diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
commit | 2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch) | |
tree | 848558de17fb3008cdf4d861b01ac7781903ce39 /fs/btrfs/tree-defrag.c | |
parent | Initial commit. (diff) | |
download | linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip |
Adding upstream version 6.1.76.upstream/6.1.76
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'fs/btrfs/tree-defrag.c')
-rw-r--r-- | fs/btrfs/tree-defrag.c | 471 |
1 files changed, 471 insertions, 0 deletions
diff --git a/fs/btrfs/tree-defrag.c b/fs/btrfs/tree-defrag.c new file mode 100644 index 000000000..0520d6d32 --- /dev/null +++ b/fs/btrfs/tree-defrag.c @@ -0,0 +1,471 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (C) 2007 Oracle. All rights reserved. + */ + +#include <linux/sched.h> +#include "ctree.h" +#include "disk-io.h" +#include "print-tree.h" +#include "transaction.h" +#include "locking.h" + +static struct kmem_cache *btrfs_inode_defrag_cachep; + +/* + * When auto defrag is enabled we queue up these defrag structs to remember + * which inodes need defragging passes. + */ +struct inode_defrag { + struct rb_node rb_node; + /* Inode number */ + u64 ino; + /* + * Transid where the defrag was added, we search for extents newer than + * this. + */ + u64 transid; + + /* Root objectid */ + u64 root; + + /* + * The extent size threshold for autodefrag. + * + * This value is different for compressed/non-compressed extents, thus + * needs to be passed from higher layer. + * (aka, inode_should_defrag()) + */ + u32 extent_thresh; +}; + +static int __compare_inode_defrag(struct inode_defrag *defrag1, + struct inode_defrag *defrag2) +{ + if (defrag1->root > defrag2->root) + return 1; + else if (defrag1->root < defrag2->root) + return -1; + else if (defrag1->ino > defrag2->ino) + return 1; + else if (defrag1->ino < defrag2->ino) + return -1; + else + return 0; +} + +/* + * Pop a record for an inode into the defrag tree. The lock must be held + * already. + * + * If you're inserting a record for an older transid than an existing record, + * the transid already in the tree is lowered. + * + * If an existing record is found the defrag item you pass in is freed. + */ +static int __btrfs_add_inode_defrag(struct btrfs_inode *inode, + struct inode_defrag *defrag) +{ + struct btrfs_fs_info *fs_info = inode->root->fs_info; + struct inode_defrag *entry; + struct rb_node **p; + struct rb_node *parent = NULL; + int ret; + + p = &fs_info->defrag_inodes.rb_node; + while (*p) { + parent = *p; + entry = rb_entry(parent, struct inode_defrag, rb_node); + + ret = __compare_inode_defrag(defrag, entry); + if (ret < 0) + p = &parent->rb_left; + else if (ret > 0) + p = &parent->rb_right; + else { + /* + * If we're reinserting an entry for an old defrag run, + * make sure to lower the transid of our existing + * record. + */ + if (defrag->transid < entry->transid) + entry->transid = defrag->transid; + entry->extent_thresh = min(defrag->extent_thresh, + entry->extent_thresh); + return -EEXIST; + } + } + set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags); + rb_link_node(&defrag->rb_node, parent, p); + rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes); + return 0; +} + +static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info) +{ + if (!btrfs_test_opt(fs_info, AUTO_DEFRAG)) + return 0; + + if (btrfs_fs_closing(fs_info)) + return 0; + + return 1; +} + +/* + * Insert a defrag record for this inode if auto defrag is enabled. + */ +int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, + struct btrfs_inode *inode, u32 extent_thresh) +{ + struct btrfs_root *root = inode->root; + struct btrfs_fs_info *fs_info = root->fs_info; + struct inode_defrag *defrag; + u64 transid; + int ret; + + if (!__need_auto_defrag(fs_info)) + return 0; + + if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) + return 0; + + if (trans) + transid = trans->transid; + else + transid = inode->root->last_trans; + + defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS); + if (!defrag) + return -ENOMEM; + + defrag->ino = btrfs_ino(inode); + defrag->transid = transid; + defrag->root = root->root_key.objectid; + defrag->extent_thresh = extent_thresh; + + spin_lock(&fs_info->defrag_inodes_lock); + if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) { + /* + * If we set IN_DEFRAG flag and evict the inode from memory, + * and then re-read this inode, this new inode doesn't have + * IN_DEFRAG flag. At the case, we may find the existed defrag. + */ + ret = __btrfs_add_inode_defrag(inode, defrag); + if (ret) + kmem_cache_free(btrfs_inode_defrag_cachep, defrag); + } else { + kmem_cache_free(btrfs_inode_defrag_cachep, defrag); + } + spin_unlock(&fs_info->defrag_inodes_lock); + return 0; +} + +/* + * Pick the defragable inode that we want, if it doesn't exist, we will get the + * next one. + */ +static struct inode_defrag *btrfs_pick_defrag_inode( + struct btrfs_fs_info *fs_info, u64 root, u64 ino) +{ + struct inode_defrag *entry = NULL; + struct inode_defrag tmp; + struct rb_node *p; + struct rb_node *parent = NULL; + int ret; + + tmp.ino = ino; + tmp.root = root; + + spin_lock(&fs_info->defrag_inodes_lock); + p = fs_info->defrag_inodes.rb_node; + while (p) { + parent = p; + entry = rb_entry(parent, struct inode_defrag, rb_node); + + ret = __compare_inode_defrag(&tmp, entry); + if (ret < 0) + p = parent->rb_left; + else if (ret > 0) + p = parent->rb_right; + else + goto out; + } + + if (parent && __compare_inode_defrag(&tmp, entry) > 0) { + parent = rb_next(parent); + if (parent) + entry = rb_entry(parent, struct inode_defrag, rb_node); + else + entry = NULL; + } +out: + if (entry) + rb_erase(parent, &fs_info->defrag_inodes); + spin_unlock(&fs_info->defrag_inodes_lock); + return entry; +} + +void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info) +{ + struct inode_defrag *defrag; + struct rb_node *node; + + spin_lock(&fs_info->defrag_inodes_lock); + node = rb_first(&fs_info->defrag_inodes); + while (node) { + rb_erase(node, &fs_info->defrag_inodes); + defrag = rb_entry(node, struct inode_defrag, rb_node); + kmem_cache_free(btrfs_inode_defrag_cachep, defrag); + + cond_resched_lock(&fs_info->defrag_inodes_lock); + + node = rb_first(&fs_info->defrag_inodes); + } + spin_unlock(&fs_info->defrag_inodes_lock); +} + +#define BTRFS_DEFRAG_BATCH 1024 + +static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info, + struct inode_defrag *defrag) +{ + struct btrfs_root *inode_root; + struct inode *inode; + struct btrfs_ioctl_defrag_range_args range; + int ret = 0; + u64 cur = 0; + +again: + if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)) + goto cleanup; + if (!__need_auto_defrag(fs_info)) + goto cleanup; + + /* Get the inode */ + inode_root = btrfs_get_fs_root(fs_info, defrag->root, true); + if (IS_ERR(inode_root)) { + ret = PTR_ERR(inode_root); + goto cleanup; + } + + inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root); + btrfs_put_root(inode_root); + if (IS_ERR(inode)) { + ret = PTR_ERR(inode); + goto cleanup; + } + + if (cur >= i_size_read(inode)) { + iput(inode); + goto cleanup; + } + + /* Do a chunk of defrag */ + clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); + memset(&range, 0, sizeof(range)); + range.len = (u64)-1; + range.start = cur; + range.extent_thresh = defrag->extent_thresh; + + sb_start_write(fs_info->sb); + ret = btrfs_defrag_file(inode, NULL, &range, defrag->transid, + BTRFS_DEFRAG_BATCH); + sb_end_write(fs_info->sb); + iput(inode); + + if (ret < 0) + goto cleanup; + + cur = max(cur + fs_info->sectorsize, range.start); + goto again; + +cleanup: + kmem_cache_free(btrfs_inode_defrag_cachep, defrag); + return ret; +} + +/* + * Run through the list of inodes in the FS that need defragging. + */ +int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info) +{ + struct inode_defrag *defrag; + u64 first_ino = 0; + u64 root_objectid = 0; + + atomic_inc(&fs_info->defrag_running); + while (1) { + /* Pause the auto defragger. */ + if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)) + break; + + if (!__need_auto_defrag(fs_info)) + break; + + /* find an inode to defrag */ + defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, first_ino); + if (!defrag) { + if (root_objectid || first_ino) { + root_objectid = 0; + first_ino = 0; + continue; + } else { + break; + } + } + + first_ino = defrag->ino + 1; + root_objectid = defrag->root; + + __btrfs_run_defrag_inode(fs_info, defrag); + } + atomic_dec(&fs_info->defrag_running); + + /* + * During unmount, we use the transaction_wait queue to wait for the + * defragger to stop. + */ + wake_up(&fs_info->transaction_wait); + return 0; +} + +/* + * Defrag all the leaves in a given btree. + * Read all the leaves and try to get key order to + * better reflect disk order + */ + +int btrfs_defrag_leaves(struct btrfs_trans_handle *trans, + struct btrfs_root *root) +{ + struct btrfs_path *path = NULL; + struct btrfs_key key; + int ret = 0; + int wret; + int level; + int next_key_ret = 0; + u64 last_ret = 0; + + if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) + goto out; + + path = btrfs_alloc_path(); + if (!path) { + ret = -ENOMEM; + goto out; + } + + level = btrfs_header_level(root->node); + + if (level == 0) + goto out; + + if (root->defrag_progress.objectid == 0) { + struct extent_buffer *root_node; + u32 nritems; + + root_node = btrfs_lock_root_node(root); + nritems = btrfs_header_nritems(root_node); + root->defrag_max.objectid = 0; + /* from above we know this is not a leaf */ + btrfs_node_key_to_cpu(root_node, &root->defrag_max, + nritems - 1); + btrfs_tree_unlock(root_node); + free_extent_buffer(root_node); + memset(&key, 0, sizeof(key)); + } else { + memcpy(&key, &root->defrag_progress, sizeof(key)); + } + + path->keep_locks = 1; + + ret = btrfs_search_forward(root, &key, path, BTRFS_OLDEST_GENERATION); + if (ret < 0) + goto out; + if (ret > 0) { + ret = 0; + goto out; + } + btrfs_release_path(path); + /* + * We don't need a lock on a leaf. btrfs_realloc_node() will lock all + * leafs from path->nodes[1], so set lowest_level to 1 to avoid later + * a deadlock (attempting to write lock an already write locked leaf). + */ + path->lowest_level = 1; + wret = btrfs_search_slot(trans, root, &key, path, 0, 1); + + if (wret < 0) { + ret = wret; + goto out; + } + if (!path->nodes[1]) { + ret = 0; + goto out; + } + /* + * The node at level 1 must always be locked when our path has + * keep_locks set and lowest_level is 1, regardless of the value of + * path->slots[1]. + */ + BUG_ON(path->locks[1] == 0); + ret = btrfs_realloc_node(trans, root, + path->nodes[1], 0, + &last_ret, + &root->defrag_progress); + if (ret) { + WARN_ON(ret == -EAGAIN); + goto out; + } + /* + * Now that we reallocated the node we can find the next key. Note that + * btrfs_find_next_key() can release our path and do another search + * without COWing, this is because even with path->keep_locks = 1, + * btrfs_search_slot() / ctree.c:unlock_up() does not keeps a lock on a + * node when path->slots[node_level - 1] does not point to the last + * item or a slot beyond the last item (ctree.c:unlock_up()). Therefore + * we search for the next key after reallocating our node. + */ + path->slots[1] = btrfs_header_nritems(path->nodes[1]); + next_key_ret = btrfs_find_next_key(root, path, &key, 1, + BTRFS_OLDEST_GENERATION); + if (next_key_ret == 0) { + memcpy(&root->defrag_progress, &key, sizeof(key)); + ret = -EAGAIN; + } +out: + btrfs_free_path(path); + if (ret == -EAGAIN) { + if (root->defrag_max.objectid > root->defrag_progress.objectid) + goto done; + if (root->defrag_max.type > root->defrag_progress.type) + goto done; + if (root->defrag_max.offset > root->defrag_progress.offset) + goto done; + ret = 0; + } +done: + if (ret != -EAGAIN) + memset(&root->defrag_progress, 0, + sizeof(root->defrag_progress)); + + return ret; +} + +void __cold btrfs_auto_defrag_exit(void) +{ + kmem_cache_destroy(btrfs_inode_defrag_cachep); +} + +int __init btrfs_auto_defrag_init(void) +{ + btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag", + sizeof(struct inode_defrag), 0, + SLAB_MEM_SPREAD, + NULL); + if (!btrfs_inode_defrag_cachep) + return -ENOMEM; + + return 0; +} |