summaryrefslogtreecommitdiffstats
path: root/drivers/dma/sh/rcar-dmac.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
commit2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch)
tree848558de17fb3008cdf4d861b01ac7781903ce39 /drivers/dma/sh/rcar-dmac.c
parentInitial commit. (diff)
downloadlinux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz
linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip
Adding upstream version 6.1.76.upstream/6.1.76
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r--drivers/dma/sh/rcar-dmac.c2052
1 files changed, 2052 insertions, 0 deletions
diff --git a/drivers/dma/sh/rcar-dmac.c b/drivers/dma/sh/rcar-dmac.c
new file mode 100644
index 000000000..641d689d1
--- /dev/null
+++ b/drivers/dma/sh/rcar-dmac.c
@@ -0,0 +1,2052 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Renesas R-Car Gen2/Gen3 DMA Controller Driver
+ *
+ * Copyright (C) 2014-2019 Renesas Electronics Inc.
+ *
+ * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
+ */
+
+#include <linux/delay.h>
+#include <linux/dma-mapping.h>
+#include <linux/dmaengine.h>
+#include <linux/interrupt.h>
+#include <linux/list.h>
+#include <linux/module.h>
+#include <linux/mutex.h>
+#include <linux/of.h>
+#include <linux/of_dma.h>
+#include <linux/of_platform.h>
+#include <linux/platform_device.h>
+#include <linux/pm_runtime.h>
+#include <linux/slab.h>
+#include <linux/spinlock.h>
+
+#include "../dmaengine.h"
+
+/*
+ * struct rcar_dmac_xfer_chunk - Descriptor for a hardware transfer
+ * @node: entry in the parent's chunks list
+ * @src_addr: device source address
+ * @dst_addr: device destination address
+ * @size: transfer size in bytes
+ */
+struct rcar_dmac_xfer_chunk {
+ struct list_head node;
+
+ dma_addr_t src_addr;
+ dma_addr_t dst_addr;
+ u32 size;
+};
+
+/*
+ * struct rcar_dmac_hw_desc - Hardware descriptor for a transfer chunk
+ * @sar: value of the SAR register (source address)
+ * @dar: value of the DAR register (destination address)
+ * @tcr: value of the TCR register (transfer count)
+ */
+struct rcar_dmac_hw_desc {
+ u32 sar;
+ u32 dar;
+ u32 tcr;
+ u32 reserved;
+} __attribute__((__packed__));
+
+/*
+ * struct rcar_dmac_desc - R-Car Gen2 DMA Transfer Descriptor
+ * @async_tx: base DMA asynchronous transaction descriptor
+ * @direction: direction of the DMA transfer
+ * @xfer_shift: log2 of the transfer size
+ * @chcr: value of the channel configuration register for this transfer
+ * @node: entry in the channel's descriptors lists
+ * @chunks: list of transfer chunks for this transfer
+ * @running: the transfer chunk being currently processed
+ * @nchunks: number of transfer chunks for this transfer
+ * @hwdescs.use: whether the transfer descriptor uses hardware descriptors
+ * @hwdescs.mem: hardware descriptors memory for the transfer
+ * @hwdescs.dma: device address of the hardware descriptors memory
+ * @hwdescs.size: size of the hardware descriptors in bytes
+ * @size: transfer size in bytes
+ * @cyclic: when set indicates that the DMA transfer is cyclic
+ */
+struct rcar_dmac_desc {
+ struct dma_async_tx_descriptor async_tx;
+ enum dma_transfer_direction direction;
+ unsigned int xfer_shift;
+ u32 chcr;
+
+ struct list_head node;
+ struct list_head chunks;
+ struct rcar_dmac_xfer_chunk *running;
+ unsigned int nchunks;
+
+ struct {
+ bool use;
+ struct rcar_dmac_hw_desc *mem;
+ dma_addr_t dma;
+ size_t size;
+ } hwdescs;
+
+ unsigned int size;
+ bool cyclic;
+};
+
+#define to_rcar_dmac_desc(d) container_of(d, struct rcar_dmac_desc, async_tx)
+
+/*
+ * struct rcar_dmac_desc_page - One page worth of descriptors
+ * @node: entry in the channel's pages list
+ * @descs: array of DMA descriptors
+ * @chunks: array of transfer chunk descriptors
+ */
+struct rcar_dmac_desc_page {
+ struct list_head node;
+
+ union {
+ DECLARE_FLEX_ARRAY(struct rcar_dmac_desc, descs);
+ DECLARE_FLEX_ARRAY(struct rcar_dmac_xfer_chunk, chunks);
+ };
+};
+
+#define RCAR_DMAC_DESCS_PER_PAGE \
+ ((PAGE_SIZE - offsetof(struct rcar_dmac_desc_page, descs)) / \
+ sizeof(struct rcar_dmac_desc))
+#define RCAR_DMAC_XFER_CHUNKS_PER_PAGE \
+ ((PAGE_SIZE - offsetof(struct rcar_dmac_desc_page, chunks)) / \
+ sizeof(struct rcar_dmac_xfer_chunk))
+
+/*
+ * struct rcar_dmac_chan_slave - Slave configuration
+ * @slave_addr: slave memory address
+ * @xfer_size: size (in bytes) of hardware transfers
+ */
+struct rcar_dmac_chan_slave {
+ phys_addr_t slave_addr;
+ unsigned int xfer_size;
+};
+
+/*
+ * struct rcar_dmac_chan_map - Map of slave device phys to dma address
+ * @addr: slave dma address
+ * @dir: direction of mapping
+ * @slave: slave configuration that is mapped
+ */
+struct rcar_dmac_chan_map {
+ dma_addr_t addr;
+ enum dma_data_direction dir;
+ struct rcar_dmac_chan_slave slave;
+};
+
+/*
+ * struct rcar_dmac_chan - R-Car Gen2 DMA Controller Channel
+ * @chan: base DMA channel object
+ * @iomem: channel I/O memory base
+ * @index: index of this channel in the controller
+ * @irq: channel IRQ
+ * @src: slave memory address and size on the source side
+ * @dst: slave memory address and size on the destination side
+ * @mid_rid: hardware MID/RID for the DMA client using this channel
+ * @lock: protects the channel CHCR register and the desc members
+ * @desc.free: list of free descriptors
+ * @desc.pending: list of pending descriptors (submitted with tx_submit)
+ * @desc.active: list of active descriptors (activated with issue_pending)
+ * @desc.done: list of completed descriptors
+ * @desc.wait: list of descriptors waiting for an ack
+ * @desc.running: the descriptor being processed (a member of the active list)
+ * @desc.chunks_free: list of free transfer chunk descriptors
+ * @desc.pages: list of pages used by allocated descriptors
+ */
+struct rcar_dmac_chan {
+ struct dma_chan chan;
+ void __iomem *iomem;
+ unsigned int index;
+ int irq;
+
+ struct rcar_dmac_chan_slave src;
+ struct rcar_dmac_chan_slave dst;
+ struct rcar_dmac_chan_map map;
+ int mid_rid;
+
+ spinlock_t lock;
+
+ struct {
+ struct list_head free;
+ struct list_head pending;
+ struct list_head active;
+ struct list_head done;
+ struct list_head wait;
+ struct rcar_dmac_desc *running;
+
+ struct list_head chunks_free;
+
+ struct list_head pages;
+ } desc;
+};
+
+#define to_rcar_dmac_chan(c) container_of(c, struct rcar_dmac_chan, chan)
+
+/*
+ * struct rcar_dmac - R-Car Gen2 DMA Controller
+ * @engine: base DMA engine object
+ * @dev: the hardware device
+ * @dmac_base: remapped base register block
+ * @chan_base: remapped channel register block (optional)
+ * @n_channels: number of available channels
+ * @channels: array of DMAC channels
+ * @channels_mask: bitfield of which DMA channels are managed by this driver
+ * @modules: bitmask of client modules in use
+ */
+struct rcar_dmac {
+ struct dma_device engine;
+ struct device *dev;
+ void __iomem *dmac_base;
+ void __iomem *chan_base;
+
+ unsigned int n_channels;
+ struct rcar_dmac_chan *channels;
+ u32 channels_mask;
+
+ DECLARE_BITMAP(modules, 256);
+};
+
+#define to_rcar_dmac(d) container_of(d, struct rcar_dmac, engine)
+
+#define for_each_rcar_dmac_chan(i, dmac, chan) \
+ for (i = 0, chan = &(dmac)->channels[0]; i < (dmac)->n_channels; i++, chan++) \
+ if (!((dmac)->channels_mask & BIT(i))) continue; else
+
+/*
+ * struct rcar_dmac_of_data - This driver's OF data
+ * @chan_offset_base: DMAC channels base offset
+ * @chan_offset_stride: DMAC channels offset stride
+ */
+struct rcar_dmac_of_data {
+ u32 chan_offset_base;
+ u32 chan_offset_stride;
+};
+
+/* -----------------------------------------------------------------------------
+ * Registers
+ */
+
+#define RCAR_DMAISTA 0x0020
+#define RCAR_DMASEC 0x0030
+#define RCAR_DMAOR 0x0060
+#define RCAR_DMAOR_PRI_FIXED (0 << 8)
+#define RCAR_DMAOR_PRI_ROUND_ROBIN (3 << 8)
+#define RCAR_DMAOR_AE (1 << 2)
+#define RCAR_DMAOR_DME (1 << 0)
+#define RCAR_DMACHCLR 0x0080 /* Not on R-Car Gen4 */
+#define RCAR_DMADPSEC 0x00a0
+
+#define RCAR_DMASAR 0x0000
+#define RCAR_DMADAR 0x0004
+#define RCAR_DMATCR 0x0008
+#define RCAR_DMATCR_MASK 0x00ffffff
+#define RCAR_DMATSR 0x0028
+#define RCAR_DMACHCR 0x000c
+#define RCAR_DMACHCR_CAE (1 << 31)
+#define RCAR_DMACHCR_CAIE (1 << 30)
+#define RCAR_DMACHCR_DPM_DISABLED (0 << 28)
+#define RCAR_DMACHCR_DPM_ENABLED (1 << 28)
+#define RCAR_DMACHCR_DPM_REPEAT (2 << 28)
+#define RCAR_DMACHCR_DPM_INFINITE (3 << 28)
+#define RCAR_DMACHCR_RPT_SAR (1 << 27)
+#define RCAR_DMACHCR_RPT_DAR (1 << 26)
+#define RCAR_DMACHCR_RPT_TCR (1 << 25)
+#define RCAR_DMACHCR_DPB (1 << 22)
+#define RCAR_DMACHCR_DSE (1 << 19)
+#define RCAR_DMACHCR_DSIE (1 << 18)
+#define RCAR_DMACHCR_TS_1B ((0 << 20) | (0 << 3))
+#define RCAR_DMACHCR_TS_2B ((0 << 20) | (1 << 3))
+#define RCAR_DMACHCR_TS_4B ((0 << 20) | (2 << 3))
+#define RCAR_DMACHCR_TS_16B ((0 << 20) | (3 << 3))
+#define RCAR_DMACHCR_TS_32B ((1 << 20) | (0 << 3))
+#define RCAR_DMACHCR_TS_64B ((1 << 20) | (1 << 3))
+#define RCAR_DMACHCR_TS_8B ((1 << 20) | (3 << 3))
+#define RCAR_DMACHCR_DM_FIXED (0 << 14)
+#define RCAR_DMACHCR_DM_INC (1 << 14)
+#define RCAR_DMACHCR_DM_DEC (2 << 14)
+#define RCAR_DMACHCR_SM_FIXED (0 << 12)
+#define RCAR_DMACHCR_SM_INC (1 << 12)
+#define RCAR_DMACHCR_SM_DEC (2 << 12)
+#define RCAR_DMACHCR_RS_AUTO (4 << 8)
+#define RCAR_DMACHCR_RS_DMARS (8 << 8)
+#define RCAR_DMACHCR_IE (1 << 2)
+#define RCAR_DMACHCR_TE (1 << 1)
+#define RCAR_DMACHCR_DE (1 << 0)
+#define RCAR_DMATCRB 0x0018
+#define RCAR_DMATSRB 0x0038
+#define RCAR_DMACHCRB 0x001c
+#define RCAR_DMACHCRB_DCNT(n) ((n) << 24)
+#define RCAR_DMACHCRB_DPTR_MASK (0xff << 16)
+#define RCAR_DMACHCRB_DPTR_SHIFT 16
+#define RCAR_DMACHCRB_DRST (1 << 15)
+#define RCAR_DMACHCRB_DTS (1 << 8)
+#define RCAR_DMACHCRB_SLM_NORMAL (0 << 4)
+#define RCAR_DMACHCRB_SLM_CLK(n) ((8 | (n)) << 4)
+#define RCAR_DMACHCRB_PRI(n) ((n) << 0)
+#define RCAR_DMARS 0x0040
+#define RCAR_DMABUFCR 0x0048
+#define RCAR_DMABUFCR_MBU(n) ((n) << 16)
+#define RCAR_DMABUFCR_ULB(n) ((n) << 0)
+#define RCAR_DMADPBASE 0x0050
+#define RCAR_DMADPBASE_MASK 0xfffffff0
+#define RCAR_DMADPBASE_SEL (1 << 0)
+#define RCAR_DMADPCR 0x0054
+#define RCAR_DMADPCR_DIPT(n) ((n) << 24)
+#define RCAR_DMAFIXSAR 0x0010
+#define RCAR_DMAFIXDAR 0x0014
+#define RCAR_DMAFIXDPBASE 0x0060
+
+/* For R-Car Gen4 */
+#define RCAR_GEN4_DMACHCLR 0x0100
+
+/* Hardcode the MEMCPY transfer size to 4 bytes. */
+#define RCAR_DMAC_MEMCPY_XFER_SIZE 4
+
+/* -----------------------------------------------------------------------------
+ * Device access
+ */
+
+static void rcar_dmac_write(struct rcar_dmac *dmac, u32 reg, u32 data)
+{
+ if (reg == RCAR_DMAOR)
+ writew(data, dmac->dmac_base + reg);
+ else
+ writel(data, dmac->dmac_base + reg);
+}
+
+static u32 rcar_dmac_read(struct rcar_dmac *dmac, u32 reg)
+{
+ if (reg == RCAR_DMAOR)
+ return readw(dmac->dmac_base + reg);
+ else
+ return readl(dmac->dmac_base + reg);
+}
+
+static u32 rcar_dmac_chan_read(struct rcar_dmac_chan *chan, u32 reg)
+{
+ if (reg == RCAR_DMARS)
+ return readw(chan->iomem + reg);
+ else
+ return readl(chan->iomem + reg);
+}
+
+static void rcar_dmac_chan_write(struct rcar_dmac_chan *chan, u32 reg, u32 data)
+{
+ if (reg == RCAR_DMARS)
+ writew(data, chan->iomem + reg);
+ else
+ writel(data, chan->iomem + reg);
+}
+
+static void rcar_dmac_chan_clear(struct rcar_dmac *dmac,
+ struct rcar_dmac_chan *chan)
+{
+ if (dmac->chan_base)
+ rcar_dmac_chan_write(chan, RCAR_GEN4_DMACHCLR, 1);
+ else
+ rcar_dmac_write(dmac, RCAR_DMACHCLR, BIT(chan->index));
+}
+
+static void rcar_dmac_chan_clear_all(struct rcar_dmac *dmac)
+{
+ struct rcar_dmac_chan *chan;
+ unsigned int i;
+
+ if (dmac->chan_base) {
+ for_each_rcar_dmac_chan(i, dmac, chan)
+ rcar_dmac_chan_write(chan, RCAR_GEN4_DMACHCLR, 1);
+ } else {
+ rcar_dmac_write(dmac, RCAR_DMACHCLR, dmac->channels_mask);
+ }
+}
+
+/* -----------------------------------------------------------------------------
+ * Initialization and configuration
+ */
+
+static bool rcar_dmac_chan_is_busy(struct rcar_dmac_chan *chan)
+{
+ u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
+
+ return !!(chcr & (RCAR_DMACHCR_DE | RCAR_DMACHCR_TE));
+}
+
+static void rcar_dmac_chan_start_xfer(struct rcar_dmac_chan *chan)
+{
+ struct rcar_dmac_desc *desc = chan->desc.running;
+ u32 chcr = desc->chcr;
+
+ WARN_ON_ONCE(rcar_dmac_chan_is_busy(chan));
+
+ if (chan->mid_rid >= 0)
+ rcar_dmac_chan_write(chan, RCAR_DMARS, chan->mid_rid);
+
+ if (desc->hwdescs.use) {
+ struct rcar_dmac_xfer_chunk *chunk =
+ list_first_entry(&desc->chunks,
+ struct rcar_dmac_xfer_chunk, node);
+
+ dev_dbg(chan->chan.device->dev,
+ "chan%u: queue desc %p: %u@%pad\n",
+ chan->index, desc, desc->nchunks, &desc->hwdescs.dma);
+
+#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
+ rcar_dmac_chan_write(chan, RCAR_DMAFIXSAR,
+ chunk->src_addr >> 32);
+ rcar_dmac_chan_write(chan, RCAR_DMAFIXDAR,
+ chunk->dst_addr >> 32);
+ rcar_dmac_chan_write(chan, RCAR_DMAFIXDPBASE,
+ desc->hwdescs.dma >> 32);
+#endif
+ rcar_dmac_chan_write(chan, RCAR_DMADPBASE,
+ (desc->hwdescs.dma & 0xfffffff0) |
+ RCAR_DMADPBASE_SEL);
+ rcar_dmac_chan_write(chan, RCAR_DMACHCRB,
+ RCAR_DMACHCRB_DCNT(desc->nchunks - 1) |
+ RCAR_DMACHCRB_DRST);
+
+ /*
+ * Errata: When descriptor memory is accessed through an IOMMU
+ * the DMADAR register isn't initialized automatically from the
+ * first descriptor at beginning of transfer by the DMAC like it
+ * should. Initialize it manually with the destination address
+ * of the first chunk.
+ */
+ rcar_dmac_chan_write(chan, RCAR_DMADAR,
+ chunk->dst_addr & 0xffffffff);
+
+ /*
+ * Program the descriptor stage interrupt to occur after the end
+ * of the first stage.
+ */
+ rcar_dmac_chan_write(chan, RCAR_DMADPCR, RCAR_DMADPCR_DIPT(1));
+
+ chcr |= RCAR_DMACHCR_RPT_SAR | RCAR_DMACHCR_RPT_DAR
+ | RCAR_DMACHCR_RPT_TCR | RCAR_DMACHCR_DPB;
+
+ /*
+ * If the descriptor isn't cyclic enable normal descriptor mode
+ * and the transfer completion interrupt.
+ */
+ if (!desc->cyclic)
+ chcr |= RCAR_DMACHCR_DPM_ENABLED | RCAR_DMACHCR_IE;
+ /*
+ * If the descriptor is cyclic and has a callback enable the
+ * descriptor stage interrupt in infinite repeat mode.
+ */
+ else if (desc->async_tx.callback)
+ chcr |= RCAR_DMACHCR_DPM_INFINITE | RCAR_DMACHCR_DSIE;
+ /*
+ * Otherwise just select infinite repeat mode without any
+ * interrupt.
+ */
+ else
+ chcr |= RCAR_DMACHCR_DPM_INFINITE;
+ } else {
+ struct rcar_dmac_xfer_chunk *chunk = desc->running;
+
+ dev_dbg(chan->chan.device->dev,
+ "chan%u: queue chunk %p: %u@%pad -> %pad\n",
+ chan->index, chunk, chunk->size, &chunk->src_addr,
+ &chunk->dst_addr);
+
+#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
+ rcar_dmac_chan_write(chan, RCAR_DMAFIXSAR,
+ chunk->src_addr >> 32);
+ rcar_dmac_chan_write(chan, RCAR_DMAFIXDAR,
+ chunk->dst_addr >> 32);
+#endif
+ rcar_dmac_chan_write(chan, RCAR_DMASAR,
+ chunk->src_addr & 0xffffffff);
+ rcar_dmac_chan_write(chan, RCAR_DMADAR,
+ chunk->dst_addr & 0xffffffff);
+ rcar_dmac_chan_write(chan, RCAR_DMATCR,
+ chunk->size >> desc->xfer_shift);
+
+ chcr |= RCAR_DMACHCR_DPM_DISABLED | RCAR_DMACHCR_IE;
+ }
+
+ rcar_dmac_chan_write(chan, RCAR_DMACHCR,
+ chcr | RCAR_DMACHCR_DE | RCAR_DMACHCR_CAIE);
+}
+
+static int rcar_dmac_init(struct rcar_dmac *dmac)
+{
+ u16 dmaor;
+
+ /* Clear all channels and enable the DMAC globally. */
+ rcar_dmac_chan_clear_all(dmac);
+ rcar_dmac_write(dmac, RCAR_DMAOR,
+ RCAR_DMAOR_PRI_FIXED | RCAR_DMAOR_DME);
+
+ dmaor = rcar_dmac_read(dmac, RCAR_DMAOR);
+ if ((dmaor & (RCAR_DMAOR_AE | RCAR_DMAOR_DME)) != RCAR_DMAOR_DME) {
+ dev_warn(dmac->dev, "DMAOR initialization failed.\n");
+ return -EIO;
+ }
+
+ return 0;
+}
+
+/* -----------------------------------------------------------------------------
+ * Descriptors submission
+ */
+
+static dma_cookie_t rcar_dmac_tx_submit(struct dma_async_tx_descriptor *tx)
+{
+ struct rcar_dmac_chan *chan = to_rcar_dmac_chan(tx->chan);
+ struct rcar_dmac_desc *desc = to_rcar_dmac_desc(tx);
+ unsigned long flags;
+ dma_cookie_t cookie;
+
+ spin_lock_irqsave(&chan->lock, flags);
+
+ cookie = dma_cookie_assign(tx);
+
+ dev_dbg(chan->chan.device->dev, "chan%u: submit #%d@%p\n",
+ chan->index, tx->cookie, desc);
+
+ list_add_tail(&desc->node, &chan->desc.pending);
+ desc->running = list_first_entry(&desc->chunks,
+ struct rcar_dmac_xfer_chunk, node);
+
+ spin_unlock_irqrestore(&chan->lock, flags);
+
+ return cookie;
+}
+
+/* -----------------------------------------------------------------------------
+ * Descriptors allocation and free
+ */
+
+/*
+ * rcar_dmac_desc_alloc - Allocate a page worth of DMA descriptors
+ * @chan: the DMA channel
+ * @gfp: allocation flags
+ */
+static int rcar_dmac_desc_alloc(struct rcar_dmac_chan *chan, gfp_t gfp)
+{
+ struct rcar_dmac_desc_page *page;
+ unsigned long flags;
+ LIST_HEAD(list);
+ unsigned int i;
+
+ page = (void *)get_zeroed_page(gfp);
+ if (!page)
+ return -ENOMEM;
+
+ for (i = 0; i < RCAR_DMAC_DESCS_PER_PAGE; ++i) {
+ struct rcar_dmac_desc *desc = &page->descs[i];
+
+ dma_async_tx_descriptor_init(&desc->async_tx, &chan->chan);
+ desc->async_tx.tx_submit = rcar_dmac_tx_submit;
+ INIT_LIST_HEAD(&desc->chunks);
+
+ list_add_tail(&desc->node, &list);
+ }
+
+ spin_lock_irqsave(&chan->lock, flags);
+ list_splice_tail(&list, &chan->desc.free);
+ list_add_tail(&page->node, &chan->desc.pages);
+ spin_unlock_irqrestore(&chan->lock, flags);
+
+ return 0;
+}
+
+/*
+ * rcar_dmac_desc_put - Release a DMA transfer descriptor
+ * @chan: the DMA channel
+ * @desc: the descriptor
+ *
+ * Put the descriptor and its transfer chunk descriptors back in the channel's
+ * free descriptors lists. The descriptor's chunks list will be reinitialized to
+ * an empty list as a result.
+ *
+ * The descriptor must have been removed from the channel's lists before calling
+ * this function.
+ */
+static void rcar_dmac_desc_put(struct rcar_dmac_chan *chan,
+ struct rcar_dmac_desc *desc)
+{
+ unsigned long flags;
+
+ spin_lock_irqsave(&chan->lock, flags);
+ list_splice_tail_init(&desc->chunks, &chan->desc.chunks_free);
+ list_add(&desc->node, &chan->desc.free);
+ spin_unlock_irqrestore(&chan->lock, flags);
+}
+
+static void rcar_dmac_desc_recycle_acked(struct rcar_dmac_chan *chan)
+{
+ struct rcar_dmac_desc *desc, *_desc;
+ unsigned long flags;
+ LIST_HEAD(list);
+
+ /*
+ * We have to temporarily move all descriptors from the wait list to a
+ * local list as iterating over the wait list, even with
+ * list_for_each_entry_safe, isn't safe if we release the channel lock
+ * around the rcar_dmac_desc_put() call.
+ */
+ spin_lock_irqsave(&chan->lock, flags);
+ list_splice_init(&chan->desc.wait, &list);
+ spin_unlock_irqrestore(&chan->lock, flags);
+
+ list_for_each_entry_safe(desc, _desc, &list, node) {
+ if (async_tx_test_ack(&desc->async_tx)) {
+ list_del(&desc->node);
+ rcar_dmac_desc_put(chan, desc);
+ }
+ }
+
+ if (list_empty(&list))
+ return;
+
+ /* Put the remaining descriptors back in the wait list. */
+ spin_lock_irqsave(&chan->lock, flags);
+ list_splice(&list, &chan->desc.wait);
+ spin_unlock_irqrestore(&chan->lock, flags);
+}
+
+/*
+ * rcar_dmac_desc_get - Allocate a descriptor for a DMA transfer
+ * @chan: the DMA channel
+ *
+ * Locking: This function must be called in a non-atomic context.
+ *
+ * Return: A pointer to the allocated descriptor or NULL if no descriptor can
+ * be allocated.
+ */
+static struct rcar_dmac_desc *rcar_dmac_desc_get(struct rcar_dmac_chan *chan)
+{
+ struct rcar_dmac_desc *desc;
+ unsigned long flags;
+ int ret;
+
+ /* Recycle acked descriptors before attempting allocation. */
+ rcar_dmac_desc_recycle_acked(chan);
+
+ spin_lock_irqsave(&chan->lock, flags);
+
+ while (list_empty(&chan->desc.free)) {
+ /*
+ * No free descriptors, allocate a page worth of them and try
+ * again, as someone else could race us to get the newly
+ * allocated descriptors. If the allocation fails return an
+ * error.
+ */
+ spin_unlock_irqrestore(&chan->lock, flags);
+ ret = rcar_dmac_desc_alloc(chan, GFP_NOWAIT);
+ if (ret < 0)
+ return NULL;
+ spin_lock_irqsave(&chan->lock, flags);
+ }
+
+ desc = list_first_entry(&chan->desc.free, struct rcar_dmac_desc, node);
+ list_del(&desc->node);
+
+ spin_unlock_irqrestore(&chan->lock, flags);
+
+ return desc;
+}
+
+/*
+ * rcar_dmac_xfer_chunk_alloc - Allocate a page worth of transfer chunks
+ * @chan: the DMA channel
+ * @gfp: allocation flags
+ */
+static int rcar_dmac_xfer_chunk_alloc(struct rcar_dmac_chan *chan, gfp_t gfp)
+{
+ struct rcar_dmac_desc_page *page;
+ unsigned long flags;
+ LIST_HEAD(list);
+ unsigned int i;
+
+ page = (void *)get_zeroed_page(gfp);
+ if (!page)
+ return -ENOMEM;
+
+ for (i = 0; i < RCAR_DMAC_XFER_CHUNKS_PER_PAGE; ++i) {
+ struct rcar_dmac_xfer_chunk *chunk = &page->chunks[i];
+
+ list_add_tail(&chunk->node, &list);
+ }
+
+ spin_lock_irqsave(&chan->lock, flags);
+ list_splice_tail(&list, &chan->desc.chunks_free);
+ list_add_tail(&page->node, &chan->desc.pages);
+ spin_unlock_irqrestore(&chan->lock, flags);
+
+ return 0;
+}
+
+/*
+ * rcar_dmac_xfer_chunk_get - Allocate a transfer chunk for a DMA transfer
+ * @chan: the DMA channel
+ *
+ * Locking: This function must be called in a non-atomic context.
+ *
+ * Return: A pointer to the allocated transfer chunk descriptor or NULL if no
+ * descriptor can be allocated.
+ */
+static struct rcar_dmac_xfer_chunk *
+rcar_dmac_xfer_chunk_get(struct rcar_dmac_chan *chan)
+{
+ struct rcar_dmac_xfer_chunk *chunk;
+ unsigned long flags;
+ int ret;
+
+ spin_lock_irqsave(&chan->lock, flags);
+
+ while (list_empty(&chan->desc.chunks_free)) {
+ /*
+ * No free descriptors, allocate a page worth of them and try
+ * again, as someone else could race us to get the newly
+ * allocated descriptors. If the allocation fails return an
+ * error.
+ */
+ spin_unlock_irqrestore(&chan->lock, flags);
+ ret = rcar_dmac_xfer_chunk_alloc(chan, GFP_NOWAIT);
+ if (ret < 0)
+ return NULL;
+ spin_lock_irqsave(&chan->lock, flags);
+ }
+
+ chunk = list_first_entry(&chan->desc.chunks_free,
+ struct rcar_dmac_xfer_chunk, node);
+ list_del(&chunk->node);
+
+ spin_unlock_irqrestore(&chan->lock, flags);
+
+ return chunk;
+}
+
+static void rcar_dmac_realloc_hwdesc(struct rcar_dmac_chan *chan,
+ struct rcar_dmac_desc *desc, size_t size)
+{
+ /*
+ * dma_alloc_coherent() allocates memory in page size increments. To
+ * avoid reallocating the hardware descriptors when the allocated size
+ * wouldn't change align the requested size to a multiple of the page
+ * size.
+ */
+ size = PAGE_ALIGN(size);
+
+ if (desc->hwdescs.size == size)
+ return;
+
+ if (desc->hwdescs.mem) {
+ dma_free_coherent(chan->chan.device->dev, desc->hwdescs.size,
+ desc->hwdescs.mem, desc->hwdescs.dma);
+ desc->hwdescs.mem = NULL;
+ desc->hwdescs.size = 0;
+ }
+
+ if (!size)
+ return;
+
+ desc->hwdescs.mem = dma_alloc_coherent(chan->chan.device->dev, size,
+ &desc->hwdescs.dma, GFP_NOWAIT);
+ if (!desc->hwdescs.mem)
+ return;
+
+ desc->hwdescs.size = size;
+}
+
+static int rcar_dmac_fill_hwdesc(struct rcar_dmac_chan *chan,
+ struct rcar_dmac_desc *desc)
+{
+ struct rcar_dmac_xfer_chunk *chunk;
+ struct rcar_dmac_hw_desc *hwdesc;
+
+ rcar_dmac_realloc_hwdesc(chan, desc, desc->nchunks * sizeof(*hwdesc));
+
+ hwdesc = desc->hwdescs.mem;
+ if (!hwdesc)
+ return -ENOMEM;
+
+ list_for_each_entry(chunk, &desc->chunks, node) {
+ hwdesc->sar = chunk->src_addr;
+ hwdesc->dar = chunk->dst_addr;
+ hwdesc->tcr = chunk->size >> desc->xfer_shift;
+ hwdesc++;
+ }
+
+ return 0;
+}
+
+/* -----------------------------------------------------------------------------
+ * Stop and reset
+ */
+static void rcar_dmac_chcr_de_barrier(struct rcar_dmac_chan *chan)
+{
+ u32 chcr;
+ unsigned int i;
+
+ /*
+ * Ensure that the setting of the DE bit is actually 0 after
+ * clearing it.
+ */
+ for (i = 0; i < 1024; i++) {
+ chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
+ if (!(chcr & RCAR_DMACHCR_DE))
+ return;
+ udelay(1);
+ }
+
+ dev_err(chan->chan.device->dev, "CHCR DE check error\n");
+}
+
+static void rcar_dmac_clear_chcr_de(struct rcar_dmac_chan *chan)
+{
+ u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
+
+ /* set DE=0 and flush remaining data */
+ rcar_dmac_chan_write(chan, RCAR_DMACHCR, (chcr & ~RCAR_DMACHCR_DE));
+
+ /* make sure all remaining data was flushed */
+ rcar_dmac_chcr_de_barrier(chan);
+}
+
+static void rcar_dmac_chan_halt(struct rcar_dmac_chan *chan)
+{
+ u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
+
+ chcr &= ~(RCAR_DMACHCR_DSE | RCAR_DMACHCR_DSIE | RCAR_DMACHCR_IE |
+ RCAR_DMACHCR_TE | RCAR_DMACHCR_DE |
+ RCAR_DMACHCR_CAE | RCAR_DMACHCR_CAIE);
+ rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr);
+ rcar_dmac_chcr_de_barrier(chan);
+}
+
+static void rcar_dmac_chan_reinit(struct rcar_dmac_chan *chan)
+{
+ struct rcar_dmac_desc *desc, *_desc;
+ unsigned long flags;
+ LIST_HEAD(descs);
+
+ spin_lock_irqsave(&chan->lock, flags);
+
+ /* Move all non-free descriptors to the local lists. */
+ list_splice_init(&chan->desc.pending, &descs);
+ list_splice_init(&chan->desc.active, &descs);
+ list_splice_init(&chan->desc.done, &descs);
+ list_splice_init(&chan->desc.wait, &descs);
+
+ chan->desc.running = NULL;
+
+ spin_unlock_irqrestore(&chan->lock, flags);
+
+ list_for_each_entry_safe(desc, _desc, &descs, node) {
+ list_del(&desc->node);
+ rcar_dmac_desc_put(chan, desc);
+ }
+}
+
+static void rcar_dmac_stop_all_chan(struct rcar_dmac *dmac)
+{
+ struct rcar_dmac_chan *chan;
+ unsigned int i;
+
+ /* Stop all channels. */
+ for_each_rcar_dmac_chan(i, dmac, chan) {
+ /* Stop and reinitialize the channel. */
+ spin_lock_irq(&chan->lock);
+ rcar_dmac_chan_halt(chan);
+ spin_unlock_irq(&chan->lock);
+ }
+}
+
+static int rcar_dmac_chan_pause(struct dma_chan *chan)
+{
+ unsigned long flags;
+ struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
+
+ spin_lock_irqsave(&rchan->lock, flags);
+ rcar_dmac_clear_chcr_de(rchan);
+ spin_unlock_irqrestore(&rchan->lock, flags);
+
+ return 0;
+}
+
+/* -----------------------------------------------------------------------------
+ * Descriptors preparation
+ */
+
+static void rcar_dmac_chan_configure_desc(struct rcar_dmac_chan *chan,
+ struct rcar_dmac_desc *desc)
+{
+ static const u32 chcr_ts[] = {
+ RCAR_DMACHCR_TS_1B, RCAR_DMACHCR_TS_2B,
+ RCAR_DMACHCR_TS_4B, RCAR_DMACHCR_TS_8B,
+ RCAR_DMACHCR_TS_16B, RCAR_DMACHCR_TS_32B,
+ RCAR_DMACHCR_TS_64B,
+ };
+
+ unsigned int xfer_size;
+ u32 chcr;
+
+ switch (desc->direction) {
+ case DMA_DEV_TO_MEM:
+ chcr = RCAR_DMACHCR_DM_INC | RCAR_DMACHCR_SM_FIXED
+ | RCAR_DMACHCR_RS_DMARS;
+ xfer_size = chan->src.xfer_size;
+ break;
+
+ case DMA_MEM_TO_DEV:
+ chcr = RCAR_DMACHCR_DM_FIXED | RCAR_DMACHCR_SM_INC
+ | RCAR_DMACHCR_RS_DMARS;
+ xfer_size = chan->dst.xfer_size;
+ break;
+
+ case DMA_MEM_TO_MEM:
+ default:
+ chcr = RCAR_DMACHCR_DM_INC | RCAR_DMACHCR_SM_INC
+ | RCAR_DMACHCR_RS_AUTO;
+ xfer_size = RCAR_DMAC_MEMCPY_XFER_SIZE;
+ break;
+ }
+
+ desc->xfer_shift = ilog2(xfer_size);
+ desc->chcr = chcr | chcr_ts[desc->xfer_shift];
+}
+
+/*
+ * rcar_dmac_chan_prep_sg - prepare transfer descriptors from an SG list
+ *
+ * Common routine for public (MEMCPY) and slave DMA. The MEMCPY case is also
+ * converted to scatter-gather to guarantee consistent locking and a correct
+ * list manipulation. For slave DMA direction carries the usual meaning, and,
+ * logically, the SG list is RAM and the addr variable contains slave address,
+ * e.g., the FIFO I/O register. For MEMCPY direction equals DMA_MEM_TO_MEM
+ * and the SG list contains only one element and points at the source buffer.
+ */
+static struct dma_async_tx_descriptor *
+rcar_dmac_chan_prep_sg(struct rcar_dmac_chan *chan, struct scatterlist *sgl,
+ unsigned int sg_len, dma_addr_t dev_addr,
+ enum dma_transfer_direction dir, unsigned long dma_flags,
+ bool cyclic)
+{
+ struct rcar_dmac_xfer_chunk *chunk;
+ struct rcar_dmac_desc *desc;
+ struct scatterlist *sg;
+ unsigned int nchunks = 0;
+ unsigned int max_chunk_size;
+ unsigned int full_size = 0;
+ bool cross_boundary = false;
+ unsigned int i;
+#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
+ u32 high_dev_addr;
+ u32 high_mem_addr;
+#endif
+
+ desc = rcar_dmac_desc_get(chan);
+ if (!desc)
+ return NULL;
+
+ desc->async_tx.flags = dma_flags;
+ desc->async_tx.cookie = -EBUSY;
+
+ desc->cyclic = cyclic;
+ desc->direction = dir;
+
+ rcar_dmac_chan_configure_desc(chan, desc);
+
+ max_chunk_size = RCAR_DMATCR_MASK << desc->xfer_shift;
+
+ /*
+ * Allocate and fill the transfer chunk descriptors. We own the only
+ * reference to the DMA descriptor, there's no need for locking.
+ */
+ for_each_sg(sgl, sg, sg_len, i) {
+ dma_addr_t mem_addr = sg_dma_address(sg);
+ unsigned int len = sg_dma_len(sg);
+
+ full_size += len;
+
+#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
+ if (i == 0) {
+ high_dev_addr = dev_addr >> 32;
+ high_mem_addr = mem_addr >> 32;
+ }
+
+ if ((dev_addr >> 32 != high_dev_addr) ||
+ (mem_addr >> 32 != high_mem_addr))
+ cross_boundary = true;
+#endif
+ while (len) {
+ unsigned int size = min(len, max_chunk_size);
+
+#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
+ /*
+ * Prevent individual transfers from crossing 4GB
+ * boundaries.
+ */
+ if (dev_addr >> 32 != (dev_addr + size - 1) >> 32) {
+ size = ALIGN(dev_addr, 1ULL << 32) - dev_addr;
+ cross_boundary = true;
+ }
+ if (mem_addr >> 32 != (mem_addr + size - 1) >> 32) {
+ size = ALIGN(mem_addr, 1ULL << 32) - mem_addr;
+ cross_boundary = true;
+ }
+#endif
+
+ chunk = rcar_dmac_xfer_chunk_get(chan);
+ if (!chunk) {
+ rcar_dmac_desc_put(chan, desc);
+ return NULL;
+ }
+
+ if (dir == DMA_DEV_TO_MEM) {
+ chunk->src_addr = dev_addr;
+ chunk->dst_addr = mem_addr;
+ } else {
+ chunk->src_addr = mem_addr;
+ chunk->dst_addr = dev_addr;
+ }
+
+ chunk->size = size;
+
+ dev_dbg(chan->chan.device->dev,
+ "chan%u: chunk %p/%p sgl %u@%p, %u/%u %pad -> %pad\n",
+ chan->index, chunk, desc, i, sg, size, len,
+ &chunk->src_addr, &chunk->dst_addr);
+
+ mem_addr += size;
+ if (dir == DMA_MEM_TO_MEM)
+ dev_addr += size;
+
+ len -= size;
+
+ list_add_tail(&chunk->node, &desc->chunks);
+ nchunks++;
+ }
+ }
+
+ desc->nchunks = nchunks;
+ desc->size = full_size;
+
+ /*
+ * Use hardware descriptor lists if possible when more than one chunk
+ * needs to be transferred (otherwise they don't make much sense).
+ *
+ * Source/Destination address should be located in same 4GiB region
+ * in the 40bit address space when it uses Hardware descriptor,
+ * and cross_boundary is checking it.
+ */
+ desc->hwdescs.use = !cross_boundary && nchunks > 1;
+ if (desc->hwdescs.use) {
+ if (rcar_dmac_fill_hwdesc(chan, desc) < 0)
+ desc->hwdescs.use = false;
+ }
+
+ return &desc->async_tx;
+}
+
+/* -----------------------------------------------------------------------------
+ * DMA engine operations
+ */
+
+static int rcar_dmac_alloc_chan_resources(struct dma_chan *chan)
+{
+ struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
+ int ret;
+
+ INIT_LIST_HEAD(&rchan->desc.chunks_free);
+ INIT_LIST_HEAD(&rchan->desc.pages);
+
+ /* Preallocate descriptors. */
+ ret = rcar_dmac_xfer_chunk_alloc(rchan, GFP_KERNEL);
+ if (ret < 0)
+ return -ENOMEM;
+
+ ret = rcar_dmac_desc_alloc(rchan, GFP_KERNEL);
+ if (ret < 0)
+ return -ENOMEM;
+
+ return pm_runtime_get_sync(chan->device->dev);
+}
+
+static void rcar_dmac_free_chan_resources(struct dma_chan *chan)
+{
+ struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
+ struct rcar_dmac *dmac = to_rcar_dmac(chan->device);
+ struct rcar_dmac_chan_map *map = &rchan->map;
+ struct rcar_dmac_desc_page *page, *_page;
+ struct rcar_dmac_desc *desc;
+ LIST_HEAD(list);
+
+ /* Protect against ISR */
+ spin_lock_irq(&rchan->lock);
+ rcar_dmac_chan_halt(rchan);
+ spin_unlock_irq(&rchan->lock);
+
+ /*
+ * Now no new interrupts will occur, but one might already be
+ * running. Wait for it to finish before freeing resources.
+ */
+ synchronize_irq(rchan->irq);
+
+ if (rchan->mid_rid >= 0) {
+ /* The caller is holding dma_list_mutex */
+ clear_bit(rchan->mid_rid, dmac->modules);
+ rchan->mid_rid = -EINVAL;
+ }
+
+ list_splice_init(&rchan->desc.free, &list);
+ list_splice_init(&rchan->desc.pending, &list);
+ list_splice_init(&rchan->desc.active, &list);
+ list_splice_init(&rchan->desc.done, &list);
+ list_splice_init(&rchan->desc.wait, &list);
+
+ rchan->desc.running = NULL;
+
+ list_for_each_entry(desc, &list, node)
+ rcar_dmac_realloc_hwdesc(rchan, desc, 0);
+
+ list_for_each_entry_safe(page, _page, &rchan->desc.pages, node) {
+ list_del(&page->node);
+ free_page((unsigned long)page);
+ }
+
+ /* Remove slave mapping if present. */
+ if (map->slave.xfer_size) {
+ dma_unmap_resource(chan->device->dev, map->addr,
+ map->slave.xfer_size, map->dir, 0);
+ map->slave.xfer_size = 0;
+ }
+
+ pm_runtime_put(chan->device->dev);
+}
+
+static struct dma_async_tx_descriptor *
+rcar_dmac_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dma_dest,
+ dma_addr_t dma_src, size_t len, unsigned long flags)
+{
+ struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
+ struct scatterlist sgl;
+
+ if (!len)
+ return NULL;
+
+ sg_init_table(&sgl, 1);
+ sg_set_page(&sgl, pfn_to_page(PFN_DOWN(dma_src)), len,
+ offset_in_page(dma_src));
+ sg_dma_address(&sgl) = dma_src;
+ sg_dma_len(&sgl) = len;
+
+ return rcar_dmac_chan_prep_sg(rchan, &sgl, 1, dma_dest,
+ DMA_MEM_TO_MEM, flags, false);
+}
+
+static int rcar_dmac_map_slave_addr(struct dma_chan *chan,
+ enum dma_transfer_direction dir)
+{
+ struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
+ struct rcar_dmac_chan_map *map = &rchan->map;
+ phys_addr_t dev_addr;
+ size_t dev_size;
+ enum dma_data_direction dev_dir;
+
+ if (dir == DMA_DEV_TO_MEM) {
+ dev_addr = rchan->src.slave_addr;
+ dev_size = rchan->src.xfer_size;
+ dev_dir = DMA_TO_DEVICE;
+ } else {
+ dev_addr = rchan->dst.slave_addr;
+ dev_size = rchan->dst.xfer_size;
+ dev_dir = DMA_FROM_DEVICE;
+ }
+
+ /* Reuse current map if possible. */
+ if (dev_addr == map->slave.slave_addr &&
+ dev_size == map->slave.xfer_size &&
+ dev_dir == map->dir)
+ return 0;
+
+ /* Remove old mapping if present. */
+ if (map->slave.xfer_size)
+ dma_unmap_resource(chan->device->dev, map->addr,
+ map->slave.xfer_size, map->dir, 0);
+ map->slave.xfer_size = 0;
+
+ /* Create new slave address map. */
+ map->addr = dma_map_resource(chan->device->dev, dev_addr, dev_size,
+ dev_dir, 0);
+
+ if (dma_mapping_error(chan->device->dev, map->addr)) {
+ dev_err(chan->device->dev,
+ "chan%u: failed to map %zx@%pap", rchan->index,
+ dev_size, &dev_addr);
+ return -EIO;
+ }
+
+ dev_dbg(chan->device->dev, "chan%u: map %zx@%pap to %pad dir: %s\n",
+ rchan->index, dev_size, &dev_addr, &map->addr,
+ dev_dir == DMA_TO_DEVICE ? "DMA_TO_DEVICE" : "DMA_FROM_DEVICE");
+
+ map->slave.slave_addr = dev_addr;
+ map->slave.xfer_size = dev_size;
+ map->dir = dev_dir;
+
+ return 0;
+}
+
+static struct dma_async_tx_descriptor *
+rcar_dmac_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
+ unsigned int sg_len, enum dma_transfer_direction dir,
+ unsigned long flags, void *context)
+{
+ struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
+
+ /* Someone calling slave DMA on a generic channel? */
+ if (rchan->mid_rid < 0 || !sg_len || !sg_dma_len(sgl)) {
+ dev_warn(chan->device->dev,
+ "%s: bad parameter: len=%d, id=%d\n",
+ __func__, sg_len, rchan->mid_rid);
+ return NULL;
+ }
+
+ if (rcar_dmac_map_slave_addr(chan, dir))
+ return NULL;
+
+ return rcar_dmac_chan_prep_sg(rchan, sgl, sg_len, rchan->map.addr,
+ dir, flags, false);
+}
+
+#define RCAR_DMAC_MAX_SG_LEN 32
+
+static struct dma_async_tx_descriptor *
+rcar_dmac_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr,
+ size_t buf_len, size_t period_len,
+ enum dma_transfer_direction dir, unsigned long flags)
+{
+ struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
+ struct dma_async_tx_descriptor *desc;
+ struct scatterlist *sgl;
+ unsigned int sg_len;
+ unsigned int i;
+
+ /* Someone calling slave DMA on a generic channel? */
+ if (rchan->mid_rid < 0 || buf_len < period_len) {
+ dev_warn(chan->device->dev,
+ "%s: bad parameter: buf_len=%zu, period_len=%zu, id=%d\n",
+ __func__, buf_len, period_len, rchan->mid_rid);
+ return NULL;
+ }
+
+ if (rcar_dmac_map_slave_addr(chan, dir))
+ return NULL;
+
+ sg_len = buf_len / period_len;
+ if (sg_len > RCAR_DMAC_MAX_SG_LEN) {
+ dev_err(chan->device->dev,
+ "chan%u: sg length %d exceeds limit %d",
+ rchan->index, sg_len, RCAR_DMAC_MAX_SG_LEN);
+ return NULL;
+ }
+
+ /*
+ * Allocate the sg list dynamically as it would consume too much stack
+ * space.
+ */
+ sgl = kmalloc_array(sg_len, sizeof(*sgl), GFP_NOWAIT);
+ if (!sgl)
+ return NULL;
+
+ sg_init_table(sgl, sg_len);
+
+ for (i = 0; i < sg_len; ++i) {
+ dma_addr_t src = buf_addr + (period_len * i);
+
+ sg_set_page(&sgl[i], pfn_to_page(PFN_DOWN(src)), period_len,
+ offset_in_page(src));
+ sg_dma_address(&sgl[i]) = src;
+ sg_dma_len(&sgl[i]) = period_len;
+ }
+
+ desc = rcar_dmac_chan_prep_sg(rchan, sgl, sg_len, rchan->map.addr,
+ dir, flags, true);
+
+ kfree(sgl);
+ return desc;
+}
+
+static int rcar_dmac_device_config(struct dma_chan *chan,
+ struct dma_slave_config *cfg)
+{
+ struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
+
+ /*
+ * We could lock this, but you shouldn't be configuring the
+ * channel, while using it...
+ */
+ rchan->src.slave_addr = cfg->src_addr;
+ rchan->dst.slave_addr = cfg->dst_addr;
+ rchan->src.xfer_size = cfg->src_addr_width;
+ rchan->dst.xfer_size = cfg->dst_addr_width;
+
+ return 0;
+}
+
+static int rcar_dmac_chan_terminate_all(struct dma_chan *chan)
+{
+ struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
+ unsigned long flags;
+
+ spin_lock_irqsave(&rchan->lock, flags);
+ rcar_dmac_chan_halt(rchan);
+ spin_unlock_irqrestore(&rchan->lock, flags);
+
+ /*
+ * FIXME: No new interrupt can occur now, but the IRQ thread might still
+ * be running.
+ */
+
+ rcar_dmac_chan_reinit(rchan);
+
+ return 0;
+}
+
+static unsigned int rcar_dmac_chan_get_residue(struct rcar_dmac_chan *chan,
+ dma_cookie_t cookie)
+{
+ struct rcar_dmac_desc *desc = chan->desc.running;
+ struct rcar_dmac_xfer_chunk *running = NULL;
+ struct rcar_dmac_xfer_chunk *chunk;
+ enum dma_status status;
+ unsigned int residue = 0;
+ unsigned int dptr = 0;
+ unsigned int chcrb;
+ unsigned int tcrb;
+ unsigned int i;
+
+ if (!desc)
+ return 0;
+
+ /*
+ * If the cookie corresponds to a descriptor that has been completed
+ * there is no residue. The same check has already been performed by the
+ * caller but without holding the channel lock, so the descriptor could
+ * now be complete.
+ */
+ status = dma_cookie_status(&chan->chan, cookie, NULL);
+ if (status == DMA_COMPLETE)
+ return 0;
+
+ /*
+ * If the cookie doesn't correspond to the currently running transfer
+ * then the descriptor hasn't been processed yet, and the residue is
+ * equal to the full descriptor size.
+ * Also, a client driver is possible to call this function before
+ * rcar_dmac_isr_channel_thread() runs. In this case, the "desc.running"
+ * will be the next descriptor, and the done list will appear. So, if
+ * the argument cookie matches the done list's cookie, we can assume
+ * the residue is zero.
+ */
+ if (cookie != desc->async_tx.cookie) {
+ list_for_each_entry(desc, &chan->desc.done, node) {
+ if (cookie == desc->async_tx.cookie)
+ return 0;
+ }
+ list_for_each_entry(desc, &chan->desc.pending, node) {
+ if (cookie == desc->async_tx.cookie)
+ return desc->size;
+ }
+ list_for_each_entry(desc, &chan->desc.active, node) {
+ if (cookie == desc->async_tx.cookie)
+ return desc->size;
+ }
+
+ /*
+ * No descriptor found for the cookie, there's thus no residue.
+ * This shouldn't happen if the calling driver passes a correct
+ * cookie value.
+ */
+ WARN(1, "No descriptor for cookie!");
+ return 0;
+ }
+
+ /*
+ * We need to read two registers.
+ * Make sure the control register does not skip to next chunk
+ * while reading the counter.
+ * Trying it 3 times should be enough: Initial read, retry, retry
+ * for the paranoid.
+ */
+ for (i = 0; i < 3; i++) {
+ chcrb = rcar_dmac_chan_read(chan, RCAR_DMACHCRB) &
+ RCAR_DMACHCRB_DPTR_MASK;
+ tcrb = rcar_dmac_chan_read(chan, RCAR_DMATCRB);
+ /* Still the same? */
+ if (chcrb == (rcar_dmac_chan_read(chan, RCAR_DMACHCRB) &
+ RCAR_DMACHCRB_DPTR_MASK))
+ break;
+ }
+ WARN_ONCE(i >= 3, "residue might be not continuous!");
+
+ /*
+ * In descriptor mode the descriptor running pointer is not maintained
+ * by the interrupt handler, find the running descriptor from the
+ * descriptor pointer field in the CHCRB register. In non-descriptor
+ * mode just use the running descriptor pointer.
+ */
+ if (desc->hwdescs.use) {
+ dptr = chcrb >> RCAR_DMACHCRB_DPTR_SHIFT;
+ if (dptr == 0)
+ dptr = desc->nchunks;
+ dptr--;
+ WARN_ON(dptr >= desc->nchunks);
+ } else {
+ running = desc->running;
+ }
+
+ /* Compute the size of all chunks still to be transferred. */
+ list_for_each_entry_reverse(chunk, &desc->chunks, node) {
+ if (chunk == running || ++dptr == desc->nchunks)
+ break;
+
+ residue += chunk->size;
+ }
+
+ /* Add the residue for the current chunk. */
+ residue += tcrb << desc->xfer_shift;
+
+ return residue;
+}
+
+static enum dma_status rcar_dmac_tx_status(struct dma_chan *chan,
+ dma_cookie_t cookie,
+ struct dma_tx_state *txstate)
+{
+ struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
+ enum dma_status status;
+ unsigned long flags;
+ unsigned int residue;
+ bool cyclic;
+
+ status = dma_cookie_status(chan, cookie, txstate);
+ if (status == DMA_COMPLETE || !txstate)
+ return status;
+
+ spin_lock_irqsave(&rchan->lock, flags);
+ residue = rcar_dmac_chan_get_residue(rchan, cookie);
+ cyclic = rchan->desc.running ? rchan->desc.running->cyclic : false;
+ spin_unlock_irqrestore(&rchan->lock, flags);
+
+ /* if there's no residue, the cookie is complete */
+ if (!residue && !cyclic)
+ return DMA_COMPLETE;
+
+ dma_set_residue(txstate, residue);
+
+ return status;
+}
+
+static void rcar_dmac_issue_pending(struct dma_chan *chan)
+{
+ struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
+ unsigned long flags;
+
+ spin_lock_irqsave(&rchan->lock, flags);
+
+ if (list_empty(&rchan->desc.pending))
+ goto done;
+
+ /* Append the pending list to the active list. */
+ list_splice_tail_init(&rchan->desc.pending, &rchan->desc.active);
+
+ /*
+ * If no transfer is running pick the first descriptor from the active
+ * list and start the transfer.
+ */
+ if (!rchan->desc.running) {
+ struct rcar_dmac_desc *desc;
+
+ desc = list_first_entry(&rchan->desc.active,
+ struct rcar_dmac_desc, node);
+ rchan->desc.running = desc;
+
+ rcar_dmac_chan_start_xfer(rchan);
+ }
+
+done:
+ spin_unlock_irqrestore(&rchan->lock, flags);
+}
+
+static void rcar_dmac_device_synchronize(struct dma_chan *chan)
+{
+ struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
+
+ synchronize_irq(rchan->irq);
+}
+
+/* -----------------------------------------------------------------------------
+ * IRQ handling
+ */
+
+static irqreturn_t rcar_dmac_isr_desc_stage_end(struct rcar_dmac_chan *chan)
+{
+ struct rcar_dmac_desc *desc = chan->desc.running;
+ unsigned int stage;
+
+ if (WARN_ON(!desc || !desc->cyclic)) {
+ /*
+ * This should never happen, there should always be a running
+ * cyclic descriptor when a descriptor stage end interrupt is
+ * triggered. Warn and return.
+ */
+ return IRQ_NONE;
+ }
+
+ /* Program the interrupt pointer to the next stage. */
+ stage = (rcar_dmac_chan_read(chan, RCAR_DMACHCRB) &
+ RCAR_DMACHCRB_DPTR_MASK) >> RCAR_DMACHCRB_DPTR_SHIFT;
+ rcar_dmac_chan_write(chan, RCAR_DMADPCR, RCAR_DMADPCR_DIPT(stage));
+
+ return IRQ_WAKE_THREAD;
+}
+
+static irqreturn_t rcar_dmac_isr_transfer_end(struct rcar_dmac_chan *chan)
+{
+ struct rcar_dmac_desc *desc = chan->desc.running;
+ irqreturn_t ret = IRQ_WAKE_THREAD;
+
+ if (WARN_ON_ONCE(!desc)) {
+ /*
+ * This should never happen, there should always be a running
+ * descriptor when a transfer end interrupt is triggered. Warn
+ * and return.
+ */
+ return IRQ_NONE;
+ }
+
+ /*
+ * The transfer end interrupt isn't generated for each chunk when using
+ * descriptor mode. Only update the running chunk pointer in
+ * non-descriptor mode.
+ */
+ if (!desc->hwdescs.use) {
+ /*
+ * If we haven't completed the last transfer chunk simply move
+ * to the next one. Only wake the IRQ thread if the transfer is
+ * cyclic.
+ */
+ if (!list_is_last(&desc->running->node, &desc->chunks)) {
+ desc->running = list_next_entry(desc->running, node);
+ if (!desc->cyclic)
+ ret = IRQ_HANDLED;
+ goto done;
+ }
+
+ /*
+ * We've completed the last transfer chunk. If the transfer is
+ * cyclic, move back to the first one.
+ */
+ if (desc->cyclic) {
+ desc->running =
+ list_first_entry(&desc->chunks,
+ struct rcar_dmac_xfer_chunk,
+ node);
+ goto done;
+ }
+ }
+
+ /* The descriptor is complete, move it to the done list. */
+ list_move_tail(&desc->node, &chan->desc.done);
+
+ /* Queue the next descriptor, if any. */
+ if (!list_empty(&chan->desc.active))
+ chan->desc.running = list_first_entry(&chan->desc.active,
+ struct rcar_dmac_desc,
+ node);
+ else
+ chan->desc.running = NULL;
+
+done:
+ if (chan->desc.running)
+ rcar_dmac_chan_start_xfer(chan);
+
+ return ret;
+}
+
+static irqreturn_t rcar_dmac_isr_channel(int irq, void *dev)
+{
+ u32 mask = RCAR_DMACHCR_DSE | RCAR_DMACHCR_TE;
+ struct rcar_dmac_chan *chan = dev;
+ irqreturn_t ret = IRQ_NONE;
+ bool reinit = false;
+ u32 chcr;
+
+ spin_lock(&chan->lock);
+
+ chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
+ if (chcr & RCAR_DMACHCR_CAE) {
+ struct rcar_dmac *dmac = to_rcar_dmac(chan->chan.device);
+
+ /*
+ * We don't need to call rcar_dmac_chan_halt()
+ * because channel is already stopped in error case.
+ * We need to clear register and check DE bit as recovery.
+ */
+ rcar_dmac_chan_clear(dmac, chan);
+ rcar_dmac_chcr_de_barrier(chan);
+ reinit = true;
+ goto spin_lock_end;
+ }
+
+ if (chcr & RCAR_DMACHCR_TE)
+ mask |= RCAR_DMACHCR_DE;
+ rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr & ~mask);
+ if (mask & RCAR_DMACHCR_DE)
+ rcar_dmac_chcr_de_barrier(chan);
+
+ if (chcr & RCAR_DMACHCR_DSE)
+ ret |= rcar_dmac_isr_desc_stage_end(chan);
+
+ if (chcr & RCAR_DMACHCR_TE)
+ ret |= rcar_dmac_isr_transfer_end(chan);
+
+spin_lock_end:
+ spin_unlock(&chan->lock);
+
+ if (reinit) {
+ dev_err(chan->chan.device->dev, "Channel Address Error\n");
+
+ rcar_dmac_chan_reinit(chan);
+ ret = IRQ_HANDLED;
+ }
+
+ return ret;
+}
+
+static irqreturn_t rcar_dmac_isr_channel_thread(int irq, void *dev)
+{
+ struct rcar_dmac_chan *chan = dev;
+ struct rcar_dmac_desc *desc;
+ struct dmaengine_desc_callback cb;
+
+ spin_lock_irq(&chan->lock);
+
+ /* For cyclic transfers notify the user after every chunk. */
+ if (chan->desc.running && chan->desc.running->cyclic) {
+ desc = chan->desc.running;
+ dmaengine_desc_get_callback(&desc->async_tx, &cb);
+
+ if (dmaengine_desc_callback_valid(&cb)) {
+ spin_unlock_irq(&chan->lock);
+ dmaengine_desc_callback_invoke(&cb, NULL);
+ spin_lock_irq(&chan->lock);
+ }
+ }
+
+ /*
+ * Call the callback function for all descriptors on the done list and
+ * move them to the ack wait list.
+ */
+ while (!list_empty(&chan->desc.done)) {
+ desc = list_first_entry(&chan->desc.done, struct rcar_dmac_desc,
+ node);
+ dma_cookie_complete(&desc->async_tx);
+ list_del(&desc->node);
+
+ dmaengine_desc_get_callback(&desc->async_tx, &cb);
+ if (dmaengine_desc_callback_valid(&cb)) {
+ spin_unlock_irq(&chan->lock);
+ /*
+ * We own the only reference to this descriptor, we can
+ * safely dereference it without holding the channel
+ * lock.
+ */
+ dmaengine_desc_callback_invoke(&cb, NULL);
+ spin_lock_irq(&chan->lock);
+ }
+
+ list_add_tail(&desc->node, &chan->desc.wait);
+ }
+
+ spin_unlock_irq(&chan->lock);
+
+ /* Recycle all acked descriptors. */
+ rcar_dmac_desc_recycle_acked(chan);
+
+ return IRQ_HANDLED;
+}
+
+/* -----------------------------------------------------------------------------
+ * OF xlate and channel filter
+ */
+
+static bool rcar_dmac_chan_filter(struct dma_chan *chan, void *arg)
+{
+ struct rcar_dmac *dmac = to_rcar_dmac(chan->device);
+ struct of_phandle_args *dma_spec = arg;
+
+ /*
+ * FIXME: Using a filter on OF platforms is a nonsense. The OF xlate
+ * function knows from which device it wants to allocate a channel from,
+ * and would be perfectly capable of selecting the channel it wants.
+ * Forcing it to call dma_request_channel() and iterate through all
+ * channels from all controllers is just pointless.
+ */
+ if (chan->device->device_config != rcar_dmac_device_config)
+ return false;
+
+ return !test_and_set_bit(dma_spec->args[0], dmac->modules);
+}
+
+static struct dma_chan *rcar_dmac_of_xlate(struct of_phandle_args *dma_spec,
+ struct of_dma *ofdma)
+{
+ struct rcar_dmac_chan *rchan;
+ struct dma_chan *chan;
+ dma_cap_mask_t mask;
+
+ if (dma_spec->args_count != 1)
+ return NULL;
+
+ /* Only slave DMA channels can be allocated via DT */
+ dma_cap_zero(mask);
+ dma_cap_set(DMA_SLAVE, mask);
+
+ chan = __dma_request_channel(&mask, rcar_dmac_chan_filter, dma_spec,
+ ofdma->of_node);
+ if (!chan)
+ return NULL;
+
+ rchan = to_rcar_dmac_chan(chan);
+ rchan->mid_rid = dma_spec->args[0];
+
+ return chan;
+}
+
+/* -----------------------------------------------------------------------------
+ * Power management
+ */
+
+#ifdef CONFIG_PM
+static int rcar_dmac_runtime_suspend(struct device *dev)
+{
+ return 0;
+}
+
+static int rcar_dmac_runtime_resume(struct device *dev)
+{
+ struct rcar_dmac *dmac = dev_get_drvdata(dev);
+
+ return rcar_dmac_init(dmac);
+}
+#endif
+
+static const struct dev_pm_ops rcar_dmac_pm = {
+ /*
+ * TODO for system sleep/resume:
+ * - Wait for the current transfer to complete and stop the device,
+ * - Resume transfers, if any.
+ */
+ SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
+ pm_runtime_force_resume)
+ SET_RUNTIME_PM_OPS(rcar_dmac_runtime_suspend, rcar_dmac_runtime_resume,
+ NULL)
+};
+
+/* -----------------------------------------------------------------------------
+ * Probe and remove
+ */
+
+static int rcar_dmac_chan_probe(struct rcar_dmac *dmac,
+ struct rcar_dmac_chan *rchan)
+{
+ struct platform_device *pdev = to_platform_device(dmac->dev);
+ struct dma_chan *chan = &rchan->chan;
+ char pdev_irqname[5];
+ char *irqname;
+ int ret;
+
+ rchan->mid_rid = -EINVAL;
+
+ spin_lock_init(&rchan->lock);
+
+ INIT_LIST_HEAD(&rchan->desc.free);
+ INIT_LIST_HEAD(&rchan->desc.pending);
+ INIT_LIST_HEAD(&rchan->desc.active);
+ INIT_LIST_HEAD(&rchan->desc.done);
+ INIT_LIST_HEAD(&rchan->desc.wait);
+
+ /* Request the channel interrupt. */
+ sprintf(pdev_irqname, "ch%u", rchan->index);
+ rchan->irq = platform_get_irq_byname(pdev, pdev_irqname);
+ if (rchan->irq < 0)
+ return -ENODEV;
+
+ irqname = devm_kasprintf(dmac->dev, GFP_KERNEL, "%s:%u",
+ dev_name(dmac->dev), rchan->index);
+ if (!irqname)
+ return -ENOMEM;
+
+ /*
+ * Initialize the DMA engine channel and add it to the DMA engine
+ * channels list.
+ */
+ chan->device = &dmac->engine;
+ dma_cookie_init(chan);
+
+ list_add_tail(&chan->device_node, &dmac->engine.channels);
+
+ ret = devm_request_threaded_irq(dmac->dev, rchan->irq,
+ rcar_dmac_isr_channel,
+ rcar_dmac_isr_channel_thread, 0,
+ irqname, rchan);
+ if (ret) {
+ dev_err(dmac->dev, "failed to request IRQ %u (%d)\n",
+ rchan->irq, ret);
+ return ret;
+ }
+
+ return 0;
+}
+
+#define RCAR_DMAC_MAX_CHANNELS 32
+
+static int rcar_dmac_parse_of(struct device *dev, struct rcar_dmac *dmac)
+{
+ struct device_node *np = dev->of_node;
+ int ret;
+
+ ret = of_property_read_u32(np, "dma-channels", &dmac->n_channels);
+ if (ret < 0) {
+ dev_err(dev, "unable to read dma-channels property\n");
+ return ret;
+ }
+
+ /* The hardware and driver don't support more than 32 bits in CHCLR */
+ if (dmac->n_channels <= 0 ||
+ dmac->n_channels >= RCAR_DMAC_MAX_CHANNELS) {
+ dev_err(dev, "invalid number of channels %u\n",
+ dmac->n_channels);
+ return -EINVAL;
+ }
+
+ /*
+ * If the driver is unable to read dma-channel-mask property,
+ * the driver assumes that it can use all channels.
+ */
+ dmac->channels_mask = GENMASK(dmac->n_channels - 1, 0);
+ of_property_read_u32(np, "dma-channel-mask", &dmac->channels_mask);
+
+ /* If the property has out-of-channel mask, this driver clears it */
+ dmac->channels_mask &= GENMASK(dmac->n_channels - 1, 0);
+
+ return 0;
+}
+
+static int rcar_dmac_probe(struct platform_device *pdev)
+{
+ const enum dma_slave_buswidth widths = DMA_SLAVE_BUSWIDTH_1_BYTE |
+ DMA_SLAVE_BUSWIDTH_2_BYTES | DMA_SLAVE_BUSWIDTH_4_BYTES |
+ DMA_SLAVE_BUSWIDTH_8_BYTES | DMA_SLAVE_BUSWIDTH_16_BYTES |
+ DMA_SLAVE_BUSWIDTH_32_BYTES | DMA_SLAVE_BUSWIDTH_64_BYTES;
+ const struct rcar_dmac_of_data *data;
+ struct rcar_dmac_chan *chan;
+ struct dma_device *engine;
+ void __iomem *chan_base;
+ struct rcar_dmac *dmac;
+ unsigned int i;
+ int ret;
+
+ data = of_device_get_match_data(&pdev->dev);
+ if (!data)
+ return -EINVAL;
+
+ dmac = devm_kzalloc(&pdev->dev, sizeof(*dmac), GFP_KERNEL);
+ if (!dmac)
+ return -ENOMEM;
+
+ dmac->dev = &pdev->dev;
+ platform_set_drvdata(pdev, dmac);
+ ret = dma_set_max_seg_size(dmac->dev, RCAR_DMATCR_MASK);
+ if (ret)
+ return ret;
+
+ ret = dma_set_mask_and_coherent(dmac->dev, DMA_BIT_MASK(40));
+ if (ret)
+ return ret;
+
+ ret = rcar_dmac_parse_of(&pdev->dev, dmac);
+ if (ret < 0)
+ return ret;
+
+ /*
+ * A still unconfirmed hardware bug prevents the IPMMU microTLB 0 to be
+ * flushed correctly, resulting in memory corruption. DMAC 0 channel 0
+ * is connected to microTLB 0 on currently supported platforms, so we
+ * can't use it with the IPMMU. As the IOMMU API operates at the device
+ * level we can't disable it selectively, so ignore channel 0 for now if
+ * the device is part of an IOMMU group.
+ */
+ if (device_iommu_mapped(&pdev->dev))
+ dmac->channels_mask &= ~BIT(0);
+
+ dmac->channels = devm_kcalloc(&pdev->dev, dmac->n_channels,
+ sizeof(*dmac->channels), GFP_KERNEL);
+ if (!dmac->channels)
+ return -ENOMEM;
+
+ /* Request resources. */
+ dmac->dmac_base = devm_platform_ioremap_resource(pdev, 0);
+ if (IS_ERR(dmac->dmac_base))
+ return PTR_ERR(dmac->dmac_base);
+
+ if (!data->chan_offset_base) {
+ dmac->chan_base = devm_platform_ioremap_resource(pdev, 1);
+ if (IS_ERR(dmac->chan_base))
+ return PTR_ERR(dmac->chan_base);
+
+ chan_base = dmac->chan_base;
+ } else {
+ chan_base = dmac->dmac_base + data->chan_offset_base;
+ }
+
+ for_each_rcar_dmac_chan(i, dmac, chan) {
+ chan->index = i;
+ chan->iomem = chan_base + i * data->chan_offset_stride;
+ }
+
+ /* Enable runtime PM and initialize the device. */
+ pm_runtime_enable(&pdev->dev);
+ ret = pm_runtime_resume_and_get(&pdev->dev);
+ if (ret < 0) {
+ dev_err(&pdev->dev, "runtime PM get sync failed (%d)\n", ret);
+ goto err_pm_disable;
+ }
+
+ ret = rcar_dmac_init(dmac);
+ pm_runtime_put(&pdev->dev);
+
+ if (ret) {
+ dev_err(&pdev->dev, "failed to reset device\n");
+ goto err_pm_disable;
+ }
+
+ /* Initialize engine */
+ engine = &dmac->engine;
+
+ dma_cap_set(DMA_MEMCPY, engine->cap_mask);
+ dma_cap_set(DMA_SLAVE, engine->cap_mask);
+
+ engine->dev = &pdev->dev;
+ engine->copy_align = ilog2(RCAR_DMAC_MEMCPY_XFER_SIZE);
+
+ engine->src_addr_widths = widths;
+ engine->dst_addr_widths = widths;
+ engine->directions = BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM);
+ engine->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
+
+ engine->device_alloc_chan_resources = rcar_dmac_alloc_chan_resources;
+ engine->device_free_chan_resources = rcar_dmac_free_chan_resources;
+ engine->device_prep_dma_memcpy = rcar_dmac_prep_dma_memcpy;
+ engine->device_prep_slave_sg = rcar_dmac_prep_slave_sg;
+ engine->device_prep_dma_cyclic = rcar_dmac_prep_dma_cyclic;
+ engine->device_config = rcar_dmac_device_config;
+ engine->device_pause = rcar_dmac_chan_pause;
+ engine->device_terminate_all = rcar_dmac_chan_terminate_all;
+ engine->device_tx_status = rcar_dmac_tx_status;
+ engine->device_issue_pending = rcar_dmac_issue_pending;
+ engine->device_synchronize = rcar_dmac_device_synchronize;
+
+ INIT_LIST_HEAD(&engine->channels);
+
+ for_each_rcar_dmac_chan(i, dmac, chan) {
+ ret = rcar_dmac_chan_probe(dmac, chan);
+ if (ret < 0)
+ goto err_pm_disable;
+ }
+
+ /* Register the DMAC as a DMA provider for DT. */
+ ret = of_dma_controller_register(pdev->dev.of_node, rcar_dmac_of_xlate,
+ NULL);
+ if (ret < 0)
+ goto err_pm_disable;
+
+ /*
+ * Register the DMA engine device.
+ *
+ * Default transfer size of 32 bytes requires 32-byte alignment.
+ */
+ ret = dma_async_device_register(engine);
+ if (ret < 0)
+ goto err_dma_free;
+
+ return 0;
+
+err_dma_free:
+ of_dma_controller_free(pdev->dev.of_node);
+err_pm_disable:
+ pm_runtime_disable(&pdev->dev);
+ return ret;
+}
+
+static int rcar_dmac_remove(struct platform_device *pdev)
+{
+ struct rcar_dmac *dmac = platform_get_drvdata(pdev);
+
+ of_dma_controller_free(pdev->dev.of_node);
+ dma_async_device_unregister(&dmac->engine);
+
+ pm_runtime_disable(&pdev->dev);
+
+ return 0;
+}
+
+static void rcar_dmac_shutdown(struct platform_device *pdev)
+{
+ struct rcar_dmac *dmac = platform_get_drvdata(pdev);
+
+ rcar_dmac_stop_all_chan(dmac);
+}
+
+static const struct rcar_dmac_of_data rcar_dmac_data = {
+ .chan_offset_base = 0x8000,
+ .chan_offset_stride = 0x80,
+};
+
+static const struct rcar_dmac_of_data rcar_gen4_dmac_data = {
+ .chan_offset_base = 0x0,
+ .chan_offset_stride = 0x1000,
+};
+
+static const struct of_device_id rcar_dmac_of_ids[] = {
+ {
+ .compatible = "renesas,rcar-dmac",
+ .data = &rcar_dmac_data,
+ }, {
+ .compatible = "renesas,rcar-gen4-dmac",
+ .data = &rcar_gen4_dmac_data,
+ }, {
+ .compatible = "renesas,dmac-r8a779a0",
+ .data = &rcar_gen4_dmac_data,
+ },
+ { /* Sentinel */ }
+};
+MODULE_DEVICE_TABLE(of, rcar_dmac_of_ids);
+
+static struct platform_driver rcar_dmac_driver = {
+ .driver = {
+ .pm = &rcar_dmac_pm,
+ .name = "rcar-dmac",
+ .of_match_table = rcar_dmac_of_ids,
+ },
+ .probe = rcar_dmac_probe,
+ .remove = rcar_dmac_remove,
+ .shutdown = rcar_dmac_shutdown,
+};
+
+module_platform_driver(rcar_dmac_driver);
+
+MODULE_DESCRIPTION("R-Car Gen2 DMA Controller Driver");
+MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>");
+MODULE_LICENSE("GPL v2");