diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
commit | 2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch) | |
tree | 848558de17fb3008cdf4d861b01ac7781903ce39 /Documentation/input/input-programming.rst | |
parent | Initial commit. (diff) | |
download | linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip |
Adding upstream version 6.1.76.upstream/6.1.76
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r-- | Documentation/input/input-programming.rst | 348 |
1 files changed, 348 insertions, 0 deletions
diff --git a/Documentation/input/input-programming.rst b/Documentation/input/input-programming.rst new file mode 100644 index 000000000..c9264814c --- /dev/null +++ b/Documentation/input/input-programming.rst @@ -0,0 +1,348 @@ +=============================== +Creating an input device driver +=============================== + +The simplest example +~~~~~~~~~~~~~~~~~~~~ + +Here comes a very simple example of an input device driver. The device has +just one button and the button is accessible at i/o port BUTTON_PORT. When +pressed or released a BUTTON_IRQ happens. The driver could look like:: + + #include <linux/input.h> + #include <linux/module.h> + #include <linux/init.h> + + #include <asm/irq.h> + #include <asm/io.h> + + static struct input_dev *button_dev; + + static irqreturn_t button_interrupt(int irq, void *dummy) + { + input_report_key(button_dev, BTN_0, inb(BUTTON_PORT) & 1); + input_sync(button_dev); + return IRQ_HANDLED; + } + + static int __init button_init(void) + { + int error; + + if (request_irq(BUTTON_IRQ, button_interrupt, 0, "button", NULL)) { + printk(KERN_ERR "button.c: Can't allocate irq %d\n", button_irq); + return -EBUSY; + } + + button_dev = input_allocate_device(); + if (!button_dev) { + printk(KERN_ERR "button.c: Not enough memory\n"); + error = -ENOMEM; + goto err_free_irq; + } + + button_dev->evbit[0] = BIT_MASK(EV_KEY); + button_dev->keybit[BIT_WORD(BTN_0)] = BIT_MASK(BTN_0); + + error = input_register_device(button_dev); + if (error) { + printk(KERN_ERR "button.c: Failed to register device\n"); + goto err_free_dev; + } + + return 0; + + err_free_dev: + input_free_device(button_dev); + err_free_irq: + free_irq(BUTTON_IRQ, button_interrupt); + return error; + } + + static void __exit button_exit(void) + { + input_unregister_device(button_dev); + free_irq(BUTTON_IRQ, button_interrupt); + } + + module_init(button_init); + module_exit(button_exit); + +What the example does +~~~~~~~~~~~~~~~~~~~~~ + +First it has to include the <linux/input.h> file, which interfaces to the +input subsystem. This provides all the definitions needed. + +In the _init function, which is called either upon module load or when +booting the kernel, it grabs the required resources (it should also check +for the presence of the device). + +Then it allocates a new input device structure with input_allocate_device() +and sets up input bitfields. This way the device driver tells the other +parts of the input systems what it is - what events can be generated or +accepted by this input device. Our example device can only generate EV_KEY +type events, and from those only BTN_0 event code. Thus we only set these +two bits. We could have used:: + + set_bit(EV_KEY, button_dev->evbit); + set_bit(BTN_0, button_dev->keybit); + +as well, but with more than single bits the first approach tends to be +shorter. + +Then the example driver registers the input device structure by calling:: + + input_register_device(button_dev); + +This adds the button_dev structure to linked lists of the input driver and +calls device handler modules _connect functions to tell them a new input +device has appeared. input_register_device() may sleep and therefore must +not be called from an interrupt or with a spinlock held. + +While in use, the only used function of the driver is:: + + button_interrupt() + +which upon every interrupt from the button checks its state and reports it +via the:: + + input_report_key() + +call to the input system. There is no need to check whether the interrupt +routine isn't reporting two same value events (press, press for example) to +the input system, because the input_report_* functions check that +themselves. + +Then there is the:: + + input_sync() + +call to tell those who receive the events that we've sent a complete report. +This doesn't seem important in the one button case, but is quite important +for example for mouse movement, where you don't want the X and Y values +to be interpreted separately, because that'd result in a different movement. + +dev->open() and dev->close() +~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +In case the driver has to repeatedly poll the device, because it doesn't +have an interrupt coming from it and the polling is too expensive to be done +all the time, or if the device uses a valuable resource (e.g. interrupt), it +can use the open and close callback to know when it can stop polling or +release the interrupt and when it must resume polling or grab the interrupt +again. To do that, we would add this to our example driver:: + + static int button_open(struct input_dev *dev) + { + if (request_irq(BUTTON_IRQ, button_interrupt, 0, "button", NULL)) { + printk(KERN_ERR "button.c: Can't allocate irq %d\n", button_irq); + return -EBUSY; + } + + return 0; + } + + static void button_close(struct input_dev *dev) + { + free_irq(IRQ_AMIGA_VERTB, button_interrupt); + } + + static int __init button_init(void) + { + ... + button_dev->open = button_open; + button_dev->close = button_close; + ... + } + +Note that input core keeps track of number of users for the device and +makes sure that dev->open() is called only when the first user connects +to the device and that dev->close() is called when the very last user +disconnects. Calls to both callbacks are serialized. + +The open() callback should return a 0 in case of success or any non-zero value +in case of failure. The close() callback (which is void) must always succeed. + +Inhibiting input devices +~~~~~~~~~~~~~~~~~~~~~~~~ + +Inhibiting a device means ignoring input events from it. As such it is about +maintaining relationships with input handlers - either already existing +relationships, or relationships to be established while the device is in +inhibited state. + +If a device is inhibited, no input handler will receive events from it. + +The fact that nobody wants events from the device is exploited further, by +calling device's close() (if there are users) and open() (if there are users) on +inhibit and uninhibit operations, respectively. Indeed, the meaning of close() +is to stop providing events to the input core and that of open() is to start +providing events to the input core. + +Calling the device's close() method on inhibit (if there are users) allows the +driver to save power. Either by directly powering down the device or by +releasing the runtime-PM reference it got in open() when the driver is using +runtime-PM. + +Inhibiting and uninhibiting are orthogonal to opening and closing the device by +input handlers. Userspace might want to inhibit a device in anticipation before +any handler is positively matched against it. + +Inhibiting and uninhibiting are orthogonal to device's being a wakeup source, +too. Being a wakeup source plays a role when the system is sleeping, not when +the system is operating. How drivers should program their interaction between +inhibiting, sleeping and being a wakeup source is driver-specific. + +Taking the analogy with the network devices - bringing a network interface down +doesn't mean that it should be impossible be wake the system up on LAN through +this interface. So, there may be input drivers which should be considered wakeup +sources even when inhibited. Actually, in many I2C input devices their interrupt +is declared a wakeup interrupt and its handling happens in driver's core, which +is not aware of input-specific inhibit (nor should it be). Composite devices +containing several interfaces can be inhibited on a per-interface basis and e.g. +inhibiting one interface shouldn't affect the device's capability of being a +wakeup source. + +If a device is to be considered a wakeup source while inhibited, special care +must be taken when programming its suspend(), as it might need to call device's +open(). Depending on what close() means for the device in question, not +opening() it before going to sleep might make it impossible to provide any +wakeup events. The device is going to sleep anyway. + +Basic event types +~~~~~~~~~~~~~~~~~ + +The most simple event type is EV_KEY, which is used for keys and buttons. +It's reported to the input system via:: + + input_report_key(struct input_dev *dev, int code, int value) + +See uapi/linux/input-event-codes.h for the allowable values of code (from 0 to +KEY_MAX). Value is interpreted as a truth value, i.e. any non-zero value means +key pressed, zero value means key released. The input code generates events only +in case the value is different from before. + +In addition to EV_KEY, there are two more basic event types: EV_REL and +EV_ABS. They are used for relative and absolute values supplied by the +device. A relative value may be for example a mouse movement in the X axis. +The mouse reports it as a relative difference from the last position, +because it doesn't have any absolute coordinate system to work in. Absolute +events are namely for joysticks and digitizers - devices that do work in an +absolute coordinate systems. + +Having the device report EV_REL buttons is as simple as with EV_KEY; simply +set the corresponding bits and call the:: + + input_report_rel(struct input_dev *dev, int code, int value) + +function. Events are generated only for non-zero values. + +However EV_ABS requires a little special care. Before calling +input_register_device, you have to fill additional fields in the input_dev +struct for each absolute axis your device has. If our button device had also +the ABS_X axis:: + + button_dev.absmin[ABS_X] = 0; + button_dev.absmax[ABS_X] = 255; + button_dev.absfuzz[ABS_X] = 4; + button_dev.absflat[ABS_X] = 8; + +Or, you can just say:: + + input_set_abs_params(button_dev, ABS_X, 0, 255, 4, 8); + +This setting would be appropriate for a joystick X axis, with the minimum of +0, maximum of 255 (which the joystick *must* be able to reach, no problem if +it sometimes reports more, but it must be able to always reach the min and +max values), with noise in the data up to +- 4, and with a center flat +position of size 8. + +If you don't need absfuzz and absflat, you can set them to zero, which mean +that the thing is precise and always returns to exactly the center position +(if it has any). + +BITS_TO_LONGS(), BIT_WORD(), BIT_MASK() +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +These three macros from bitops.h help some bitfield computations:: + + BITS_TO_LONGS(x) - returns the length of a bitfield array in longs for + x bits + BIT_WORD(x) - returns the index in the array in longs for bit x + BIT_MASK(x) - returns the index in a long for bit x + +The id* and name fields +~~~~~~~~~~~~~~~~~~~~~~~ + +The dev->name should be set before registering the input device by the input +device driver. It's a string like 'Generic button device' containing a +user friendly name of the device. + +The id* fields contain the bus ID (PCI, USB, ...), vendor ID and device ID +of the device. The bus IDs are defined in input.h. The vendor and device IDs +are defined in pci_ids.h, usb_ids.h and similar include files. These fields +should be set by the input device driver before registering it. + +The idtype field can be used for specific information for the input device +driver. + +The id and name fields can be passed to userland via the evdev interface. + +The keycode, keycodemax, keycodesize fields +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +These three fields should be used by input devices that have dense keymaps. +The keycode is an array used to map from scancodes to input system keycodes. +The keycode max should contain the size of the array and keycodesize the +size of each entry in it (in bytes). + +Userspace can query and alter current scancode to keycode mappings using +EVIOCGKEYCODE and EVIOCSKEYCODE ioctls on corresponding evdev interface. +When a device has all 3 aforementioned fields filled in, the driver may +rely on kernel's default implementation of setting and querying keycode +mappings. + +dev->getkeycode() and dev->setkeycode() +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +getkeycode() and setkeycode() callbacks allow drivers to override default +keycode/keycodesize/keycodemax mapping mechanism provided by input core +and implement sparse keycode maps. + +Key autorepeat +~~~~~~~~~~~~~~ + +... is simple. It is handled by the input.c module. Hardware autorepeat is +not used, because it's not present in many devices and even where it is +present, it is broken sometimes (at keyboards: Toshiba notebooks). To enable +autorepeat for your device, just set EV_REP in dev->evbit. All will be +handled by the input system. + +Other event types, handling output events +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +The other event types up to now are: + +- EV_LED - used for the keyboard LEDs. +- EV_SND - used for keyboard beeps. + +They are very similar to for example key events, but they go in the other +direction - from the system to the input device driver. If your input device +driver can handle these events, it has to set the respective bits in evbit, +*and* also the callback routine:: + + button_dev->event = button_event; + + int button_event(struct input_dev *dev, unsigned int type, + unsigned int code, int value) + { + if (type == EV_SND && code == SND_BELL) { + outb(value, BUTTON_BELL); + return 0; + } + return -1; + } + +This callback routine can be called from an interrupt or a BH (although that +isn't a rule), and thus must not sleep, and must not take too long to finish. |