summaryrefslogtreecommitdiffstats
path: root/arch/x86/kvm/mmu/paging_tmpl.h
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
commit2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch)
tree848558de17fb3008cdf4d861b01ac7781903ce39 /arch/x86/kvm/mmu/paging_tmpl.h
parentInitial commit. (diff)
downloadlinux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz
linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip
Adding upstream version 6.1.76.upstream/6.1.76
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'arch/x86/kvm/mmu/paging_tmpl.h')
-rw-r--r--arch/x86/kvm/mmu/paging_tmpl.h1116
1 files changed, 1116 insertions, 0 deletions
diff --git a/arch/x86/kvm/mmu/paging_tmpl.h b/arch/x86/kvm/mmu/paging_tmpl.h
new file mode 100644
index 000000000..1f4f5e703
--- /dev/null
+++ b/arch/x86/kvm/mmu/paging_tmpl.h
@@ -0,0 +1,1116 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+/*
+ * Kernel-based Virtual Machine driver for Linux
+ *
+ * This module enables machines with Intel VT-x extensions to run virtual
+ * machines without emulation or binary translation.
+ *
+ * MMU support
+ *
+ * Copyright (C) 2006 Qumranet, Inc.
+ * Copyright 2010 Red Hat, Inc. and/or its affiliates.
+ *
+ * Authors:
+ * Yaniv Kamay <yaniv@qumranet.com>
+ * Avi Kivity <avi@qumranet.com>
+ */
+
+/*
+ * The MMU needs to be able to access/walk 32-bit and 64-bit guest page tables,
+ * as well as guest EPT tables, so the code in this file is compiled thrice,
+ * once per guest PTE type. The per-type defines are #undef'd at the end.
+ */
+
+#if PTTYPE == 64
+ #define pt_element_t u64
+ #define guest_walker guest_walker64
+ #define FNAME(name) paging##64_##name
+ #define PT_LEVEL_BITS 9
+ #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
+ #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
+ #define PT_HAVE_ACCESSED_DIRTY(mmu) true
+ #ifdef CONFIG_X86_64
+ #define PT_MAX_FULL_LEVELS PT64_ROOT_MAX_LEVEL
+ #else
+ #define PT_MAX_FULL_LEVELS 2
+ #endif
+#elif PTTYPE == 32
+ #define pt_element_t u32
+ #define guest_walker guest_walker32
+ #define FNAME(name) paging##32_##name
+ #define PT_LEVEL_BITS 10
+ #define PT_MAX_FULL_LEVELS 2
+ #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
+ #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
+ #define PT_HAVE_ACCESSED_DIRTY(mmu) true
+
+ #define PT32_DIR_PSE36_SIZE 4
+ #define PT32_DIR_PSE36_SHIFT 13
+ #define PT32_DIR_PSE36_MASK \
+ (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
+#elif PTTYPE == PTTYPE_EPT
+ #define pt_element_t u64
+ #define guest_walker guest_walkerEPT
+ #define FNAME(name) ept_##name
+ #define PT_LEVEL_BITS 9
+ #define PT_GUEST_DIRTY_SHIFT 9
+ #define PT_GUEST_ACCESSED_SHIFT 8
+ #define PT_HAVE_ACCESSED_DIRTY(mmu) (!(mmu)->cpu_role.base.ad_disabled)
+ #define PT_MAX_FULL_LEVELS PT64_ROOT_MAX_LEVEL
+#else
+ #error Invalid PTTYPE value
+#endif
+
+/* Common logic, but per-type values. These also need to be undefined. */
+#define PT_BASE_ADDR_MASK ((pt_element_t)(((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1)))
+#define PT_LVL_ADDR_MASK(lvl) __PT_LVL_ADDR_MASK(PT_BASE_ADDR_MASK, lvl, PT_LEVEL_BITS)
+#define PT_LVL_OFFSET_MASK(lvl) __PT_LVL_OFFSET_MASK(PT_BASE_ADDR_MASK, lvl, PT_LEVEL_BITS)
+#define PT_INDEX(addr, lvl) __PT_INDEX(addr, lvl, PT_LEVEL_BITS)
+
+#define PT_GUEST_DIRTY_MASK (1 << PT_GUEST_DIRTY_SHIFT)
+#define PT_GUEST_ACCESSED_MASK (1 << PT_GUEST_ACCESSED_SHIFT)
+
+#define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
+#define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PG_LEVEL_4K)
+
+/*
+ * The guest_walker structure emulates the behavior of the hardware page
+ * table walker.
+ */
+struct guest_walker {
+ int level;
+ unsigned max_level;
+ gfn_t table_gfn[PT_MAX_FULL_LEVELS];
+ pt_element_t ptes[PT_MAX_FULL_LEVELS];
+ pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
+ gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
+ pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS];
+ bool pte_writable[PT_MAX_FULL_LEVELS];
+ unsigned int pt_access[PT_MAX_FULL_LEVELS];
+ unsigned int pte_access;
+ gfn_t gfn;
+ struct x86_exception fault;
+};
+
+#if PTTYPE == 32
+static inline gfn_t pse36_gfn_delta(u32 gpte)
+{
+ int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
+
+ return (gpte & PT32_DIR_PSE36_MASK) << shift;
+}
+#endif
+
+static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
+{
+ return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
+}
+
+static inline void FNAME(protect_clean_gpte)(struct kvm_mmu *mmu, unsigned *access,
+ unsigned gpte)
+{
+ unsigned mask;
+
+ /* dirty bit is not supported, so no need to track it */
+ if (!PT_HAVE_ACCESSED_DIRTY(mmu))
+ return;
+
+ BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
+
+ mask = (unsigned)~ACC_WRITE_MASK;
+ /* Allow write access to dirty gptes */
+ mask |= (gpte >> (PT_GUEST_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) &
+ PT_WRITABLE_MASK;
+ *access &= mask;
+}
+
+static inline int FNAME(is_present_gpte)(unsigned long pte)
+{
+#if PTTYPE != PTTYPE_EPT
+ return pte & PT_PRESENT_MASK;
+#else
+ return pte & 7;
+#endif
+}
+
+static bool FNAME(is_bad_mt_xwr)(struct rsvd_bits_validate *rsvd_check, u64 gpte)
+{
+#if PTTYPE != PTTYPE_EPT
+ return false;
+#else
+ return __is_bad_mt_xwr(rsvd_check, gpte);
+#endif
+}
+
+static bool FNAME(is_rsvd_bits_set)(struct kvm_mmu *mmu, u64 gpte, int level)
+{
+ return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level) ||
+ FNAME(is_bad_mt_xwr)(&mmu->guest_rsvd_check, gpte);
+}
+
+static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu,
+ struct kvm_mmu_page *sp, u64 *spte,
+ u64 gpte)
+{
+ if (!FNAME(is_present_gpte)(gpte))
+ goto no_present;
+
+ /* Prefetch only accessed entries (unless A/D bits are disabled). */
+ if (PT_HAVE_ACCESSED_DIRTY(vcpu->arch.mmu) &&
+ !(gpte & PT_GUEST_ACCESSED_MASK))
+ goto no_present;
+
+ if (FNAME(is_rsvd_bits_set)(vcpu->arch.mmu, gpte, PG_LEVEL_4K))
+ goto no_present;
+
+ return false;
+
+no_present:
+ drop_spte(vcpu->kvm, spte);
+ return true;
+}
+
+/*
+ * For PTTYPE_EPT, a page table can be executable but not readable
+ * on supported processors. Therefore, set_spte does not automatically
+ * set bit 0 if execute only is supported. Here, we repurpose ACC_USER_MASK
+ * to signify readability since it isn't used in the EPT case
+ */
+static inline unsigned FNAME(gpte_access)(u64 gpte)
+{
+ unsigned access;
+#if PTTYPE == PTTYPE_EPT
+ access = ((gpte & VMX_EPT_WRITABLE_MASK) ? ACC_WRITE_MASK : 0) |
+ ((gpte & VMX_EPT_EXECUTABLE_MASK) ? ACC_EXEC_MASK : 0) |
+ ((gpte & VMX_EPT_READABLE_MASK) ? ACC_USER_MASK : 0);
+#else
+ BUILD_BUG_ON(ACC_EXEC_MASK != PT_PRESENT_MASK);
+ BUILD_BUG_ON(ACC_EXEC_MASK != 1);
+ access = gpte & (PT_WRITABLE_MASK | PT_USER_MASK | PT_PRESENT_MASK);
+ /* Combine NX with P (which is set here) to get ACC_EXEC_MASK. */
+ access ^= (gpte >> PT64_NX_SHIFT);
+#endif
+
+ return access;
+}
+
+static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu,
+ struct kvm_mmu *mmu,
+ struct guest_walker *walker,
+ gpa_t addr, int write_fault)
+{
+ unsigned level, index;
+ pt_element_t pte, orig_pte;
+ pt_element_t __user *ptep_user;
+ gfn_t table_gfn;
+ int ret;
+
+ /* dirty/accessed bits are not supported, so no need to update them */
+ if (!PT_HAVE_ACCESSED_DIRTY(mmu))
+ return 0;
+
+ for (level = walker->max_level; level >= walker->level; --level) {
+ pte = orig_pte = walker->ptes[level - 1];
+ table_gfn = walker->table_gfn[level - 1];
+ ptep_user = walker->ptep_user[level - 1];
+ index = offset_in_page(ptep_user) / sizeof(pt_element_t);
+ if (!(pte & PT_GUEST_ACCESSED_MASK)) {
+ trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte));
+ pte |= PT_GUEST_ACCESSED_MASK;
+ }
+ if (level == walker->level && write_fault &&
+ !(pte & PT_GUEST_DIRTY_MASK)) {
+ trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
+#if PTTYPE == PTTYPE_EPT
+ if (kvm_x86_ops.nested_ops->write_log_dirty(vcpu, addr))
+ return -EINVAL;
+#endif
+ pte |= PT_GUEST_DIRTY_MASK;
+ }
+ if (pte == orig_pte)
+ continue;
+
+ /*
+ * If the slot is read-only, simply do not process the accessed
+ * and dirty bits. This is the correct thing to do if the slot
+ * is ROM, and page tables in read-as-ROM/write-as-MMIO slots
+ * are only supported if the accessed and dirty bits are already
+ * set in the ROM (so that MMIO writes are never needed).
+ *
+ * Note that NPT does not allow this at all and faults, since
+ * it always wants nested page table entries for the guest
+ * page tables to be writable. And EPT works but will simply
+ * overwrite the read-only memory to set the accessed and dirty
+ * bits.
+ */
+ if (unlikely(!walker->pte_writable[level - 1]))
+ continue;
+
+ ret = __try_cmpxchg_user(ptep_user, &orig_pte, pte, fault);
+ if (ret)
+ return ret;
+
+ kvm_vcpu_mark_page_dirty(vcpu, table_gfn);
+ walker->ptes[level - 1] = pte;
+ }
+ return 0;
+}
+
+static inline unsigned FNAME(gpte_pkeys)(struct kvm_vcpu *vcpu, u64 gpte)
+{
+ unsigned pkeys = 0;
+#if PTTYPE == 64
+ pte_t pte = {.pte = gpte};
+
+ pkeys = pte_flags_pkey(pte_flags(pte));
+#endif
+ return pkeys;
+}
+
+static inline bool FNAME(is_last_gpte)(struct kvm_mmu *mmu,
+ unsigned int level, unsigned int gpte)
+{
+ /*
+ * For EPT and PAE paging (both variants), bit 7 is either reserved at
+ * all level or indicates a huge page (ignoring CR3/EPTP). In either
+ * case, bit 7 being set terminates the walk.
+ */
+#if PTTYPE == 32
+ /*
+ * 32-bit paging requires special handling because bit 7 is ignored if
+ * CR4.PSE=0, not reserved. Clear bit 7 in the gpte if the level is
+ * greater than the last level for which bit 7 is the PAGE_SIZE bit.
+ *
+ * The RHS has bit 7 set iff level < (2 + PSE). If it is clear, bit 7
+ * is not reserved and does not indicate a large page at this level,
+ * so clear PT_PAGE_SIZE_MASK in gpte if that is the case.
+ */
+ gpte &= level - (PT32_ROOT_LEVEL + mmu->cpu_role.ext.cr4_pse);
+#endif
+ /*
+ * PG_LEVEL_4K always terminates. The RHS has bit 7 set
+ * iff level <= PG_LEVEL_4K, which for our purpose means
+ * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
+ */
+ gpte |= level - PG_LEVEL_4K - 1;
+
+ return gpte & PT_PAGE_SIZE_MASK;
+}
+/*
+ * Fetch a guest pte for a guest virtual address, or for an L2's GPA.
+ */
+static int FNAME(walk_addr_generic)(struct guest_walker *walker,
+ struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
+ gpa_t addr, u64 access)
+{
+ int ret;
+ pt_element_t pte;
+ pt_element_t __user *ptep_user;
+ gfn_t table_gfn;
+ u64 pt_access, pte_access;
+ unsigned index, accessed_dirty, pte_pkey;
+ u64 nested_access;
+ gpa_t pte_gpa;
+ bool have_ad;
+ int offset;
+ u64 walk_nx_mask = 0;
+ const int write_fault = access & PFERR_WRITE_MASK;
+ const int user_fault = access & PFERR_USER_MASK;
+ const int fetch_fault = access & PFERR_FETCH_MASK;
+ u16 errcode = 0;
+ gpa_t real_gpa;
+ gfn_t gfn;
+
+ trace_kvm_mmu_pagetable_walk(addr, access);
+retry_walk:
+ walker->level = mmu->cpu_role.base.level;
+ pte = kvm_mmu_get_guest_pgd(vcpu, mmu);
+ have_ad = PT_HAVE_ACCESSED_DIRTY(mmu);
+
+#if PTTYPE == 64
+ walk_nx_mask = 1ULL << PT64_NX_SHIFT;
+ if (walker->level == PT32E_ROOT_LEVEL) {
+ pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3);
+ trace_kvm_mmu_paging_element(pte, walker->level);
+ if (!FNAME(is_present_gpte)(pte))
+ goto error;
+ --walker->level;
+ }
+#endif
+ walker->max_level = walker->level;
+ ASSERT(!(is_long_mode(vcpu) && !is_pae(vcpu)));
+
+ /*
+ * FIXME: on Intel processors, loads of the PDPTE registers for PAE paging
+ * by the MOV to CR instruction are treated as reads and do not cause the
+ * processor to set the dirty flag in any EPT paging-structure entry.
+ */
+ nested_access = (have_ad ? PFERR_WRITE_MASK : 0) | PFERR_USER_MASK;
+
+ pte_access = ~0;
+ ++walker->level;
+
+ do {
+ unsigned long host_addr;
+
+ pt_access = pte_access;
+ --walker->level;
+
+ index = PT_INDEX(addr, walker->level);
+ table_gfn = gpte_to_gfn(pte);
+ offset = index * sizeof(pt_element_t);
+ pte_gpa = gfn_to_gpa(table_gfn) + offset;
+
+ BUG_ON(walker->level < 1);
+ walker->table_gfn[walker->level - 1] = table_gfn;
+ walker->pte_gpa[walker->level - 1] = pte_gpa;
+
+ real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(table_gfn),
+ nested_access, &walker->fault);
+
+ /*
+ * FIXME: This can happen if emulation (for of an INS/OUTS
+ * instruction) triggers a nested page fault. The exit
+ * qualification / exit info field will incorrectly have
+ * "guest page access" as the nested page fault's cause,
+ * instead of "guest page structure access". To fix this,
+ * the x86_exception struct should be augmented with enough
+ * information to fix the exit_qualification or exit_info_1
+ * fields.
+ */
+ if (unlikely(real_gpa == INVALID_GPA))
+ return 0;
+
+ host_addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gpa_to_gfn(real_gpa),
+ &walker->pte_writable[walker->level - 1]);
+ if (unlikely(kvm_is_error_hva(host_addr)))
+ goto error;
+
+ ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
+ if (unlikely(__get_user(pte, ptep_user)))
+ goto error;
+ walker->ptep_user[walker->level - 1] = ptep_user;
+
+ trace_kvm_mmu_paging_element(pte, walker->level);
+
+ /*
+ * Inverting the NX it lets us AND it like other
+ * permission bits.
+ */
+ pte_access = pt_access & (pte ^ walk_nx_mask);
+
+ if (unlikely(!FNAME(is_present_gpte)(pte)))
+ goto error;
+
+ if (unlikely(FNAME(is_rsvd_bits_set)(mmu, pte, walker->level))) {
+ errcode = PFERR_RSVD_MASK | PFERR_PRESENT_MASK;
+ goto error;
+ }
+
+ walker->ptes[walker->level - 1] = pte;
+
+ /* Convert to ACC_*_MASK flags for struct guest_walker. */
+ walker->pt_access[walker->level - 1] = FNAME(gpte_access)(pt_access ^ walk_nx_mask);
+ } while (!FNAME(is_last_gpte)(mmu, walker->level, pte));
+
+ pte_pkey = FNAME(gpte_pkeys)(vcpu, pte);
+ accessed_dirty = have_ad ? pte_access & PT_GUEST_ACCESSED_MASK : 0;
+
+ /* Convert to ACC_*_MASK flags for struct guest_walker. */
+ walker->pte_access = FNAME(gpte_access)(pte_access ^ walk_nx_mask);
+ errcode = permission_fault(vcpu, mmu, walker->pte_access, pte_pkey, access);
+ if (unlikely(errcode))
+ goto error;
+
+ gfn = gpte_to_gfn_lvl(pte, walker->level);
+ gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT;
+
+#if PTTYPE == 32
+ if (walker->level > PG_LEVEL_4K && is_cpuid_PSE36())
+ gfn += pse36_gfn_delta(pte);
+#endif
+
+ real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(gfn), access, &walker->fault);
+ if (real_gpa == INVALID_GPA)
+ return 0;
+
+ walker->gfn = real_gpa >> PAGE_SHIFT;
+
+ if (!write_fault)
+ FNAME(protect_clean_gpte)(mmu, &walker->pte_access, pte);
+ else
+ /*
+ * On a write fault, fold the dirty bit into accessed_dirty.
+ * For modes without A/D bits support accessed_dirty will be
+ * always clear.
+ */
+ accessed_dirty &= pte >>
+ (PT_GUEST_DIRTY_SHIFT - PT_GUEST_ACCESSED_SHIFT);
+
+ if (unlikely(!accessed_dirty)) {
+ ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker,
+ addr, write_fault);
+ if (unlikely(ret < 0))
+ goto error;
+ else if (ret)
+ goto retry_walk;
+ }
+
+ pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
+ __func__, (u64)pte, walker->pte_access,
+ walker->pt_access[walker->level - 1]);
+ return 1;
+
+error:
+ errcode |= write_fault | user_fault;
+ if (fetch_fault && (is_efer_nx(mmu) || is_cr4_smep(mmu)))
+ errcode |= PFERR_FETCH_MASK;
+
+ walker->fault.vector = PF_VECTOR;
+ walker->fault.error_code_valid = true;
+ walker->fault.error_code = errcode;
+
+#if PTTYPE == PTTYPE_EPT
+ /*
+ * Use PFERR_RSVD_MASK in error_code to tell if EPT
+ * misconfiguration requires to be injected. The detection is
+ * done by is_rsvd_bits_set() above.
+ *
+ * We set up the value of exit_qualification to inject:
+ * [2:0] - Derive from the access bits. The exit_qualification might be
+ * out of date if it is serving an EPT misconfiguration.
+ * [5:3] - Calculated by the page walk of the guest EPT page tables
+ * [7:8] - Derived from [7:8] of real exit_qualification
+ *
+ * The other bits are set to 0.
+ */
+ if (!(errcode & PFERR_RSVD_MASK)) {
+ vcpu->arch.exit_qualification &= (EPT_VIOLATION_GVA_IS_VALID |
+ EPT_VIOLATION_GVA_TRANSLATED);
+ if (write_fault)
+ vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_WRITE;
+ if (user_fault)
+ vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_READ;
+ if (fetch_fault)
+ vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_INSTR;
+
+ /*
+ * Note, pte_access holds the raw RWX bits from the EPTE, not
+ * ACC_*_MASK flags!
+ */
+ vcpu->arch.exit_qualification |= (pte_access & VMX_EPT_RWX_MASK) <<
+ EPT_VIOLATION_RWX_SHIFT;
+ }
+#endif
+ walker->fault.address = addr;
+ walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;
+ walker->fault.async_page_fault = false;
+
+ trace_kvm_mmu_walker_error(walker->fault.error_code);
+ return 0;
+}
+
+static int FNAME(walk_addr)(struct guest_walker *walker,
+ struct kvm_vcpu *vcpu, gpa_t addr, u64 access)
+{
+ return FNAME(walk_addr_generic)(walker, vcpu, vcpu->arch.mmu, addr,
+ access);
+}
+
+static bool
+FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
+ u64 *spte, pt_element_t gpte, bool no_dirty_log)
+{
+ struct kvm_memory_slot *slot;
+ unsigned pte_access;
+ gfn_t gfn;
+ kvm_pfn_t pfn;
+
+ if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
+ return false;
+
+ pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
+
+ gfn = gpte_to_gfn(gpte);
+ pte_access = sp->role.access & FNAME(gpte_access)(gpte);
+ FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte);
+
+ slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn,
+ no_dirty_log && (pte_access & ACC_WRITE_MASK));
+ if (!slot)
+ return false;
+
+ pfn = gfn_to_pfn_memslot_atomic(slot, gfn);
+ if (is_error_pfn(pfn))
+ return false;
+
+ mmu_set_spte(vcpu, slot, spte, pte_access, gfn, pfn, NULL);
+ kvm_release_pfn_clean(pfn);
+ return true;
+}
+
+static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
+ struct guest_walker *gw, int level)
+{
+ pt_element_t curr_pte;
+ gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
+ u64 mask;
+ int r, index;
+
+ if (level == PG_LEVEL_4K) {
+ mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
+ base_gpa = pte_gpa & ~mask;
+ index = (pte_gpa - base_gpa) / sizeof(pt_element_t);
+
+ r = kvm_vcpu_read_guest_atomic(vcpu, base_gpa,
+ gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
+ curr_pte = gw->prefetch_ptes[index];
+ } else
+ r = kvm_vcpu_read_guest_atomic(vcpu, pte_gpa,
+ &curr_pte, sizeof(curr_pte));
+
+ return r || curr_pte != gw->ptes[level - 1];
+}
+
+static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
+ u64 *sptep)
+{
+ struct kvm_mmu_page *sp;
+ pt_element_t *gptep = gw->prefetch_ptes;
+ u64 *spte;
+ int i;
+
+ sp = sptep_to_sp(sptep);
+
+ if (sp->role.level > PG_LEVEL_4K)
+ return;
+
+ /*
+ * If addresses are being invalidated, skip prefetching to avoid
+ * accidentally prefetching those addresses.
+ */
+ if (unlikely(vcpu->kvm->mmu_invalidate_in_progress))
+ return;
+
+ if (sp->role.direct)
+ return __direct_pte_prefetch(vcpu, sp, sptep);
+
+ i = spte_index(sptep) & ~(PTE_PREFETCH_NUM - 1);
+ spte = sp->spt + i;
+
+ for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
+ if (spte == sptep)
+ continue;
+
+ if (is_shadow_present_pte(*spte))
+ continue;
+
+ if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i], true))
+ break;
+ }
+}
+
+/*
+ * Fetch a shadow pte for a specific level in the paging hierarchy.
+ * If the guest tries to write a write-protected page, we need to
+ * emulate this operation, return 1 to indicate this case.
+ */
+static int FNAME(fetch)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
+ struct guest_walker *gw)
+{
+ struct kvm_mmu_page *sp = NULL;
+ struct kvm_shadow_walk_iterator it;
+ unsigned int direct_access, access;
+ int top_level, ret;
+ gfn_t base_gfn = fault->gfn;
+
+ WARN_ON_ONCE(gw->gfn != base_gfn);
+ direct_access = gw->pte_access;
+
+ top_level = vcpu->arch.mmu->cpu_role.base.level;
+ if (top_level == PT32E_ROOT_LEVEL)
+ top_level = PT32_ROOT_LEVEL;
+ /*
+ * Verify that the top-level gpte is still there. Since the page
+ * is a root page, it is either write protected (and cannot be
+ * changed from now on) or it is invalid (in which case, we don't
+ * really care if it changes underneath us after this point).
+ */
+ if (FNAME(gpte_changed)(vcpu, gw, top_level))
+ goto out_gpte_changed;
+
+ if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root.hpa)))
+ goto out_gpte_changed;
+
+ for (shadow_walk_init(&it, vcpu, fault->addr);
+ shadow_walk_okay(&it) && it.level > gw->level;
+ shadow_walk_next(&it)) {
+ gfn_t table_gfn;
+
+ clear_sp_write_flooding_count(it.sptep);
+
+ table_gfn = gw->table_gfn[it.level - 2];
+ access = gw->pt_access[it.level - 2];
+ sp = kvm_mmu_get_child_sp(vcpu, it.sptep, table_gfn,
+ false, access);
+
+ if (sp != ERR_PTR(-EEXIST)) {
+ /*
+ * We must synchronize the pagetable before linking it
+ * because the guest doesn't need to flush tlb when
+ * the gpte is changed from non-present to present.
+ * Otherwise, the guest may use the wrong mapping.
+ *
+ * For PG_LEVEL_4K, kvm_mmu_get_page() has already
+ * synchronized it transiently via kvm_sync_page().
+ *
+ * For higher level pagetable, we synchronize it via
+ * the slower mmu_sync_children(). If it needs to
+ * break, some progress has been made; return
+ * RET_PF_RETRY and retry on the next #PF.
+ * KVM_REQ_MMU_SYNC is not necessary but it
+ * expedites the process.
+ */
+ if (sp->unsync_children &&
+ mmu_sync_children(vcpu, sp, false))
+ return RET_PF_RETRY;
+ }
+
+ /*
+ * Verify that the gpte in the page we've just write
+ * protected is still there.
+ */
+ if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
+ goto out_gpte_changed;
+
+ if (sp != ERR_PTR(-EEXIST))
+ link_shadow_page(vcpu, it.sptep, sp);
+ }
+
+ kvm_mmu_hugepage_adjust(vcpu, fault);
+
+ trace_kvm_mmu_spte_requested(fault);
+
+ for (; shadow_walk_okay(&it); shadow_walk_next(&it)) {
+ clear_sp_write_flooding_count(it.sptep);
+
+ /*
+ * We cannot overwrite existing page tables with an NX
+ * large page, as the leaf could be executable.
+ */
+ if (fault->nx_huge_page_workaround_enabled)
+ disallowed_hugepage_adjust(fault, *it.sptep, it.level);
+
+ base_gfn = fault->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
+ if (it.level == fault->goal_level)
+ break;
+
+ validate_direct_spte(vcpu, it.sptep, direct_access);
+
+ sp = kvm_mmu_get_child_sp(vcpu, it.sptep, base_gfn,
+ true, direct_access);
+ if (sp == ERR_PTR(-EEXIST))
+ continue;
+
+ link_shadow_page(vcpu, it.sptep, sp);
+ if (fault->huge_page_disallowed &&
+ fault->req_level >= it.level)
+ account_huge_nx_page(vcpu->kvm, sp);
+ }
+
+ if (WARN_ON_ONCE(it.level != fault->goal_level))
+ return -EFAULT;
+
+ ret = mmu_set_spte(vcpu, fault->slot, it.sptep, gw->pte_access,
+ base_gfn, fault->pfn, fault);
+ if (ret == RET_PF_SPURIOUS)
+ return ret;
+
+ FNAME(pte_prefetch)(vcpu, gw, it.sptep);
+ return ret;
+
+out_gpte_changed:
+ return RET_PF_RETRY;
+}
+
+ /*
+ * To see whether the mapped gfn can write its page table in the current
+ * mapping.
+ *
+ * It is the helper function of FNAME(page_fault). When guest uses large page
+ * size to map the writable gfn which is used as current page table, we should
+ * force kvm to use small page size to map it because new shadow page will be
+ * created when kvm establishes shadow page table that stop kvm using large
+ * page size. Do it early can avoid unnecessary #PF and emulation.
+ *
+ * @write_fault_to_shadow_pgtable will return true if the fault gfn is
+ * currently used as its page table.
+ *
+ * Note: the PDPT page table is not checked for PAE-32 bit guest. It is ok
+ * since the PDPT is always shadowed, that means, we can not use large page
+ * size to map the gfn which is used as PDPT.
+ */
+static bool
+FNAME(is_self_change_mapping)(struct kvm_vcpu *vcpu,
+ struct guest_walker *walker, bool user_fault,
+ bool *write_fault_to_shadow_pgtable)
+{
+ int level;
+ gfn_t mask = ~(KVM_PAGES_PER_HPAGE(walker->level) - 1);
+ bool self_changed = false;
+
+ if (!(walker->pte_access & ACC_WRITE_MASK ||
+ (!is_cr0_wp(vcpu->arch.mmu) && !user_fault)))
+ return false;
+
+ for (level = walker->level; level <= walker->max_level; level++) {
+ gfn_t gfn = walker->gfn ^ walker->table_gfn[level - 1];
+
+ self_changed |= !(gfn & mask);
+ *write_fault_to_shadow_pgtable |= !gfn;
+ }
+
+ return self_changed;
+}
+
+/*
+ * Page fault handler. There are several causes for a page fault:
+ * - there is no shadow pte for the guest pte
+ * - write access through a shadow pte marked read only so that we can set
+ * the dirty bit
+ * - write access to a shadow pte marked read only so we can update the page
+ * dirty bitmap, when userspace requests it
+ * - mmio access; in this case we will never install a present shadow pte
+ * - normal guest page fault due to the guest pte marked not present, not
+ * writable, or not executable
+ *
+ * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
+ * a negative value on error.
+ */
+static int FNAME(page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
+{
+ struct guest_walker walker;
+ int r;
+ unsigned long mmu_seq;
+ bool is_self_change_mapping;
+
+ pgprintk("%s: addr %lx err %x\n", __func__, fault->addr, fault->error_code);
+ WARN_ON_ONCE(fault->is_tdp);
+
+ /*
+ * Look up the guest pte for the faulting address.
+ * If PFEC.RSVD is set, this is a shadow page fault.
+ * The bit needs to be cleared before walking guest page tables.
+ */
+ r = FNAME(walk_addr)(&walker, vcpu, fault->addr,
+ fault->error_code & ~PFERR_RSVD_MASK);
+
+ /*
+ * The page is not mapped by the guest. Let the guest handle it.
+ */
+ if (!r) {
+ pgprintk("%s: guest page fault\n", __func__);
+ if (!fault->prefetch)
+ kvm_inject_emulated_page_fault(vcpu, &walker.fault);
+
+ return RET_PF_RETRY;
+ }
+
+ fault->gfn = walker.gfn;
+ fault->slot = kvm_vcpu_gfn_to_memslot(vcpu, fault->gfn);
+
+ if (page_fault_handle_page_track(vcpu, fault)) {
+ shadow_page_table_clear_flood(vcpu, fault->addr);
+ return RET_PF_EMULATE;
+ }
+
+ r = mmu_topup_memory_caches(vcpu, true);
+ if (r)
+ return r;
+
+ vcpu->arch.write_fault_to_shadow_pgtable = false;
+
+ is_self_change_mapping = FNAME(is_self_change_mapping)(vcpu,
+ &walker, fault->user, &vcpu->arch.write_fault_to_shadow_pgtable);
+
+ if (is_self_change_mapping)
+ fault->max_level = PG_LEVEL_4K;
+ else
+ fault->max_level = walker.level;
+
+ mmu_seq = vcpu->kvm->mmu_invalidate_seq;
+ smp_rmb();
+
+ r = kvm_faultin_pfn(vcpu, fault);
+ if (r != RET_PF_CONTINUE)
+ return r;
+
+ r = handle_abnormal_pfn(vcpu, fault, walker.pte_access);
+ if (r != RET_PF_CONTINUE)
+ return r;
+
+ /*
+ * Do not change pte_access if the pfn is a mmio page, otherwise
+ * we will cache the incorrect access into mmio spte.
+ */
+ if (fault->write && !(walker.pte_access & ACC_WRITE_MASK) &&
+ !is_cr0_wp(vcpu->arch.mmu) && !fault->user && fault->slot) {
+ walker.pte_access |= ACC_WRITE_MASK;
+ walker.pte_access &= ~ACC_USER_MASK;
+
+ /*
+ * If we converted a user page to a kernel page,
+ * so that the kernel can write to it when cr0.wp=0,
+ * then we should prevent the kernel from executing it
+ * if SMEP is enabled.
+ */
+ if (is_cr4_smep(vcpu->arch.mmu))
+ walker.pte_access &= ~ACC_EXEC_MASK;
+ }
+
+ r = RET_PF_RETRY;
+ write_lock(&vcpu->kvm->mmu_lock);
+
+ if (is_page_fault_stale(vcpu, fault, mmu_seq))
+ goto out_unlock;
+
+ r = make_mmu_pages_available(vcpu);
+ if (r)
+ goto out_unlock;
+ r = FNAME(fetch)(vcpu, fault, &walker);
+
+out_unlock:
+ write_unlock(&vcpu->kvm->mmu_lock);
+ kvm_release_pfn_clean(fault->pfn);
+ return r;
+}
+
+static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp)
+{
+ int offset = 0;
+
+ WARN_ON(sp->role.level != PG_LEVEL_4K);
+
+ if (PTTYPE == 32)
+ offset = sp->role.quadrant << SPTE_LEVEL_BITS;
+
+ return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
+}
+
+static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa)
+{
+ struct kvm_shadow_walk_iterator iterator;
+ struct kvm_mmu_page *sp;
+ u64 old_spte;
+ int level;
+ u64 *sptep;
+
+ vcpu_clear_mmio_info(vcpu, gva);
+
+ /*
+ * No need to check return value here, rmap_can_add() can
+ * help us to skip pte prefetch later.
+ */
+ mmu_topup_memory_caches(vcpu, true);
+
+ if (!VALID_PAGE(root_hpa)) {
+ WARN_ON(1);
+ return;
+ }
+
+ write_lock(&vcpu->kvm->mmu_lock);
+ for_each_shadow_entry_using_root(vcpu, root_hpa, gva, iterator) {
+ level = iterator.level;
+ sptep = iterator.sptep;
+
+ sp = sptep_to_sp(sptep);
+ old_spte = *sptep;
+ if (is_last_spte(old_spte, level)) {
+ pt_element_t gpte;
+ gpa_t pte_gpa;
+
+ if (!sp->unsync)
+ break;
+
+ pte_gpa = FNAME(get_level1_sp_gpa)(sp);
+ pte_gpa += spte_index(sptep) * sizeof(pt_element_t);
+
+ mmu_page_zap_pte(vcpu->kvm, sp, sptep, NULL);
+ if (is_shadow_present_pte(old_spte))
+ kvm_flush_remote_tlbs_with_address(vcpu->kvm,
+ sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level));
+
+ if (!rmap_can_add(vcpu))
+ break;
+
+ if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
+ sizeof(pt_element_t)))
+ break;
+
+ FNAME(prefetch_gpte)(vcpu, sp, sptep, gpte, false);
+ }
+
+ if (!sp->unsync_children)
+ break;
+ }
+ write_unlock(&vcpu->kvm->mmu_lock);
+}
+
+/* Note, @addr is a GPA when gva_to_gpa() translates an L2 GPA to an L1 GPA. */
+static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
+ gpa_t addr, u64 access,
+ struct x86_exception *exception)
+{
+ struct guest_walker walker;
+ gpa_t gpa = INVALID_GPA;
+ int r;
+
+#ifndef CONFIG_X86_64
+ /* A 64-bit GVA should be impossible on 32-bit KVM. */
+ WARN_ON_ONCE((addr >> 32) && mmu == vcpu->arch.walk_mmu);
+#endif
+
+ r = FNAME(walk_addr_generic)(&walker, vcpu, mmu, addr, access);
+
+ if (r) {
+ gpa = gfn_to_gpa(walker.gfn);
+ gpa |= addr & ~PAGE_MASK;
+ } else if (exception)
+ *exception = walker.fault;
+
+ return gpa;
+}
+
+/*
+ * Using the information in sp->shadowed_translation (kvm_mmu_page_get_gfn()) is
+ * safe because:
+ * - The spte has a reference to the struct page, so the pfn for a given gfn
+ * can't change unless all sptes pointing to it are nuked first.
+ *
+ * Returns
+ * < 0: the sp should be zapped
+ * 0: the sp is synced and no tlb flushing is required
+ * > 0: the sp is synced and tlb flushing is required
+ */
+static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
+{
+ union kvm_mmu_page_role root_role = vcpu->arch.mmu->root_role;
+ int i;
+ bool host_writable;
+ gpa_t first_pte_gpa;
+ bool flush = false;
+
+ /*
+ * Ignore various flags when verifying that it's safe to sync a shadow
+ * page using the current MMU context.
+ *
+ * - level: not part of the overall MMU role and will never match as the MMU's
+ * level tracks the root level
+ * - access: updated based on the new guest PTE
+ * - quadrant: not part of the overall MMU role (similar to level)
+ */
+ const union kvm_mmu_page_role sync_role_ign = {
+ .level = 0xf,
+ .access = 0x7,
+ .quadrant = 0x3,
+ .passthrough = 0x1,
+ };
+
+ /*
+ * Direct pages can never be unsync, and KVM should never attempt to
+ * sync a shadow page for a different MMU context, e.g. if the role
+ * differs then the memslot lookup (SMM vs. non-SMM) will be bogus, the
+ * reserved bits checks will be wrong, etc...
+ */
+ if (WARN_ON_ONCE(sp->role.direct ||
+ (sp->role.word ^ root_role.word) & ~sync_role_ign.word))
+ return -1;
+
+ first_pte_gpa = FNAME(get_level1_sp_gpa)(sp);
+
+ for (i = 0; i < SPTE_ENT_PER_PAGE; i++) {
+ u64 *sptep, spte;
+ struct kvm_memory_slot *slot;
+ unsigned pte_access;
+ pt_element_t gpte;
+ gpa_t pte_gpa;
+ gfn_t gfn;
+
+ if (!sp->spt[i])
+ continue;
+
+ pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
+
+ if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
+ sizeof(pt_element_t)))
+ return -1;
+
+ if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) {
+ flush = true;
+ continue;
+ }
+
+ gfn = gpte_to_gfn(gpte);
+ pte_access = sp->role.access;
+ pte_access &= FNAME(gpte_access)(gpte);
+ FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte);
+
+ if (sync_mmio_spte(vcpu, &sp->spt[i], gfn, pte_access))
+ continue;
+
+ /*
+ * Drop the SPTE if the new protections would result in a RWX=0
+ * SPTE or if the gfn is changing. The RWX=0 case only affects
+ * EPT with execute-only support, i.e. EPT without an effective
+ * "present" bit, as all other paging modes will create a
+ * read-only SPTE if pte_access is zero.
+ */
+ if ((!pte_access && !shadow_present_mask) ||
+ gfn != kvm_mmu_page_get_gfn(sp, i)) {
+ drop_spte(vcpu->kvm, &sp->spt[i]);
+ flush = true;
+ continue;
+ }
+
+ /* Update the shadowed access bits in case they changed. */
+ kvm_mmu_page_set_access(sp, i, pte_access);
+
+ sptep = &sp->spt[i];
+ spte = *sptep;
+ host_writable = spte & shadow_host_writable_mask;
+ slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
+ make_spte(vcpu, sp, slot, pte_access, gfn,
+ spte_to_pfn(spte), spte, true, false,
+ host_writable, &spte);
+
+ flush |= mmu_spte_update(sptep, spte);
+ }
+
+ /*
+ * Note, any flush is purely for KVM's correctness, e.g. when dropping
+ * an existing SPTE or clearing W/A/D bits to ensure an mmu_notifier
+ * unmap or dirty logging event doesn't fail to flush. The guest is
+ * responsible for flushing the TLB to ensure any changes in protection
+ * bits are recognized, i.e. until the guest flushes or page faults on
+ * a relevant address, KVM is architecturally allowed to let vCPUs use
+ * cached translations with the old protection bits.
+ */
+ return flush;
+}
+
+#undef pt_element_t
+#undef guest_walker
+#undef FNAME
+#undef PT_BASE_ADDR_MASK
+#undef PT_INDEX
+#undef PT_LVL_ADDR_MASK
+#undef PT_LVL_OFFSET_MASK
+#undef PT_LEVEL_BITS
+#undef PT_MAX_FULL_LEVELS
+#undef gpte_to_gfn
+#undef gpte_to_gfn_lvl
+#undef PT_GUEST_ACCESSED_MASK
+#undef PT_GUEST_DIRTY_MASK
+#undef PT_GUEST_DIRTY_SHIFT
+#undef PT_GUEST_ACCESSED_SHIFT
+#undef PT_HAVE_ACCESSED_DIRTY