSalBitmap*>(this);
thisPtr->mAlphaImage = makeCheckedImageSnapshot(surface);
}
// The data is now stored both in the SkImage and in our mBuffer, so drop the buffer
// if conserving memory and the conversion back would be simple (it'll be converted back
// by EnsureBitmapData() if needed).
if (ConserveMemory() && mBitCount == 8 && mPalette.IsGreyPalette8Bit() && mAnyAccessCount == 0)
{
SAL_INFO("vcl.skia.trace", "getalphaskimage(" << this << "): dropping buffer");
SkiaSalBitmap* thisPtr = const_cast<SkiaSalBitmap*>(this);
thisPtr->mBuffer.reset();
}
SAL_INFO("vcl.skia.trace", "getalphaskimage(" << this << ")");
return mAlphaImage;
}
void SkiaSalBitmap::TryDirectConvertToAlphaNoScaling()
{
// This is a bit of a hack. Because of the VCL alpha hack where alpha is stored
// separately, we often convert mImage to mAlphaImage to represent the alpha
// channel. If code finds out that there is mImage but no mAlphaImage,
// this will create it from it, without checking for delayed scaling (i.e.
// it is "direct").
assert(mImage);
assert(!mAlphaImage);
// Set wanted size, trigger conversion.
Size savedSize = mSize;
mSize = imageSize(mImage);
GetAlphaSkImage();
assert(mAlphaImage);
mSize = savedSize;
}
// If the bitmap is to be erased, SkShader with the color set is more efficient
// than creating an image filled with the color.
bool SkiaSalBitmap::PreferSkShader() const { return mEraseColorSet; }
sk_sp<SkShader> SkiaSalBitmap::GetSkShader(const SkSamplingOptions& samplingOptions,
DirectImage direct) const
{
if (mEraseColorSet)
return SkShaders::Color(toSkColor(mEraseColor));
return GetSkImage(direct)->makeShader(samplingOptions);
}
sk_sp<SkShader> SkiaSalBitmap::GetAlphaSkShader(const SkSamplingOptions& samplingOptions,
DirectImage direct) const
{
if (mEraseColorSet)
return SkShaders::Color(fromEraseColorToAlphaImageColor(mEraseColor));
return GetAlphaSkImage(direct)->makeShader(samplingOptions);
}
bool SkiaSalBitmap::IsFullyOpaqueAsAlpha() const
{
if (!mEraseColorSet) // Set from Erase() or ReleaseBuffer().
return false;
// If the erase color is set so that this bitmap used as alpha would
// mean a fully opaque alpha mask (= noop), we can skip using it.
// Note that for alpha bitmaps we use the VCL "transparency" convention,
// i.e. alpha 0 is opaque.
return SkColorGetA(fromEraseColorToAlphaImageColor(mEraseColor)) == 0;
}
SkAlphaType SkiaSalBitmap::alphaType() const
{
if (mEraseColorSet)
return mEraseColor.IsTransparent() ? kPremul_SkAlphaType : kOpaque_SkAlphaType;
#if SKIA_USE_BITMAP32
// The bitmap's alpha matters only if SKIA_USE_BITMAP32 is set, otherwise
// the alpha is in a separate bitmap.
if (mBitCount == 32)
return kPremul_SkAlphaType;
#endif
return kOpaque_SkAlphaType;
}
void SkiaSalBitmap::PerformErase()
{
if (mPixelsSize.IsEmpty())
return;
BitmapBuffer* bitmapBuffer = AcquireBuffer(BitmapAccessMode::Write);
if (bitmapBuffer == nullptr)
abort();
Color fastColor = mEraseColor;
if (!!mPalette)
fastColor = Color(ColorTransparency, mPalette.GetBestIndex(fastColor));
if (!ImplFastEraseBitmap(*bitmapBuffer, fastColor))
{
FncSetPixel setPixel = BitmapReadAccess::SetPixelFunction(bitmapBuffer->mnFormat);
assert(bitmapBuffer->mnFormat & ScanlineFormat::TopDown);
// Set first scanline, copy to others.
Scanline scanline = bitmapBuffer->mpBits;
for (tools::Long x = 0; x < bitmapBuffer->mnWidth; ++x)
setPixel(scanline, x, mEraseColor, bitmapBuffer->maColorMask);
for (tools::Long y = 1; y < bitmapBuffer->mnHeight; ++y)
memcpy(scanline + y * bitmapBuffer->mnScanlineSize, scanline,
bitmapBuffer->mnScanlineSize);
}
ReleaseBuffer(bitmapBuffer, BitmapAccessMode::Write, true);
}
void SkiaSalBitmap::EnsureBitmapData()
{
if (mEraseColorSet)
{
SkiaZone zone;
assert(mPixelsSize == mSize);
assert(!mBuffer);
CreateBitmapData();
// Unset now, so that repeated call will return mBuffer.
mEraseColorSet = false;
PerformErase();
verify();
SAL_INFO("vcl.skia.trace",
"ensurebitmapdata(" << this << ") from erase color " << mEraseColor);
return;
}
if (mBuffer)
{
if (mSize == mPixelsSize)
return;
// Pending scaling. Create raster SkImage from the bitmap data
// at the pixel size and then the code below will scale at the correct
// bpp from the image.
SAL_INFO("vcl.skia.trace", "ensurebitmapdata(" << this << "): pixels to be scaled "
<< mPixelsSize << "->" << mSize << ":"
<< static_cast<int>(mScaleQuality));
Size savedSize = mSize;
mSize = mPixelsSize;
ResetToSkImage(SkImage::MakeFromBitmap(GetAsSkBitmap()));
mSize = savedSize;
}
// Convert from alpha image, if the conversion is simple.
if (mAlphaImage && imageSize(mAlphaImage) == mSize && mBitCount == 8
&& mPalette.IsGreyPalette8Bit())
{
assert(mAlphaImage->colorType() == kAlpha_8_SkColorType);
SkiaZone zone;
SkBitmap bitmap;
SkPixmap pixmap;
if (mAlphaImage->peekPixels(&pixmap))
bitmap.installPixels(pixmap);
else
{
if (!bitmap.tryAllocPixels(SkImageInfo::MakeA8(mSize.Width(), mSize.Height())))
abort();
SkCanvas canvas(bitmap);
SkPaint paint;
paint.setBlendMode(SkBlendMode::kSrc); // set as is, including alpha
canvas.drawImage(mAlphaImage, 0, 0, SkSamplingOptions(), &paint);
canvas.flush();
}
bitmap.setImmutable();
ResetPendingScaling();
CreateBitmapData();
assert(mBuffer != nullptr);
assert(mPixelsSize == mSize);
if (int(bitmap.rowBytes()) == mScanlineSize)
memcpy(mBuffer.get(), bitmap.getPixels(), mSize.Height() * mScanlineSize);
else
{
for (tools::Long y = 0; y < mSize.Height(); ++y)
{
const uint8_t* src = static_cast<uint8_t*>(bitmap.getAddr(0, y));
sal_uInt8* dest = mBuffer.get() + mScanlineSize * y;
memcpy(dest, src, mScanlineSize);
}
}
verify();
// We've created the bitmap data from mAlphaImage, drop the image if conserving memory,
// it'll be converted back if needed.
if (ConserveMemory())
{
SAL_INFO("vcl.skia.trace", "ensurebitmapdata(" << this << "): dropping images");
ResetToBuffer();
}
SAL_INFO("vcl.skia.trace", "ensurebitmapdata(" << this << "): from alpha image");
return;
}
if (!mImage)
{
// No data at all, create uninitialized data.
CreateBitmapData();
SAL_INFO("vcl.skia.trace", "ensurebitmapdata(" << this << "): uninitialized");
return;
}
// Try to fill mBuffer from mImage.
assert(mImage->colorType() == kN32_SkColorType);
SkiaZone zone;
// If the source image has no alpha, then use no alpha (faster to convert), otherwise
// use kUnpremul_SkAlphaType to make Skia convert from premultiplied alpha when reading
// from the SkImage (the alpha will be ignored if converting to bpp<32 formats, but
// the color channels must be unpremultiplied. Unless bpp==32 and SKIA_USE_BITMAP32,
// in which case use kPremul_SkAlphaType, since SKIA_USE_BITMAP32 implies premultiplied alpha.
SkAlphaType alphaType = kUnpremul_SkAlphaType;
if (mImage->imageInfo().alphaType() == kOpaque_SkAlphaType)
alphaType = kOpaque_SkAlphaType;
#if SKIA_USE_BITMAP32
if (mBitCount == 32)
alphaType = kPremul_SkAlphaType;
#endif
SkBitmap bitmap;
SkPixmap pixmap;
if (imageSize(mImage) == mSize && mImage->imageInfo().alphaType() == alphaType
&& mImage->peekPixels(&pixmap))
{
bitmap.installPixels(pixmap);
}
else
{
if (!bitmap.tryAllocPixels(SkImageInfo::MakeS32(mSize.Width(), mSize.Height(), alphaType)))
abort();
SkCanvas canvas(bitmap);
SkPaint paint;
paint.setBlendMode(SkBlendMode::kSrc); // set as is, including alpha
if (imageSize(mImage) != mSize) // pending scaling?
{
canvas.drawImageRect(mImage, SkRect::MakeWH(mSize.getWidth(), mSize.getHeight()),
makeSamplingOptions(mScaleQuality, imageSize(mImage), mSize, 1),
&paint);
SAL_INFO("vcl.skia.trace",
"ensurebitmapdata(" << this << "): image scaled " << imageSize(mImage) << "->"
<< mSize << ":" << static_cast<int>(mScaleQuality));
}
else
canvas.drawImage(mImage, 0, 0, SkSamplingOptions(), &paint);
canvas.flush();
}
bitmap.setImmutable();
ResetPendingScaling();
CreateBitmapData();
assert(mBuffer != nullptr);
assert(mPixelsSize == mSize);
if (mBitCount == 32)
{
if (int(bitmap.rowBytes()) == mScanlineSize)
memcpy(mBuffer.get(), bitmap.getPixels(), mSize.Height() * mScanlineSize);
else
{
for (tools::Long y = 0; y < mSize.Height(); ++y)
{
const uint8_t* src = static_cast<uint8_t*>(bitmap.getAddr(0, y));
sal_uInt8* dest = mBuffer.get() + mScanlineSize * y;
memcpy(dest, src, mScanlineSize);
}
}
}
else if (mBitCount == 24) // non-paletted
{
if (int(bitmap.rowBytes()) == mSize.Width() * 4 && mSize.Width() * 3 == mScanlineSize)
{
SkConvertRGBAToRGB(mBuffer.get(), bitmap.getAddr32(0, 0),
mSize.Height() * mSize.Width());
}
else
{
for (tools::Long y = 0; y < mSize.Height(); ++y)
{
const uint32_t* src = bitmap.getAddr32(0, y);
sal_uInt8* dest = mBuffer.get() + mScanlineSize * y;
SkConvertRGBAToRGB(dest, src, mSize.Width());
}
}
}
else if (mBitCount == 8 && mPalette.IsGreyPalette8Bit())
{ // no actual data conversion, use one color channel as the gray value
if (int(bitmap.rowBytes()) == mSize.Width() * 4 && mSize.Width() * 1 == mScanlineSize)
{
SkConvertRGBAToR(mBuffer.get(), bitmap.getAddr32(0, 0), mSize.Height() * mSize.Width());
}
else
{
for (tools::Long y = 0; y < mSize.Height(); ++y)
{
const uint32_t* src = bitmap.getAddr32(0, y);
sal_uInt8* dest = mBuffer.get() + mScanlineSize * y;
SkConvertRGBAToR(dest, src, mSize.Width());
}
}
}
else
{
std::unique_ptr<vcl::ScanlineWriter> pWriter
= vcl::ScanlineWriter::Create(mBitCount, mPalette);
for (tools::Long y = 0; y < mSize.Height(); ++y)
{
const uint8_t* src = static_cast<uint8_t*>(bitmap.getAddr(0, y));
sal_uInt8* dest = mBuffer.get() + mScanlineSize * y;
pWriter->nextLine(dest);
for (tools::Long x = 0; x < mSize.Width(); ++x)
{
sal_uInt8 r = *src++;
sal_uInt8 g = *src++;
sal_uInt8 b = *src++;
++src; // skip alpha
pWriter->writeRGB(r, g, b);
}
}
}
verify();
// We've created the bitmap data from mImage, drop the image if conserving memory,
// it'll be converted back if needed.
if (ConserveMemory())
{
SAL_INFO("vcl.skia.trace", "ensurebitmapdata(" << this << "): dropping images");
ResetToBuffer();
}
SAL_INFO("vcl.skia.trace", "ensurebitmapdata(" << this << ")");
}
void SkiaSalBitmap::EnsureBitmapUniqueData()
{
#ifdef DBG_UTIL
assert(mWriteAccessCount == 0);
#endif
EnsureBitmapData();
assert(mPixelsSize == mSize);
if (mBuffer.use_count() > 1)
{
sal_uInt32 allocate = mScanlineSize * mSize.Height();
#ifdef DBG_UTIL
assert(memcmp(mBuffer.get() + allocate, CANARY, sizeof(CANARY)) == 0);
allocate += sizeof(CANARY);
#endif
boost::shared_ptr<sal_uInt8[]> newBuffer = boost::make_shared_noinit<sal_uInt8[]>(allocate);
memcpy(newBuffer.get(), mBuffer.get(), allocate);
mBuffer = newBuffer;
}
}
void SkiaSalBitmap::ResetToBuffer()
{
SkiaZone zone;
// This should never be called to drop mImage if that's the only data we have.
assert(mBuffer || !mImage);
mImage.reset();
mAlphaImage.reset();
mEraseColorSet = false;
}
void SkiaSalBitmap::ResetToSkImage(sk_sp<SkImage> image)
{
assert(mAnyAccessCount == 0); // can't reset mBuffer if there's a read access pointing to it
SkiaZone zone;
mBuffer.reset();
mImage = image;
mAlphaImage.reset();
mEraseColorSet = false;
}
void SkiaSalBitmap::ResetAllData()
{
assert(mAnyAccessCount == 0);
SkiaZone zone;
mBuffer.reset();
mImage.reset();
mAlphaImage.reset();
mEraseColorSet = false;
mPixelsSize = mSize;
ComputeScanlineSize();
DataChanged();
}
void SkiaSalBitmap::DataChanged() { InvalidateChecksum(); }
void SkiaSalBitmap::ResetPendingScaling()
{
if (mPixelsSize == mSize)
return;
SkiaZone zone;
mScaleQuality = BmpScaleFlag::BestQuality;
mPixelsSize = mSize;
ComputeScanlineSize();
// Information about the pending scaling has been discarded, so make sure we do not
// keep around any cached images that would still need scaling.
if (mImage && imageSize(mImage) != mSize)
mImage.reset();
if (mAlphaImage && imageSize(mAlphaImage) != mSize)
mAlphaImage.reset();
}
OString SkiaSalBitmap::GetImageKey(DirectImage direct) const
{
if (mEraseColorSet)
{
std::stringstream ss;
ss << std::hex << std::setfill('0') << std::setw(6)
<< static_cast<sal_uInt32>(mEraseColor.GetRGBColor()) << std::setw(2)
<< static_cast<int>(mEraseColor.GetAlpha());
return OString::Concat("E") + ss.str().c_str();
}
assert(direct == DirectImage::No || mImage);
sk_sp<SkImage> image = GetSkImage(direct);
// In some cases drawing code may try to draw the same content but using
// different bitmaps (even underlying bitmaps), for example canvas apparently
// copies the same things around in tdf#146095. For pixel-based images
// it should be still cheaper to compute a checksum and avoid re-caching.
if (!image->isTextureBacked())
return OString::Concat("C") + OString::number(getSkImageChecksum(image));
return OString::Concat("I") + OString::number(image->uniqueID());
}
OString SkiaSalBitmap::GetAlphaImageKey(DirectImage direct) const
{
if (mEraseColorSet)
{
std::stringstream ss;
ss << std::hex << std::setfill('0') << std::setw(2)
<< static_cast<int>(255 - SkColorGetA(fromEraseColorToAlphaImageColor(mEraseColor)));
return OString::Concat("E") + ss.str().c_str();
}
assert(direct == DirectImage::No || mAlphaImage);
sk_sp<SkImage> image = GetAlphaSkImage(direct);
if (!image->isTextureBacked())
return OString::Concat("C") + OString::number(getSkImageChecksum(image));
return OString::Concat("I") + OString::number(image->uniqueID());
}
void SkiaSalBitmap::dump(const char* file) const
{
// Use a copy, so that debugging doesn't affect this instance.
SkiaSalBitmap copy;
copy.Create(*this);
SkiaHelper::dump(copy.GetSkImage(), file);
}
#ifdef DBG_UTIL
void SkiaSalBitmap::verify() const
{
if (!mBuffer)
return;
// Use mPixelsSize, that describes the size of the actual data.
assert(memcmp(mBuffer.get() + mScanlineSize * mPixelsSize.Height(), CANARY, sizeof(CANARY))
== 0);
}
#endif
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
|