diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
commit | 2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch) | |
tree | 848558de17fb3008cdf4d861b01ac7781903ce39 /kernel/sched/membarrier.c | |
parent | Initial commit. (diff) | |
download | linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip |
Adding upstream version 6.1.76.upstream/6.1.76
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'kernel/sched/membarrier.c')
-rw-r--r-- | kernel/sched/membarrier.c | 629 |
1 files changed, 629 insertions, 0 deletions
diff --git a/kernel/sched/membarrier.c b/kernel/sched/membarrier.c new file mode 100644 index 000000000..0c5be7ebb --- /dev/null +++ b/kernel/sched/membarrier.c @@ -0,0 +1,629 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * Copyright (C) 2010-2017 Mathieu Desnoyers <mathieu.desnoyers@efficios.com> + * + * membarrier system call + */ + +/* + * For documentation purposes, here are some membarrier ordering + * scenarios to keep in mind: + * + * A) Userspace thread execution after IPI vs membarrier's memory + * barrier before sending the IPI + * + * Userspace variables: + * + * int x = 0, y = 0; + * + * The memory barrier at the start of membarrier() on CPU0 is necessary in + * order to enforce the guarantee that any writes occurring on CPU0 before + * the membarrier() is executed will be visible to any code executing on + * CPU1 after the IPI-induced memory barrier: + * + * CPU0 CPU1 + * + * x = 1 + * membarrier(): + * a: smp_mb() + * b: send IPI IPI-induced mb + * c: smp_mb() + * r2 = y + * y = 1 + * barrier() + * r1 = x + * + * BUG_ON(r1 == 0 && r2 == 0) + * + * The write to y and load from x by CPU1 are unordered by the hardware, + * so it's possible to have "r1 = x" reordered before "y = 1" at any + * point after (b). If the memory barrier at (a) is omitted, then "x = 1" + * can be reordered after (a) (although not after (c)), so we get r1 == 0 + * and r2 == 0. This violates the guarantee that membarrier() is + * supposed by provide. + * + * The timing of the memory barrier at (a) has to ensure that it executes + * before the IPI-induced memory barrier on CPU1. + * + * B) Userspace thread execution before IPI vs membarrier's memory + * barrier after completing the IPI + * + * Userspace variables: + * + * int x = 0, y = 0; + * + * The memory barrier at the end of membarrier() on CPU0 is necessary in + * order to enforce the guarantee that any writes occurring on CPU1 before + * the membarrier() is executed will be visible to any code executing on + * CPU0 after the membarrier(): + * + * CPU0 CPU1 + * + * x = 1 + * barrier() + * y = 1 + * r2 = y + * membarrier(): + * a: smp_mb() + * b: send IPI IPI-induced mb + * c: smp_mb() + * r1 = x + * BUG_ON(r1 == 0 && r2 == 1) + * + * The writes to x and y are unordered by the hardware, so it's possible to + * have "r2 = 1" even though the write to x doesn't execute until (b). If + * the memory barrier at (c) is omitted then "r1 = x" can be reordered + * before (b) (although not before (a)), so we get "r1 = 0". This violates + * the guarantee that membarrier() is supposed to provide. + * + * The timing of the memory barrier at (c) has to ensure that it executes + * after the IPI-induced memory barrier on CPU1. + * + * C) Scheduling userspace thread -> kthread -> userspace thread vs membarrier + * + * CPU0 CPU1 + * + * membarrier(): + * a: smp_mb() + * d: switch to kthread (includes mb) + * b: read rq->curr->mm == NULL + * e: switch to user (includes mb) + * c: smp_mb() + * + * Using the scenario from (A), we can show that (a) needs to be paired + * with (e). Using the scenario from (B), we can show that (c) needs to + * be paired with (d). + * + * D) exit_mm vs membarrier + * + * Two thread groups are created, A and B. Thread group B is created by + * issuing clone from group A with flag CLONE_VM set, but not CLONE_THREAD. + * Let's assume we have a single thread within each thread group (Thread A + * and Thread B). Thread A runs on CPU0, Thread B runs on CPU1. + * + * CPU0 CPU1 + * + * membarrier(): + * a: smp_mb() + * exit_mm(): + * d: smp_mb() + * e: current->mm = NULL + * b: read rq->curr->mm == NULL + * c: smp_mb() + * + * Using scenario (B), we can show that (c) needs to be paired with (d). + * + * E) kthread_{use,unuse}_mm vs membarrier + * + * CPU0 CPU1 + * + * membarrier(): + * a: smp_mb() + * kthread_unuse_mm() + * d: smp_mb() + * e: current->mm = NULL + * b: read rq->curr->mm == NULL + * kthread_use_mm() + * f: current->mm = mm + * g: smp_mb() + * c: smp_mb() + * + * Using the scenario from (A), we can show that (a) needs to be paired + * with (g). Using the scenario from (B), we can show that (c) needs to + * be paired with (d). + */ + +/* + * Bitmask made from a "or" of all commands within enum membarrier_cmd, + * except MEMBARRIER_CMD_QUERY. + */ +#ifdef CONFIG_ARCH_HAS_MEMBARRIER_SYNC_CORE +#define MEMBARRIER_PRIVATE_EXPEDITED_SYNC_CORE_BITMASK \ + (MEMBARRIER_CMD_PRIVATE_EXPEDITED_SYNC_CORE \ + | MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_SYNC_CORE) +#else +#define MEMBARRIER_PRIVATE_EXPEDITED_SYNC_CORE_BITMASK 0 +#endif + +#ifdef CONFIG_RSEQ +#define MEMBARRIER_PRIVATE_EXPEDITED_RSEQ_BITMASK \ + (MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ \ + | MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_RSEQ) +#else +#define MEMBARRIER_PRIVATE_EXPEDITED_RSEQ_BITMASK 0 +#endif + +#define MEMBARRIER_CMD_BITMASK \ + (MEMBARRIER_CMD_GLOBAL | MEMBARRIER_CMD_GLOBAL_EXPEDITED \ + | MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED \ + | MEMBARRIER_CMD_PRIVATE_EXPEDITED \ + | MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED \ + | MEMBARRIER_PRIVATE_EXPEDITED_SYNC_CORE_BITMASK \ + | MEMBARRIER_PRIVATE_EXPEDITED_RSEQ_BITMASK) + +static void ipi_mb(void *info) +{ + smp_mb(); /* IPIs should be serializing but paranoid. */ +} + +static void ipi_sync_core(void *info) +{ + /* + * The smp_mb() in membarrier after all the IPIs is supposed to + * ensure that memory on remote CPUs that occur before the IPI + * become visible to membarrier()'s caller -- see scenario B in + * the big comment at the top of this file. + * + * A sync_core() would provide this guarantee, but + * sync_core_before_usermode() might end up being deferred until + * after membarrier()'s smp_mb(). + */ + smp_mb(); /* IPIs should be serializing but paranoid. */ + + sync_core_before_usermode(); +} + +static void ipi_rseq(void *info) +{ + /* + * Ensure that all stores done by the calling thread are visible + * to the current task before the current task resumes. We could + * probably optimize this away on most architectures, but by the + * time we've already sent an IPI, the cost of the extra smp_mb() + * is negligible. + */ + smp_mb(); + rseq_preempt(current); +} + +static void ipi_sync_rq_state(void *info) +{ + struct mm_struct *mm = (struct mm_struct *) info; + + if (current->mm != mm) + return; + this_cpu_write(runqueues.membarrier_state, + atomic_read(&mm->membarrier_state)); + /* + * Issue a memory barrier after setting + * MEMBARRIER_STATE_GLOBAL_EXPEDITED in the current runqueue to + * guarantee that no memory access following registration is reordered + * before registration. + */ + smp_mb(); +} + +void membarrier_exec_mmap(struct mm_struct *mm) +{ + /* + * Issue a memory barrier before clearing membarrier_state to + * guarantee that no memory access prior to exec is reordered after + * clearing this state. + */ + smp_mb(); + atomic_set(&mm->membarrier_state, 0); + /* + * Keep the runqueue membarrier_state in sync with this mm + * membarrier_state. + */ + this_cpu_write(runqueues.membarrier_state, 0); +} + +void membarrier_update_current_mm(struct mm_struct *next_mm) +{ + struct rq *rq = this_rq(); + int membarrier_state = 0; + + if (next_mm) + membarrier_state = atomic_read(&next_mm->membarrier_state); + if (READ_ONCE(rq->membarrier_state) == membarrier_state) + return; + WRITE_ONCE(rq->membarrier_state, membarrier_state); +} + +static int membarrier_global_expedited(void) +{ + int cpu; + cpumask_var_t tmpmask; + + if (num_online_cpus() == 1) + return 0; + + /* + * Matches memory barriers around rq->curr modification in + * scheduler. + */ + smp_mb(); /* system call entry is not a mb. */ + + if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL)) + return -ENOMEM; + + cpus_read_lock(); + rcu_read_lock(); + for_each_online_cpu(cpu) { + struct task_struct *p; + + /* + * Skipping the current CPU is OK even through we can be + * migrated at any point. The current CPU, at the point + * where we read raw_smp_processor_id(), is ensured to + * be in program order with respect to the caller + * thread. Therefore, we can skip this CPU from the + * iteration. + */ + if (cpu == raw_smp_processor_id()) + continue; + + if (!(READ_ONCE(cpu_rq(cpu)->membarrier_state) & + MEMBARRIER_STATE_GLOBAL_EXPEDITED)) + continue; + + /* + * Skip the CPU if it runs a kernel thread which is not using + * a task mm. + */ + p = rcu_dereference(cpu_rq(cpu)->curr); + if (!p->mm) + continue; + + __cpumask_set_cpu(cpu, tmpmask); + } + rcu_read_unlock(); + + preempt_disable(); + smp_call_function_many(tmpmask, ipi_mb, NULL, 1); + preempt_enable(); + + free_cpumask_var(tmpmask); + cpus_read_unlock(); + + /* + * Memory barrier on the caller thread _after_ we finished + * waiting for the last IPI. Matches memory barriers around + * rq->curr modification in scheduler. + */ + smp_mb(); /* exit from system call is not a mb */ + return 0; +} + +static int membarrier_private_expedited(int flags, int cpu_id) +{ + cpumask_var_t tmpmask; + struct mm_struct *mm = current->mm; + smp_call_func_t ipi_func = ipi_mb; + + if (flags == MEMBARRIER_FLAG_SYNC_CORE) { + if (!IS_ENABLED(CONFIG_ARCH_HAS_MEMBARRIER_SYNC_CORE)) + return -EINVAL; + if (!(atomic_read(&mm->membarrier_state) & + MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY)) + return -EPERM; + ipi_func = ipi_sync_core; + } else if (flags == MEMBARRIER_FLAG_RSEQ) { + if (!IS_ENABLED(CONFIG_RSEQ)) + return -EINVAL; + if (!(atomic_read(&mm->membarrier_state) & + MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ_READY)) + return -EPERM; + ipi_func = ipi_rseq; + } else { + WARN_ON_ONCE(flags); + if (!(atomic_read(&mm->membarrier_state) & + MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY)) + return -EPERM; + } + + if (flags != MEMBARRIER_FLAG_SYNC_CORE && + (atomic_read(&mm->mm_users) == 1 || num_online_cpus() == 1)) + return 0; + + /* + * Matches memory barriers around rq->curr modification in + * scheduler. + */ + smp_mb(); /* system call entry is not a mb. */ + + if (cpu_id < 0 && !zalloc_cpumask_var(&tmpmask, GFP_KERNEL)) + return -ENOMEM; + + cpus_read_lock(); + + if (cpu_id >= 0) { + struct task_struct *p; + + if (cpu_id >= nr_cpu_ids || !cpu_online(cpu_id)) + goto out; + rcu_read_lock(); + p = rcu_dereference(cpu_rq(cpu_id)->curr); + if (!p || p->mm != mm) { + rcu_read_unlock(); + goto out; + } + rcu_read_unlock(); + } else { + int cpu; + + rcu_read_lock(); + for_each_online_cpu(cpu) { + struct task_struct *p; + + p = rcu_dereference(cpu_rq(cpu)->curr); + if (p && p->mm == mm) + __cpumask_set_cpu(cpu, tmpmask); + } + rcu_read_unlock(); + } + + if (cpu_id >= 0) { + /* + * smp_call_function_single() will call ipi_func() if cpu_id + * is the calling CPU. + */ + smp_call_function_single(cpu_id, ipi_func, NULL, 1); + } else { + /* + * For regular membarrier, we can save a few cycles by + * skipping the current cpu -- we're about to do smp_mb() + * below, and if we migrate to a different cpu, this cpu + * and the new cpu will execute a full barrier in the + * scheduler. + * + * For SYNC_CORE, we do need a barrier on the current cpu -- + * otherwise, if we are migrated and replaced by a different + * task in the same mm just before, during, or after + * membarrier, we will end up with some thread in the mm + * running without a core sync. + * + * For RSEQ, don't rseq_preempt() the caller. User code + * is not supposed to issue syscalls at all from inside an + * rseq critical section. + */ + if (flags != MEMBARRIER_FLAG_SYNC_CORE) { + preempt_disable(); + smp_call_function_many(tmpmask, ipi_func, NULL, true); + preempt_enable(); + } else { + on_each_cpu_mask(tmpmask, ipi_func, NULL, true); + } + } + +out: + if (cpu_id < 0) + free_cpumask_var(tmpmask); + cpus_read_unlock(); + + /* + * Memory barrier on the caller thread _after_ we finished + * waiting for the last IPI. Matches memory barriers around + * rq->curr modification in scheduler. + */ + smp_mb(); /* exit from system call is not a mb */ + + return 0; +} + +static int sync_runqueues_membarrier_state(struct mm_struct *mm) +{ + int membarrier_state = atomic_read(&mm->membarrier_state); + cpumask_var_t tmpmask; + int cpu; + + if (atomic_read(&mm->mm_users) == 1 || num_online_cpus() == 1) { + this_cpu_write(runqueues.membarrier_state, membarrier_state); + + /* + * For single mm user, we can simply issue a memory barrier + * after setting MEMBARRIER_STATE_GLOBAL_EXPEDITED in the + * mm and in the current runqueue to guarantee that no memory + * access following registration is reordered before + * registration. + */ + smp_mb(); + return 0; + } + + if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL)) + return -ENOMEM; + + /* + * For mm with multiple users, we need to ensure all future + * scheduler executions will observe @mm's new membarrier + * state. + */ + synchronize_rcu(); + + /* + * For each cpu runqueue, if the task's mm match @mm, ensure that all + * @mm's membarrier state set bits are also set in the runqueue's + * membarrier state. This ensures that a runqueue scheduling + * between threads which are users of @mm has its membarrier state + * updated. + */ + cpus_read_lock(); + rcu_read_lock(); + for_each_online_cpu(cpu) { + struct rq *rq = cpu_rq(cpu); + struct task_struct *p; + + p = rcu_dereference(rq->curr); + if (p && p->mm == mm) + __cpumask_set_cpu(cpu, tmpmask); + } + rcu_read_unlock(); + + on_each_cpu_mask(tmpmask, ipi_sync_rq_state, mm, true); + + free_cpumask_var(tmpmask); + cpus_read_unlock(); + + return 0; +} + +static int membarrier_register_global_expedited(void) +{ + struct task_struct *p = current; + struct mm_struct *mm = p->mm; + int ret; + + if (atomic_read(&mm->membarrier_state) & + MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY) + return 0; + atomic_or(MEMBARRIER_STATE_GLOBAL_EXPEDITED, &mm->membarrier_state); + ret = sync_runqueues_membarrier_state(mm); + if (ret) + return ret; + atomic_or(MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY, + &mm->membarrier_state); + + return 0; +} + +static int membarrier_register_private_expedited(int flags) +{ + struct task_struct *p = current; + struct mm_struct *mm = p->mm; + int ready_state = MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY, + set_state = MEMBARRIER_STATE_PRIVATE_EXPEDITED, + ret; + + if (flags == MEMBARRIER_FLAG_SYNC_CORE) { + if (!IS_ENABLED(CONFIG_ARCH_HAS_MEMBARRIER_SYNC_CORE)) + return -EINVAL; + ready_state = + MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY; + } else if (flags == MEMBARRIER_FLAG_RSEQ) { + if (!IS_ENABLED(CONFIG_RSEQ)) + return -EINVAL; + ready_state = + MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ_READY; + } else { + WARN_ON_ONCE(flags); + } + + /* + * We need to consider threads belonging to different thread + * groups, which use the same mm. (CLONE_VM but not + * CLONE_THREAD). + */ + if ((atomic_read(&mm->membarrier_state) & ready_state) == ready_state) + return 0; + if (flags & MEMBARRIER_FLAG_SYNC_CORE) + set_state |= MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE; + if (flags & MEMBARRIER_FLAG_RSEQ) + set_state |= MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ; + atomic_or(set_state, &mm->membarrier_state); + ret = sync_runqueues_membarrier_state(mm); + if (ret) + return ret; + atomic_or(ready_state, &mm->membarrier_state); + + return 0; +} + +/** + * sys_membarrier - issue memory barriers on a set of threads + * @cmd: Takes command values defined in enum membarrier_cmd. + * @flags: Currently needs to be 0 for all commands other than + * MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ: in the latter + * case it can be MEMBARRIER_CMD_FLAG_CPU, indicating that @cpu_id + * contains the CPU on which to interrupt (= restart) + * the RSEQ critical section. + * @cpu_id: if @flags == MEMBARRIER_CMD_FLAG_CPU, indicates the cpu on which + * RSEQ CS should be interrupted (@cmd must be + * MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ). + * + * If this system call is not implemented, -ENOSYS is returned. If the + * command specified does not exist, not available on the running + * kernel, or if the command argument is invalid, this system call + * returns -EINVAL. For a given command, with flags argument set to 0, + * if this system call returns -ENOSYS or -EINVAL, it is guaranteed to + * always return the same value until reboot. In addition, it can return + * -ENOMEM if there is not enough memory available to perform the system + * call. + * + * All memory accesses performed in program order from each targeted thread + * is guaranteed to be ordered with respect to sys_membarrier(). If we use + * the semantic "barrier()" to represent a compiler barrier forcing memory + * accesses to be performed in program order across the barrier, and + * smp_mb() to represent explicit memory barriers forcing full memory + * ordering across the barrier, we have the following ordering table for + * each pair of barrier(), sys_membarrier() and smp_mb(): + * + * The pair ordering is detailed as (O: ordered, X: not ordered): + * + * barrier() smp_mb() sys_membarrier() + * barrier() X X O + * smp_mb() X O O + * sys_membarrier() O O O + */ +SYSCALL_DEFINE3(membarrier, int, cmd, unsigned int, flags, int, cpu_id) +{ + switch (cmd) { + case MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ: + if (unlikely(flags && flags != MEMBARRIER_CMD_FLAG_CPU)) + return -EINVAL; + break; + default: + if (unlikely(flags)) + return -EINVAL; + } + + if (!(flags & MEMBARRIER_CMD_FLAG_CPU)) + cpu_id = -1; + + switch (cmd) { + case MEMBARRIER_CMD_QUERY: + { + int cmd_mask = MEMBARRIER_CMD_BITMASK; + + if (tick_nohz_full_enabled()) + cmd_mask &= ~MEMBARRIER_CMD_GLOBAL; + return cmd_mask; + } + case MEMBARRIER_CMD_GLOBAL: + /* MEMBARRIER_CMD_GLOBAL is not compatible with nohz_full. */ + if (tick_nohz_full_enabled()) + return -EINVAL; + if (num_online_cpus() > 1) + synchronize_rcu(); + return 0; + case MEMBARRIER_CMD_GLOBAL_EXPEDITED: + return membarrier_global_expedited(); + case MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED: + return membarrier_register_global_expedited(); + case MEMBARRIER_CMD_PRIVATE_EXPEDITED: + return membarrier_private_expedited(0, cpu_id); + case MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED: + return membarrier_register_private_expedited(0); + case MEMBARRIER_CMD_PRIVATE_EXPEDITED_SYNC_CORE: + return membarrier_private_expedited(MEMBARRIER_FLAG_SYNC_CORE, cpu_id); + case MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_SYNC_CORE: + return membarrier_register_private_expedited(MEMBARRIER_FLAG_SYNC_CORE); + case MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ: + return membarrier_private_expedited(MEMBARRIER_FLAG_RSEQ, cpu_id); + case MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_RSEQ: + return membarrier_register_private_expedited(MEMBARRIER_FLAG_RSEQ); + default: + return -EINVAL; + } +} |