summaryrefslogtreecommitdiffstats
path: root/drivers/spi/spi-intel.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
commit2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch)
tree848558de17fb3008cdf4d861b01ac7781903ce39 /drivers/spi/spi-intel.c
parentInitial commit. (diff)
downloadlinux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz
linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip
Adding upstream version 6.1.76.upstream/6.1.76
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'drivers/spi/spi-intel.c')
-rw-r--r--drivers/spi/spi-intel.c1431
1 files changed, 1431 insertions, 0 deletions
diff --git a/drivers/spi/spi-intel.c b/drivers/spi/spi-intel.c
new file mode 100644
index 000000000..54fc226e1
--- /dev/null
+++ b/drivers/spi/spi-intel.c
@@ -0,0 +1,1431 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Intel PCH/PCU SPI flash driver.
+ *
+ * Copyright (C) 2016 - 2022, Intel Corporation
+ * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
+ */
+
+#include <linux/iopoll.h>
+#include <linux/module.h>
+
+#include <linux/mtd/partitions.h>
+#include <linux/mtd/spi-nor.h>
+
+#include <linux/spi/flash.h>
+#include <linux/spi/spi.h>
+#include <linux/spi/spi-mem.h>
+
+#include "spi-intel.h"
+
+/* Offsets are from @ispi->base */
+#define BFPREG 0x00
+
+#define HSFSTS_CTL 0x04
+#define HSFSTS_CTL_FSMIE BIT(31)
+#define HSFSTS_CTL_FDBC_SHIFT 24
+#define HSFSTS_CTL_FDBC_MASK (0x3f << HSFSTS_CTL_FDBC_SHIFT)
+
+#define HSFSTS_CTL_FCYCLE_SHIFT 17
+#define HSFSTS_CTL_FCYCLE_MASK (0x0f << HSFSTS_CTL_FCYCLE_SHIFT)
+/* HW sequencer opcodes */
+#define HSFSTS_CTL_FCYCLE_READ (0x00 << HSFSTS_CTL_FCYCLE_SHIFT)
+#define HSFSTS_CTL_FCYCLE_WRITE (0x02 << HSFSTS_CTL_FCYCLE_SHIFT)
+#define HSFSTS_CTL_FCYCLE_ERASE (0x03 << HSFSTS_CTL_FCYCLE_SHIFT)
+#define HSFSTS_CTL_FCYCLE_ERASE_64K (0x04 << HSFSTS_CTL_FCYCLE_SHIFT)
+#define HSFSTS_CTL_FCYCLE_RDID (0x06 << HSFSTS_CTL_FCYCLE_SHIFT)
+#define HSFSTS_CTL_FCYCLE_WRSR (0x07 << HSFSTS_CTL_FCYCLE_SHIFT)
+#define HSFSTS_CTL_FCYCLE_RDSR (0x08 << HSFSTS_CTL_FCYCLE_SHIFT)
+
+#define HSFSTS_CTL_FGO BIT(16)
+#define HSFSTS_CTL_FLOCKDN BIT(15)
+#define HSFSTS_CTL_FDV BIT(14)
+#define HSFSTS_CTL_SCIP BIT(5)
+#define HSFSTS_CTL_AEL BIT(2)
+#define HSFSTS_CTL_FCERR BIT(1)
+#define HSFSTS_CTL_FDONE BIT(0)
+
+#define FADDR 0x08
+#define DLOCK 0x0c
+#define FDATA(n) (0x10 + ((n) * 4))
+
+#define FRACC 0x50
+
+#define FREG(n) (0x54 + ((n) * 4))
+#define FREG_BASE_MASK GENMASK(14, 0)
+#define FREG_LIMIT_SHIFT 16
+#define FREG_LIMIT_MASK GENMASK(30, 16)
+
+/* Offset is from @ispi->pregs */
+#define PR(n) ((n) * 4)
+#define PR_WPE BIT(31)
+#define PR_LIMIT_SHIFT 16
+#define PR_LIMIT_MASK GENMASK(30, 16)
+#define PR_RPE BIT(15)
+#define PR_BASE_MASK GENMASK(14, 0)
+
+/* Offsets are from @ispi->sregs */
+#define SSFSTS_CTL 0x00
+#define SSFSTS_CTL_FSMIE BIT(23)
+#define SSFSTS_CTL_DS BIT(22)
+#define SSFSTS_CTL_DBC_SHIFT 16
+#define SSFSTS_CTL_SPOP BIT(11)
+#define SSFSTS_CTL_ACS BIT(10)
+#define SSFSTS_CTL_SCGO BIT(9)
+#define SSFSTS_CTL_COP_SHIFT 12
+#define SSFSTS_CTL_FRS BIT(7)
+#define SSFSTS_CTL_DOFRS BIT(6)
+#define SSFSTS_CTL_AEL BIT(4)
+#define SSFSTS_CTL_FCERR BIT(3)
+#define SSFSTS_CTL_FDONE BIT(2)
+#define SSFSTS_CTL_SCIP BIT(0)
+
+#define PREOP_OPTYPE 0x04
+#define OPMENU0 0x08
+#define OPMENU1 0x0c
+
+#define OPTYPE_READ_NO_ADDR 0
+#define OPTYPE_WRITE_NO_ADDR 1
+#define OPTYPE_READ_WITH_ADDR 2
+#define OPTYPE_WRITE_WITH_ADDR 3
+
+/* CPU specifics */
+#define BYT_PR 0x74
+#define BYT_SSFSTS_CTL 0x90
+#define BYT_FREG_NUM 5
+#define BYT_PR_NUM 5
+
+#define LPT_PR 0x74
+#define LPT_SSFSTS_CTL 0x90
+#define LPT_FREG_NUM 5
+#define LPT_PR_NUM 5
+
+#define BXT_PR 0x84
+#define BXT_SSFSTS_CTL 0xa0
+#define BXT_FREG_NUM 12
+#define BXT_PR_NUM 6
+
+#define CNL_PR 0x84
+#define CNL_FREG_NUM 6
+#define CNL_PR_NUM 5
+
+#define LVSCC 0xc4
+#define UVSCC 0xc8
+#define ERASE_OPCODE_SHIFT 8
+#define ERASE_OPCODE_MASK (0xff << ERASE_OPCODE_SHIFT)
+#define ERASE_64K_OPCODE_SHIFT 16
+#define ERASE_64K_OPCODE_MASK (0xff << ERASE_64K_OPCODE_SHIFT)
+
+/* Flash descriptor fields */
+#define FLVALSIG_MAGIC 0x0ff0a55a
+#define FLMAP0_NC_MASK GENMASK(9, 8)
+#define FLMAP0_NC_SHIFT 8
+#define FLMAP0_FCBA_MASK GENMASK(7, 0)
+
+#define FLCOMP_C0DEN_MASK GENMASK(3, 0)
+#define FLCOMP_C0DEN_512K 0x00
+#define FLCOMP_C0DEN_1M 0x01
+#define FLCOMP_C0DEN_2M 0x02
+#define FLCOMP_C0DEN_4M 0x03
+#define FLCOMP_C0DEN_8M 0x04
+#define FLCOMP_C0DEN_16M 0x05
+#define FLCOMP_C0DEN_32M 0x06
+#define FLCOMP_C0DEN_64M 0x07
+
+#define INTEL_SPI_TIMEOUT 5000 /* ms */
+#define INTEL_SPI_FIFO_SZ 64
+
+/**
+ * struct intel_spi - Driver private data
+ * @dev: Device pointer
+ * @info: Pointer to board specific info
+ * @base: Beginning of MMIO space
+ * @pregs: Start of protection registers
+ * @sregs: Start of software sequencer registers
+ * @master: Pointer to the SPI controller structure
+ * @nregions: Maximum number of regions
+ * @pr_num: Maximum number of protected range registers
+ * @chip0_size: Size of the first flash chip in bytes
+ * @locked: Is SPI setting locked
+ * @swseq_reg: Use SW sequencer in register reads/writes
+ * @swseq_erase: Use SW sequencer in erase operation
+ * @atomic_preopcode: Holds preopcode when atomic sequence is requested
+ * @opcodes: Opcodes which are supported. This are programmed by BIOS
+ * before it locks down the controller.
+ * @mem_ops: Pointer to SPI MEM ops supported by the controller
+ */
+struct intel_spi {
+ struct device *dev;
+ const struct intel_spi_boardinfo *info;
+ void __iomem *base;
+ void __iomem *pregs;
+ void __iomem *sregs;
+ struct spi_controller *master;
+ size_t nregions;
+ size_t pr_num;
+ size_t chip0_size;
+ bool locked;
+ bool swseq_reg;
+ bool swseq_erase;
+ u8 atomic_preopcode;
+ u8 opcodes[8];
+ const struct intel_spi_mem_op *mem_ops;
+};
+
+struct intel_spi_mem_op {
+ struct spi_mem_op mem_op;
+ u32 replacement_op;
+ int (*exec_op)(struct intel_spi *ispi,
+ const struct spi_mem *mem,
+ const struct intel_spi_mem_op *iop,
+ const struct spi_mem_op *op);
+};
+
+static bool writeable;
+module_param(writeable, bool, 0);
+MODULE_PARM_DESC(writeable, "Enable write access to SPI flash chip (default=0)");
+
+static void intel_spi_dump_regs(struct intel_spi *ispi)
+{
+ u32 value;
+ int i;
+
+ dev_dbg(ispi->dev, "BFPREG=0x%08x\n", readl(ispi->base + BFPREG));
+
+ value = readl(ispi->base + HSFSTS_CTL);
+ dev_dbg(ispi->dev, "HSFSTS_CTL=0x%08x\n", value);
+ if (value & HSFSTS_CTL_FLOCKDN)
+ dev_dbg(ispi->dev, "-> Locked\n");
+
+ dev_dbg(ispi->dev, "FADDR=0x%08x\n", readl(ispi->base + FADDR));
+ dev_dbg(ispi->dev, "DLOCK=0x%08x\n", readl(ispi->base + DLOCK));
+
+ for (i = 0; i < 16; i++)
+ dev_dbg(ispi->dev, "FDATA(%d)=0x%08x\n",
+ i, readl(ispi->base + FDATA(i)));
+
+ dev_dbg(ispi->dev, "FRACC=0x%08x\n", readl(ispi->base + FRACC));
+
+ for (i = 0; i < ispi->nregions; i++)
+ dev_dbg(ispi->dev, "FREG(%d)=0x%08x\n", i,
+ readl(ispi->base + FREG(i)));
+ for (i = 0; i < ispi->pr_num; i++)
+ dev_dbg(ispi->dev, "PR(%d)=0x%08x\n", i,
+ readl(ispi->pregs + PR(i)));
+
+ if (ispi->sregs) {
+ value = readl(ispi->sregs + SSFSTS_CTL);
+ dev_dbg(ispi->dev, "SSFSTS_CTL=0x%08x\n", value);
+ dev_dbg(ispi->dev, "PREOP_OPTYPE=0x%08x\n",
+ readl(ispi->sregs + PREOP_OPTYPE));
+ dev_dbg(ispi->dev, "OPMENU0=0x%08x\n",
+ readl(ispi->sregs + OPMENU0));
+ dev_dbg(ispi->dev, "OPMENU1=0x%08x\n",
+ readl(ispi->sregs + OPMENU1));
+ }
+
+ dev_dbg(ispi->dev, "LVSCC=0x%08x\n", readl(ispi->base + LVSCC));
+ dev_dbg(ispi->dev, "UVSCC=0x%08x\n", readl(ispi->base + UVSCC));
+
+ dev_dbg(ispi->dev, "Protected regions:\n");
+ for (i = 0; i < ispi->pr_num; i++) {
+ u32 base, limit;
+
+ value = readl(ispi->pregs + PR(i));
+ if (!(value & (PR_WPE | PR_RPE)))
+ continue;
+
+ limit = (value & PR_LIMIT_MASK) >> PR_LIMIT_SHIFT;
+ base = value & PR_BASE_MASK;
+
+ dev_dbg(ispi->dev, " %02d base: 0x%08x limit: 0x%08x [%c%c]\n",
+ i, base << 12, (limit << 12) | 0xfff,
+ value & PR_WPE ? 'W' : '.', value & PR_RPE ? 'R' : '.');
+ }
+
+ dev_dbg(ispi->dev, "Flash regions:\n");
+ for (i = 0; i < ispi->nregions; i++) {
+ u32 region, base, limit;
+
+ region = readl(ispi->base + FREG(i));
+ base = region & FREG_BASE_MASK;
+ limit = (region & FREG_LIMIT_MASK) >> FREG_LIMIT_SHIFT;
+
+ if (base >= limit || (i > 0 && limit == 0))
+ dev_dbg(ispi->dev, " %02d disabled\n", i);
+ else
+ dev_dbg(ispi->dev, " %02d base: 0x%08x limit: 0x%08x\n",
+ i, base << 12, (limit << 12) | 0xfff);
+ }
+
+ dev_dbg(ispi->dev, "Using %cW sequencer for register access\n",
+ ispi->swseq_reg ? 'S' : 'H');
+ dev_dbg(ispi->dev, "Using %cW sequencer for erase operation\n",
+ ispi->swseq_erase ? 'S' : 'H');
+}
+
+/* Reads max INTEL_SPI_FIFO_SZ bytes from the device fifo */
+static int intel_spi_read_block(struct intel_spi *ispi, void *buf, size_t size)
+{
+ size_t bytes;
+ int i = 0;
+
+ if (size > INTEL_SPI_FIFO_SZ)
+ return -EINVAL;
+
+ while (size > 0) {
+ bytes = min_t(size_t, size, 4);
+ memcpy_fromio(buf, ispi->base + FDATA(i), bytes);
+ size -= bytes;
+ buf += bytes;
+ i++;
+ }
+
+ return 0;
+}
+
+/* Writes max INTEL_SPI_FIFO_SZ bytes to the device fifo */
+static int intel_spi_write_block(struct intel_spi *ispi, const void *buf,
+ size_t size)
+{
+ size_t bytes;
+ int i = 0;
+
+ if (size > INTEL_SPI_FIFO_SZ)
+ return -EINVAL;
+
+ while (size > 0) {
+ bytes = min_t(size_t, size, 4);
+ memcpy_toio(ispi->base + FDATA(i), buf, bytes);
+ size -= bytes;
+ buf += bytes;
+ i++;
+ }
+
+ return 0;
+}
+
+static int intel_spi_wait_hw_busy(struct intel_spi *ispi)
+{
+ u32 val;
+
+ return readl_poll_timeout(ispi->base + HSFSTS_CTL, val,
+ !(val & HSFSTS_CTL_SCIP), 0,
+ INTEL_SPI_TIMEOUT * 1000);
+}
+
+static int intel_spi_wait_sw_busy(struct intel_spi *ispi)
+{
+ u32 val;
+
+ return readl_poll_timeout(ispi->sregs + SSFSTS_CTL, val,
+ !(val & SSFSTS_CTL_SCIP), 0,
+ INTEL_SPI_TIMEOUT * 1000);
+}
+
+static bool intel_spi_set_writeable(struct intel_spi *ispi)
+{
+ if (!ispi->info->set_writeable)
+ return false;
+
+ return ispi->info->set_writeable(ispi->base, ispi->info->data);
+}
+
+static int intel_spi_opcode_index(struct intel_spi *ispi, u8 opcode, int optype)
+{
+ int i;
+ int preop;
+
+ if (ispi->locked) {
+ for (i = 0; i < ARRAY_SIZE(ispi->opcodes); i++)
+ if (ispi->opcodes[i] == opcode)
+ return i;
+
+ return -EINVAL;
+ }
+
+ /* The lock is off, so just use index 0 */
+ writel(opcode, ispi->sregs + OPMENU0);
+ preop = readw(ispi->sregs + PREOP_OPTYPE);
+ writel(optype << 16 | preop, ispi->sregs + PREOP_OPTYPE);
+
+ return 0;
+}
+
+static int intel_spi_hw_cycle(struct intel_spi *ispi, u8 opcode, size_t len)
+{
+ u32 val, status;
+ int ret;
+
+ val = readl(ispi->base + HSFSTS_CTL);
+ val &= ~(HSFSTS_CTL_FCYCLE_MASK | HSFSTS_CTL_FDBC_MASK);
+
+ switch (opcode) {
+ case SPINOR_OP_RDID:
+ val |= HSFSTS_CTL_FCYCLE_RDID;
+ break;
+ case SPINOR_OP_WRSR:
+ val |= HSFSTS_CTL_FCYCLE_WRSR;
+ break;
+ case SPINOR_OP_RDSR:
+ val |= HSFSTS_CTL_FCYCLE_RDSR;
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ if (len > INTEL_SPI_FIFO_SZ)
+ return -EINVAL;
+
+ val |= (len - 1) << HSFSTS_CTL_FDBC_SHIFT;
+ val |= HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
+ val |= HSFSTS_CTL_FGO;
+ writel(val, ispi->base + HSFSTS_CTL);
+
+ ret = intel_spi_wait_hw_busy(ispi);
+ if (ret)
+ return ret;
+
+ status = readl(ispi->base + HSFSTS_CTL);
+ if (status & HSFSTS_CTL_FCERR)
+ return -EIO;
+ else if (status & HSFSTS_CTL_AEL)
+ return -EACCES;
+
+ return 0;
+}
+
+static int intel_spi_sw_cycle(struct intel_spi *ispi, u8 opcode, size_t len,
+ int optype)
+{
+ u32 val = 0, status;
+ u8 atomic_preopcode;
+ int ret;
+
+ ret = intel_spi_opcode_index(ispi, opcode, optype);
+ if (ret < 0)
+ return ret;
+
+ if (len > INTEL_SPI_FIFO_SZ)
+ return -EINVAL;
+
+ /*
+ * Always clear it after each SW sequencer operation regardless
+ * of whether it is successful or not.
+ */
+ atomic_preopcode = ispi->atomic_preopcode;
+ ispi->atomic_preopcode = 0;
+
+ /* Only mark 'Data Cycle' bit when there is data to be transferred */
+ if (len > 0)
+ val = ((len - 1) << SSFSTS_CTL_DBC_SHIFT) | SSFSTS_CTL_DS;
+ val |= ret << SSFSTS_CTL_COP_SHIFT;
+ val |= SSFSTS_CTL_FCERR | SSFSTS_CTL_FDONE;
+ val |= SSFSTS_CTL_SCGO;
+ if (atomic_preopcode) {
+ u16 preop;
+
+ switch (optype) {
+ case OPTYPE_WRITE_NO_ADDR:
+ case OPTYPE_WRITE_WITH_ADDR:
+ /* Pick matching preopcode for the atomic sequence */
+ preop = readw(ispi->sregs + PREOP_OPTYPE);
+ if ((preop & 0xff) == atomic_preopcode)
+ ; /* Do nothing */
+ else if ((preop >> 8) == atomic_preopcode)
+ val |= SSFSTS_CTL_SPOP;
+ else
+ return -EINVAL;
+
+ /* Enable atomic sequence */
+ val |= SSFSTS_CTL_ACS;
+ break;
+
+ default:
+ return -EINVAL;
+ }
+ }
+ writel(val, ispi->sregs + SSFSTS_CTL);
+
+ ret = intel_spi_wait_sw_busy(ispi);
+ if (ret)
+ return ret;
+
+ status = readl(ispi->sregs + SSFSTS_CTL);
+ if (status & SSFSTS_CTL_FCERR)
+ return -EIO;
+ else if (status & SSFSTS_CTL_AEL)
+ return -EACCES;
+
+ return 0;
+}
+
+static u32 intel_spi_chip_addr(const struct intel_spi *ispi,
+ const struct spi_mem *mem)
+{
+ /* Pick up the correct start address */
+ if (!mem)
+ return 0;
+ return mem->spi->chip_select == 1 ? ispi->chip0_size : 0;
+}
+
+static int intel_spi_read_reg(struct intel_spi *ispi, const struct spi_mem *mem,
+ const struct intel_spi_mem_op *iop,
+ const struct spi_mem_op *op)
+{
+ size_t nbytes = op->data.nbytes;
+ u8 opcode = op->cmd.opcode;
+ int ret;
+
+ writel(intel_spi_chip_addr(ispi, mem), ispi->base + FADDR);
+
+ if (ispi->swseq_reg)
+ ret = intel_spi_sw_cycle(ispi, opcode, nbytes,
+ OPTYPE_READ_NO_ADDR);
+ else
+ ret = intel_spi_hw_cycle(ispi, opcode, nbytes);
+
+ if (ret)
+ return ret;
+
+ return intel_spi_read_block(ispi, op->data.buf.in, nbytes);
+}
+
+static int intel_spi_write_reg(struct intel_spi *ispi, const struct spi_mem *mem,
+ const struct intel_spi_mem_op *iop,
+ const struct spi_mem_op *op)
+{
+ size_t nbytes = op->data.nbytes;
+ u8 opcode = op->cmd.opcode;
+ int ret;
+
+ /*
+ * This is handled with atomic operation and preop code in Intel
+ * controller so we only verify that it is available. If the
+ * controller is not locked, program the opcode to the PREOP
+ * register for later use.
+ *
+ * When hardware sequencer is used there is no need to program
+ * any opcodes (it handles them automatically as part of a command).
+ */
+ if (opcode == SPINOR_OP_WREN) {
+ u16 preop;
+
+ if (!ispi->swseq_reg)
+ return 0;
+
+ preop = readw(ispi->sregs + PREOP_OPTYPE);
+ if ((preop & 0xff) != opcode && (preop >> 8) != opcode) {
+ if (ispi->locked)
+ return -EINVAL;
+ writel(opcode, ispi->sregs + PREOP_OPTYPE);
+ }
+
+ /*
+ * This enables atomic sequence on next SW sycle. Will
+ * be cleared after next operation.
+ */
+ ispi->atomic_preopcode = opcode;
+ return 0;
+ }
+
+ /*
+ * We hope that HW sequencer will do the right thing automatically and
+ * with the SW sequencer we cannot use preopcode anyway, so just ignore
+ * the Write Disable operation and pretend it was completed
+ * successfully.
+ */
+ if (opcode == SPINOR_OP_WRDI)
+ return 0;
+
+ writel(intel_spi_chip_addr(ispi, mem), ispi->base + FADDR);
+
+ /* Write the value beforehand */
+ ret = intel_spi_write_block(ispi, op->data.buf.out, nbytes);
+ if (ret)
+ return ret;
+
+ if (ispi->swseq_reg)
+ return intel_spi_sw_cycle(ispi, opcode, nbytes,
+ OPTYPE_WRITE_NO_ADDR);
+ return intel_spi_hw_cycle(ispi, opcode, nbytes);
+}
+
+static int intel_spi_read(struct intel_spi *ispi, const struct spi_mem *mem,
+ const struct intel_spi_mem_op *iop,
+ const struct spi_mem_op *op)
+{
+ u32 addr = intel_spi_chip_addr(ispi, mem) + op->addr.val;
+ size_t block_size, nbytes = op->data.nbytes;
+ void *read_buf = op->data.buf.in;
+ u32 val, status;
+ int ret;
+
+ /*
+ * Atomic sequence is not expected with HW sequencer reads. Make
+ * sure it is cleared regardless.
+ */
+ if (WARN_ON_ONCE(ispi->atomic_preopcode))
+ ispi->atomic_preopcode = 0;
+
+ while (nbytes > 0) {
+ block_size = min_t(size_t, nbytes, INTEL_SPI_FIFO_SZ);
+
+ /* Read cannot cross 4K boundary */
+ block_size = min_t(loff_t, addr + block_size,
+ round_up(addr + 1, SZ_4K)) - addr;
+
+ writel(addr, ispi->base + FADDR);
+
+ val = readl(ispi->base + HSFSTS_CTL);
+ val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
+ val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
+ val |= (block_size - 1) << HSFSTS_CTL_FDBC_SHIFT;
+ val |= HSFSTS_CTL_FCYCLE_READ;
+ val |= HSFSTS_CTL_FGO;
+ writel(val, ispi->base + HSFSTS_CTL);
+
+ ret = intel_spi_wait_hw_busy(ispi);
+ if (ret)
+ return ret;
+
+ status = readl(ispi->base + HSFSTS_CTL);
+ if (status & HSFSTS_CTL_FCERR)
+ ret = -EIO;
+ else if (status & HSFSTS_CTL_AEL)
+ ret = -EACCES;
+
+ if (ret < 0) {
+ dev_err(ispi->dev, "read error: %x: %#x\n", addr, status);
+ return ret;
+ }
+
+ ret = intel_spi_read_block(ispi, read_buf, block_size);
+ if (ret)
+ return ret;
+
+ nbytes -= block_size;
+ addr += block_size;
+ read_buf += block_size;
+ }
+
+ return 0;
+}
+
+static int intel_spi_write(struct intel_spi *ispi, const struct spi_mem *mem,
+ const struct intel_spi_mem_op *iop,
+ const struct spi_mem_op *op)
+{
+ u32 addr = intel_spi_chip_addr(ispi, mem) + op->addr.val;
+ size_t block_size, nbytes = op->data.nbytes;
+ const void *write_buf = op->data.buf.out;
+ u32 val, status;
+ int ret;
+
+ /* Not needed with HW sequencer write, make sure it is cleared */
+ ispi->atomic_preopcode = 0;
+
+ while (nbytes > 0) {
+ block_size = min_t(size_t, nbytes, INTEL_SPI_FIFO_SZ);
+
+ /* Write cannot cross 4K boundary */
+ block_size = min_t(loff_t, addr + block_size,
+ round_up(addr + 1, SZ_4K)) - addr;
+
+ writel(addr, ispi->base + FADDR);
+
+ val = readl(ispi->base + HSFSTS_CTL);
+ val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
+ val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
+ val |= (block_size - 1) << HSFSTS_CTL_FDBC_SHIFT;
+ val |= HSFSTS_CTL_FCYCLE_WRITE;
+
+ ret = intel_spi_write_block(ispi, write_buf, block_size);
+ if (ret) {
+ dev_err(ispi->dev, "failed to write block\n");
+ return ret;
+ }
+
+ /* Start the write now */
+ val |= HSFSTS_CTL_FGO;
+ writel(val, ispi->base + HSFSTS_CTL);
+
+ ret = intel_spi_wait_hw_busy(ispi);
+ if (ret) {
+ dev_err(ispi->dev, "timeout\n");
+ return ret;
+ }
+
+ status = readl(ispi->base + HSFSTS_CTL);
+ if (status & HSFSTS_CTL_FCERR)
+ ret = -EIO;
+ else if (status & HSFSTS_CTL_AEL)
+ ret = -EACCES;
+
+ if (ret < 0) {
+ dev_err(ispi->dev, "write error: %x: %#x\n", addr, status);
+ return ret;
+ }
+
+ nbytes -= block_size;
+ addr += block_size;
+ write_buf += block_size;
+ }
+
+ return 0;
+}
+
+static int intel_spi_erase(struct intel_spi *ispi, const struct spi_mem *mem,
+ const struct intel_spi_mem_op *iop,
+ const struct spi_mem_op *op)
+{
+ u32 addr = intel_spi_chip_addr(ispi, mem) + op->addr.val;
+ u8 opcode = op->cmd.opcode;
+ u32 val, status;
+ int ret;
+
+ writel(addr, ispi->base + FADDR);
+
+ if (ispi->swseq_erase)
+ return intel_spi_sw_cycle(ispi, opcode, 0,
+ OPTYPE_WRITE_WITH_ADDR);
+
+ /* Not needed with HW sequencer erase, make sure it is cleared */
+ ispi->atomic_preopcode = 0;
+
+ val = readl(ispi->base + HSFSTS_CTL);
+ val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
+ val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
+ val |= HSFSTS_CTL_FGO;
+ val |= iop->replacement_op;
+ writel(val, ispi->base + HSFSTS_CTL);
+
+ ret = intel_spi_wait_hw_busy(ispi);
+ if (ret)
+ return ret;
+
+ status = readl(ispi->base + HSFSTS_CTL);
+ if (status & HSFSTS_CTL_FCERR)
+ return -EIO;
+ if (status & HSFSTS_CTL_AEL)
+ return -EACCES;
+
+ return 0;
+}
+
+static bool intel_spi_cmp_mem_op(const struct intel_spi_mem_op *iop,
+ const struct spi_mem_op *op)
+{
+ if (iop->mem_op.cmd.nbytes != op->cmd.nbytes ||
+ iop->mem_op.cmd.buswidth != op->cmd.buswidth ||
+ iop->mem_op.cmd.dtr != op->cmd.dtr ||
+ iop->mem_op.cmd.opcode != op->cmd.opcode)
+ return false;
+
+ if (iop->mem_op.addr.nbytes != op->addr.nbytes ||
+ iop->mem_op.addr.dtr != op->addr.dtr)
+ return false;
+
+ if (iop->mem_op.data.dir != op->data.dir ||
+ iop->mem_op.data.dtr != op->data.dtr)
+ return false;
+
+ if (iop->mem_op.data.dir != SPI_MEM_NO_DATA) {
+ if (iop->mem_op.data.buswidth != op->data.buswidth)
+ return false;
+ }
+
+ return true;
+}
+
+static const struct intel_spi_mem_op *
+intel_spi_match_mem_op(struct intel_spi *ispi, const struct spi_mem_op *op)
+{
+ const struct intel_spi_mem_op *iop;
+
+ for (iop = ispi->mem_ops; iop->mem_op.cmd.opcode; iop++) {
+ if (intel_spi_cmp_mem_op(iop, op))
+ break;
+ }
+
+ return iop->mem_op.cmd.opcode ? iop : NULL;
+}
+
+static bool intel_spi_supports_mem_op(struct spi_mem *mem,
+ const struct spi_mem_op *op)
+{
+ struct intel_spi *ispi = spi_master_get_devdata(mem->spi->master);
+ const struct intel_spi_mem_op *iop;
+
+ iop = intel_spi_match_mem_op(ispi, op);
+ if (!iop) {
+ dev_dbg(ispi->dev, "%#x not supported\n", op->cmd.opcode);
+ return false;
+ }
+
+ /*
+ * For software sequencer check that the opcode is actually
+ * present in the opmenu if it is locked.
+ */
+ if (ispi->swseq_reg && ispi->locked) {
+ int i;
+
+ /* Check if it is in the locked opcodes list */
+ for (i = 0; i < ARRAY_SIZE(ispi->opcodes); i++) {
+ if (ispi->opcodes[i] == op->cmd.opcode)
+ return true;
+ }
+
+ dev_dbg(ispi->dev, "%#x not supported\n", op->cmd.opcode);
+ return false;
+ }
+
+ return true;
+}
+
+static int intel_spi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
+{
+ struct intel_spi *ispi = spi_master_get_devdata(mem->spi->master);
+ const struct intel_spi_mem_op *iop;
+
+ iop = intel_spi_match_mem_op(ispi, op);
+ if (!iop)
+ return -EOPNOTSUPP;
+
+ return iop->exec_op(ispi, mem, iop, op);
+}
+
+static const char *intel_spi_get_name(struct spi_mem *mem)
+{
+ const struct intel_spi *ispi = spi_master_get_devdata(mem->spi->master);
+
+ /*
+ * Return name of the flash controller device to be compatible
+ * with the MTD version.
+ */
+ return dev_name(ispi->dev);
+}
+
+static int intel_spi_dirmap_create(struct spi_mem_dirmap_desc *desc)
+{
+ struct intel_spi *ispi = spi_master_get_devdata(desc->mem->spi->master);
+ const struct intel_spi_mem_op *iop;
+
+ iop = intel_spi_match_mem_op(ispi, &desc->info.op_tmpl);
+ if (!iop)
+ return -EOPNOTSUPP;
+
+ desc->priv = (void *)iop;
+ return 0;
+}
+
+static ssize_t intel_spi_dirmap_read(struct spi_mem_dirmap_desc *desc, u64 offs,
+ size_t len, void *buf)
+{
+ struct intel_spi *ispi = spi_master_get_devdata(desc->mem->spi->master);
+ const struct intel_spi_mem_op *iop = desc->priv;
+ struct spi_mem_op op = desc->info.op_tmpl;
+ int ret;
+
+ /* Fill in the gaps */
+ op.addr.val = offs;
+ op.data.nbytes = len;
+ op.data.buf.in = buf;
+
+ ret = iop->exec_op(ispi, desc->mem, iop, &op);
+ return ret ? ret : len;
+}
+
+static ssize_t intel_spi_dirmap_write(struct spi_mem_dirmap_desc *desc, u64 offs,
+ size_t len, const void *buf)
+{
+ struct intel_spi *ispi = spi_master_get_devdata(desc->mem->spi->master);
+ const struct intel_spi_mem_op *iop = desc->priv;
+ struct spi_mem_op op = desc->info.op_tmpl;
+ int ret;
+
+ op.addr.val = offs;
+ op.data.nbytes = len;
+ op.data.buf.out = buf;
+
+ ret = iop->exec_op(ispi, desc->mem, iop, &op);
+ return ret ? ret : len;
+}
+
+static const struct spi_controller_mem_ops intel_spi_mem_ops = {
+ .supports_op = intel_spi_supports_mem_op,
+ .exec_op = intel_spi_exec_mem_op,
+ .get_name = intel_spi_get_name,
+ .dirmap_create = intel_spi_dirmap_create,
+ .dirmap_read = intel_spi_dirmap_read,
+ .dirmap_write = intel_spi_dirmap_write,
+};
+
+#define INTEL_SPI_OP_ADDR(__nbytes) \
+ { \
+ .nbytes = __nbytes, \
+ }
+
+#define INTEL_SPI_OP_NO_DATA \
+ { \
+ .dir = SPI_MEM_NO_DATA, \
+ }
+
+#define INTEL_SPI_OP_DATA_IN(__buswidth) \
+ { \
+ .dir = SPI_MEM_DATA_IN, \
+ .buswidth = __buswidth, \
+ }
+
+#define INTEL_SPI_OP_DATA_OUT(__buswidth) \
+ { \
+ .dir = SPI_MEM_DATA_OUT, \
+ .buswidth = __buswidth, \
+ }
+
+#define INTEL_SPI_MEM_OP(__cmd, __addr, __data, __exec_op) \
+ { \
+ .mem_op = { \
+ .cmd = __cmd, \
+ .addr = __addr, \
+ .data = __data, \
+ }, \
+ .exec_op = __exec_op, \
+ }
+
+#define INTEL_SPI_MEM_OP_REPL(__cmd, __addr, __data, __exec_op, __repl) \
+ { \
+ .mem_op = { \
+ .cmd = __cmd, \
+ .addr = __addr, \
+ .data = __data, \
+ }, \
+ .exec_op = __exec_op, \
+ .replacement_op = __repl, \
+ }
+
+/*
+ * The controller handles pretty much everything internally based on the
+ * SFDP data but we want to make sure we only support the operations
+ * actually possible. Only check buswidth and transfer direction, the
+ * core validates data.
+ */
+#define INTEL_SPI_GENERIC_OPS \
+ /* Status register operations */ \
+ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDID, 1), \
+ SPI_MEM_OP_NO_ADDR, \
+ INTEL_SPI_OP_DATA_IN(1), \
+ intel_spi_read_reg), \
+ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDSR, 1), \
+ SPI_MEM_OP_NO_ADDR, \
+ INTEL_SPI_OP_DATA_IN(1), \
+ intel_spi_read_reg), \
+ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRSR, 1), \
+ SPI_MEM_OP_NO_ADDR, \
+ INTEL_SPI_OP_DATA_OUT(1), \
+ intel_spi_write_reg), \
+ /* Normal read */ \
+ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1), \
+ INTEL_SPI_OP_ADDR(3), \
+ INTEL_SPI_OP_DATA_IN(1), \
+ intel_spi_read), \
+ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1), \
+ INTEL_SPI_OP_ADDR(3), \
+ INTEL_SPI_OP_DATA_IN(2), \
+ intel_spi_read), \
+ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1), \
+ INTEL_SPI_OP_ADDR(3), \
+ INTEL_SPI_OP_DATA_IN(4), \
+ intel_spi_read), \
+ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1), \
+ INTEL_SPI_OP_ADDR(4), \
+ INTEL_SPI_OP_DATA_IN(1), \
+ intel_spi_read), \
+ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1), \
+ INTEL_SPI_OP_ADDR(4), \
+ INTEL_SPI_OP_DATA_IN(2), \
+ intel_spi_read), \
+ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1), \
+ INTEL_SPI_OP_ADDR(4), \
+ INTEL_SPI_OP_DATA_IN(4), \
+ intel_spi_read), \
+ /* Fast read */ \
+ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1), \
+ INTEL_SPI_OP_ADDR(3), \
+ INTEL_SPI_OP_DATA_IN(1), \
+ intel_spi_read), \
+ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1), \
+ INTEL_SPI_OP_ADDR(3), \
+ INTEL_SPI_OP_DATA_IN(2), \
+ intel_spi_read), \
+ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1), \
+ INTEL_SPI_OP_ADDR(3), \
+ INTEL_SPI_OP_DATA_IN(4), \
+ intel_spi_read), \
+ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1), \
+ INTEL_SPI_OP_ADDR(4), \
+ INTEL_SPI_OP_DATA_IN(1), \
+ intel_spi_read), \
+ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1), \
+ INTEL_SPI_OP_ADDR(4), \
+ INTEL_SPI_OP_DATA_IN(2), \
+ intel_spi_read), \
+ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1), \
+ INTEL_SPI_OP_ADDR(4), \
+ INTEL_SPI_OP_DATA_IN(4), \
+ intel_spi_read), \
+ /* Read with 4-byte address opcode */ \
+ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_4B, 1), \
+ INTEL_SPI_OP_ADDR(4), \
+ INTEL_SPI_OP_DATA_IN(1), \
+ intel_spi_read), \
+ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_4B, 1), \
+ INTEL_SPI_OP_ADDR(4), \
+ INTEL_SPI_OP_DATA_IN(2), \
+ intel_spi_read), \
+ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_4B, 1), \
+ INTEL_SPI_OP_ADDR(4), \
+ INTEL_SPI_OP_DATA_IN(4), \
+ intel_spi_read), \
+ /* Fast read with 4-byte address opcode */ \
+ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST_4B, 1), \
+ INTEL_SPI_OP_ADDR(4), \
+ INTEL_SPI_OP_DATA_IN(1), \
+ intel_spi_read), \
+ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST_4B, 1), \
+ INTEL_SPI_OP_ADDR(4), \
+ INTEL_SPI_OP_DATA_IN(2), \
+ intel_spi_read), \
+ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST_4B, 1), \
+ INTEL_SPI_OP_ADDR(4), \
+ INTEL_SPI_OP_DATA_IN(4), \
+ intel_spi_read), \
+ /* Write operations */ \
+ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_PP, 1), \
+ INTEL_SPI_OP_ADDR(3), \
+ INTEL_SPI_OP_DATA_OUT(1), \
+ intel_spi_write), \
+ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_PP, 1), \
+ INTEL_SPI_OP_ADDR(4), \
+ INTEL_SPI_OP_DATA_OUT(1), \
+ intel_spi_write), \
+ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_PP_4B, 1), \
+ INTEL_SPI_OP_ADDR(4), \
+ INTEL_SPI_OP_DATA_OUT(1), \
+ intel_spi_write), \
+ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WREN, 1), \
+ SPI_MEM_OP_NO_ADDR, \
+ SPI_MEM_OP_NO_DATA, \
+ intel_spi_write_reg), \
+ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRDI, 1), \
+ SPI_MEM_OP_NO_ADDR, \
+ SPI_MEM_OP_NO_DATA, \
+ intel_spi_write_reg), \
+ /* Erase operations */ \
+ INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_BE_4K, 1), \
+ INTEL_SPI_OP_ADDR(3), \
+ SPI_MEM_OP_NO_DATA, \
+ intel_spi_erase, \
+ HSFSTS_CTL_FCYCLE_ERASE), \
+ INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_BE_4K, 1), \
+ INTEL_SPI_OP_ADDR(4), \
+ SPI_MEM_OP_NO_DATA, \
+ intel_spi_erase, \
+ HSFSTS_CTL_FCYCLE_ERASE), \
+ INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_BE_4K_4B, 1), \
+ INTEL_SPI_OP_ADDR(4), \
+ SPI_MEM_OP_NO_DATA, \
+ intel_spi_erase, \
+ HSFSTS_CTL_FCYCLE_ERASE) \
+
+static const struct intel_spi_mem_op generic_mem_ops[] = {
+ INTEL_SPI_GENERIC_OPS,
+ { },
+};
+
+static const struct intel_spi_mem_op erase_64k_mem_ops[] = {
+ INTEL_SPI_GENERIC_OPS,
+ /* 64k sector erase operations */
+ INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_SE, 1),
+ INTEL_SPI_OP_ADDR(3),
+ SPI_MEM_OP_NO_DATA,
+ intel_spi_erase,
+ HSFSTS_CTL_FCYCLE_ERASE_64K),
+ INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_SE, 1),
+ INTEL_SPI_OP_ADDR(4),
+ SPI_MEM_OP_NO_DATA,
+ intel_spi_erase,
+ HSFSTS_CTL_FCYCLE_ERASE_64K),
+ INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_SE_4B, 1),
+ INTEL_SPI_OP_ADDR(4),
+ SPI_MEM_OP_NO_DATA,
+ intel_spi_erase,
+ HSFSTS_CTL_FCYCLE_ERASE_64K),
+ { },
+};
+
+static int intel_spi_init(struct intel_spi *ispi)
+{
+ u32 opmenu0, opmenu1, lvscc, uvscc, val;
+ bool erase_64k = false;
+ int i;
+
+ switch (ispi->info->type) {
+ case INTEL_SPI_BYT:
+ ispi->sregs = ispi->base + BYT_SSFSTS_CTL;
+ ispi->pregs = ispi->base + BYT_PR;
+ ispi->nregions = BYT_FREG_NUM;
+ ispi->pr_num = BYT_PR_NUM;
+ ispi->swseq_reg = true;
+ break;
+
+ case INTEL_SPI_LPT:
+ ispi->sregs = ispi->base + LPT_SSFSTS_CTL;
+ ispi->pregs = ispi->base + LPT_PR;
+ ispi->nregions = LPT_FREG_NUM;
+ ispi->pr_num = LPT_PR_NUM;
+ ispi->swseq_reg = true;
+ break;
+
+ case INTEL_SPI_BXT:
+ ispi->sregs = ispi->base + BXT_SSFSTS_CTL;
+ ispi->pregs = ispi->base + BXT_PR;
+ ispi->nregions = BXT_FREG_NUM;
+ ispi->pr_num = BXT_PR_NUM;
+ erase_64k = true;
+ break;
+
+ case INTEL_SPI_CNL:
+ ispi->sregs = NULL;
+ ispi->pregs = ispi->base + CNL_PR;
+ ispi->nregions = CNL_FREG_NUM;
+ ispi->pr_num = CNL_PR_NUM;
+ erase_64k = true;
+ break;
+
+ default:
+ return -EINVAL;
+ }
+
+ /* Try to disable write protection if user asked to do so */
+ if (writeable && !intel_spi_set_writeable(ispi)) {
+ dev_warn(ispi->dev, "can't disable chip write protection\n");
+ writeable = false;
+ }
+
+ /* Disable #SMI generation from HW sequencer */
+ val = readl(ispi->base + HSFSTS_CTL);
+ val &= ~HSFSTS_CTL_FSMIE;
+ writel(val, ispi->base + HSFSTS_CTL);
+
+ /*
+ * Determine whether erase operation should use HW or SW sequencer.
+ *
+ * The HW sequencer has a predefined list of opcodes, with only the
+ * erase opcode being programmable in LVSCC and UVSCC registers.
+ * If these registers don't contain a valid erase opcode, erase
+ * cannot be done using HW sequencer.
+ */
+ lvscc = readl(ispi->base + LVSCC);
+ uvscc = readl(ispi->base + UVSCC);
+ if (!(lvscc & ERASE_OPCODE_MASK) || !(uvscc & ERASE_OPCODE_MASK))
+ ispi->swseq_erase = true;
+ /* SPI controller on Intel BXT supports 64K erase opcode */
+ if (ispi->info->type == INTEL_SPI_BXT && !ispi->swseq_erase)
+ if (!(lvscc & ERASE_64K_OPCODE_MASK) ||
+ !(uvscc & ERASE_64K_OPCODE_MASK))
+ erase_64k = false;
+
+ if (!ispi->sregs && (ispi->swseq_reg || ispi->swseq_erase)) {
+ dev_err(ispi->dev, "software sequencer not supported, but required\n");
+ return -EINVAL;
+ }
+
+ /*
+ * Some controllers can only do basic operations using hardware
+ * sequencer. All other operations are supposed to be carried out
+ * using software sequencer.
+ */
+ if (ispi->swseq_reg) {
+ /* Disable #SMI generation from SW sequencer */
+ val = readl(ispi->sregs + SSFSTS_CTL);
+ val &= ~SSFSTS_CTL_FSMIE;
+ writel(val, ispi->sregs + SSFSTS_CTL);
+ }
+
+ /* Check controller's lock status */
+ val = readl(ispi->base + HSFSTS_CTL);
+ ispi->locked = !!(val & HSFSTS_CTL_FLOCKDN);
+
+ if (ispi->locked && ispi->sregs) {
+ /*
+ * BIOS programs allowed opcodes and then locks down the
+ * register. So read back what opcodes it decided to support.
+ * That's the set we are going to support as well.
+ */
+ opmenu0 = readl(ispi->sregs + OPMENU0);
+ opmenu1 = readl(ispi->sregs + OPMENU1);
+
+ if (opmenu0 && opmenu1) {
+ for (i = 0; i < ARRAY_SIZE(ispi->opcodes) / 2; i++) {
+ ispi->opcodes[i] = opmenu0 >> i * 8;
+ ispi->opcodes[i + 4] = opmenu1 >> i * 8;
+ }
+ }
+ }
+
+ if (erase_64k) {
+ dev_dbg(ispi->dev, "Using erase_64k memory operations");
+ ispi->mem_ops = erase_64k_mem_ops;
+ } else {
+ dev_dbg(ispi->dev, "Using generic memory operations");
+ ispi->mem_ops = generic_mem_ops;
+ }
+
+ intel_spi_dump_regs(ispi);
+ return 0;
+}
+
+static bool intel_spi_is_protected(const struct intel_spi *ispi,
+ unsigned int base, unsigned int limit)
+{
+ int i;
+
+ for (i = 0; i < ispi->pr_num; i++) {
+ u32 pr_base, pr_limit, pr_value;
+
+ pr_value = readl(ispi->pregs + PR(i));
+ if (!(pr_value & (PR_WPE | PR_RPE)))
+ continue;
+
+ pr_limit = (pr_value & PR_LIMIT_MASK) >> PR_LIMIT_SHIFT;
+ pr_base = pr_value & PR_BASE_MASK;
+
+ if (pr_base >= base && pr_limit <= limit)
+ return true;
+ }
+
+ return false;
+}
+
+/*
+ * There will be a single partition holding all enabled flash regions. We
+ * call this "BIOS".
+ */
+static void intel_spi_fill_partition(struct intel_spi *ispi,
+ struct mtd_partition *part)
+{
+ u64 end;
+ int i;
+
+ memset(part, 0, sizeof(*part));
+
+ /* Start from the mandatory descriptor region */
+ part->size = 4096;
+ part->name = "BIOS";
+
+ /*
+ * Now try to find where this partition ends based on the flash
+ * region registers.
+ */
+ for (i = 1; i < ispi->nregions; i++) {
+ u32 region, base, limit;
+
+ region = readl(ispi->base + FREG(i));
+ base = region & FREG_BASE_MASK;
+ limit = (region & FREG_LIMIT_MASK) >> FREG_LIMIT_SHIFT;
+
+ if (base >= limit || limit == 0)
+ continue;
+
+ /*
+ * If any of the regions have protection bits set, make the
+ * whole partition read-only to be on the safe side.
+ *
+ * Also if the user did not ask the chip to be writeable
+ * mask the bit too.
+ */
+ if (!writeable || intel_spi_is_protected(ispi, base, limit))
+ part->mask_flags |= MTD_WRITEABLE;
+
+ end = (limit << 12) + 4096;
+ if (end > part->size)
+ part->size = end;
+ }
+}
+
+static int intel_spi_read_desc(struct intel_spi *ispi)
+{
+ struct spi_mem_op op =
+ SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 0),
+ SPI_MEM_OP_ADDR(3, 0, 0),
+ SPI_MEM_OP_NO_DUMMY,
+ SPI_MEM_OP_DATA_IN(0, NULL, 0));
+ u32 buf[2], nc, fcba, flcomp;
+ ssize_t ret;
+
+ op.addr.val = 0x10;
+ op.data.buf.in = buf;
+ op.data.nbytes = sizeof(buf);
+
+ ret = intel_spi_read(ispi, NULL, NULL, &op);
+ if (ret) {
+ dev_warn(ispi->dev, "failed to read descriptor\n");
+ return ret;
+ }
+
+ dev_dbg(ispi->dev, "FLVALSIG=0x%08x\n", buf[0]);
+ dev_dbg(ispi->dev, "FLMAP0=0x%08x\n", buf[1]);
+
+ if (buf[0] != FLVALSIG_MAGIC) {
+ dev_warn(ispi->dev, "descriptor signature not valid\n");
+ return -ENODEV;
+ }
+
+ fcba = (buf[1] & FLMAP0_FCBA_MASK) << 4;
+ dev_dbg(ispi->dev, "FCBA=%#x\n", fcba);
+
+ op.addr.val = fcba;
+ op.data.buf.in = &flcomp;
+ op.data.nbytes = sizeof(flcomp);
+
+ ret = intel_spi_read(ispi, NULL, NULL, &op);
+ if (ret) {
+ dev_warn(ispi->dev, "failed to read FLCOMP\n");
+ return -ENODEV;
+ }
+
+ dev_dbg(ispi->dev, "FLCOMP=0x%08x\n", flcomp);
+
+ switch (flcomp & FLCOMP_C0DEN_MASK) {
+ case FLCOMP_C0DEN_512K:
+ ispi->chip0_size = SZ_512K;
+ break;
+ case FLCOMP_C0DEN_1M:
+ ispi->chip0_size = SZ_1M;
+ break;
+ case FLCOMP_C0DEN_2M:
+ ispi->chip0_size = SZ_2M;
+ break;
+ case FLCOMP_C0DEN_4M:
+ ispi->chip0_size = SZ_4M;
+ break;
+ case FLCOMP_C0DEN_8M:
+ ispi->chip0_size = SZ_8M;
+ break;
+ case FLCOMP_C0DEN_16M:
+ ispi->chip0_size = SZ_16M;
+ break;
+ case FLCOMP_C0DEN_32M:
+ ispi->chip0_size = SZ_32M;
+ break;
+ case FLCOMP_C0DEN_64M:
+ ispi->chip0_size = SZ_64M;
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ dev_dbg(ispi->dev, "chip0 size %zd KB\n", ispi->chip0_size / SZ_1K);
+
+ nc = (buf[1] & FLMAP0_NC_MASK) >> FLMAP0_NC_SHIFT;
+ if (!nc)
+ ispi->master->num_chipselect = 1;
+ else if (nc == 1)
+ ispi->master->num_chipselect = 2;
+ else
+ return -EINVAL;
+
+ dev_dbg(ispi->dev, "%u flash components found\n",
+ ispi->master->num_chipselect);
+ return 0;
+}
+
+static int intel_spi_populate_chip(struct intel_spi *ispi)
+{
+ struct flash_platform_data *pdata;
+ struct spi_board_info chip;
+ int ret;
+
+ pdata = devm_kzalloc(ispi->dev, sizeof(*pdata), GFP_KERNEL);
+ if (!pdata)
+ return -ENOMEM;
+
+ pdata->nr_parts = 1;
+ pdata->parts = devm_kcalloc(ispi->dev, pdata->nr_parts,
+ sizeof(*pdata->parts), GFP_KERNEL);
+ if (!pdata->parts)
+ return -ENOMEM;
+
+ intel_spi_fill_partition(ispi, pdata->parts);
+
+ memset(&chip, 0, sizeof(chip));
+ snprintf(chip.modalias, 8, "spi-nor");
+ chip.platform_data = pdata;
+
+ if (!spi_new_device(ispi->master, &chip))
+ return -ENODEV;
+
+ ret = intel_spi_read_desc(ispi);
+ if (ret)
+ return ret;
+
+ /* Add the second chip if present */
+ if (ispi->master->num_chipselect < 2)
+ return 0;
+
+ chip.platform_data = NULL;
+ chip.chip_select = 1;
+
+ if (!spi_new_device(ispi->master, &chip))
+ return -ENODEV;
+ return 0;
+}
+
+/**
+ * intel_spi_probe() - Probe the Intel SPI flash controller
+ * @dev: Pointer to the parent device
+ * @mem: MMIO resource
+ * @info: Platform specific information
+ *
+ * Probes Intel SPI flash controller and creates the flash chip device.
+ * Returns %0 on success and negative errno in case of failure.
+ */
+int intel_spi_probe(struct device *dev, struct resource *mem,
+ const struct intel_spi_boardinfo *info)
+{
+ struct spi_controller *master;
+ struct intel_spi *ispi;
+ int ret;
+
+ master = devm_spi_alloc_master(dev, sizeof(*ispi));
+ if (!master)
+ return -ENOMEM;
+
+ master->mem_ops = &intel_spi_mem_ops;
+
+ ispi = spi_master_get_devdata(master);
+
+ ispi->base = devm_ioremap_resource(dev, mem);
+ if (IS_ERR(ispi->base))
+ return PTR_ERR(ispi->base);
+
+ ispi->dev = dev;
+ ispi->master = master;
+ ispi->info = info;
+
+ ret = intel_spi_init(ispi);
+ if (ret)
+ return ret;
+
+ ret = devm_spi_register_master(dev, master);
+ if (ret)
+ return ret;
+
+ return intel_spi_populate_chip(ispi);
+}
+EXPORT_SYMBOL_GPL(intel_spi_probe);
+
+MODULE_DESCRIPTION("Intel PCH/PCU SPI flash core driver");
+MODULE_AUTHOR("Mika Westerberg <mika.westerberg@linux.intel.com>");
+MODULE_LICENSE("GPL v2");