diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
commit | 2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch) | |
tree | 848558de17fb3008cdf4d861b01ac7781903ce39 /arch/x86/boot/compressed/kaslr.c | |
parent | Initial commit. (diff) | |
download | linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip |
Adding upstream version 6.1.76.upstream/6.1.76
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'arch/x86/boot/compressed/kaslr.c')
-rw-r--r-- | arch/x86/boot/compressed/kaslr.c | 873 |
1 files changed, 873 insertions, 0 deletions
diff --git a/arch/x86/boot/compressed/kaslr.c b/arch/x86/boot/compressed/kaslr.c new file mode 100644 index 000000000..e476bcbd9 --- /dev/null +++ b/arch/x86/boot/compressed/kaslr.c @@ -0,0 +1,873 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * kaslr.c + * + * This contains the routines needed to generate a reasonable level of + * entropy to choose a randomized kernel base address offset in support + * of Kernel Address Space Layout Randomization (KASLR). Additionally + * handles walking the physical memory maps (and tracking memory regions + * to avoid) in order to select a physical memory location that can + * contain the entire properly aligned running kernel image. + * + */ + +/* + * isspace() in linux/ctype.h is expected by next_args() to filter + * out "space/lf/tab". While boot/ctype.h conflicts with linux/ctype.h, + * since isdigit() is implemented in both of them. Hence disable it + * here. + */ +#define BOOT_CTYPE_H + +#include "misc.h" +#include "error.h" +#include "../string.h" +#include "efi.h" + +#include <generated/compile.h> +#include <linux/module.h> +#include <linux/uts.h> +#include <linux/utsname.h> +#include <linux/ctype.h> +#include <generated/utsversion.h> +#include <generated/utsrelease.h> + +#define _SETUP +#include <asm/setup.h> /* For COMMAND_LINE_SIZE */ +#undef _SETUP + +extern unsigned long get_cmd_line_ptr(void); + +/* Simplified build-specific string for starting entropy. */ +static const char build_str[] = UTS_RELEASE " (" LINUX_COMPILE_BY "@" + LINUX_COMPILE_HOST ") (" LINUX_COMPILER ") " UTS_VERSION; + +static unsigned long rotate_xor(unsigned long hash, const void *area, + size_t size) +{ + size_t i; + unsigned long *ptr = (unsigned long *)area; + + for (i = 0; i < size / sizeof(hash); i++) { + /* Rotate by odd number of bits and XOR. */ + hash = (hash << ((sizeof(hash) * 8) - 7)) | (hash >> 7); + hash ^= ptr[i]; + } + + return hash; +} + +/* Attempt to create a simple but unpredictable starting entropy. */ +static unsigned long get_boot_seed(void) +{ + unsigned long hash = 0; + + hash = rotate_xor(hash, build_str, sizeof(build_str)); + hash = rotate_xor(hash, boot_params, sizeof(*boot_params)); + + return hash; +} + +#define KASLR_COMPRESSED_BOOT +#include "../../lib/kaslr.c" + + +/* Only supporting at most 4 unusable memmap regions with kaslr */ +#define MAX_MEMMAP_REGIONS 4 + +static bool memmap_too_large; + + +/* + * Store memory limit: MAXMEM on 64-bit and KERNEL_IMAGE_SIZE on 32-bit. + * It may be reduced by "mem=nn[KMG]" or "memmap=nn[KMG]" command line options. + */ +static u64 mem_limit; + +/* Number of immovable memory regions */ +static int num_immovable_mem; + +enum mem_avoid_index { + MEM_AVOID_ZO_RANGE = 0, + MEM_AVOID_INITRD, + MEM_AVOID_CMDLINE, + MEM_AVOID_BOOTPARAMS, + MEM_AVOID_MEMMAP_BEGIN, + MEM_AVOID_MEMMAP_END = MEM_AVOID_MEMMAP_BEGIN + MAX_MEMMAP_REGIONS - 1, + MEM_AVOID_MAX, +}; + +static struct mem_vector mem_avoid[MEM_AVOID_MAX]; + +static bool mem_overlaps(struct mem_vector *one, struct mem_vector *two) +{ + /* Item one is entirely before item two. */ + if (one->start + one->size <= two->start) + return false; + /* Item one is entirely after item two. */ + if (one->start >= two->start + two->size) + return false; + return true; +} + +char *skip_spaces(const char *str) +{ + while (isspace(*str)) + ++str; + return (char *)str; +} +#include "../../../../lib/ctype.c" +#include "../../../../lib/cmdline.c" + +enum parse_mode { + PARSE_MEMMAP, + PARSE_EFI, +}; + +static int +parse_memmap(char *p, u64 *start, u64 *size, enum parse_mode mode) +{ + char *oldp; + + if (!p) + return -EINVAL; + + /* We don't care about this option here */ + if (!strncmp(p, "exactmap", 8)) + return -EINVAL; + + oldp = p; + *size = memparse(p, &p); + if (p == oldp) + return -EINVAL; + + switch (*p) { + case '#': + case '$': + case '!': + *start = memparse(p + 1, &p); + return 0; + case '@': + if (mode == PARSE_MEMMAP) { + /* + * memmap=nn@ss specifies usable region, should + * be skipped + */ + *size = 0; + } else { + u64 flags; + + /* + * efi_fake_mem=nn@ss:attr the attr specifies + * flags that might imply a soft-reservation. + */ + *start = memparse(p + 1, &p); + if (p && *p == ':') { + p++; + if (kstrtoull(p, 0, &flags) < 0) + *size = 0; + else if (flags & EFI_MEMORY_SP) + return 0; + } + *size = 0; + } + fallthrough; + default: + /* + * If w/o offset, only size specified, memmap=nn[KMG] has the + * same behaviour as mem=nn[KMG]. It limits the max address + * system can use. Region above the limit should be avoided. + */ + *start = 0; + return 0; + } + + return -EINVAL; +} + +static void mem_avoid_memmap(enum parse_mode mode, char *str) +{ + static int i; + + if (i >= MAX_MEMMAP_REGIONS) + return; + + while (str && (i < MAX_MEMMAP_REGIONS)) { + int rc; + u64 start, size; + char *k = strchr(str, ','); + + if (k) + *k++ = 0; + + rc = parse_memmap(str, &start, &size, mode); + if (rc < 0) + break; + str = k; + + if (start == 0) { + /* Store the specified memory limit if size > 0 */ + if (size > 0 && size < mem_limit) + mem_limit = size; + + continue; + } + + mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].start = start; + mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].size = size; + i++; + } + + /* More than 4 memmaps, fail kaslr */ + if ((i >= MAX_MEMMAP_REGIONS) && str) + memmap_too_large = true; +} + +/* Store the number of 1GB huge pages which users specified: */ +static unsigned long max_gb_huge_pages; + +static void parse_gb_huge_pages(char *param, char *val) +{ + static bool gbpage_sz; + char *p; + + if (!strcmp(param, "hugepagesz")) { + p = val; + if (memparse(p, &p) != PUD_SIZE) { + gbpage_sz = false; + return; + } + + if (gbpage_sz) + warn("Repeatedly set hugeTLB page size of 1G!\n"); + gbpage_sz = true; + return; + } + + if (!strcmp(param, "hugepages") && gbpage_sz) { + p = val; + max_gb_huge_pages = simple_strtoull(p, &p, 0); + return; + } +} + +static void handle_mem_options(void) +{ + char *args = (char *)get_cmd_line_ptr(); + size_t len; + char *tmp_cmdline; + char *param, *val; + u64 mem_size; + + if (!args) + return; + + len = strnlen(args, COMMAND_LINE_SIZE-1); + tmp_cmdline = malloc(len + 1); + if (!tmp_cmdline) + error("Failed to allocate space for tmp_cmdline"); + + memcpy(tmp_cmdline, args, len); + tmp_cmdline[len] = 0; + args = tmp_cmdline; + + /* Chew leading spaces */ + args = skip_spaces(args); + + while (*args) { + args = next_arg(args, ¶m, &val); + /* Stop at -- */ + if (!val && strcmp(param, "--") == 0) + break; + + if (!strcmp(param, "memmap")) { + mem_avoid_memmap(PARSE_MEMMAP, val); + } else if (IS_ENABLED(CONFIG_X86_64) && strstr(param, "hugepages")) { + parse_gb_huge_pages(param, val); + } else if (!strcmp(param, "mem")) { + char *p = val; + + if (!strcmp(p, "nopentium")) + continue; + mem_size = memparse(p, &p); + if (mem_size == 0) + break; + + if (mem_size < mem_limit) + mem_limit = mem_size; + } else if (!strcmp(param, "efi_fake_mem")) { + mem_avoid_memmap(PARSE_EFI, val); + } + } + + free(tmp_cmdline); + return; +} + +/* + * In theory, KASLR can put the kernel anywhere in the range of [16M, MAXMEM) + * on 64-bit, and [16M, KERNEL_IMAGE_SIZE) on 32-bit. + * + * The mem_avoid array is used to store the ranges that need to be avoided + * when KASLR searches for an appropriate random address. We must avoid any + * regions that are unsafe to overlap with during decompression, and other + * things like the initrd, cmdline and boot_params. This comment seeks to + * explain mem_avoid as clearly as possible since incorrect mem_avoid + * memory ranges lead to really hard to debug boot failures. + * + * The initrd, cmdline, and boot_params are trivial to identify for + * avoiding. They are MEM_AVOID_INITRD, MEM_AVOID_CMDLINE, and + * MEM_AVOID_BOOTPARAMS respectively below. + * + * What is not obvious how to avoid is the range of memory that is used + * during decompression (MEM_AVOID_ZO_RANGE below). This range must cover + * the compressed kernel (ZO) and its run space, which is used to extract + * the uncompressed kernel (VO) and relocs. + * + * ZO's full run size sits against the end of the decompression buffer, so + * we can calculate where text, data, bss, etc of ZO are positioned more + * easily. + * + * For additional background, the decompression calculations can be found + * in header.S, and the memory diagram is based on the one found in misc.c. + * + * The following conditions are already enforced by the image layouts and + * associated code: + * - input + input_size >= output + output_size + * - kernel_total_size <= init_size + * - kernel_total_size <= output_size (see Note below) + * - output + init_size >= output + output_size + * + * (Note that kernel_total_size and output_size have no fundamental + * relationship, but output_size is passed to choose_random_location + * as a maximum of the two. The diagram is showing a case where + * kernel_total_size is larger than output_size, but this case is + * handled by bumping output_size.) + * + * The above conditions can be illustrated by a diagram: + * + * 0 output input input+input_size output+init_size + * | | | | | + * | | | | | + * |-----|--------|--------|--------------|-----------|--|-------------| + * | | | + * | | | + * output+init_size-ZO_INIT_SIZE output+output_size output+kernel_total_size + * + * [output, output+init_size) is the entire memory range used for + * extracting the compressed image. + * + * [output, output+kernel_total_size) is the range needed for the + * uncompressed kernel (VO) and its run size (bss, brk, etc). + * + * [output, output+output_size) is VO plus relocs (i.e. the entire + * uncompressed payload contained by ZO). This is the area of the buffer + * written to during decompression. + * + * [output+init_size-ZO_INIT_SIZE, output+init_size) is the worst-case + * range of the copied ZO and decompression code. (i.e. the range + * covered backwards of size ZO_INIT_SIZE, starting from output+init_size.) + * + * [input, input+input_size) is the original copied compressed image (ZO) + * (i.e. it does not include its run size). This range must be avoided + * because it contains the data used for decompression. + * + * [input+input_size, output+init_size) is [_text, _end) for ZO. This + * range includes ZO's heap and stack, and must be avoided since it + * performs the decompression. + * + * Since the above two ranges need to be avoided and they are adjacent, + * they can be merged, resulting in: [input, output+init_size) which + * becomes the MEM_AVOID_ZO_RANGE below. + */ +static void mem_avoid_init(unsigned long input, unsigned long input_size, + unsigned long output) +{ + unsigned long init_size = boot_params->hdr.init_size; + u64 initrd_start, initrd_size; + unsigned long cmd_line, cmd_line_size; + + /* + * Avoid the region that is unsafe to overlap during + * decompression. + */ + mem_avoid[MEM_AVOID_ZO_RANGE].start = input; + mem_avoid[MEM_AVOID_ZO_RANGE].size = (output + init_size) - input; + + /* Avoid initrd. */ + initrd_start = (u64)boot_params->ext_ramdisk_image << 32; + initrd_start |= boot_params->hdr.ramdisk_image; + initrd_size = (u64)boot_params->ext_ramdisk_size << 32; + initrd_size |= boot_params->hdr.ramdisk_size; + mem_avoid[MEM_AVOID_INITRD].start = initrd_start; + mem_avoid[MEM_AVOID_INITRD].size = initrd_size; + /* No need to set mapping for initrd, it will be handled in VO. */ + + /* Avoid kernel command line. */ + cmd_line = get_cmd_line_ptr(); + /* Calculate size of cmd_line. */ + if (cmd_line) { + cmd_line_size = strnlen((char *)cmd_line, COMMAND_LINE_SIZE-1) + 1; + mem_avoid[MEM_AVOID_CMDLINE].start = cmd_line; + mem_avoid[MEM_AVOID_CMDLINE].size = cmd_line_size; + } + + /* Avoid boot parameters. */ + mem_avoid[MEM_AVOID_BOOTPARAMS].start = (unsigned long)boot_params; + mem_avoid[MEM_AVOID_BOOTPARAMS].size = sizeof(*boot_params); + + /* We don't need to set a mapping for setup_data. */ + + /* Mark the memmap regions we need to avoid */ + handle_mem_options(); + + /* Enumerate the immovable memory regions */ + num_immovable_mem = count_immovable_mem_regions(); +} + +/* + * Does this memory vector overlap a known avoided area? If so, record the + * overlap region with the lowest address. + */ +static bool mem_avoid_overlap(struct mem_vector *img, + struct mem_vector *overlap) +{ + int i; + struct setup_data *ptr; + u64 earliest = img->start + img->size; + bool is_overlapping = false; + + for (i = 0; i < MEM_AVOID_MAX; i++) { + if (mem_overlaps(img, &mem_avoid[i]) && + mem_avoid[i].start < earliest) { + *overlap = mem_avoid[i]; + earliest = overlap->start; + is_overlapping = true; + } + } + + /* Avoid all entries in the setup_data linked list. */ + ptr = (struct setup_data *)(unsigned long)boot_params->hdr.setup_data; + while (ptr) { + struct mem_vector avoid; + + avoid.start = (unsigned long)ptr; + avoid.size = sizeof(*ptr) + ptr->len; + + if (mem_overlaps(img, &avoid) && (avoid.start < earliest)) { + *overlap = avoid; + earliest = overlap->start; + is_overlapping = true; + } + + if (ptr->type == SETUP_INDIRECT && + ((struct setup_indirect *)ptr->data)->type != SETUP_INDIRECT) { + avoid.start = ((struct setup_indirect *)ptr->data)->addr; + avoid.size = ((struct setup_indirect *)ptr->data)->len; + + if (mem_overlaps(img, &avoid) && (avoid.start < earliest)) { + *overlap = avoid; + earliest = overlap->start; + is_overlapping = true; + } + } + + ptr = (struct setup_data *)(unsigned long)ptr->next; + } + + return is_overlapping; +} + +struct slot_area { + u64 addr; + unsigned long num; +}; + +#define MAX_SLOT_AREA 100 + +static struct slot_area slot_areas[MAX_SLOT_AREA]; +static unsigned int slot_area_index; +static unsigned long slot_max; + +static void store_slot_info(struct mem_vector *region, unsigned long image_size) +{ + struct slot_area slot_area; + + if (slot_area_index == MAX_SLOT_AREA) + return; + + slot_area.addr = region->start; + slot_area.num = 1 + (region->size - image_size) / CONFIG_PHYSICAL_ALIGN; + + slot_areas[slot_area_index++] = slot_area; + slot_max += slot_area.num; +} + +/* + * Skip as many 1GB huge pages as possible in the passed region + * according to the number which users specified: + */ +static void +process_gb_huge_pages(struct mem_vector *region, unsigned long image_size) +{ + u64 pud_start, pud_end; + unsigned long gb_huge_pages; + struct mem_vector tmp; + + if (!IS_ENABLED(CONFIG_X86_64) || !max_gb_huge_pages) { + store_slot_info(region, image_size); + return; + } + + /* Are there any 1GB pages in the region? */ + pud_start = ALIGN(region->start, PUD_SIZE); + pud_end = ALIGN_DOWN(region->start + region->size, PUD_SIZE); + + /* No good 1GB huge pages found: */ + if (pud_start >= pud_end) { + store_slot_info(region, image_size); + return; + } + + /* Check if the head part of the region is usable. */ + if (pud_start >= region->start + image_size) { + tmp.start = region->start; + tmp.size = pud_start - region->start; + store_slot_info(&tmp, image_size); + } + + /* Skip the good 1GB pages. */ + gb_huge_pages = (pud_end - pud_start) >> PUD_SHIFT; + if (gb_huge_pages > max_gb_huge_pages) { + pud_end = pud_start + (max_gb_huge_pages << PUD_SHIFT); + max_gb_huge_pages = 0; + } else { + max_gb_huge_pages -= gb_huge_pages; + } + + /* Check if the tail part of the region is usable. */ + if (region->start + region->size >= pud_end + image_size) { + tmp.start = pud_end; + tmp.size = region->start + region->size - pud_end; + store_slot_info(&tmp, image_size); + } +} + +static u64 slots_fetch_random(void) +{ + unsigned long slot; + unsigned int i; + + /* Handle case of no slots stored. */ + if (slot_max == 0) + return 0; + + slot = kaslr_get_random_long("Physical") % slot_max; + + for (i = 0; i < slot_area_index; i++) { + if (slot >= slot_areas[i].num) { + slot -= slot_areas[i].num; + continue; + } + return slot_areas[i].addr + ((u64)slot * CONFIG_PHYSICAL_ALIGN); + } + + if (i == slot_area_index) + debug_putstr("slots_fetch_random() failed!?\n"); + return 0; +} + +static void __process_mem_region(struct mem_vector *entry, + unsigned long minimum, + unsigned long image_size) +{ + struct mem_vector region, overlap; + u64 region_end; + + /* Enforce minimum and memory limit. */ + region.start = max_t(u64, entry->start, minimum); + region_end = min(entry->start + entry->size, mem_limit); + + /* Give up if slot area array is full. */ + while (slot_area_index < MAX_SLOT_AREA) { + /* Potentially raise address to meet alignment needs. */ + region.start = ALIGN(region.start, CONFIG_PHYSICAL_ALIGN); + + /* Did we raise the address above the passed in memory entry? */ + if (region.start > region_end) + return; + + /* Reduce size by any delta from the original address. */ + region.size = region_end - region.start; + + /* Return if region can't contain decompressed kernel */ + if (region.size < image_size) + return; + + /* If nothing overlaps, store the region and return. */ + if (!mem_avoid_overlap(®ion, &overlap)) { + process_gb_huge_pages(®ion, image_size); + return; + } + + /* Store beginning of region if holds at least image_size. */ + if (overlap.start >= region.start + image_size) { + region.size = overlap.start - region.start; + process_gb_huge_pages(®ion, image_size); + } + + /* Clip off the overlapping region and start over. */ + region.start = overlap.start + overlap.size; + } +} + +static bool process_mem_region(struct mem_vector *region, + unsigned long minimum, + unsigned long image_size) +{ + int i; + /* + * If no immovable memory found, or MEMORY_HOTREMOVE disabled, + * use @region directly. + */ + if (!num_immovable_mem) { + __process_mem_region(region, minimum, image_size); + + if (slot_area_index == MAX_SLOT_AREA) { + debug_putstr("Aborted e820/efi memmap scan (slot_areas full)!\n"); + return true; + } + return false; + } + +#if defined(CONFIG_MEMORY_HOTREMOVE) && defined(CONFIG_ACPI) + /* + * If immovable memory found, filter the intersection between + * immovable memory and @region. + */ + for (i = 0; i < num_immovable_mem; i++) { + u64 start, end, entry_end, region_end; + struct mem_vector entry; + + if (!mem_overlaps(region, &immovable_mem[i])) + continue; + + start = immovable_mem[i].start; + end = start + immovable_mem[i].size; + region_end = region->start + region->size; + + entry.start = clamp(region->start, start, end); + entry_end = clamp(region_end, start, end); + entry.size = entry_end - entry.start; + + __process_mem_region(&entry, minimum, image_size); + + if (slot_area_index == MAX_SLOT_AREA) { + debug_putstr("Aborted e820/efi memmap scan when walking immovable regions(slot_areas full)!\n"); + return true; + } + } +#endif + return 0; +} + +#ifdef CONFIG_EFI +/* + * Returns true if we processed the EFI memmap, which we prefer over the E820 + * table if it is available. + */ +static bool +process_efi_entries(unsigned long minimum, unsigned long image_size) +{ + struct efi_info *e = &boot_params->efi_info; + bool efi_mirror_found = false; + struct mem_vector region; + efi_memory_desc_t *md; + unsigned long pmap; + char *signature; + u32 nr_desc; + int i; + + signature = (char *)&e->efi_loader_signature; + if (strncmp(signature, EFI32_LOADER_SIGNATURE, 4) && + strncmp(signature, EFI64_LOADER_SIGNATURE, 4)) + return false; + +#ifdef CONFIG_X86_32 + /* Can't handle data above 4GB at this time */ + if (e->efi_memmap_hi) { + warn("EFI memmap is above 4GB, can't be handled now on x86_32. EFI should be disabled.\n"); + return false; + } + pmap = e->efi_memmap; +#else + pmap = (e->efi_memmap | ((__u64)e->efi_memmap_hi << 32)); +#endif + + nr_desc = e->efi_memmap_size / e->efi_memdesc_size; + for (i = 0; i < nr_desc; i++) { + md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i); + if (md->attribute & EFI_MEMORY_MORE_RELIABLE) { + efi_mirror_found = true; + break; + } + } + + for (i = 0; i < nr_desc; i++) { + md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i); + + /* + * Here we are more conservative in picking free memory than + * the EFI spec allows: + * + * According to the spec, EFI_BOOT_SERVICES_{CODE|DATA} are also + * free memory and thus available to place the kernel image into, + * but in practice there's firmware where using that memory leads + * to crashes. + * + * Only EFI_CONVENTIONAL_MEMORY is guaranteed to be free. + */ + if (md->type != EFI_CONVENTIONAL_MEMORY) + continue; + + if (efi_soft_reserve_enabled() && + (md->attribute & EFI_MEMORY_SP)) + continue; + + if (efi_mirror_found && + !(md->attribute & EFI_MEMORY_MORE_RELIABLE)) + continue; + + region.start = md->phys_addr; + region.size = md->num_pages << EFI_PAGE_SHIFT; + if (process_mem_region(®ion, minimum, image_size)) + break; + } + return true; +} +#else +static inline bool +process_efi_entries(unsigned long minimum, unsigned long image_size) +{ + return false; +} +#endif + +static void process_e820_entries(unsigned long minimum, + unsigned long image_size) +{ + int i; + struct mem_vector region; + struct boot_e820_entry *entry; + + /* Verify potential e820 positions, appending to slots list. */ + for (i = 0; i < boot_params->e820_entries; i++) { + entry = &boot_params->e820_table[i]; + /* Skip non-RAM entries. */ + if (entry->type != E820_TYPE_RAM) + continue; + region.start = entry->addr; + region.size = entry->size; + if (process_mem_region(®ion, minimum, image_size)) + break; + } +} + +static unsigned long find_random_phys_addr(unsigned long minimum, + unsigned long image_size) +{ + u64 phys_addr; + + /* Bail out early if it's impossible to succeed. */ + if (minimum + image_size > mem_limit) + return 0; + + /* Check if we had too many memmaps. */ + if (memmap_too_large) { + debug_putstr("Aborted memory entries scan (more than 4 memmap= args)!\n"); + return 0; + } + + if (!process_efi_entries(minimum, image_size)) + process_e820_entries(minimum, image_size); + + phys_addr = slots_fetch_random(); + + /* Perform a final check to make sure the address is in range. */ + if (phys_addr < minimum || phys_addr + image_size > mem_limit) { + warn("Invalid physical address chosen!\n"); + return 0; + } + + return (unsigned long)phys_addr; +} + +static unsigned long find_random_virt_addr(unsigned long minimum, + unsigned long image_size) +{ + unsigned long slots, random_addr; + + /* + * There are how many CONFIG_PHYSICAL_ALIGN-sized slots + * that can hold image_size within the range of minimum to + * KERNEL_IMAGE_SIZE? + */ + slots = 1 + (KERNEL_IMAGE_SIZE - minimum - image_size) / CONFIG_PHYSICAL_ALIGN; + + random_addr = kaslr_get_random_long("Virtual") % slots; + + return random_addr * CONFIG_PHYSICAL_ALIGN + minimum; +} + +/* + * Since this function examines addresses much more numerically, + * it takes the input and output pointers as 'unsigned long'. + */ +void choose_random_location(unsigned long input, + unsigned long input_size, + unsigned long *output, + unsigned long output_size, + unsigned long *virt_addr) +{ + unsigned long random_addr, min_addr; + + if (cmdline_find_option_bool("nokaslr")) { + warn("KASLR disabled: 'nokaslr' on cmdline."); + return; + } + + boot_params->hdr.loadflags |= KASLR_FLAG; + + if (IS_ENABLED(CONFIG_X86_32)) + mem_limit = KERNEL_IMAGE_SIZE; + else + mem_limit = MAXMEM; + + /* Record the various known unsafe memory ranges. */ + mem_avoid_init(input, input_size, *output); + + /* + * Low end of the randomization range should be the + * smaller of 512M or the initial kernel image + * location: + */ + min_addr = min(*output, 512UL << 20); + /* Make sure minimum is aligned. */ + min_addr = ALIGN(min_addr, CONFIG_PHYSICAL_ALIGN); + + /* Walk available memory entries to find a random address. */ + random_addr = find_random_phys_addr(min_addr, output_size); + if (!random_addr) { + warn("Physical KASLR disabled: no suitable memory region!"); + } else { + /* Update the new physical address location. */ + if (*output != random_addr) + *output = random_addr; + } + + + /* Pick random virtual address starting from LOAD_PHYSICAL_ADDR. */ + if (IS_ENABLED(CONFIG_X86_64)) + random_addr = find_random_virt_addr(LOAD_PHYSICAL_ADDR, output_size); + *virt_addr = random_addr; +} |