summaryrefslogtreecommitdiffstats
path: root/arch/powerpc/kexec/file_load_64.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
commit2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch)
tree848558de17fb3008cdf4d861b01ac7781903ce39 /arch/powerpc/kexec/file_load_64.c
parentInitial commit. (diff)
downloadlinux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz
linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip
Adding upstream version 6.1.76.upstream/6.1.76
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r--arch/powerpc/kexec/file_load_64.c1287
1 files changed, 1287 insertions, 0 deletions
diff --git a/arch/powerpc/kexec/file_load_64.c b/arch/powerpc/kexec/file_load_64.c
new file mode 100644
index 000000000..349a781ce
--- /dev/null
+++ b/arch/powerpc/kexec/file_load_64.c
@@ -0,0 +1,1287 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * ppc64 code to implement the kexec_file_load syscall
+ *
+ * Copyright (C) 2004 Adam Litke (agl@us.ibm.com)
+ * Copyright (C) 2004 IBM Corp.
+ * Copyright (C) 2004,2005 Milton D Miller II, IBM Corporation
+ * Copyright (C) 2005 R Sharada (sharada@in.ibm.com)
+ * Copyright (C) 2006 Mohan Kumar M (mohan@in.ibm.com)
+ * Copyright (C) 2020 IBM Corporation
+ *
+ * Based on kexec-tools' kexec-ppc64.c, kexec-elf-rel-ppc64.c, fs2dt.c.
+ * Heavily modified for the kernel by
+ * Hari Bathini, IBM Corporation.
+ */
+
+#include <linux/kexec.h>
+#include <linux/of_fdt.h>
+#include <linux/libfdt.h>
+#include <linux/of_device.h>
+#include <linux/memblock.h>
+#include <linux/slab.h>
+#include <linux/vmalloc.h>
+#include <asm/setup.h>
+#include <asm/drmem.h>
+#include <asm/firmware.h>
+#include <asm/kexec_ranges.h>
+#include <asm/crashdump-ppc64.h>
+
+struct umem_info {
+ u64 *buf; /* data buffer for usable-memory property */
+ u32 size; /* size allocated for the data buffer */
+ u32 max_entries; /* maximum no. of entries */
+ u32 idx; /* index of current entry */
+
+ /* usable memory ranges to look up */
+ unsigned int nr_ranges;
+ const struct crash_mem_range *ranges;
+};
+
+const struct kexec_file_ops * const kexec_file_loaders[] = {
+ &kexec_elf64_ops,
+ NULL
+};
+
+/**
+ * get_exclude_memory_ranges - Get exclude memory ranges. This list includes
+ * regions like opal/rtas, tce-table, initrd,
+ * kernel, htab which should be avoided while
+ * setting up kexec load segments.
+ * @mem_ranges: Range list to add the memory ranges to.
+ *
+ * Returns 0 on success, negative errno on error.
+ */
+static int get_exclude_memory_ranges(struct crash_mem **mem_ranges)
+{
+ int ret;
+
+ ret = add_tce_mem_ranges(mem_ranges);
+ if (ret)
+ goto out;
+
+ ret = add_initrd_mem_range(mem_ranges);
+ if (ret)
+ goto out;
+
+ ret = add_htab_mem_range(mem_ranges);
+ if (ret)
+ goto out;
+
+ ret = add_kernel_mem_range(mem_ranges);
+ if (ret)
+ goto out;
+
+ ret = add_rtas_mem_range(mem_ranges);
+ if (ret)
+ goto out;
+
+ ret = add_opal_mem_range(mem_ranges);
+ if (ret)
+ goto out;
+
+ ret = add_reserved_mem_ranges(mem_ranges);
+ if (ret)
+ goto out;
+
+ /* exclude memory ranges should be sorted for easy lookup */
+ sort_memory_ranges(*mem_ranges, true);
+out:
+ if (ret)
+ pr_err("Failed to setup exclude memory ranges\n");
+ return ret;
+}
+
+/**
+ * get_usable_memory_ranges - Get usable memory ranges. This list includes
+ * regions like crashkernel, opal/rtas & tce-table,
+ * that kdump kernel could use.
+ * @mem_ranges: Range list to add the memory ranges to.
+ *
+ * Returns 0 on success, negative errno on error.
+ */
+static int get_usable_memory_ranges(struct crash_mem **mem_ranges)
+{
+ int ret;
+
+ /*
+ * Early boot failure observed on guests when low memory (first memory
+ * block?) is not added to usable memory. So, add [0, crashk_res.end]
+ * instead of [crashk_res.start, crashk_res.end] to workaround it.
+ * Also, crashed kernel's memory must be added to reserve map to
+ * avoid kdump kernel from using it.
+ */
+ ret = add_mem_range(mem_ranges, 0, crashk_res.end + 1);
+ if (ret)
+ goto out;
+
+ ret = add_rtas_mem_range(mem_ranges);
+ if (ret)
+ goto out;
+
+ ret = add_opal_mem_range(mem_ranges);
+ if (ret)
+ goto out;
+
+ ret = add_tce_mem_ranges(mem_ranges);
+out:
+ if (ret)
+ pr_err("Failed to setup usable memory ranges\n");
+ return ret;
+}
+
+/**
+ * get_crash_memory_ranges - Get crash memory ranges. This list includes
+ * first/crashing kernel's memory regions that
+ * would be exported via an elfcore.
+ * @mem_ranges: Range list to add the memory ranges to.
+ *
+ * Returns 0 on success, negative errno on error.
+ */
+static int get_crash_memory_ranges(struct crash_mem **mem_ranges)
+{
+ phys_addr_t base, end;
+ struct crash_mem *tmem;
+ u64 i;
+ int ret;
+
+ for_each_mem_range(i, &base, &end) {
+ u64 size = end - base;
+
+ /* Skip backup memory region, which needs a separate entry */
+ if (base == BACKUP_SRC_START) {
+ if (size > BACKUP_SRC_SIZE) {
+ base = BACKUP_SRC_END + 1;
+ size -= BACKUP_SRC_SIZE;
+ } else
+ continue;
+ }
+
+ ret = add_mem_range(mem_ranges, base, size);
+ if (ret)
+ goto out;
+
+ /* Try merging adjacent ranges before reallocation attempt */
+ if ((*mem_ranges)->nr_ranges == (*mem_ranges)->max_nr_ranges)
+ sort_memory_ranges(*mem_ranges, true);
+ }
+
+ /* Reallocate memory ranges if there is no space to split ranges */
+ tmem = *mem_ranges;
+ if (tmem && (tmem->nr_ranges == tmem->max_nr_ranges)) {
+ tmem = realloc_mem_ranges(mem_ranges);
+ if (!tmem)
+ goto out;
+ }
+
+ /* Exclude crashkernel region */
+ ret = crash_exclude_mem_range(tmem, crashk_res.start, crashk_res.end);
+ if (ret)
+ goto out;
+
+ /*
+ * FIXME: For now, stay in parity with kexec-tools but if RTAS/OPAL
+ * regions are exported to save their context at the time of
+ * crash, they should actually be backed up just like the
+ * first 64K bytes of memory.
+ */
+ ret = add_rtas_mem_range(mem_ranges);
+ if (ret)
+ goto out;
+
+ ret = add_opal_mem_range(mem_ranges);
+ if (ret)
+ goto out;
+
+ /* create a separate program header for the backup region */
+ ret = add_mem_range(mem_ranges, BACKUP_SRC_START, BACKUP_SRC_SIZE);
+ if (ret)
+ goto out;
+
+ sort_memory_ranges(*mem_ranges, false);
+out:
+ if (ret)
+ pr_err("Failed to setup crash memory ranges\n");
+ return ret;
+}
+
+/**
+ * get_reserved_memory_ranges - Get reserve memory ranges. This list includes
+ * memory regions that should be added to the
+ * memory reserve map to ensure the region is
+ * protected from any mischief.
+ * @mem_ranges: Range list to add the memory ranges to.
+ *
+ * Returns 0 on success, negative errno on error.
+ */
+static int get_reserved_memory_ranges(struct crash_mem **mem_ranges)
+{
+ int ret;
+
+ ret = add_rtas_mem_range(mem_ranges);
+ if (ret)
+ goto out;
+
+ ret = add_tce_mem_ranges(mem_ranges);
+ if (ret)
+ goto out;
+
+ ret = add_reserved_mem_ranges(mem_ranges);
+out:
+ if (ret)
+ pr_err("Failed to setup reserved memory ranges\n");
+ return ret;
+}
+
+/**
+ * __locate_mem_hole_top_down - Looks top down for a large enough memory hole
+ * in the memory regions between buf_min & buf_max
+ * for the buffer. If found, sets kbuf->mem.
+ * @kbuf: Buffer contents and memory parameters.
+ * @buf_min: Minimum address for the buffer.
+ * @buf_max: Maximum address for the buffer.
+ *
+ * Returns 0 on success, negative errno on error.
+ */
+static int __locate_mem_hole_top_down(struct kexec_buf *kbuf,
+ u64 buf_min, u64 buf_max)
+{
+ int ret = -EADDRNOTAVAIL;
+ phys_addr_t start, end;
+ u64 i;
+
+ for_each_mem_range_rev(i, &start, &end) {
+ /*
+ * memblock uses [start, end) convention while it is
+ * [start, end] here. Fix the off-by-one to have the
+ * same convention.
+ */
+ end -= 1;
+
+ if (start > buf_max)
+ continue;
+
+ /* Memory hole not found */
+ if (end < buf_min)
+ break;
+
+ /* Adjust memory region based on the given range */
+ if (start < buf_min)
+ start = buf_min;
+ if (end > buf_max)
+ end = buf_max;
+
+ start = ALIGN(start, kbuf->buf_align);
+ if (start < end && (end - start + 1) >= kbuf->memsz) {
+ /* Suitable memory range found. Set kbuf->mem */
+ kbuf->mem = ALIGN_DOWN(end - kbuf->memsz + 1,
+ kbuf->buf_align);
+ ret = 0;
+ break;
+ }
+ }
+
+ return ret;
+}
+
+/**
+ * locate_mem_hole_top_down_ppc64 - Skip special memory regions to find a
+ * suitable buffer with top down approach.
+ * @kbuf: Buffer contents and memory parameters.
+ * @buf_min: Minimum address for the buffer.
+ * @buf_max: Maximum address for the buffer.
+ * @emem: Exclude memory ranges.
+ *
+ * Returns 0 on success, negative errno on error.
+ */
+static int locate_mem_hole_top_down_ppc64(struct kexec_buf *kbuf,
+ u64 buf_min, u64 buf_max,
+ const struct crash_mem *emem)
+{
+ int i, ret = 0, err = -EADDRNOTAVAIL;
+ u64 start, end, tmin, tmax;
+
+ tmax = buf_max;
+ for (i = (emem->nr_ranges - 1); i >= 0; i--) {
+ start = emem->ranges[i].start;
+ end = emem->ranges[i].end;
+
+ if (start > tmax)
+ continue;
+
+ if (end < tmax) {
+ tmin = (end < buf_min ? buf_min : end + 1);
+ ret = __locate_mem_hole_top_down(kbuf, tmin, tmax);
+ if (!ret)
+ return 0;
+ }
+
+ tmax = start - 1;
+
+ if (tmax < buf_min) {
+ ret = err;
+ break;
+ }
+ ret = 0;
+ }
+
+ if (!ret) {
+ tmin = buf_min;
+ ret = __locate_mem_hole_top_down(kbuf, tmin, tmax);
+ }
+ return ret;
+}
+
+/**
+ * __locate_mem_hole_bottom_up - Looks bottom up for a large enough memory hole
+ * in the memory regions between buf_min & buf_max
+ * for the buffer. If found, sets kbuf->mem.
+ * @kbuf: Buffer contents and memory parameters.
+ * @buf_min: Minimum address for the buffer.
+ * @buf_max: Maximum address for the buffer.
+ *
+ * Returns 0 on success, negative errno on error.
+ */
+static int __locate_mem_hole_bottom_up(struct kexec_buf *kbuf,
+ u64 buf_min, u64 buf_max)
+{
+ int ret = -EADDRNOTAVAIL;
+ phys_addr_t start, end;
+ u64 i;
+
+ for_each_mem_range(i, &start, &end) {
+ /*
+ * memblock uses [start, end) convention while it is
+ * [start, end] here. Fix the off-by-one to have the
+ * same convention.
+ */
+ end -= 1;
+
+ if (end < buf_min)
+ continue;
+
+ /* Memory hole not found */
+ if (start > buf_max)
+ break;
+
+ /* Adjust memory region based on the given range */
+ if (start < buf_min)
+ start = buf_min;
+ if (end > buf_max)
+ end = buf_max;
+
+ start = ALIGN(start, kbuf->buf_align);
+ if (start < end && (end - start + 1) >= kbuf->memsz) {
+ /* Suitable memory range found. Set kbuf->mem */
+ kbuf->mem = start;
+ ret = 0;
+ break;
+ }
+ }
+
+ return ret;
+}
+
+/**
+ * locate_mem_hole_bottom_up_ppc64 - Skip special memory regions to find a
+ * suitable buffer with bottom up approach.
+ * @kbuf: Buffer contents and memory parameters.
+ * @buf_min: Minimum address for the buffer.
+ * @buf_max: Maximum address for the buffer.
+ * @emem: Exclude memory ranges.
+ *
+ * Returns 0 on success, negative errno on error.
+ */
+static int locate_mem_hole_bottom_up_ppc64(struct kexec_buf *kbuf,
+ u64 buf_min, u64 buf_max,
+ const struct crash_mem *emem)
+{
+ int i, ret = 0, err = -EADDRNOTAVAIL;
+ u64 start, end, tmin, tmax;
+
+ tmin = buf_min;
+ for (i = 0; i < emem->nr_ranges; i++) {
+ start = emem->ranges[i].start;
+ end = emem->ranges[i].end;
+
+ if (end < tmin)
+ continue;
+
+ if (start > tmin) {
+ tmax = (start > buf_max ? buf_max : start - 1);
+ ret = __locate_mem_hole_bottom_up(kbuf, tmin, tmax);
+ if (!ret)
+ return 0;
+ }
+
+ tmin = end + 1;
+
+ if (tmin > buf_max) {
+ ret = err;
+ break;
+ }
+ ret = 0;
+ }
+
+ if (!ret) {
+ tmax = buf_max;
+ ret = __locate_mem_hole_bottom_up(kbuf, tmin, tmax);
+ }
+ return ret;
+}
+
+/**
+ * check_realloc_usable_mem - Reallocate buffer if it can't accommodate entries
+ * @um_info: Usable memory buffer and ranges info.
+ * @cnt: No. of entries to accommodate.
+ *
+ * Frees up the old buffer if memory reallocation fails.
+ *
+ * Returns buffer on success, NULL on error.
+ */
+static u64 *check_realloc_usable_mem(struct umem_info *um_info, int cnt)
+{
+ u32 new_size;
+ u64 *tbuf;
+
+ if ((um_info->idx + cnt) <= um_info->max_entries)
+ return um_info->buf;
+
+ new_size = um_info->size + MEM_RANGE_CHUNK_SZ;
+ tbuf = krealloc(um_info->buf, new_size, GFP_KERNEL);
+ if (tbuf) {
+ um_info->buf = tbuf;
+ um_info->size = new_size;
+ um_info->max_entries = (um_info->size / sizeof(u64));
+ }
+
+ return tbuf;
+}
+
+/**
+ * add_usable_mem - Add the usable memory ranges within the given memory range
+ * to the buffer
+ * @um_info: Usable memory buffer and ranges info.
+ * @base: Base address of memory range to look for.
+ * @end: End address of memory range to look for.
+ *
+ * Returns 0 on success, negative errno on error.
+ */
+static int add_usable_mem(struct umem_info *um_info, u64 base, u64 end)
+{
+ u64 loc_base, loc_end;
+ bool add;
+ int i;
+
+ for (i = 0; i < um_info->nr_ranges; i++) {
+ add = false;
+ loc_base = um_info->ranges[i].start;
+ loc_end = um_info->ranges[i].end;
+ if (loc_base >= base && loc_end <= end)
+ add = true;
+ else if (base < loc_end && end > loc_base) {
+ if (loc_base < base)
+ loc_base = base;
+ if (loc_end > end)
+ loc_end = end;
+ add = true;
+ }
+
+ if (add) {
+ if (!check_realloc_usable_mem(um_info, 2))
+ return -ENOMEM;
+
+ um_info->buf[um_info->idx++] = cpu_to_be64(loc_base);
+ um_info->buf[um_info->idx++] =
+ cpu_to_be64(loc_end - loc_base + 1);
+ }
+ }
+
+ return 0;
+}
+
+/**
+ * kdump_setup_usable_lmb - This is a callback function that gets called by
+ * walk_drmem_lmbs for every LMB to set its
+ * usable memory ranges.
+ * @lmb: LMB info.
+ * @usm: linux,drconf-usable-memory property value.
+ * @data: Pointer to usable memory buffer and ranges info.
+ *
+ * Returns 0 on success, negative errno on error.
+ */
+static int kdump_setup_usable_lmb(struct drmem_lmb *lmb, const __be32 **usm,
+ void *data)
+{
+ struct umem_info *um_info;
+ int tmp_idx, ret;
+ u64 base, end;
+
+ /*
+ * kdump load isn't supported on kernels already booted with
+ * linux,drconf-usable-memory property.
+ */
+ if (*usm) {
+ pr_err("linux,drconf-usable-memory property already exists!");
+ return -EINVAL;
+ }
+
+ um_info = data;
+ tmp_idx = um_info->idx;
+ if (!check_realloc_usable_mem(um_info, 1))
+ return -ENOMEM;
+
+ um_info->idx++;
+ base = lmb->base_addr;
+ end = base + drmem_lmb_size() - 1;
+ ret = add_usable_mem(um_info, base, end);
+ if (!ret) {
+ /*
+ * Update the no. of ranges added. Two entries (base & size)
+ * for every range added.
+ */
+ um_info->buf[tmp_idx] =
+ cpu_to_be64((um_info->idx - tmp_idx - 1) / 2);
+ }
+
+ return ret;
+}
+
+#define NODE_PATH_LEN 256
+/**
+ * add_usable_mem_property - Add usable memory property for the given
+ * memory node.
+ * @fdt: Flattened device tree for the kdump kernel.
+ * @dn: Memory node.
+ * @um_info: Usable memory buffer and ranges info.
+ *
+ * Returns 0 on success, negative errno on error.
+ */
+static int add_usable_mem_property(void *fdt, struct device_node *dn,
+ struct umem_info *um_info)
+{
+ int n_mem_addr_cells, n_mem_size_cells, node;
+ char path[NODE_PATH_LEN];
+ int i, len, ranges, ret;
+ const __be32 *prop;
+ u64 base, end;
+
+ of_node_get(dn);
+
+ if (snprintf(path, NODE_PATH_LEN, "%pOF", dn) > (NODE_PATH_LEN - 1)) {
+ pr_err("Buffer (%d) too small for memory node: %pOF\n",
+ NODE_PATH_LEN, dn);
+ return -EOVERFLOW;
+ }
+ pr_debug("Memory node path: %s\n", path);
+
+ /* Now that we know the path, find its offset in kdump kernel's fdt */
+ node = fdt_path_offset(fdt, path);
+ if (node < 0) {
+ pr_err("Malformed device tree: error reading %s\n", path);
+ ret = -EINVAL;
+ goto out;
+ }
+
+ /* Get the address & size cells */
+ n_mem_addr_cells = of_n_addr_cells(dn);
+ n_mem_size_cells = of_n_size_cells(dn);
+ pr_debug("address cells: %d, size cells: %d\n", n_mem_addr_cells,
+ n_mem_size_cells);
+
+ um_info->idx = 0;
+ if (!check_realloc_usable_mem(um_info, 2)) {
+ ret = -ENOMEM;
+ goto out;
+ }
+
+ prop = of_get_property(dn, "reg", &len);
+ if (!prop || len <= 0) {
+ ret = 0;
+ goto out;
+ }
+
+ /*
+ * "reg" property represents sequence of (addr,size) tuples
+ * each representing a memory range.
+ */
+ ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
+
+ for (i = 0; i < ranges; i++) {
+ base = of_read_number(prop, n_mem_addr_cells);
+ prop += n_mem_addr_cells;
+ end = base + of_read_number(prop, n_mem_size_cells) - 1;
+ prop += n_mem_size_cells;
+
+ ret = add_usable_mem(um_info, base, end);
+ if (ret)
+ goto out;
+ }
+
+ /*
+ * No kdump kernel usable memory found in this memory node.
+ * Write (0,0) tuple in linux,usable-memory property for
+ * this region to be ignored.
+ */
+ if (um_info->idx == 0) {
+ um_info->buf[0] = 0;
+ um_info->buf[1] = 0;
+ um_info->idx = 2;
+ }
+
+ ret = fdt_setprop(fdt, node, "linux,usable-memory", um_info->buf,
+ (um_info->idx * sizeof(u64)));
+
+out:
+ of_node_put(dn);
+ return ret;
+}
+
+
+/**
+ * update_usable_mem_fdt - Updates kdump kernel's fdt with linux,usable-memory
+ * and linux,drconf-usable-memory DT properties as
+ * appropriate to restrict its memory usage.
+ * @fdt: Flattened device tree for the kdump kernel.
+ * @usable_mem: Usable memory ranges for kdump kernel.
+ *
+ * Returns 0 on success, negative errno on error.
+ */
+static int update_usable_mem_fdt(void *fdt, struct crash_mem *usable_mem)
+{
+ struct umem_info um_info;
+ struct device_node *dn;
+ int node, ret = 0;
+
+ if (!usable_mem) {
+ pr_err("Usable memory ranges for kdump kernel not found\n");
+ return -ENOENT;
+ }
+
+ node = fdt_path_offset(fdt, "/ibm,dynamic-reconfiguration-memory");
+ if (node == -FDT_ERR_NOTFOUND)
+ pr_debug("No dynamic reconfiguration memory found\n");
+ else if (node < 0) {
+ pr_err("Malformed device tree: error reading /ibm,dynamic-reconfiguration-memory.\n");
+ return -EINVAL;
+ }
+
+ um_info.buf = NULL;
+ um_info.size = 0;
+ um_info.max_entries = 0;
+ um_info.idx = 0;
+ /* Memory ranges to look up */
+ um_info.ranges = &(usable_mem->ranges[0]);
+ um_info.nr_ranges = usable_mem->nr_ranges;
+
+ dn = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
+ if (dn) {
+ ret = walk_drmem_lmbs(dn, &um_info, kdump_setup_usable_lmb);
+ of_node_put(dn);
+
+ if (ret) {
+ pr_err("Could not setup linux,drconf-usable-memory property for kdump\n");
+ goto out;
+ }
+
+ ret = fdt_setprop(fdt, node, "linux,drconf-usable-memory",
+ um_info.buf, (um_info.idx * sizeof(u64)));
+ if (ret) {
+ pr_err("Failed to update fdt with linux,drconf-usable-memory property");
+ goto out;
+ }
+ }
+
+ /*
+ * Walk through each memory node and set linux,usable-memory property
+ * for the corresponding node in kdump kernel's fdt.
+ */
+ for_each_node_by_type(dn, "memory") {
+ ret = add_usable_mem_property(fdt, dn, &um_info);
+ if (ret) {
+ pr_err("Failed to set linux,usable-memory property for %s node",
+ dn->full_name);
+ of_node_put(dn);
+ goto out;
+ }
+ }
+
+out:
+ kfree(um_info.buf);
+ return ret;
+}
+
+/**
+ * load_backup_segment - Locate a memory hole to place the backup region.
+ * @image: Kexec image.
+ * @kbuf: Buffer contents and memory parameters.
+ *
+ * Returns 0 on success, negative errno on error.
+ */
+static int load_backup_segment(struct kimage *image, struct kexec_buf *kbuf)
+{
+ void *buf;
+ int ret;
+
+ /*
+ * Setup a source buffer for backup segment.
+ *
+ * A source buffer has no meaning for backup region as data will
+ * be copied from backup source, after crash, in the purgatory.
+ * But as load segment code doesn't recognize such segments,
+ * setup a dummy source buffer to keep it happy for now.
+ */
+ buf = vzalloc(BACKUP_SRC_SIZE);
+ if (!buf)
+ return -ENOMEM;
+
+ kbuf->buffer = buf;
+ kbuf->mem = KEXEC_BUF_MEM_UNKNOWN;
+ kbuf->bufsz = kbuf->memsz = BACKUP_SRC_SIZE;
+ kbuf->top_down = false;
+
+ ret = kexec_add_buffer(kbuf);
+ if (ret) {
+ vfree(buf);
+ return ret;
+ }
+
+ image->arch.backup_buf = buf;
+ image->arch.backup_start = kbuf->mem;
+ return 0;
+}
+
+/**
+ * update_backup_region_phdr - Update backup region's offset for the core to
+ * export the region appropriately.
+ * @image: Kexec image.
+ * @ehdr: ELF core header.
+ *
+ * Assumes an exclusive program header is setup for the backup region
+ * in the ELF headers
+ *
+ * Returns nothing.
+ */
+static void update_backup_region_phdr(struct kimage *image, Elf64_Ehdr *ehdr)
+{
+ Elf64_Phdr *phdr;
+ unsigned int i;
+
+ phdr = (Elf64_Phdr *)(ehdr + 1);
+ for (i = 0; i < ehdr->e_phnum; i++) {
+ if (phdr->p_paddr == BACKUP_SRC_START) {
+ phdr->p_offset = image->arch.backup_start;
+ pr_debug("Backup region offset updated to 0x%lx\n",
+ image->arch.backup_start);
+ return;
+ }
+ }
+}
+
+/**
+ * load_elfcorehdr_segment - Setup crash memory ranges and initialize elfcorehdr
+ * segment needed to load kdump kernel.
+ * @image: Kexec image.
+ * @kbuf: Buffer contents and memory parameters.
+ *
+ * Returns 0 on success, negative errno on error.
+ */
+static int load_elfcorehdr_segment(struct kimage *image, struct kexec_buf *kbuf)
+{
+ struct crash_mem *cmem = NULL;
+ unsigned long headers_sz;
+ void *headers = NULL;
+ int ret;
+
+ ret = get_crash_memory_ranges(&cmem);
+ if (ret)
+ goto out;
+
+ /* Setup elfcorehdr segment */
+ ret = crash_prepare_elf64_headers(cmem, false, &headers, &headers_sz);
+ if (ret) {
+ pr_err("Failed to prepare elf headers for the core\n");
+ goto out;
+ }
+
+ /* Fix the offset for backup region in the ELF header */
+ update_backup_region_phdr(image, headers);
+
+ kbuf->buffer = headers;
+ kbuf->mem = KEXEC_BUF_MEM_UNKNOWN;
+ kbuf->bufsz = kbuf->memsz = headers_sz;
+ kbuf->top_down = false;
+
+ ret = kexec_add_buffer(kbuf);
+ if (ret) {
+ vfree(headers);
+ goto out;
+ }
+
+ image->elf_load_addr = kbuf->mem;
+ image->elf_headers_sz = headers_sz;
+ image->elf_headers = headers;
+out:
+ kfree(cmem);
+ return ret;
+}
+
+/**
+ * load_crashdump_segments_ppc64 - Initialize the additional segements needed
+ * to load kdump kernel.
+ * @image: Kexec image.
+ * @kbuf: Buffer contents and memory parameters.
+ *
+ * Returns 0 on success, negative errno on error.
+ */
+int load_crashdump_segments_ppc64(struct kimage *image,
+ struct kexec_buf *kbuf)
+{
+ int ret;
+
+ /* Load backup segment - first 64K bytes of the crashing kernel */
+ ret = load_backup_segment(image, kbuf);
+ if (ret) {
+ pr_err("Failed to load backup segment\n");
+ return ret;
+ }
+ pr_debug("Loaded the backup region at 0x%lx\n", kbuf->mem);
+
+ /* Load elfcorehdr segment - to export crashing kernel's vmcore */
+ ret = load_elfcorehdr_segment(image, kbuf);
+ if (ret) {
+ pr_err("Failed to load elfcorehdr segment\n");
+ return ret;
+ }
+ pr_debug("Loaded elf core header at 0x%lx, bufsz=0x%lx memsz=0x%lx\n",
+ image->elf_load_addr, kbuf->bufsz, kbuf->memsz);
+
+ return 0;
+}
+
+/**
+ * setup_purgatory_ppc64 - initialize PPC64 specific purgatory's global
+ * variables and call setup_purgatory() to initialize
+ * common global variable.
+ * @image: kexec image.
+ * @slave_code: Slave code for the purgatory.
+ * @fdt: Flattened device tree for the next kernel.
+ * @kernel_load_addr: Address where the kernel is loaded.
+ * @fdt_load_addr: Address where the flattened device tree is loaded.
+ *
+ * Returns 0 on success, negative errno on error.
+ */
+int setup_purgatory_ppc64(struct kimage *image, const void *slave_code,
+ const void *fdt, unsigned long kernel_load_addr,
+ unsigned long fdt_load_addr)
+{
+ struct device_node *dn = NULL;
+ int ret;
+
+ ret = setup_purgatory(image, slave_code, fdt, kernel_load_addr,
+ fdt_load_addr);
+ if (ret)
+ goto out;
+
+ if (image->type == KEXEC_TYPE_CRASH) {
+ u32 my_run_at_load = 1;
+
+ /*
+ * Tell relocatable kernel to run at load address
+ * via the word meant for that at 0x5c.
+ */
+ ret = kexec_purgatory_get_set_symbol(image, "run_at_load",
+ &my_run_at_load,
+ sizeof(my_run_at_load),
+ false);
+ if (ret)
+ goto out;
+ }
+
+ /* Tell purgatory where to look for backup region */
+ ret = kexec_purgatory_get_set_symbol(image, "backup_start",
+ &image->arch.backup_start,
+ sizeof(image->arch.backup_start),
+ false);
+ if (ret)
+ goto out;
+
+ /* Setup OPAL base & entry values */
+ dn = of_find_node_by_path("/ibm,opal");
+ if (dn) {
+ u64 val;
+
+ of_property_read_u64(dn, "opal-base-address", &val);
+ ret = kexec_purgatory_get_set_symbol(image, "opal_base", &val,
+ sizeof(val), false);
+ if (ret)
+ goto out;
+
+ of_property_read_u64(dn, "opal-entry-address", &val);
+ ret = kexec_purgatory_get_set_symbol(image, "opal_entry", &val,
+ sizeof(val), false);
+ }
+out:
+ if (ret)
+ pr_err("Failed to setup purgatory symbols");
+ of_node_put(dn);
+ return ret;
+}
+
+/**
+ * kexec_extra_fdt_size_ppc64 - Return the estimated additional size needed to
+ * setup FDT for kexec/kdump kernel.
+ * @image: kexec image being loaded.
+ *
+ * Returns the estimated extra size needed for kexec/kdump kernel FDT.
+ */
+unsigned int kexec_extra_fdt_size_ppc64(struct kimage *image)
+{
+ u64 usm_entries;
+
+ if (image->type != KEXEC_TYPE_CRASH)
+ return 0;
+
+ /*
+ * For kdump kernel, account for linux,usable-memory and
+ * linux,drconf-usable-memory properties. Get an approximate on the
+ * number of usable memory entries and use for FDT size estimation.
+ */
+ usm_entries = ((memblock_end_of_DRAM() / drmem_lmb_size()) +
+ (2 * (resource_size(&crashk_res) / drmem_lmb_size())));
+ return (unsigned int)(usm_entries * sizeof(u64));
+}
+
+/**
+ * add_node_props - Reads node properties from device node structure and add
+ * them to fdt.
+ * @fdt: Flattened device tree of the kernel
+ * @node_offset: offset of the node to add a property at
+ * @dn: device node pointer
+ *
+ * Returns 0 on success, negative errno on error.
+ */
+static int add_node_props(void *fdt, int node_offset, const struct device_node *dn)
+{
+ int ret = 0;
+ struct property *pp;
+
+ if (!dn)
+ return -EINVAL;
+
+ for_each_property_of_node(dn, pp) {
+ ret = fdt_setprop(fdt, node_offset, pp->name, pp->value, pp->length);
+ if (ret < 0) {
+ pr_err("Unable to add %s property: %s\n", pp->name, fdt_strerror(ret));
+ return ret;
+ }
+ }
+ return ret;
+}
+
+/**
+ * update_cpus_node - Update cpus node of flattened device tree using of_root
+ * device node.
+ * @fdt: Flattened device tree of the kernel.
+ *
+ * Returns 0 on success, negative errno on error.
+ */
+static int update_cpus_node(void *fdt)
+{
+ struct device_node *cpus_node, *dn;
+ int cpus_offset, cpus_subnode_offset, ret = 0;
+
+ cpus_offset = fdt_path_offset(fdt, "/cpus");
+ if (cpus_offset < 0 && cpus_offset != -FDT_ERR_NOTFOUND) {
+ pr_err("Malformed device tree: error reading /cpus node: %s\n",
+ fdt_strerror(cpus_offset));
+ return cpus_offset;
+ }
+
+ if (cpus_offset > 0) {
+ ret = fdt_del_node(fdt, cpus_offset);
+ if (ret < 0) {
+ pr_err("Error deleting /cpus node: %s\n", fdt_strerror(ret));
+ return -EINVAL;
+ }
+ }
+
+ /* Add cpus node to fdt */
+ cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"), "cpus");
+ if (cpus_offset < 0) {
+ pr_err("Error creating /cpus node: %s\n", fdt_strerror(cpus_offset));
+ return -EINVAL;
+ }
+
+ /* Add cpus node properties */
+ cpus_node = of_find_node_by_path("/cpus");
+ ret = add_node_props(fdt, cpus_offset, cpus_node);
+ of_node_put(cpus_node);
+ if (ret < 0)
+ return ret;
+
+ /* Loop through all subnodes of cpus and add them to fdt */
+ for_each_node_by_type(dn, "cpu") {
+ cpus_subnode_offset = fdt_add_subnode(fdt, cpus_offset, dn->full_name);
+ if (cpus_subnode_offset < 0) {
+ pr_err("Unable to add %s subnode: %s\n", dn->full_name,
+ fdt_strerror(cpus_subnode_offset));
+ ret = cpus_subnode_offset;
+ goto out;
+ }
+
+ ret = add_node_props(fdt, cpus_subnode_offset, dn);
+ if (ret < 0)
+ goto out;
+ }
+out:
+ of_node_put(dn);
+ return ret;
+}
+
+static int copy_property(void *fdt, int node_offset, const struct device_node *dn,
+ const char *propname)
+{
+ const void *prop, *fdtprop;
+ int len = 0, fdtlen = 0;
+
+ prop = of_get_property(dn, propname, &len);
+ fdtprop = fdt_getprop(fdt, node_offset, propname, &fdtlen);
+
+ if (fdtprop && !prop)
+ return fdt_delprop(fdt, node_offset, propname);
+ else if (prop)
+ return fdt_setprop(fdt, node_offset, propname, prop, len);
+ else
+ return -FDT_ERR_NOTFOUND;
+}
+
+static int update_pci_dma_nodes(void *fdt, const char *dmapropname)
+{
+ struct device_node *dn;
+ int pci_offset, root_offset, ret = 0;
+
+ if (!firmware_has_feature(FW_FEATURE_LPAR))
+ return 0;
+
+ root_offset = fdt_path_offset(fdt, "/");
+ for_each_node_with_property(dn, dmapropname) {
+ pci_offset = fdt_subnode_offset(fdt, root_offset, of_node_full_name(dn));
+ if (pci_offset < 0)
+ continue;
+
+ ret = copy_property(fdt, pci_offset, dn, "ibm,dma-window");
+ if (ret < 0)
+ break;
+ ret = copy_property(fdt, pci_offset, dn, dmapropname);
+ if (ret < 0)
+ break;
+ }
+
+ return ret;
+}
+
+/**
+ * setup_new_fdt_ppc64 - Update the flattend device-tree of the kernel
+ * being loaded.
+ * @image: kexec image being loaded.
+ * @fdt: Flattened device tree for the next kernel.
+ * @initrd_load_addr: Address where the next initrd will be loaded.
+ * @initrd_len: Size of the next initrd, or 0 if there will be none.
+ * @cmdline: Command line for the next kernel, or NULL if there will
+ * be none.
+ *
+ * Returns 0 on success, negative errno on error.
+ */
+int setup_new_fdt_ppc64(const struct kimage *image, void *fdt,
+ unsigned long initrd_load_addr,
+ unsigned long initrd_len, const char *cmdline)
+{
+ struct crash_mem *umem = NULL, *rmem = NULL;
+ int i, nr_ranges, ret;
+
+ /*
+ * Restrict memory usage for kdump kernel by setting up
+ * usable memory ranges and memory reserve map.
+ */
+ if (image->type == KEXEC_TYPE_CRASH) {
+ ret = get_usable_memory_ranges(&umem);
+ if (ret)
+ goto out;
+
+ ret = update_usable_mem_fdt(fdt, umem);
+ if (ret) {
+ pr_err("Error setting up usable-memory property for kdump kernel\n");
+ goto out;
+ }
+
+ /*
+ * Ensure we don't touch crashed kernel's memory except the
+ * first 64K of RAM, which will be backed up.
+ */
+ ret = fdt_add_mem_rsv(fdt, BACKUP_SRC_END + 1,
+ crashk_res.start - BACKUP_SRC_SIZE);
+ if (ret) {
+ pr_err("Error reserving crash memory: %s\n",
+ fdt_strerror(ret));
+ goto out;
+ }
+
+ /* Ensure backup region is not used by kdump/capture kernel */
+ ret = fdt_add_mem_rsv(fdt, image->arch.backup_start,
+ BACKUP_SRC_SIZE);
+ if (ret) {
+ pr_err("Error reserving memory for backup: %s\n",
+ fdt_strerror(ret));
+ goto out;
+ }
+ }
+
+ /* Update cpus nodes information to account hotplug CPUs. */
+ ret = update_cpus_node(fdt);
+ if (ret < 0)
+ goto out;
+
+#define DIRECT64_PROPNAME "linux,direct64-ddr-window-info"
+#define DMA64_PROPNAME "linux,dma64-ddr-window-info"
+ ret = update_pci_dma_nodes(fdt, DIRECT64_PROPNAME);
+ if (ret < 0)
+ goto out;
+
+ ret = update_pci_dma_nodes(fdt, DMA64_PROPNAME);
+ if (ret < 0)
+ goto out;
+#undef DMA64_PROPNAME
+#undef DIRECT64_PROPNAME
+
+ /* Update memory reserve map */
+ ret = get_reserved_memory_ranges(&rmem);
+ if (ret)
+ goto out;
+
+ nr_ranges = rmem ? rmem->nr_ranges : 0;
+ for (i = 0; i < nr_ranges; i++) {
+ u64 base, size;
+
+ base = rmem->ranges[i].start;
+ size = rmem->ranges[i].end - base + 1;
+ ret = fdt_add_mem_rsv(fdt, base, size);
+ if (ret) {
+ pr_err("Error updating memory reserve map: %s\n",
+ fdt_strerror(ret));
+ goto out;
+ }
+ }
+
+out:
+ kfree(rmem);
+ kfree(umem);
+ return ret;
+}
+
+/**
+ * arch_kexec_locate_mem_hole - Skip special memory regions like rtas, opal,
+ * tce-table, reserved-ranges & such (exclude
+ * memory ranges) as they can't be used for kexec
+ * segment buffer. Sets kbuf->mem when a suitable
+ * memory hole is found.
+ * @kbuf: Buffer contents and memory parameters.
+ *
+ * Assumes minimum of PAGE_SIZE alignment for kbuf->memsz & kbuf->buf_align.
+ *
+ * Returns 0 on success, negative errno on error.
+ */
+int arch_kexec_locate_mem_hole(struct kexec_buf *kbuf)
+{
+ struct crash_mem **emem;
+ u64 buf_min, buf_max;
+ int ret;
+
+ /* Look up the exclude ranges list while locating the memory hole */
+ emem = &(kbuf->image->arch.exclude_ranges);
+ if (!(*emem) || ((*emem)->nr_ranges == 0)) {
+ pr_warn("No exclude range list. Using the default locate mem hole method\n");
+ return kexec_locate_mem_hole(kbuf);
+ }
+
+ buf_min = kbuf->buf_min;
+ buf_max = kbuf->buf_max;
+ /* Segments for kdump kernel should be within crashkernel region */
+ if (kbuf->image->type == KEXEC_TYPE_CRASH) {
+ buf_min = (buf_min < crashk_res.start ?
+ crashk_res.start : buf_min);
+ buf_max = (buf_max > crashk_res.end ?
+ crashk_res.end : buf_max);
+ }
+
+ if (buf_min > buf_max) {
+ pr_err("Invalid buffer min and/or max values\n");
+ return -EINVAL;
+ }
+
+ if (kbuf->top_down)
+ ret = locate_mem_hole_top_down_ppc64(kbuf, buf_min, buf_max,
+ *emem);
+ else
+ ret = locate_mem_hole_bottom_up_ppc64(kbuf, buf_min, buf_max,
+ *emem);
+
+ /* Add the buffer allocated to the exclude list for the next lookup */
+ if (!ret) {
+ add_mem_range(emem, kbuf->mem, kbuf->memsz);
+ sort_memory_ranges(*emem, true);
+ } else {
+ pr_err("Failed to locate memory buffer of size %lu\n",
+ kbuf->memsz);
+ }
+ return ret;
+}
+
+/**
+ * arch_kexec_kernel_image_probe - Does additional handling needed to setup
+ * kexec segments.
+ * @image: kexec image being loaded.
+ * @buf: Buffer pointing to elf data.
+ * @buf_len: Length of the buffer.
+ *
+ * Returns 0 on success, negative errno on error.
+ */
+int arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
+ unsigned long buf_len)
+{
+ int ret;
+
+ /* Get exclude memory ranges needed for setting up kexec segments */
+ ret = get_exclude_memory_ranges(&(image->arch.exclude_ranges));
+ if (ret) {
+ pr_err("Failed to setup exclude memory ranges for buffer lookup\n");
+ return ret;
+ }
+
+ return kexec_image_probe_default(image, buf, buf_len);
+}
+
+/**
+ * arch_kimage_file_post_load_cleanup - Frees up all the allocations done
+ * while loading the image.
+ * @image: kexec image being loaded.
+ *
+ * Returns 0 on success, negative errno on error.
+ */
+int arch_kimage_file_post_load_cleanup(struct kimage *image)
+{
+ kfree(image->arch.exclude_ranges);
+ image->arch.exclude_ranges = NULL;
+
+ vfree(image->arch.backup_buf);
+ image->arch.backup_buf = NULL;
+
+ vfree(image->elf_headers);
+ image->elf_headers = NULL;
+ image->elf_headers_sz = 0;
+
+ kvfree(image->arch.fdt);
+ image->arch.fdt = NULL;
+
+ return kexec_image_post_load_cleanup_default(image);
+}