summaryrefslogtreecommitdiffstats
path: root/Documentation/powerpc/firmware-assisted-dump.rst
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
commit2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch)
tree848558de17fb3008cdf4d861b01ac7781903ce39 /Documentation/powerpc/firmware-assisted-dump.rst
parentInitial commit. (diff)
downloadlinux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz
linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip
Adding upstream version 6.1.76.upstream/6.1.76
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'Documentation/powerpc/firmware-assisted-dump.rst')
-rw-r--r--Documentation/powerpc/firmware-assisted-dump.rst381
1 files changed, 381 insertions, 0 deletions
diff --git a/Documentation/powerpc/firmware-assisted-dump.rst b/Documentation/powerpc/firmware-assisted-dump.rst
new file mode 100644
index 000000000..e363fc485
--- /dev/null
+++ b/Documentation/powerpc/firmware-assisted-dump.rst
@@ -0,0 +1,381 @@
+======================
+Firmware-Assisted Dump
+======================
+
+July 2011
+
+The goal of firmware-assisted dump is to enable the dump of
+a crashed system, and to do so from a fully-reset system, and
+to minimize the total elapsed time until the system is back
+in production use.
+
+- Firmware-Assisted Dump (FADump) infrastructure is intended to replace
+ the existing phyp assisted dump.
+- Fadump uses the same firmware interfaces and memory reservation model
+ as phyp assisted dump.
+- Unlike phyp dump, FADump exports the memory dump through /proc/vmcore
+ in the ELF format in the same way as kdump. This helps us reuse the
+ kdump infrastructure for dump capture and filtering.
+- Unlike phyp dump, userspace tool does not need to refer any sysfs
+ interface while reading /proc/vmcore.
+- Unlike phyp dump, FADump allows user to release all the memory reserved
+ for dump, with a single operation of echo 1 > /sys/kernel/fadump_release_mem.
+- Once enabled through kernel boot parameter, FADump can be
+ started/stopped through /sys/kernel/fadump_registered interface (see
+ sysfs files section below) and can be easily integrated with kdump
+ service start/stop init scripts.
+
+Comparing with kdump or other strategies, firmware-assisted
+dump offers several strong, practical advantages:
+
+- Unlike kdump, the system has been reset, and loaded
+ with a fresh copy of the kernel. In particular,
+ PCI and I/O devices have been reinitialized and are
+ in a clean, consistent state.
+- Once the dump is copied out, the memory that held the dump
+ is immediately available to the running kernel. And therefore,
+ unlike kdump, FADump doesn't need a 2nd reboot to get back
+ the system to the production configuration.
+
+The above can only be accomplished by coordination with,
+and assistance from the Power firmware. The procedure is
+as follows:
+
+- The first kernel registers the sections of memory with the
+ Power firmware for dump preservation during OS initialization.
+ These registered sections of memory are reserved by the first
+ kernel during early boot.
+
+- When system crashes, the Power firmware will copy the registered
+ low memory regions (boot memory) from source to destination area.
+ It will also save hardware PTE's.
+
+ NOTE:
+ The term 'boot memory' means size of the low memory chunk
+ that is required for a kernel to boot successfully when
+ booted with restricted memory. By default, the boot memory
+ size will be the larger of 5% of system RAM or 256MB.
+ Alternatively, user can also specify boot memory size
+ through boot parameter 'crashkernel=' which will override
+ the default calculated size. Use this option if default
+ boot memory size is not sufficient for second kernel to
+ boot successfully. For syntax of crashkernel= parameter,
+ refer to Documentation/admin-guide/kdump/kdump.rst. If any
+ offset is provided in crashkernel= parameter, it will be
+ ignored as FADump uses a predefined offset to reserve memory
+ for boot memory dump preservation in case of a crash.
+
+- After the low memory (boot memory) area has been saved, the
+ firmware will reset PCI and other hardware state. It will
+ *not* clear the RAM. It will then launch the bootloader, as
+ normal.
+
+- The freshly booted kernel will notice that there is a new node
+ (rtas/ibm,kernel-dump on pSeries or ibm,opal/dump/mpipl-boot
+ on OPAL platform) in the device tree, indicating that
+ there is crash data available from a previous boot. During
+ the early boot OS will reserve rest of the memory above
+ boot memory size effectively booting with restricted memory
+ size. This will make sure that this kernel (also, referred
+ to as second kernel or capture kernel) will not touch any
+ of the dump memory area.
+
+- User-space tools will read /proc/vmcore to obtain the contents
+ of memory, which holds the previous crashed kernel dump in ELF
+ format. The userspace tools may copy this info to disk, or
+ network, nas, san, iscsi, etc. as desired.
+
+- Once the userspace tool is done saving dump, it will echo
+ '1' to /sys/kernel/fadump_release_mem to release the reserved
+ memory back to general use, except the memory required for
+ next firmware-assisted dump registration.
+
+ e.g.::
+
+ # echo 1 > /sys/kernel/fadump_release_mem
+
+Please note that the firmware-assisted dump feature
+is only available on POWER6 and above systems on pSeries
+(PowerVM) platform and POWER9 and above systems with OP940
+or later firmware versions on PowerNV (OPAL) platform.
+Note that, OPAL firmware exports ibm,opal/dump node when
+FADump is supported on PowerNV platform.
+
+On OPAL based machines, system first boots into an intermittent
+kernel (referred to as petitboot kernel) before booting into the
+capture kernel. This kernel would have minimal kernel and/or
+userspace support to process crash data. Such kernel needs to
+preserve previously crash'ed kernel's memory for the subsequent
+capture kernel boot to process this crash data. Kernel config
+option CONFIG_PRESERVE_FA_DUMP has to be enabled on such kernel
+to ensure that crash data is preserved to process later.
+
+-- On OPAL based machines (PowerNV), if the kernel is build with
+ CONFIG_OPAL_CORE=y, OPAL memory at the time of crash is also
+ exported as /sys/firmware/opal/mpipl/core file. This procfs file is
+ helpful in debugging OPAL crashes with GDB. The kernel memory
+ used for exporting this procfs file can be released by echo'ing
+ '1' to /sys/firmware/opal/mpipl/release_core node.
+
+ e.g.
+ # echo 1 > /sys/firmware/opal/mpipl/release_core
+
+Implementation details:
+-----------------------
+
+During boot, a check is made to see if firmware supports
+this feature on that particular machine. If it does, then
+we check to see if an active dump is waiting for us. If yes
+then everything but boot memory size of RAM is reserved during
+early boot (See Fig. 2). This area is released once we finish
+collecting the dump from user land scripts (e.g. kdump scripts)
+that are run. If there is dump data, then the
+/sys/kernel/fadump_release_mem file is created, and the reserved
+memory is held.
+
+If there is no waiting dump data, then only the memory required to
+hold CPU state, HPTE region, boot memory dump, FADump header and
+elfcore header, is usually reserved at an offset greater than boot
+memory size (see Fig. 1). This area is *not* released: this region
+will be kept permanently reserved, so that it can act as a receptacle
+for a copy of the boot memory content in addition to CPU state and
+HPTE region, in the case a crash does occur.
+
+Since this reserved memory area is used only after the system crash,
+there is no point in blocking this significant chunk of memory from
+production kernel. Hence, the implementation uses the Linux kernel's
+Contiguous Memory Allocator (CMA) for memory reservation if CMA is
+configured for kernel. With CMA reservation this memory will be
+available for applications to use it, while kernel is prevented from
+using it. With this FADump will still be able to capture all of the
+kernel memory and most of the user space memory except the user pages
+that were present in CMA region::
+
+ o Memory Reservation during first kernel
+
+ Low memory Top of memory
+ 0 boot memory size |<--- Reserved dump area --->| |
+ | | | Permanent Reservation | |
+ V V | | V
+ +-----------+-----/ /---+---+----+-------+-----+-----+----+--+
+ | | |///|////| DUMP | HDR | ELF |////| |
+ +-----------+-----/ /---+---+----+-------+-----+-----+----+--+
+ | ^ ^ ^ ^ ^
+ | | | | | |
+ \ CPU HPTE / | |
+ ------------------------------ | |
+ Boot memory content gets transferred | |
+ to reserved area by firmware at the | |
+ time of crash. | |
+ FADump Header |
+ (meta area) |
+ |
+ |
+ Metadata: This area holds a metadata structure whose
+ address is registered with f/w and retrieved in the
+ second kernel after crash, on platforms that support
+ tags (OPAL). Having such structure with info needed
+ to process the crashdump eases dump capture process.
+
+ Fig. 1
+
+
+ o Memory Reservation during second kernel after crash
+
+ Low memory Top of memory
+ 0 boot memory size |
+ | |<------------ Crash preserved area ------------>|
+ V V |<--- Reserved dump area --->| |
+ +-----------+-----/ /---+---+----+-------+-----+-----+----+--+
+ | | |///|////| DUMP | HDR | ELF |////| |
+ +-----------+-----/ /---+---+----+-------+-----+-----+----+--+
+ | |
+ V V
+ Used by second /proc/vmcore
+ kernel to boot
+
+ +---+
+ |///| -> Regions (CPU, HPTE & Metadata) marked like this in the above
+ +---+ figures are not always present. For example, OPAL platform
+ does not have CPU & HPTE regions while Metadata region is
+ not supported on pSeries currently.
+
+ Fig. 2
+
+
+Currently the dump will be copied from /proc/vmcore to a new file upon
+user intervention. The dump data available through /proc/vmcore will be
+in ELF format. Hence the existing kdump infrastructure (kdump scripts)
+to save the dump works fine with minor modifications. KDump scripts on
+major Distro releases have already been modified to work seamlessly (no
+user intervention in saving the dump) when FADump is used, instead of
+KDump, as dump mechanism.
+
+The tools to examine the dump will be same as the ones
+used for kdump.
+
+How to enable firmware-assisted dump (FADump):
+----------------------------------------------
+
+1. Set config option CONFIG_FA_DUMP=y and build kernel.
+2. Boot into linux kernel with 'fadump=on' kernel cmdline option.
+ By default, FADump reserved memory will be initialized as CMA area.
+ Alternatively, user can boot linux kernel with 'fadump=nocma' to
+ prevent FADump to use CMA.
+3. Optionally, user can also set 'crashkernel=' kernel cmdline
+ to specify size of the memory to reserve for boot memory dump
+ preservation.
+
+NOTE:
+ 1. 'fadump_reserve_mem=' parameter has been deprecated. Instead
+ use 'crashkernel=' to specify size of the memory to reserve
+ for boot memory dump preservation.
+ 2. If firmware-assisted dump fails to reserve memory then it
+ will fallback to existing kdump mechanism if 'crashkernel='
+ option is set at kernel cmdline.
+ 3. if user wants to capture all of user space memory and ok with
+ reserved memory not available to production system, then
+ 'fadump=nocma' kernel parameter can be used to fallback to
+ old behaviour.
+
+Sysfs/debugfs files:
+--------------------
+
+Firmware-assisted dump feature uses sysfs file system to hold
+the control files and debugfs file to display memory reserved region.
+
+Here is the list of files under kernel sysfs:
+
+ /sys/kernel/fadump_enabled
+ This is used to display the FADump status.
+
+ - 0 = FADump is disabled
+ - 1 = FADump is enabled
+
+ This interface can be used by kdump init scripts to identify if
+ FADump is enabled in the kernel and act accordingly.
+
+ /sys/kernel/fadump_registered
+ This is used to display the FADump registration status as well
+ as to control (start/stop) the FADump registration.
+
+ - 0 = FADump is not registered.
+ - 1 = FADump is registered and ready to handle system crash.
+
+ To register FADump echo 1 > /sys/kernel/fadump_registered and
+ echo 0 > /sys/kernel/fadump_registered for un-register and stop the
+ FADump. Once the FADump is un-registered, the system crash will not
+ be handled and vmcore will not be captured. This interface can be
+ easily integrated with kdump service start/stop.
+
+ /sys/kernel/fadump/mem_reserved
+
+ This is used to display the memory reserved by FADump for saving the
+ crash dump.
+
+ /sys/kernel/fadump_release_mem
+ This file is available only when FADump is active during
+ second kernel. This is used to release the reserved memory
+ region that are held for saving crash dump. To release the
+ reserved memory echo 1 to it::
+
+ echo 1 > /sys/kernel/fadump_release_mem
+
+ After echo 1, the content of the /sys/kernel/debug/powerpc/fadump_region
+ file will change to reflect the new memory reservations.
+
+ The existing userspace tools (kdump infrastructure) can be easily
+ enhanced to use this interface to release the memory reserved for
+ dump and continue without 2nd reboot.
+
+Note: /sys/kernel/fadump_release_opalcore sysfs has moved to
+ /sys/firmware/opal/mpipl/release_core
+
+ /sys/firmware/opal/mpipl/release_core
+
+ This file is available only on OPAL based machines when FADump is
+ active during capture kernel. This is used to release the memory
+ used by the kernel to export /sys/firmware/opal/mpipl/core file. To
+ release this memory, echo '1' to it:
+
+ echo 1 > /sys/firmware/opal/mpipl/release_core
+
+Note: The following FADump sysfs files are deprecated.
+
++----------------------------------+--------------------------------+
+| Deprecated | Alternative |
++----------------------------------+--------------------------------+
+| /sys/kernel/fadump_enabled | /sys/kernel/fadump/enabled |
++----------------------------------+--------------------------------+
+| /sys/kernel/fadump_registered | /sys/kernel/fadump/registered |
++----------------------------------+--------------------------------+
+| /sys/kernel/fadump_release_mem | /sys/kernel/fadump/release_mem |
++----------------------------------+--------------------------------+
+
+Here is the list of files under powerpc debugfs:
+(Assuming debugfs is mounted on /sys/kernel/debug directory.)
+
+ /sys/kernel/debug/powerpc/fadump_region
+ This file shows the reserved memory regions if FADump is
+ enabled otherwise this file is empty. The output format
+ is::
+
+ <region>: [<start>-<end>] <reserved-size> bytes, Dumped: <dump-size>
+
+ and for kernel DUMP region is:
+
+ DUMP: Src: <src-addr>, Dest: <dest-addr>, Size: <size>, Dumped: # bytes
+
+ e.g.
+ Contents when FADump is registered during first kernel::
+
+ # cat /sys/kernel/debug/powerpc/fadump_region
+ CPU : [0x0000006ffb0000-0x0000006fff001f] 0x40020 bytes, Dumped: 0x0
+ HPTE: [0x0000006fff0020-0x0000006fff101f] 0x1000 bytes, Dumped: 0x0
+ DUMP: [0x0000006fff1020-0x0000007fff101f] 0x10000000 bytes, Dumped: 0x0
+
+ Contents when FADump is active during second kernel::
+
+ # cat /sys/kernel/debug/powerpc/fadump_region
+ CPU : [0x0000006ffb0000-0x0000006fff001f] 0x40020 bytes, Dumped: 0x40020
+ HPTE: [0x0000006fff0020-0x0000006fff101f] 0x1000 bytes, Dumped: 0x1000
+ DUMP: [0x0000006fff1020-0x0000007fff101f] 0x10000000 bytes, Dumped: 0x10000000
+ : [0x00000010000000-0x0000006ffaffff] 0x5ffb0000 bytes, Dumped: 0x5ffb0000
+
+
+NOTE:
+ Please refer to Documentation/filesystems/debugfs.rst on
+ how to mount the debugfs filesystem.
+
+
+TODO:
+-----
+ - Need to come up with the better approach to find out more
+ accurate boot memory size that is required for a kernel to
+ boot successfully when booted with restricted memory.
+ - The FADump implementation introduces a FADump crash info structure
+ in the scratch area before the ELF core header. The idea of introducing
+ this structure is to pass some important crash info data to the second
+ kernel which will help second kernel to populate ELF core header with
+ correct data before it gets exported through /proc/vmcore. The current
+ design implementation does not address a possibility of introducing
+ additional fields (in future) to this structure without affecting
+ compatibility. Need to come up with the better approach to address this.
+
+ The possible approaches are:
+
+ 1. Introduce version field for version tracking, bump up the version
+ whenever a new field is added to the structure in future. The version
+ field can be used to find out what fields are valid for the current
+ version of the structure.
+ 2. Reserve the area of predefined size (say PAGE_SIZE) for this
+ structure and have unused area as reserved (initialized to zero)
+ for future field additions.
+
+ The advantage of approach 1 over 2 is we don't need to reserve extra space.
+
+Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
+
+This document is based on the original documentation written for phyp
+
+assisted dump by Linas Vepstas and Manish Ahuja.