summaryrefslogtreecommitdiffstats
path: root/drivers/md/bcache/journal.h
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
commit2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch)
tree848558de17fb3008cdf4d861b01ac7781903ce39 /drivers/md/bcache/journal.h
parentInitial commit. (diff)
downloadlinux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz
linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip
Adding upstream version 6.1.76.upstream/6.1.76
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'drivers/md/bcache/journal.h')
-rw-r--r--drivers/md/bcache/journal.h188
1 files changed, 188 insertions, 0 deletions
diff --git a/drivers/md/bcache/journal.h b/drivers/md/bcache/journal.h
new file mode 100644
index 000000000..cd316b4a1
--- /dev/null
+++ b/drivers/md/bcache/journal.h
@@ -0,0 +1,188 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#ifndef _BCACHE_JOURNAL_H
+#define _BCACHE_JOURNAL_H
+
+/*
+ * THE JOURNAL:
+ *
+ * The journal is treated as a circular buffer of buckets - a journal entry
+ * never spans two buckets. This means (not implemented yet) we can resize the
+ * journal at runtime, and will be needed for bcache on raw flash support.
+ *
+ * Journal entries contain a list of keys, ordered by the time they were
+ * inserted; thus journal replay just has to reinsert the keys.
+ *
+ * We also keep some things in the journal header that are logically part of the
+ * superblock - all the things that are frequently updated. This is for future
+ * bcache on raw flash support; the superblock (which will become another
+ * journal) can't be moved or wear leveled, so it contains just enough
+ * information to find the main journal, and the superblock only has to be
+ * rewritten when we want to move/wear level the main journal.
+ *
+ * Currently, we don't journal BTREE_REPLACE operations - this will hopefully be
+ * fixed eventually. This isn't a bug - BTREE_REPLACE is used for insertions
+ * from cache misses, which don't have to be journaled, and for writeback and
+ * moving gc we work around it by flushing the btree to disk before updating the
+ * gc information. But it is a potential issue with incremental garbage
+ * collection, and it's fragile.
+ *
+ * OPEN JOURNAL ENTRIES:
+ *
+ * Each journal entry contains, in the header, the sequence number of the last
+ * journal entry still open - i.e. that has keys that haven't been flushed to
+ * disk in the btree.
+ *
+ * We track this by maintaining a refcount for every open journal entry, in a
+ * fifo; each entry in the fifo corresponds to a particular journal
+ * entry/sequence number. When the refcount at the tail of the fifo goes to
+ * zero, we pop it off - thus, the size of the fifo tells us the number of open
+ * journal entries
+ *
+ * We take a refcount on a journal entry when we add some keys to a journal
+ * entry that we're going to insert (held by struct btree_op), and then when we
+ * insert those keys into the btree the btree write we're setting up takes a
+ * copy of that refcount (held by struct btree_write). That refcount is dropped
+ * when the btree write completes.
+ *
+ * A struct btree_write can only hold a refcount on a single journal entry, but
+ * might contain keys for many journal entries - we handle this by making sure
+ * it always has a refcount on the _oldest_ journal entry of all the journal
+ * entries it has keys for.
+ *
+ * JOURNAL RECLAIM:
+ *
+ * As mentioned previously, our fifo of refcounts tells us the number of open
+ * journal entries; from that and the current journal sequence number we compute
+ * last_seq - the oldest journal entry we still need. We write last_seq in each
+ * journal entry, and we also have to keep track of where it exists on disk so
+ * we don't overwrite it when we loop around the journal.
+ *
+ * To do that we track, for each journal bucket, the sequence number of the
+ * newest journal entry it contains - if we don't need that journal entry we
+ * don't need anything in that bucket anymore. From that we track the last
+ * journal bucket we still need; all this is tracked in struct journal_device
+ * and updated by journal_reclaim().
+ *
+ * JOURNAL FILLING UP:
+ *
+ * There are two ways the journal could fill up; either we could run out of
+ * space to write to, or we could have too many open journal entries and run out
+ * of room in the fifo of refcounts. Since those refcounts are decremented
+ * without any locking we can't safely resize that fifo, so we handle it the
+ * same way.
+ *
+ * If the journal fills up, we start flushing dirty btree nodes until we can
+ * allocate space for a journal write again - preferentially flushing btree
+ * nodes that are pinning the oldest journal entries first.
+ */
+
+/*
+ * Only used for holding the journal entries we read in btree_journal_read()
+ * during cache_registration
+ */
+struct journal_replay {
+ struct list_head list;
+ atomic_t *pin;
+ struct jset j;
+};
+
+/*
+ * We put two of these in struct journal; we used them for writes to the
+ * journal that are being staged or in flight.
+ */
+struct journal_write {
+ struct jset *data;
+#define JSET_BITS 3
+
+ struct cache_set *c;
+ struct closure_waitlist wait;
+ bool dirty;
+ bool need_write;
+};
+
+/* Embedded in struct cache_set */
+struct journal {
+ spinlock_t lock;
+ spinlock_t flush_write_lock;
+ bool btree_flushing;
+ bool do_reserve;
+ /* used when waiting because the journal was full */
+ struct closure_waitlist wait;
+ struct closure io;
+ int io_in_flight;
+ struct delayed_work work;
+
+ /* Number of blocks free in the bucket(s) we're currently writing to */
+ unsigned int blocks_free;
+ uint64_t seq;
+ DECLARE_FIFO(atomic_t, pin);
+
+ BKEY_PADDED(key);
+
+ struct journal_write w[2], *cur;
+};
+
+/*
+ * Embedded in struct cache. First three fields refer to the array of journal
+ * buckets, in cache_sb.
+ */
+struct journal_device {
+ /*
+ * For each journal bucket, contains the max sequence number of the
+ * journal writes it contains - so we know when a bucket can be reused.
+ */
+ uint64_t seq[SB_JOURNAL_BUCKETS];
+
+ /* Journal bucket we're currently writing to */
+ unsigned int cur_idx;
+
+ /* Last journal bucket that still contains an open journal entry */
+ unsigned int last_idx;
+
+ /* Next journal bucket to be discarded */
+ unsigned int discard_idx;
+
+#define DISCARD_READY 0
+#define DISCARD_IN_FLIGHT 1
+#define DISCARD_DONE 2
+ /* 1 - discard in flight, -1 - discard completed */
+ atomic_t discard_in_flight;
+
+ struct work_struct discard_work;
+ struct bio discard_bio;
+ struct bio_vec discard_bv;
+
+ /* Bio for journal reads/writes to this device */
+ struct bio bio;
+ struct bio_vec bv[8];
+};
+
+#define BTREE_FLUSH_NR 8
+
+#define journal_pin_cmp(c, l, r) \
+ (fifo_idx(&(c)->journal.pin, (l)) > fifo_idx(&(c)->journal.pin, (r)))
+
+#define JOURNAL_PIN 20000
+
+#define journal_full(j) \
+ (!(j)->blocks_free || fifo_free(&(j)->pin) <= 1)
+
+struct closure;
+struct cache_set;
+struct btree_op;
+struct keylist;
+
+atomic_t *bch_journal(struct cache_set *c,
+ struct keylist *keys,
+ struct closure *parent);
+void bch_journal_next(struct journal *j);
+void bch_journal_mark(struct cache_set *c, struct list_head *list);
+void bch_journal_meta(struct cache_set *c, struct closure *cl);
+int bch_journal_read(struct cache_set *c, struct list_head *list);
+int bch_journal_replay(struct cache_set *c, struct list_head *list);
+
+void bch_journal_free(struct cache_set *c);
+int bch_journal_alloc(struct cache_set *c);
+void bch_journal_space_reserve(struct journal *j);
+
+#endif /* _BCACHE_JOURNAL_H */