summaryrefslogtreecommitdiffstats
path: root/tools/testing/selftests/vm/hmm-tests.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
commit2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch)
tree848558de17fb3008cdf4d861b01ac7781903ce39 /tools/testing/selftests/vm/hmm-tests.c
parentInitial commit. (diff)
downloadlinux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz
linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip
Adding upstream version 6.1.76.upstream/6.1.76
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'tools/testing/selftests/vm/hmm-tests.c')
-rw-r--r--tools/testing/selftests/vm/hmm-tests.c2054
1 files changed, 2054 insertions, 0 deletions
diff --git a/tools/testing/selftests/vm/hmm-tests.c b/tools/testing/selftests/vm/hmm-tests.c
new file mode 100644
index 000000000..4adaad1b8
--- /dev/null
+++ b/tools/testing/selftests/vm/hmm-tests.c
@@ -0,0 +1,2054 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * HMM stands for Heterogeneous Memory Management, it is a helper layer inside
+ * the linux kernel to help device drivers mirror a process address space in
+ * the device. This allows the device to use the same address space which
+ * makes communication and data exchange a lot easier.
+ *
+ * This framework's sole purpose is to exercise various code paths inside
+ * the kernel to make sure that HMM performs as expected and to flush out any
+ * bugs.
+ */
+
+#include "../kselftest_harness.h"
+
+#include <errno.h>
+#include <fcntl.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <stdint.h>
+#include <unistd.h>
+#include <strings.h>
+#include <time.h>
+#include <pthread.h>
+#include <sys/types.h>
+#include <sys/stat.h>
+#include <sys/mman.h>
+#include <sys/ioctl.h>
+
+
+/*
+ * This is a private UAPI to the kernel test module so it isn't exported
+ * in the usual include/uapi/... directory.
+ */
+#include <lib/test_hmm_uapi.h>
+#include <mm/gup_test.h>
+
+struct hmm_buffer {
+ void *ptr;
+ void *mirror;
+ unsigned long size;
+ int fd;
+ uint64_t cpages;
+ uint64_t faults;
+};
+
+enum {
+ HMM_PRIVATE_DEVICE_ONE,
+ HMM_PRIVATE_DEVICE_TWO,
+ HMM_COHERENCE_DEVICE_ONE,
+ HMM_COHERENCE_DEVICE_TWO,
+};
+
+#define TWOMEG (1 << 21)
+#define HMM_BUFFER_SIZE (1024 << 12)
+#define HMM_PATH_MAX 64
+#define NTIMES 10
+
+#define ALIGN(x, a) (((x) + (a - 1)) & (~((a) - 1)))
+/* Just the flags we need, copied from mm.h: */
+#define FOLL_WRITE 0x01 /* check pte is writable */
+#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite */
+
+FIXTURE(hmm)
+{
+ int fd;
+ unsigned int page_size;
+ unsigned int page_shift;
+};
+
+FIXTURE_VARIANT(hmm)
+{
+ int device_number;
+};
+
+FIXTURE_VARIANT_ADD(hmm, hmm_device_private)
+{
+ .device_number = HMM_PRIVATE_DEVICE_ONE,
+};
+
+FIXTURE_VARIANT_ADD(hmm, hmm_device_coherent)
+{
+ .device_number = HMM_COHERENCE_DEVICE_ONE,
+};
+
+FIXTURE(hmm2)
+{
+ int fd0;
+ int fd1;
+ unsigned int page_size;
+ unsigned int page_shift;
+};
+
+FIXTURE_VARIANT(hmm2)
+{
+ int device_number0;
+ int device_number1;
+};
+
+FIXTURE_VARIANT_ADD(hmm2, hmm2_device_private)
+{
+ .device_number0 = HMM_PRIVATE_DEVICE_ONE,
+ .device_number1 = HMM_PRIVATE_DEVICE_TWO,
+};
+
+FIXTURE_VARIANT_ADD(hmm2, hmm2_device_coherent)
+{
+ .device_number0 = HMM_COHERENCE_DEVICE_ONE,
+ .device_number1 = HMM_COHERENCE_DEVICE_TWO,
+};
+
+static int hmm_open(int unit)
+{
+ char pathname[HMM_PATH_MAX];
+ int fd;
+
+ snprintf(pathname, sizeof(pathname), "/dev/hmm_dmirror%d", unit);
+ fd = open(pathname, O_RDWR, 0);
+ if (fd < 0)
+ fprintf(stderr, "could not open hmm dmirror driver (%s)\n",
+ pathname);
+ return fd;
+}
+
+static bool hmm_is_coherent_type(int dev_num)
+{
+ return (dev_num >= HMM_COHERENCE_DEVICE_ONE);
+}
+
+FIXTURE_SETUP(hmm)
+{
+ self->page_size = sysconf(_SC_PAGE_SIZE);
+ self->page_shift = ffs(self->page_size) - 1;
+
+ self->fd = hmm_open(variant->device_number);
+ if (self->fd < 0 && hmm_is_coherent_type(variant->device_number))
+ SKIP(exit(0), "DEVICE_COHERENT not available");
+ ASSERT_GE(self->fd, 0);
+}
+
+FIXTURE_SETUP(hmm2)
+{
+ self->page_size = sysconf(_SC_PAGE_SIZE);
+ self->page_shift = ffs(self->page_size) - 1;
+
+ self->fd0 = hmm_open(variant->device_number0);
+ if (self->fd0 < 0 && hmm_is_coherent_type(variant->device_number0))
+ SKIP(exit(0), "DEVICE_COHERENT not available");
+ ASSERT_GE(self->fd0, 0);
+ self->fd1 = hmm_open(variant->device_number1);
+ ASSERT_GE(self->fd1, 0);
+}
+
+FIXTURE_TEARDOWN(hmm)
+{
+ int ret = close(self->fd);
+
+ ASSERT_EQ(ret, 0);
+ self->fd = -1;
+}
+
+FIXTURE_TEARDOWN(hmm2)
+{
+ int ret = close(self->fd0);
+
+ ASSERT_EQ(ret, 0);
+ self->fd0 = -1;
+
+ ret = close(self->fd1);
+ ASSERT_EQ(ret, 0);
+ self->fd1 = -1;
+}
+
+static int hmm_dmirror_cmd(int fd,
+ unsigned long request,
+ struct hmm_buffer *buffer,
+ unsigned long npages)
+{
+ struct hmm_dmirror_cmd cmd;
+ int ret;
+
+ /* Simulate a device reading system memory. */
+ cmd.addr = (__u64)buffer->ptr;
+ cmd.ptr = (__u64)buffer->mirror;
+ cmd.npages = npages;
+
+ for (;;) {
+ ret = ioctl(fd, request, &cmd);
+ if (ret == 0)
+ break;
+ if (errno == EINTR)
+ continue;
+ return -errno;
+ }
+ buffer->cpages = cmd.cpages;
+ buffer->faults = cmd.faults;
+
+ return 0;
+}
+
+static void hmm_buffer_free(struct hmm_buffer *buffer)
+{
+ if (buffer == NULL)
+ return;
+
+ if (buffer->ptr)
+ munmap(buffer->ptr, buffer->size);
+ free(buffer->mirror);
+ free(buffer);
+}
+
+/*
+ * Create a temporary file that will be deleted on close.
+ */
+static int hmm_create_file(unsigned long size)
+{
+ char path[HMM_PATH_MAX];
+ int fd;
+
+ strcpy(path, "/tmp");
+ fd = open(path, O_TMPFILE | O_EXCL | O_RDWR, 0600);
+ if (fd >= 0) {
+ int r;
+
+ do {
+ r = ftruncate(fd, size);
+ } while (r == -1 && errno == EINTR);
+ if (!r)
+ return fd;
+ close(fd);
+ }
+ return -1;
+}
+
+/*
+ * Return a random unsigned number.
+ */
+static unsigned int hmm_random(void)
+{
+ static int fd = -1;
+ unsigned int r;
+
+ if (fd < 0) {
+ fd = open("/dev/urandom", O_RDONLY);
+ if (fd < 0) {
+ fprintf(stderr, "%s:%d failed to open /dev/urandom\n",
+ __FILE__, __LINE__);
+ return ~0U;
+ }
+ }
+ read(fd, &r, sizeof(r));
+ return r;
+}
+
+static void hmm_nanosleep(unsigned int n)
+{
+ struct timespec t;
+
+ t.tv_sec = 0;
+ t.tv_nsec = n;
+ nanosleep(&t, NULL);
+}
+
+static int hmm_migrate_sys_to_dev(int fd,
+ struct hmm_buffer *buffer,
+ unsigned long npages)
+{
+ return hmm_dmirror_cmd(fd, HMM_DMIRROR_MIGRATE_TO_DEV, buffer, npages);
+}
+
+static int hmm_migrate_dev_to_sys(int fd,
+ struct hmm_buffer *buffer,
+ unsigned long npages)
+{
+ return hmm_dmirror_cmd(fd, HMM_DMIRROR_MIGRATE_TO_SYS, buffer, npages);
+}
+
+/*
+ * Simple NULL test of device open/close.
+ */
+TEST_F(hmm, open_close)
+{
+}
+
+/*
+ * Read private anonymous memory.
+ */
+TEST_F(hmm, anon_read)
+{
+ struct hmm_buffer *buffer;
+ unsigned long npages;
+ unsigned long size;
+ unsigned long i;
+ int *ptr;
+ int ret;
+ int val;
+
+ npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
+ ASSERT_NE(npages, 0);
+ size = npages << self->page_shift;
+
+ buffer = malloc(sizeof(*buffer));
+ ASSERT_NE(buffer, NULL);
+
+ buffer->fd = -1;
+ buffer->size = size;
+ buffer->mirror = malloc(size);
+ ASSERT_NE(buffer->mirror, NULL);
+
+ buffer->ptr = mmap(NULL, size,
+ PROT_READ | PROT_WRITE,
+ MAP_PRIVATE | MAP_ANONYMOUS,
+ buffer->fd, 0);
+ ASSERT_NE(buffer->ptr, MAP_FAILED);
+
+ /*
+ * Initialize buffer in system memory but leave the first two pages
+ * zero (pte_none and pfn_zero).
+ */
+ i = 2 * self->page_size / sizeof(*ptr);
+ for (ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+ ptr[i] = i;
+
+ /* Set buffer permission to read-only. */
+ ret = mprotect(buffer->ptr, size, PROT_READ);
+ ASSERT_EQ(ret, 0);
+
+ /* Populate the CPU page table with a special zero page. */
+ val = *(int *)(buffer->ptr + self->page_size);
+ ASSERT_EQ(val, 0);
+
+ /* Simulate a device reading system memory. */
+ ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_READ, buffer, npages);
+ ASSERT_EQ(ret, 0);
+ ASSERT_EQ(buffer->cpages, npages);
+ ASSERT_EQ(buffer->faults, 1);
+
+ /* Check what the device read. */
+ ptr = buffer->mirror;
+ for (i = 0; i < 2 * self->page_size / sizeof(*ptr); ++i)
+ ASSERT_EQ(ptr[i], 0);
+ for (; i < size / sizeof(*ptr); ++i)
+ ASSERT_EQ(ptr[i], i);
+
+ hmm_buffer_free(buffer);
+}
+
+/*
+ * Read private anonymous memory which has been protected with
+ * mprotect() PROT_NONE.
+ */
+TEST_F(hmm, anon_read_prot)
+{
+ struct hmm_buffer *buffer;
+ unsigned long npages;
+ unsigned long size;
+ unsigned long i;
+ int *ptr;
+ int ret;
+
+ npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
+ ASSERT_NE(npages, 0);
+ size = npages << self->page_shift;
+
+ buffer = malloc(sizeof(*buffer));
+ ASSERT_NE(buffer, NULL);
+
+ buffer->fd = -1;
+ buffer->size = size;
+ buffer->mirror = malloc(size);
+ ASSERT_NE(buffer->mirror, NULL);
+
+ buffer->ptr = mmap(NULL, size,
+ PROT_READ | PROT_WRITE,
+ MAP_PRIVATE | MAP_ANONYMOUS,
+ buffer->fd, 0);
+ ASSERT_NE(buffer->ptr, MAP_FAILED);
+
+ /* Initialize buffer in system memory. */
+ for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+ ptr[i] = i;
+
+ /* Initialize mirror buffer so we can verify it isn't written. */
+ for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+ ptr[i] = -i;
+
+ /* Protect buffer from reading. */
+ ret = mprotect(buffer->ptr, size, PROT_NONE);
+ ASSERT_EQ(ret, 0);
+
+ /* Simulate a device reading system memory. */
+ ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_READ, buffer, npages);
+ ASSERT_EQ(ret, -EFAULT);
+
+ /* Allow CPU to read the buffer so we can check it. */
+ ret = mprotect(buffer->ptr, size, PROT_READ);
+ ASSERT_EQ(ret, 0);
+ for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+ ASSERT_EQ(ptr[i], i);
+
+ /* Check what the device read. */
+ for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+ ASSERT_EQ(ptr[i], -i);
+
+ hmm_buffer_free(buffer);
+}
+
+/*
+ * Write private anonymous memory.
+ */
+TEST_F(hmm, anon_write)
+{
+ struct hmm_buffer *buffer;
+ unsigned long npages;
+ unsigned long size;
+ unsigned long i;
+ int *ptr;
+ int ret;
+
+ npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
+ ASSERT_NE(npages, 0);
+ size = npages << self->page_shift;
+
+ buffer = malloc(sizeof(*buffer));
+ ASSERT_NE(buffer, NULL);
+
+ buffer->fd = -1;
+ buffer->size = size;
+ buffer->mirror = malloc(size);
+ ASSERT_NE(buffer->mirror, NULL);
+
+ buffer->ptr = mmap(NULL, size,
+ PROT_READ | PROT_WRITE,
+ MAP_PRIVATE | MAP_ANONYMOUS,
+ buffer->fd, 0);
+ ASSERT_NE(buffer->ptr, MAP_FAILED);
+
+ /* Initialize data that the device will write to buffer->ptr. */
+ for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+ ptr[i] = i;
+
+ /* Simulate a device writing system memory. */
+ ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_WRITE, buffer, npages);
+ ASSERT_EQ(ret, 0);
+ ASSERT_EQ(buffer->cpages, npages);
+ ASSERT_EQ(buffer->faults, 1);
+
+ /* Check what the device wrote. */
+ for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+ ASSERT_EQ(ptr[i], i);
+
+ hmm_buffer_free(buffer);
+}
+
+/*
+ * Write private anonymous memory which has been protected with
+ * mprotect() PROT_READ.
+ */
+TEST_F(hmm, anon_write_prot)
+{
+ struct hmm_buffer *buffer;
+ unsigned long npages;
+ unsigned long size;
+ unsigned long i;
+ int *ptr;
+ int ret;
+
+ npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
+ ASSERT_NE(npages, 0);
+ size = npages << self->page_shift;
+
+ buffer = malloc(sizeof(*buffer));
+ ASSERT_NE(buffer, NULL);
+
+ buffer->fd = -1;
+ buffer->size = size;
+ buffer->mirror = malloc(size);
+ ASSERT_NE(buffer->mirror, NULL);
+
+ buffer->ptr = mmap(NULL, size,
+ PROT_READ,
+ MAP_PRIVATE | MAP_ANONYMOUS,
+ buffer->fd, 0);
+ ASSERT_NE(buffer->ptr, MAP_FAILED);
+
+ /* Simulate a device reading a zero page of memory. */
+ ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_READ, buffer, 1);
+ ASSERT_EQ(ret, 0);
+ ASSERT_EQ(buffer->cpages, 1);
+ ASSERT_EQ(buffer->faults, 1);
+
+ /* Initialize data that the device will write to buffer->ptr. */
+ for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+ ptr[i] = i;
+
+ /* Simulate a device writing system memory. */
+ ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_WRITE, buffer, npages);
+ ASSERT_EQ(ret, -EPERM);
+
+ /* Check what the device wrote. */
+ for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+ ASSERT_EQ(ptr[i], 0);
+
+ /* Now allow writing and see that the zero page is replaced. */
+ ret = mprotect(buffer->ptr, size, PROT_WRITE | PROT_READ);
+ ASSERT_EQ(ret, 0);
+
+ /* Simulate a device writing system memory. */
+ ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_WRITE, buffer, npages);
+ ASSERT_EQ(ret, 0);
+ ASSERT_EQ(buffer->cpages, npages);
+ ASSERT_EQ(buffer->faults, 1);
+
+ /* Check what the device wrote. */
+ for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+ ASSERT_EQ(ptr[i], i);
+
+ hmm_buffer_free(buffer);
+}
+
+/*
+ * Check that a device writing an anonymous private mapping
+ * will copy-on-write if a child process inherits the mapping.
+ */
+TEST_F(hmm, anon_write_child)
+{
+ struct hmm_buffer *buffer;
+ unsigned long npages;
+ unsigned long size;
+ unsigned long i;
+ int *ptr;
+ pid_t pid;
+ int child_fd;
+ int ret;
+
+ npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
+ ASSERT_NE(npages, 0);
+ size = npages << self->page_shift;
+
+ buffer = malloc(sizeof(*buffer));
+ ASSERT_NE(buffer, NULL);
+
+ buffer->fd = -1;
+ buffer->size = size;
+ buffer->mirror = malloc(size);
+ ASSERT_NE(buffer->mirror, NULL);
+
+ buffer->ptr = mmap(NULL, size,
+ PROT_READ | PROT_WRITE,
+ MAP_PRIVATE | MAP_ANONYMOUS,
+ buffer->fd, 0);
+ ASSERT_NE(buffer->ptr, MAP_FAILED);
+
+ /* Initialize buffer->ptr so we can tell if it is written. */
+ for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+ ptr[i] = i;
+
+ /* Initialize data that the device will write to buffer->ptr. */
+ for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+ ptr[i] = -i;
+
+ pid = fork();
+ if (pid == -1)
+ ASSERT_EQ(pid, 0);
+ if (pid != 0) {
+ waitpid(pid, &ret, 0);
+ ASSERT_EQ(WIFEXITED(ret), 1);
+
+ /* Check that the parent's buffer did not change. */
+ for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+ ASSERT_EQ(ptr[i], i);
+ return;
+ }
+
+ /* Check that we see the parent's values. */
+ for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+ ASSERT_EQ(ptr[i], i);
+ for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+ ASSERT_EQ(ptr[i], -i);
+
+ /* The child process needs its own mirror to its own mm. */
+ child_fd = hmm_open(0);
+ ASSERT_GE(child_fd, 0);
+
+ /* Simulate a device writing system memory. */
+ ret = hmm_dmirror_cmd(child_fd, HMM_DMIRROR_WRITE, buffer, npages);
+ ASSERT_EQ(ret, 0);
+ ASSERT_EQ(buffer->cpages, npages);
+ ASSERT_EQ(buffer->faults, 1);
+
+ /* Check what the device wrote. */
+ for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+ ASSERT_EQ(ptr[i], -i);
+
+ close(child_fd);
+ exit(0);
+}
+
+/*
+ * Check that a device writing an anonymous shared mapping
+ * will not copy-on-write if a child process inherits the mapping.
+ */
+TEST_F(hmm, anon_write_child_shared)
+{
+ struct hmm_buffer *buffer;
+ unsigned long npages;
+ unsigned long size;
+ unsigned long i;
+ int *ptr;
+ pid_t pid;
+ int child_fd;
+ int ret;
+
+ npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
+ ASSERT_NE(npages, 0);
+ size = npages << self->page_shift;
+
+ buffer = malloc(sizeof(*buffer));
+ ASSERT_NE(buffer, NULL);
+
+ buffer->fd = -1;
+ buffer->size = size;
+ buffer->mirror = malloc(size);
+ ASSERT_NE(buffer->mirror, NULL);
+
+ buffer->ptr = mmap(NULL, size,
+ PROT_READ | PROT_WRITE,
+ MAP_SHARED | MAP_ANONYMOUS,
+ buffer->fd, 0);
+ ASSERT_NE(buffer->ptr, MAP_FAILED);
+
+ /* Initialize buffer->ptr so we can tell if it is written. */
+ for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+ ptr[i] = i;
+
+ /* Initialize data that the device will write to buffer->ptr. */
+ for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+ ptr[i] = -i;
+
+ pid = fork();
+ if (pid == -1)
+ ASSERT_EQ(pid, 0);
+ if (pid != 0) {
+ waitpid(pid, &ret, 0);
+ ASSERT_EQ(WIFEXITED(ret), 1);
+
+ /* Check that the parent's buffer did change. */
+ for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+ ASSERT_EQ(ptr[i], -i);
+ return;
+ }
+
+ /* Check that we see the parent's values. */
+ for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+ ASSERT_EQ(ptr[i], i);
+ for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+ ASSERT_EQ(ptr[i], -i);
+
+ /* The child process needs its own mirror to its own mm. */
+ child_fd = hmm_open(0);
+ ASSERT_GE(child_fd, 0);
+
+ /* Simulate a device writing system memory. */
+ ret = hmm_dmirror_cmd(child_fd, HMM_DMIRROR_WRITE, buffer, npages);
+ ASSERT_EQ(ret, 0);
+ ASSERT_EQ(buffer->cpages, npages);
+ ASSERT_EQ(buffer->faults, 1);
+
+ /* Check what the device wrote. */
+ for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+ ASSERT_EQ(ptr[i], -i);
+
+ close(child_fd);
+ exit(0);
+}
+
+/*
+ * Write private anonymous huge page.
+ */
+TEST_F(hmm, anon_write_huge)
+{
+ struct hmm_buffer *buffer;
+ unsigned long npages;
+ unsigned long size;
+ unsigned long i;
+ void *old_ptr;
+ void *map;
+ int *ptr;
+ int ret;
+
+ size = 2 * TWOMEG;
+
+ buffer = malloc(sizeof(*buffer));
+ ASSERT_NE(buffer, NULL);
+
+ buffer->fd = -1;
+ buffer->size = size;
+ buffer->mirror = malloc(size);
+ ASSERT_NE(buffer->mirror, NULL);
+
+ buffer->ptr = mmap(NULL, size,
+ PROT_READ | PROT_WRITE,
+ MAP_PRIVATE | MAP_ANONYMOUS,
+ buffer->fd, 0);
+ ASSERT_NE(buffer->ptr, MAP_FAILED);
+
+ size = TWOMEG;
+ npages = size >> self->page_shift;
+ map = (void *)ALIGN((uintptr_t)buffer->ptr, size);
+ ret = madvise(map, size, MADV_HUGEPAGE);
+ ASSERT_EQ(ret, 0);
+ old_ptr = buffer->ptr;
+ buffer->ptr = map;
+
+ /* Initialize data that the device will write to buffer->ptr. */
+ for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+ ptr[i] = i;
+
+ /* Simulate a device writing system memory. */
+ ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_WRITE, buffer, npages);
+ ASSERT_EQ(ret, 0);
+ ASSERT_EQ(buffer->cpages, npages);
+ ASSERT_EQ(buffer->faults, 1);
+
+ /* Check what the device wrote. */
+ for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+ ASSERT_EQ(ptr[i], i);
+
+ buffer->ptr = old_ptr;
+ hmm_buffer_free(buffer);
+}
+
+/*
+ * Read numeric data from raw and tagged kernel status files. Used to read
+ * /proc and /sys data (without a tag) and from /proc/meminfo (with a tag).
+ */
+static long file_read_ulong(char *file, const char *tag)
+{
+ int fd;
+ char buf[2048];
+ int len;
+ char *p, *q;
+ long val;
+
+ fd = open(file, O_RDONLY);
+ if (fd < 0) {
+ /* Error opening the file */
+ return -1;
+ }
+
+ len = read(fd, buf, sizeof(buf));
+ close(fd);
+ if (len < 0) {
+ /* Error in reading the file */
+ return -1;
+ }
+ if (len == sizeof(buf)) {
+ /* Error file is too large */
+ return -1;
+ }
+ buf[len] = '\0';
+
+ /* Search for a tag if provided */
+ if (tag) {
+ p = strstr(buf, tag);
+ if (!p)
+ return -1; /* looks like the line we want isn't there */
+ p += strlen(tag);
+ } else
+ p = buf;
+
+ val = strtol(p, &q, 0);
+ if (*q != ' ') {
+ /* Error parsing the file */
+ return -1;
+ }
+
+ return val;
+}
+
+/*
+ * Write huge TLBFS page.
+ */
+TEST_F(hmm, anon_write_hugetlbfs)
+{
+ struct hmm_buffer *buffer;
+ unsigned long npages;
+ unsigned long size;
+ unsigned long default_hsize;
+ unsigned long i;
+ int *ptr;
+ int ret;
+
+ default_hsize = file_read_ulong("/proc/meminfo", "Hugepagesize:");
+ if (default_hsize < 0 || default_hsize*1024 < default_hsize)
+ SKIP(return, "Huge page size could not be determined");
+ default_hsize = default_hsize*1024; /* KB to B */
+
+ size = ALIGN(TWOMEG, default_hsize);
+ npages = size >> self->page_shift;
+
+ buffer = malloc(sizeof(*buffer));
+ ASSERT_NE(buffer, NULL);
+
+ buffer->ptr = mmap(NULL, size,
+ PROT_READ | PROT_WRITE,
+ MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB,
+ -1, 0);
+ if (buffer->ptr == MAP_FAILED) {
+ free(buffer);
+ SKIP(return, "Huge page could not be allocated");
+ }
+
+ buffer->fd = -1;
+ buffer->size = size;
+ buffer->mirror = malloc(size);
+ ASSERT_NE(buffer->mirror, NULL);
+
+ /* Initialize data that the device will write to buffer->ptr. */
+ for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+ ptr[i] = i;
+
+ /* Simulate a device writing system memory. */
+ ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_WRITE, buffer, npages);
+ ASSERT_EQ(ret, 0);
+ ASSERT_EQ(buffer->cpages, npages);
+ ASSERT_EQ(buffer->faults, 1);
+
+ /* Check what the device wrote. */
+ for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+ ASSERT_EQ(ptr[i], i);
+
+ munmap(buffer->ptr, buffer->size);
+ buffer->ptr = NULL;
+ hmm_buffer_free(buffer);
+}
+
+/*
+ * Read mmap'ed file memory.
+ */
+TEST_F(hmm, file_read)
+{
+ struct hmm_buffer *buffer;
+ unsigned long npages;
+ unsigned long size;
+ unsigned long i;
+ int *ptr;
+ int ret;
+ int fd;
+ ssize_t len;
+
+ npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
+ ASSERT_NE(npages, 0);
+ size = npages << self->page_shift;
+
+ fd = hmm_create_file(size);
+ ASSERT_GE(fd, 0);
+
+ buffer = malloc(sizeof(*buffer));
+ ASSERT_NE(buffer, NULL);
+
+ buffer->fd = fd;
+ buffer->size = size;
+ buffer->mirror = malloc(size);
+ ASSERT_NE(buffer->mirror, NULL);
+
+ /* Write initial contents of the file. */
+ for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+ ptr[i] = i;
+ len = pwrite(fd, buffer->mirror, size, 0);
+ ASSERT_EQ(len, size);
+ memset(buffer->mirror, 0, size);
+
+ buffer->ptr = mmap(NULL, size,
+ PROT_READ,
+ MAP_SHARED,
+ buffer->fd, 0);
+ ASSERT_NE(buffer->ptr, MAP_FAILED);
+
+ /* Simulate a device reading system memory. */
+ ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_READ, buffer, npages);
+ ASSERT_EQ(ret, 0);
+ ASSERT_EQ(buffer->cpages, npages);
+ ASSERT_EQ(buffer->faults, 1);
+
+ /* Check what the device read. */
+ for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+ ASSERT_EQ(ptr[i], i);
+
+ hmm_buffer_free(buffer);
+}
+
+/*
+ * Write mmap'ed file memory.
+ */
+TEST_F(hmm, file_write)
+{
+ struct hmm_buffer *buffer;
+ unsigned long npages;
+ unsigned long size;
+ unsigned long i;
+ int *ptr;
+ int ret;
+ int fd;
+ ssize_t len;
+
+ npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
+ ASSERT_NE(npages, 0);
+ size = npages << self->page_shift;
+
+ fd = hmm_create_file(size);
+ ASSERT_GE(fd, 0);
+
+ buffer = malloc(sizeof(*buffer));
+ ASSERT_NE(buffer, NULL);
+
+ buffer->fd = fd;
+ buffer->size = size;
+ buffer->mirror = malloc(size);
+ ASSERT_NE(buffer->mirror, NULL);
+
+ buffer->ptr = mmap(NULL, size,
+ PROT_READ | PROT_WRITE,
+ MAP_SHARED,
+ buffer->fd, 0);
+ ASSERT_NE(buffer->ptr, MAP_FAILED);
+
+ /* Initialize data that the device will write to buffer->ptr. */
+ for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+ ptr[i] = i;
+
+ /* Simulate a device writing system memory. */
+ ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_WRITE, buffer, npages);
+ ASSERT_EQ(ret, 0);
+ ASSERT_EQ(buffer->cpages, npages);
+ ASSERT_EQ(buffer->faults, 1);
+
+ /* Check what the device wrote. */
+ for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+ ASSERT_EQ(ptr[i], i);
+
+ /* Check that the device also wrote the file. */
+ len = pread(fd, buffer->mirror, size, 0);
+ ASSERT_EQ(len, size);
+ for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+ ASSERT_EQ(ptr[i], i);
+
+ hmm_buffer_free(buffer);
+}
+
+/*
+ * Migrate anonymous memory to device private memory.
+ */
+TEST_F(hmm, migrate)
+{
+ struct hmm_buffer *buffer;
+ unsigned long npages;
+ unsigned long size;
+ unsigned long i;
+ int *ptr;
+ int ret;
+
+ npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
+ ASSERT_NE(npages, 0);
+ size = npages << self->page_shift;
+
+ buffer = malloc(sizeof(*buffer));
+ ASSERT_NE(buffer, NULL);
+
+ buffer->fd = -1;
+ buffer->size = size;
+ buffer->mirror = malloc(size);
+ ASSERT_NE(buffer->mirror, NULL);
+
+ buffer->ptr = mmap(NULL, size,
+ PROT_READ | PROT_WRITE,
+ MAP_PRIVATE | MAP_ANONYMOUS,
+ buffer->fd, 0);
+ ASSERT_NE(buffer->ptr, MAP_FAILED);
+
+ /* Initialize buffer in system memory. */
+ for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+ ptr[i] = i;
+
+ /* Migrate memory to device. */
+ ret = hmm_migrate_sys_to_dev(self->fd, buffer, npages);
+ ASSERT_EQ(ret, 0);
+ ASSERT_EQ(buffer->cpages, npages);
+
+ /* Check what the device read. */
+ for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+ ASSERT_EQ(ptr[i], i);
+
+ hmm_buffer_free(buffer);
+}
+
+/*
+ * Migrate anonymous memory to device private memory and fault some of it back
+ * to system memory, then try migrating the resulting mix of system and device
+ * private memory to the device.
+ */
+TEST_F(hmm, migrate_fault)
+{
+ struct hmm_buffer *buffer;
+ unsigned long npages;
+ unsigned long size;
+ unsigned long i;
+ int *ptr;
+ int ret;
+
+ npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
+ ASSERT_NE(npages, 0);
+ size = npages << self->page_shift;
+
+ buffer = malloc(sizeof(*buffer));
+ ASSERT_NE(buffer, NULL);
+
+ buffer->fd = -1;
+ buffer->size = size;
+ buffer->mirror = malloc(size);
+ ASSERT_NE(buffer->mirror, NULL);
+
+ buffer->ptr = mmap(NULL, size,
+ PROT_READ | PROT_WRITE,
+ MAP_PRIVATE | MAP_ANONYMOUS,
+ buffer->fd, 0);
+ ASSERT_NE(buffer->ptr, MAP_FAILED);
+
+ /* Initialize buffer in system memory. */
+ for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+ ptr[i] = i;
+
+ /* Migrate memory to device. */
+ ret = hmm_migrate_sys_to_dev(self->fd, buffer, npages);
+ ASSERT_EQ(ret, 0);
+ ASSERT_EQ(buffer->cpages, npages);
+
+ /* Check what the device read. */
+ for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+ ASSERT_EQ(ptr[i], i);
+
+ /* Fault half the pages back to system memory and check them. */
+ for (i = 0, ptr = buffer->ptr; i < size / (2 * sizeof(*ptr)); ++i)
+ ASSERT_EQ(ptr[i], i);
+
+ /* Migrate memory to the device again. */
+ ret = hmm_migrate_sys_to_dev(self->fd, buffer, npages);
+ ASSERT_EQ(ret, 0);
+ ASSERT_EQ(buffer->cpages, npages);
+
+ /* Check what the device read. */
+ for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+ ASSERT_EQ(ptr[i], i);
+
+ hmm_buffer_free(buffer);
+}
+
+TEST_F(hmm, migrate_release)
+{
+ struct hmm_buffer *buffer;
+ unsigned long npages;
+ unsigned long size;
+ unsigned long i;
+ int *ptr;
+ int ret;
+
+ npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
+ ASSERT_NE(npages, 0);
+ size = npages << self->page_shift;
+
+ buffer = malloc(sizeof(*buffer));
+ ASSERT_NE(buffer, NULL);
+
+ buffer->fd = -1;
+ buffer->size = size;
+ buffer->mirror = malloc(size);
+ ASSERT_NE(buffer->mirror, NULL);
+
+ buffer->ptr = mmap(NULL, size, PROT_READ | PROT_WRITE,
+ MAP_PRIVATE | MAP_ANONYMOUS, buffer->fd, 0);
+ ASSERT_NE(buffer->ptr, MAP_FAILED);
+
+ /* Initialize buffer in system memory. */
+ for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+ ptr[i] = i;
+
+ /* Migrate memory to device. */
+ ret = hmm_migrate_sys_to_dev(self->fd, buffer, npages);
+ ASSERT_EQ(ret, 0);
+ ASSERT_EQ(buffer->cpages, npages);
+
+ /* Check what the device read. */
+ for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+ ASSERT_EQ(ptr[i], i);
+
+ /* Release device memory. */
+ ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_RELEASE, buffer, npages);
+ ASSERT_EQ(ret, 0);
+
+ /* Fault pages back to system memory and check them. */
+ for (i = 0, ptr = buffer->ptr; i < size / (2 * sizeof(*ptr)); ++i)
+ ASSERT_EQ(ptr[i], i);
+
+ hmm_buffer_free(buffer);
+}
+
+/*
+ * Migrate anonymous shared memory to device private memory.
+ */
+TEST_F(hmm, migrate_shared)
+{
+ struct hmm_buffer *buffer;
+ unsigned long npages;
+ unsigned long size;
+ int ret;
+
+ npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
+ ASSERT_NE(npages, 0);
+ size = npages << self->page_shift;
+
+ buffer = malloc(sizeof(*buffer));
+ ASSERT_NE(buffer, NULL);
+
+ buffer->fd = -1;
+ buffer->size = size;
+ buffer->mirror = malloc(size);
+ ASSERT_NE(buffer->mirror, NULL);
+
+ buffer->ptr = mmap(NULL, size,
+ PROT_READ | PROT_WRITE,
+ MAP_SHARED | MAP_ANONYMOUS,
+ buffer->fd, 0);
+ ASSERT_NE(buffer->ptr, MAP_FAILED);
+
+ /* Migrate memory to device. */
+ ret = hmm_migrate_sys_to_dev(self->fd, buffer, npages);
+ ASSERT_EQ(ret, -ENOENT);
+
+ hmm_buffer_free(buffer);
+}
+
+/*
+ * Try to migrate various memory types to device private memory.
+ */
+TEST_F(hmm2, migrate_mixed)
+{
+ struct hmm_buffer *buffer;
+ unsigned long npages;
+ unsigned long size;
+ int *ptr;
+ unsigned char *p;
+ int ret;
+ int val;
+
+ npages = 6;
+ size = npages << self->page_shift;
+
+ buffer = malloc(sizeof(*buffer));
+ ASSERT_NE(buffer, NULL);
+
+ buffer->fd = -1;
+ buffer->size = size;
+ buffer->mirror = malloc(size);
+ ASSERT_NE(buffer->mirror, NULL);
+
+ /* Reserve a range of addresses. */
+ buffer->ptr = mmap(NULL, size,
+ PROT_NONE,
+ MAP_PRIVATE | MAP_ANONYMOUS,
+ buffer->fd, 0);
+ ASSERT_NE(buffer->ptr, MAP_FAILED);
+ p = buffer->ptr;
+
+ /* Migrating a protected area should be an error. */
+ ret = hmm_migrate_sys_to_dev(self->fd1, buffer, npages);
+ ASSERT_EQ(ret, -EINVAL);
+
+ /* Punch a hole after the first page address. */
+ ret = munmap(buffer->ptr + self->page_size, self->page_size);
+ ASSERT_EQ(ret, 0);
+
+ /* We expect an error if the vma doesn't cover the range. */
+ ret = hmm_migrate_sys_to_dev(self->fd1, buffer, 3);
+ ASSERT_EQ(ret, -EINVAL);
+
+ /* Page 2 will be a read-only zero page. */
+ ret = mprotect(buffer->ptr + 2 * self->page_size, self->page_size,
+ PROT_READ);
+ ASSERT_EQ(ret, 0);
+ ptr = (int *)(buffer->ptr + 2 * self->page_size);
+ val = *ptr + 3;
+ ASSERT_EQ(val, 3);
+
+ /* Page 3 will be read-only. */
+ ret = mprotect(buffer->ptr + 3 * self->page_size, self->page_size,
+ PROT_READ | PROT_WRITE);
+ ASSERT_EQ(ret, 0);
+ ptr = (int *)(buffer->ptr + 3 * self->page_size);
+ *ptr = val;
+ ret = mprotect(buffer->ptr + 3 * self->page_size, self->page_size,
+ PROT_READ);
+ ASSERT_EQ(ret, 0);
+
+ /* Page 4-5 will be read-write. */
+ ret = mprotect(buffer->ptr + 4 * self->page_size, 2 * self->page_size,
+ PROT_READ | PROT_WRITE);
+ ASSERT_EQ(ret, 0);
+ ptr = (int *)(buffer->ptr + 4 * self->page_size);
+ *ptr = val;
+ ptr = (int *)(buffer->ptr + 5 * self->page_size);
+ *ptr = val;
+
+ /* Now try to migrate pages 2-5 to device 1. */
+ buffer->ptr = p + 2 * self->page_size;
+ ret = hmm_migrate_sys_to_dev(self->fd1, buffer, 4);
+ ASSERT_EQ(ret, 0);
+ ASSERT_EQ(buffer->cpages, 4);
+
+ /* Page 5 won't be migrated to device 0 because it's on device 1. */
+ buffer->ptr = p + 5 * self->page_size;
+ ret = hmm_migrate_sys_to_dev(self->fd0, buffer, 1);
+ ASSERT_EQ(ret, -ENOENT);
+ buffer->ptr = p;
+
+ buffer->ptr = p;
+ hmm_buffer_free(buffer);
+}
+
+/*
+ * Migrate anonymous memory to device memory and back to system memory
+ * multiple times. In case of private zone configuration, this is done
+ * through fault pages accessed by CPU. In case of coherent zone configuration,
+ * the pages from the device should be explicitly migrated back to system memory.
+ * The reason is Coherent device zone has coherent access by CPU, therefore
+ * it will not generate any page fault.
+ */
+TEST_F(hmm, migrate_multiple)
+{
+ struct hmm_buffer *buffer;
+ unsigned long npages;
+ unsigned long size;
+ unsigned long i;
+ unsigned long c;
+ int *ptr;
+ int ret;
+
+ npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
+ ASSERT_NE(npages, 0);
+ size = npages << self->page_shift;
+
+ for (c = 0; c < NTIMES; c++) {
+ buffer = malloc(sizeof(*buffer));
+ ASSERT_NE(buffer, NULL);
+
+ buffer->fd = -1;
+ buffer->size = size;
+ buffer->mirror = malloc(size);
+ ASSERT_NE(buffer->mirror, NULL);
+
+ buffer->ptr = mmap(NULL, size,
+ PROT_READ | PROT_WRITE,
+ MAP_PRIVATE | MAP_ANONYMOUS,
+ buffer->fd, 0);
+ ASSERT_NE(buffer->ptr, MAP_FAILED);
+
+ /* Initialize buffer in system memory. */
+ for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+ ptr[i] = i;
+
+ /* Migrate memory to device. */
+ ret = hmm_migrate_sys_to_dev(self->fd, buffer, npages);
+ ASSERT_EQ(ret, 0);
+ ASSERT_EQ(buffer->cpages, npages);
+
+ /* Check what the device read. */
+ for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+ ASSERT_EQ(ptr[i], i);
+
+ /* Migrate back to system memory and check them. */
+ if (hmm_is_coherent_type(variant->device_number)) {
+ ret = hmm_migrate_dev_to_sys(self->fd, buffer, npages);
+ ASSERT_EQ(ret, 0);
+ ASSERT_EQ(buffer->cpages, npages);
+ }
+
+ for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+ ASSERT_EQ(ptr[i], i);
+
+ hmm_buffer_free(buffer);
+ }
+}
+
+/*
+ * Read anonymous memory multiple times.
+ */
+TEST_F(hmm, anon_read_multiple)
+{
+ struct hmm_buffer *buffer;
+ unsigned long npages;
+ unsigned long size;
+ unsigned long i;
+ unsigned long c;
+ int *ptr;
+ int ret;
+
+ npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
+ ASSERT_NE(npages, 0);
+ size = npages << self->page_shift;
+
+ for (c = 0; c < NTIMES; c++) {
+ buffer = malloc(sizeof(*buffer));
+ ASSERT_NE(buffer, NULL);
+
+ buffer->fd = -1;
+ buffer->size = size;
+ buffer->mirror = malloc(size);
+ ASSERT_NE(buffer->mirror, NULL);
+
+ buffer->ptr = mmap(NULL, size,
+ PROT_READ | PROT_WRITE,
+ MAP_PRIVATE | MAP_ANONYMOUS,
+ buffer->fd, 0);
+ ASSERT_NE(buffer->ptr, MAP_FAILED);
+
+ /* Initialize buffer in system memory. */
+ for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+ ptr[i] = i + c;
+
+ /* Simulate a device reading system memory. */
+ ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_READ, buffer,
+ npages);
+ ASSERT_EQ(ret, 0);
+ ASSERT_EQ(buffer->cpages, npages);
+ ASSERT_EQ(buffer->faults, 1);
+
+ /* Check what the device read. */
+ for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+ ASSERT_EQ(ptr[i], i + c);
+
+ hmm_buffer_free(buffer);
+ }
+}
+
+void *unmap_buffer(void *p)
+{
+ struct hmm_buffer *buffer = p;
+
+ /* Delay for a bit and then unmap buffer while it is being read. */
+ hmm_nanosleep(hmm_random() % 32000);
+ munmap(buffer->ptr + buffer->size / 2, buffer->size / 2);
+ buffer->ptr = NULL;
+
+ return NULL;
+}
+
+/*
+ * Try reading anonymous memory while it is being unmapped.
+ */
+TEST_F(hmm, anon_teardown)
+{
+ unsigned long npages;
+ unsigned long size;
+ unsigned long c;
+ void *ret;
+
+ npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
+ ASSERT_NE(npages, 0);
+ size = npages << self->page_shift;
+
+ for (c = 0; c < NTIMES; ++c) {
+ pthread_t thread;
+ struct hmm_buffer *buffer;
+ unsigned long i;
+ int *ptr;
+ int rc;
+
+ buffer = malloc(sizeof(*buffer));
+ ASSERT_NE(buffer, NULL);
+
+ buffer->fd = -1;
+ buffer->size = size;
+ buffer->mirror = malloc(size);
+ ASSERT_NE(buffer->mirror, NULL);
+
+ buffer->ptr = mmap(NULL, size,
+ PROT_READ | PROT_WRITE,
+ MAP_PRIVATE | MAP_ANONYMOUS,
+ buffer->fd, 0);
+ ASSERT_NE(buffer->ptr, MAP_FAILED);
+
+ /* Initialize buffer in system memory. */
+ for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+ ptr[i] = i + c;
+
+ rc = pthread_create(&thread, NULL, unmap_buffer, buffer);
+ ASSERT_EQ(rc, 0);
+
+ /* Simulate a device reading system memory. */
+ rc = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_READ, buffer,
+ npages);
+ if (rc == 0) {
+ ASSERT_EQ(buffer->cpages, npages);
+ ASSERT_EQ(buffer->faults, 1);
+
+ /* Check what the device read. */
+ for (i = 0, ptr = buffer->mirror;
+ i < size / sizeof(*ptr);
+ ++i)
+ ASSERT_EQ(ptr[i], i + c);
+ }
+
+ pthread_join(thread, &ret);
+ hmm_buffer_free(buffer);
+ }
+}
+
+/*
+ * Test memory snapshot without faulting in pages accessed by the device.
+ */
+TEST_F(hmm, mixedmap)
+{
+ struct hmm_buffer *buffer;
+ unsigned long npages;
+ unsigned long size;
+ unsigned char *m;
+ int ret;
+
+ npages = 1;
+ size = npages << self->page_shift;
+
+ buffer = malloc(sizeof(*buffer));
+ ASSERT_NE(buffer, NULL);
+
+ buffer->fd = -1;
+ buffer->size = size;
+ buffer->mirror = malloc(npages);
+ ASSERT_NE(buffer->mirror, NULL);
+
+
+ /* Reserve a range of addresses. */
+ buffer->ptr = mmap(NULL, size,
+ PROT_READ | PROT_WRITE,
+ MAP_PRIVATE,
+ self->fd, 0);
+ ASSERT_NE(buffer->ptr, MAP_FAILED);
+
+ /* Simulate a device snapshotting CPU pagetables. */
+ ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_SNAPSHOT, buffer, npages);
+ ASSERT_EQ(ret, 0);
+ ASSERT_EQ(buffer->cpages, npages);
+
+ /* Check what the device saw. */
+ m = buffer->mirror;
+ ASSERT_EQ(m[0], HMM_DMIRROR_PROT_READ);
+
+ hmm_buffer_free(buffer);
+}
+
+/*
+ * Test memory snapshot without faulting in pages accessed by the device.
+ */
+TEST_F(hmm2, snapshot)
+{
+ struct hmm_buffer *buffer;
+ unsigned long npages;
+ unsigned long size;
+ int *ptr;
+ unsigned char *p;
+ unsigned char *m;
+ int ret;
+ int val;
+
+ npages = 7;
+ size = npages << self->page_shift;
+
+ buffer = malloc(sizeof(*buffer));
+ ASSERT_NE(buffer, NULL);
+
+ buffer->fd = -1;
+ buffer->size = size;
+ buffer->mirror = malloc(npages);
+ ASSERT_NE(buffer->mirror, NULL);
+
+ /* Reserve a range of addresses. */
+ buffer->ptr = mmap(NULL, size,
+ PROT_NONE,
+ MAP_PRIVATE | MAP_ANONYMOUS,
+ buffer->fd, 0);
+ ASSERT_NE(buffer->ptr, MAP_FAILED);
+ p = buffer->ptr;
+
+ /* Punch a hole after the first page address. */
+ ret = munmap(buffer->ptr + self->page_size, self->page_size);
+ ASSERT_EQ(ret, 0);
+
+ /* Page 2 will be read-only zero page. */
+ ret = mprotect(buffer->ptr + 2 * self->page_size, self->page_size,
+ PROT_READ);
+ ASSERT_EQ(ret, 0);
+ ptr = (int *)(buffer->ptr + 2 * self->page_size);
+ val = *ptr + 3;
+ ASSERT_EQ(val, 3);
+
+ /* Page 3 will be read-only. */
+ ret = mprotect(buffer->ptr + 3 * self->page_size, self->page_size,
+ PROT_READ | PROT_WRITE);
+ ASSERT_EQ(ret, 0);
+ ptr = (int *)(buffer->ptr + 3 * self->page_size);
+ *ptr = val;
+ ret = mprotect(buffer->ptr + 3 * self->page_size, self->page_size,
+ PROT_READ);
+ ASSERT_EQ(ret, 0);
+
+ /* Page 4-6 will be read-write. */
+ ret = mprotect(buffer->ptr + 4 * self->page_size, 3 * self->page_size,
+ PROT_READ | PROT_WRITE);
+ ASSERT_EQ(ret, 0);
+ ptr = (int *)(buffer->ptr + 4 * self->page_size);
+ *ptr = val;
+
+ /* Page 5 will be migrated to device 0. */
+ buffer->ptr = p + 5 * self->page_size;
+ ret = hmm_migrate_sys_to_dev(self->fd0, buffer, 1);
+ ASSERT_EQ(ret, 0);
+ ASSERT_EQ(buffer->cpages, 1);
+
+ /* Page 6 will be migrated to device 1. */
+ buffer->ptr = p + 6 * self->page_size;
+ ret = hmm_migrate_sys_to_dev(self->fd1, buffer, 1);
+ ASSERT_EQ(ret, 0);
+ ASSERT_EQ(buffer->cpages, 1);
+
+ /* Simulate a device snapshotting CPU pagetables. */
+ buffer->ptr = p;
+ ret = hmm_dmirror_cmd(self->fd0, HMM_DMIRROR_SNAPSHOT, buffer, npages);
+ ASSERT_EQ(ret, 0);
+ ASSERT_EQ(buffer->cpages, npages);
+
+ /* Check what the device saw. */
+ m = buffer->mirror;
+ ASSERT_EQ(m[0], HMM_DMIRROR_PROT_ERROR);
+ ASSERT_EQ(m[1], HMM_DMIRROR_PROT_ERROR);
+ ASSERT_EQ(m[2], HMM_DMIRROR_PROT_ZERO | HMM_DMIRROR_PROT_READ);
+ ASSERT_EQ(m[3], HMM_DMIRROR_PROT_READ);
+ ASSERT_EQ(m[4], HMM_DMIRROR_PROT_WRITE);
+ if (!hmm_is_coherent_type(variant->device_number0)) {
+ ASSERT_EQ(m[5], HMM_DMIRROR_PROT_DEV_PRIVATE_LOCAL |
+ HMM_DMIRROR_PROT_WRITE);
+ ASSERT_EQ(m[6], HMM_DMIRROR_PROT_NONE);
+ } else {
+ ASSERT_EQ(m[5], HMM_DMIRROR_PROT_DEV_COHERENT_LOCAL |
+ HMM_DMIRROR_PROT_WRITE);
+ ASSERT_EQ(m[6], HMM_DMIRROR_PROT_DEV_COHERENT_REMOTE |
+ HMM_DMIRROR_PROT_WRITE);
+ }
+
+ hmm_buffer_free(buffer);
+}
+
+/*
+ * Test the hmm_range_fault() HMM_PFN_PMD flag for large pages that
+ * should be mapped by a large page table entry.
+ */
+TEST_F(hmm, compound)
+{
+ struct hmm_buffer *buffer;
+ unsigned long npages;
+ unsigned long size;
+ unsigned long default_hsize;
+ int *ptr;
+ unsigned char *m;
+ int ret;
+ unsigned long i;
+
+ /* Skip test if we can't allocate a hugetlbfs page. */
+
+ default_hsize = file_read_ulong("/proc/meminfo", "Hugepagesize:");
+ if (default_hsize < 0 || default_hsize*1024 < default_hsize)
+ SKIP(return, "Huge page size could not be determined");
+ default_hsize = default_hsize*1024; /* KB to B */
+
+ size = ALIGN(TWOMEG, default_hsize);
+ npages = size >> self->page_shift;
+
+ buffer = malloc(sizeof(*buffer));
+ ASSERT_NE(buffer, NULL);
+
+ buffer->ptr = mmap(NULL, size,
+ PROT_READ | PROT_WRITE,
+ MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB,
+ -1, 0);
+ if (buffer->ptr == MAP_FAILED) {
+ free(buffer);
+ return;
+ }
+
+ buffer->size = size;
+ buffer->mirror = malloc(npages);
+ ASSERT_NE(buffer->mirror, NULL);
+
+ /* Initialize the pages the device will snapshot in buffer->ptr. */
+ for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+ ptr[i] = i;
+
+ /* Simulate a device snapshotting CPU pagetables. */
+ ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_SNAPSHOT, buffer, npages);
+ ASSERT_EQ(ret, 0);
+ ASSERT_EQ(buffer->cpages, npages);
+
+ /* Check what the device saw. */
+ m = buffer->mirror;
+ for (i = 0; i < npages; ++i)
+ ASSERT_EQ(m[i], HMM_DMIRROR_PROT_WRITE |
+ HMM_DMIRROR_PROT_PMD);
+
+ /* Make the region read-only. */
+ ret = mprotect(buffer->ptr, size, PROT_READ);
+ ASSERT_EQ(ret, 0);
+
+ /* Simulate a device snapshotting CPU pagetables. */
+ ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_SNAPSHOT, buffer, npages);
+ ASSERT_EQ(ret, 0);
+ ASSERT_EQ(buffer->cpages, npages);
+
+ /* Check what the device saw. */
+ m = buffer->mirror;
+ for (i = 0; i < npages; ++i)
+ ASSERT_EQ(m[i], HMM_DMIRROR_PROT_READ |
+ HMM_DMIRROR_PROT_PMD);
+
+ munmap(buffer->ptr, buffer->size);
+ buffer->ptr = NULL;
+ hmm_buffer_free(buffer);
+}
+
+/*
+ * Test two devices reading the same memory (double mapped).
+ */
+TEST_F(hmm2, double_map)
+{
+ struct hmm_buffer *buffer;
+ unsigned long npages;
+ unsigned long size;
+ unsigned long i;
+ int *ptr;
+ int ret;
+
+ npages = 6;
+ size = npages << self->page_shift;
+
+ buffer = malloc(sizeof(*buffer));
+ ASSERT_NE(buffer, NULL);
+
+ buffer->fd = -1;
+ buffer->size = size;
+ buffer->mirror = malloc(npages);
+ ASSERT_NE(buffer->mirror, NULL);
+
+ /* Reserve a range of addresses. */
+ buffer->ptr = mmap(NULL, size,
+ PROT_READ | PROT_WRITE,
+ MAP_PRIVATE | MAP_ANONYMOUS,
+ buffer->fd, 0);
+ ASSERT_NE(buffer->ptr, MAP_FAILED);
+
+ /* Initialize buffer in system memory. */
+ for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+ ptr[i] = i;
+
+ /* Make region read-only. */
+ ret = mprotect(buffer->ptr, size, PROT_READ);
+ ASSERT_EQ(ret, 0);
+
+ /* Simulate device 0 reading system memory. */
+ ret = hmm_dmirror_cmd(self->fd0, HMM_DMIRROR_READ, buffer, npages);
+ ASSERT_EQ(ret, 0);
+ ASSERT_EQ(buffer->cpages, npages);
+ ASSERT_EQ(buffer->faults, 1);
+
+ /* Check what the device read. */
+ for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+ ASSERT_EQ(ptr[i], i);
+
+ /* Simulate device 1 reading system memory. */
+ ret = hmm_dmirror_cmd(self->fd1, HMM_DMIRROR_READ, buffer, npages);
+ ASSERT_EQ(ret, 0);
+ ASSERT_EQ(buffer->cpages, npages);
+ ASSERT_EQ(buffer->faults, 1);
+
+ /* Check what the device read. */
+ for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+ ASSERT_EQ(ptr[i], i);
+
+ /* Migrate pages to device 1 and try to read from device 0. */
+ ret = hmm_migrate_sys_to_dev(self->fd1, buffer, npages);
+ ASSERT_EQ(ret, 0);
+ ASSERT_EQ(buffer->cpages, npages);
+
+ ret = hmm_dmirror_cmd(self->fd0, HMM_DMIRROR_READ, buffer, npages);
+ ASSERT_EQ(ret, 0);
+ ASSERT_EQ(buffer->cpages, npages);
+ ASSERT_EQ(buffer->faults, 1);
+
+ /* Check what device 0 read. */
+ for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+ ASSERT_EQ(ptr[i], i);
+
+ hmm_buffer_free(buffer);
+}
+
+/*
+ * Basic check of exclusive faulting.
+ */
+TEST_F(hmm, exclusive)
+{
+ struct hmm_buffer *buffer;
+ unsigned long npages;
+ unsigned long size;
+ unsigned long i;
+ int *ptr;
+ int ret;
+
+ npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
+ ASSERT_NE(npages, 0);
+ size = npages << self->page_shift;
+
+ buffer = malloc(sizeof(*buffer));
+ ASSERT_NE(buffer, NULL);
+
+ buffer->fd = -1;
+ buffer->size = size;
+ buffer->mirror = malloc(size);
+ ASSERT_NE(buffer->mirror, NULL);
+
+ buffer->ptr = mmap(NULL, size,
+ PROT_READ | PROT_WRITE,
+ MAP_PRIVATE | MAP_ANONYMOUS,
+ buffer->fd, 0);
+ ASSERT_NE(buffer->ptr, MAP_FAILED);
+
+ /* Initialize buffer in system memory. */
+ for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+ ptr[i] = i;
+
+ /* Map memory exclusively for device access. */
+ ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_EXCLUSIVE, buffer, npages);
+ ASSERT_EQ(ret, 0);
+ ASSERT_EQ(buffer->cpages, npages);
+
+ /* Check what the device read. */
+ for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+ ASSERT_EQ(ptr[i], i);
+
+ /* Fault pages back to system memory and check them. */
+ for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+ ASSERT_EQ(ptr[i]++, i);
+
+ for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+ ASSERT_EQ(ptr[i], i+1);
+
+ /* Check atomic access revoked */
+ ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_CHECK_EXCLUSIVE, buffer, npages);
+ ASSERT_EQ(ret, 0);
+
+ hmm_buffer_free(buffer);
+}
+
+TEST_F(hmm, exclusive_mprotect)
+{
+ struct hmm_buffer *buffer;
+ unsigned long npages;
+ unsigned long size;
+ unsigned long i;
+ int *ptr;
+ int ret;
+
+ npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
+ ASSERT_NE(npages, 0);
+ size = npages << self->page_shift;
+
+ buffer = malloc(sizeof(*buffer));
+ ASSERT_NE(buffer, NULL);
+
+ buffer->fd = -1;
+ buffer->size = size;
+ buffer->mirror = malloc(size);
+ ASSERT_NE(buffer->mirror, NULL);
+
+ buffer->ptr = mmap(NULL, size,
+ PROT_READ | PROT_WRITE,
+ MAP_PRIVATE | MAP_ANONYMOUS,
+ buffer->fd, 0);
+ ASSERT_NE(buffer->ptr, MAP_FAILED);
+
+ /* Initialize buffer in system memory. */
+ for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+ ptr[i] = i;
+
+ /* Map memory exclusively for device access. */
+ ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_EXCLUSIVE, buffer, npages);
+ ASSERT_EQ(ret, 0);
+ ASSERT_EQ(buffer->cpages, npages);
+
+ /* Check what the device read. */
+ for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+ ASSERT_EQ(ptr[i], i);
+
+ ret = mprotect(buffer->ptr, size, PROT_READ);
+ ASSERT_EQ(ret, 0);
+
+ /* Simulate a device writing system memory. */
+ ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_WRITE, buffer, npages);
+ ASSERT_EQ(ret, -EPERM);
+
+ hmm_buffer_free(buffer);
+}
+
+/*
+ * Check copy-on-write works.
+ */
+TEST_F(hmm, exclusive_cow)
+{
+ struct hmm_buffer *buffer;
+ unsigned long npages;
+ unsigned long size;
+ unsigned long i;
+ int *ptr;
+ int ret;
+
+ npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
+ ASSERT_NE(npages, 0);
+ size = npages << self->page_shift;
+
+ buffer = malloc(sizeof(*buffer));
+ ASSERT_NE(buffer, NULL);
+
+ buffer->fd = -1;
+ buffer->size = size;
+ buffer->mirror = malloc(size);
+ ASSERT_NE(buffer->mirror, NULL);
+
+ buffer->ptr = mmap(NULL, size,
+ PROT_READ | PROT_WRITE,
+ MAP_PRIVATE | MAP_ANONYMOUS,
+ buffer->fd, 0);
+ ASSERT_NE(buffer->ptr, MAP_FAILED);
+
+ /* Initialize buffer in system memory. */
+ for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+ ptr[i] = i;
+
+ /* Map memory exclusively for device access. */
+ ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_EXCLUSIVE, buffer, npages);
+ ASSERT_EQ(ret, 0);
+ ASSERT_EQ(buffer->cpages, npages);
+
+ fork();
+
+ /* Fault pages back to system memory and check them. */
+ for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+ ASSERT_EQ(ptr[i]++, i);
+
+ for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+ ASSERT_EQ(ptr[i], i+1);
+
+ hmm_buffer_free(buffer);
+}
+
+static int gup_test_exec(int gup_fd, unsigned long addr, int cmd,
+ int npages, int size, int flags)
+{
+ struct gup_test gup = {
+ .nr_pages_per_call = npages,
+ .addr = addr,
+ .gup_flags = FOLL_WRITE | flags,
+ .size = size,
+ };
+
+ if (ioctl(gup_fd, cmd, &gup)) {
+ perror("ioctl on error\n");
+ return errno;
+ }
+
+ return 0;
+}
+
+/*
+ * Test get user device pages through gup_test. Setting PIN_LONGTERM flag.
+ * This should trigger a migration back to system memory for both, private
+ * and coherent type pages.
+ * This test makes use of gup_test module. Make sure GUP_TEST_CONFIG is added
+ * to your configuration before you run it.
+ */
+TEST_F(hmm, hmm_gup_test)
+{
+ struct hmm_buffer *buffer;
+ int gup_fd;
+ unsigned long npages;
+ unsigned long size;
+ unsigned long i;
+ int *ptr;
+ int ret;
+ unsigned char *m;
+
+ gup_fd = open("/sys/kernel/debug/gup_test", O_RDWR);
+ if (gup_fd == -1)
+ SKIP(return, "Skipping test, could not find gup_test driver");
+
+ npages = 4;
+ size = npages << self->page_shift;
+
+ buffer = malloc(sizeof(*buffer));
+ ASSERT_NE(buffer, NULL);
+
+ buffer->fd = -1;
+ buffer->size = size;
+ buffer->mirror = malloc(size);
+ ASSERT_NE(buffer->mirror, NULL);
+
+ buffer->ptr = mmap(NULL, size,
+ PROT_READ | PROT_WRITE,
+ MAP_PRIVATE | MAP_ANONYMOUS,
+ buffer->fd, 0);
+ ASSERT_NE(buffer->ptr, MAP_FAILED);
+
+ /* Initialize buffer in system memory. */
+ for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+ ptr[i] = i;
+
+ /* Migrate memory to device. */
+ ret = hmm_migrate_sys_to_dev(self->fd, buffer, npages);
+ ASSERT_EQ(ret, 0);
+ ASSERT_EQ(buffer->cpages, npages);
+ /* Check what the device read. */
+ for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+ ASSERT_EQ(ptr[i], i);
+
+ ASSERT_EQ(gup_test_exec(gup_fd,
+ (unsigned long)buffer->ptr,
+ GUP_BASIC_TEST, 1, self->page_size, 0), 0);
+ ASSERT_EQ(gup_test_exec(gup_fd,
+ (unsigned long)buffer->ptr + 1 * self->page_size,
+ GUP_FAST_BENCHMARK, 1, self->page_size, 0), 0);
+ ASSERT_EQ(gup_test_exec(gup_fd,
+ (unsigned long)buffer->ptr + 2 * self->page_size,
+ PIN_FAST_BENCHMARK, 1, self->page_size, FOLL_LONGTERM), 0);
+ ASSERT_EQ(gup_test_exec(gup_fd,
+ (unsigned long)buffer->ptr + 3 * self->page_size,
+ PIN_LONGTERM_BENCHMARK, 1, self->page_size, 0), 0);
+
+ /* Take snapshot to CPU pagetables */
+ ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_SNAPSHOT, buffer, npages);
+ ASSERT_EQ(ret, 0);
+ ASSERT_EQ(buffer->cpages, npages);
+ m = buffer->mirror;
+ if (hmm_is_coherent_type(variant->device_number)) {
+ ASSERT_EQ(HMM_DMIRROR_PROT_DEV_COHERENT_LOCAL | HMM_DMIRROR_PROT_WRITE, m[0]);
+ ASSERT_EQ(HMM_DMIRROR_PROT_DEV_COHERENT_LOCAL | HMM_DMIRROR_PROT_WRITE, m[1]);
+ } else {
+ ASSERT_EQ(HMM_DMIRROR_PROT_WRITE, m[0]);
+ ASSERT_EQ(HMM_DMIRROR_PROT_WRITE, m[1]);
+ }
+ ASSERT_EQ(HMM_DMIRROR_PROT_WRITE, m[2]);
+ ASSERT_EQ(HMM_DMIRROR_PROT_WRITE, m[3]);
+ /*
+ * Check again the content on the pages. Make sure there's no
+ * corrupted data.
+ */
+ for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+ ASSERT_EQ(ptr[i], i);
+
+ close(gup_fd);
+ hmm_buffer_free(buffer);
+}
+
+/*
+ * Test copy-on-write in device pages.
+ * In case of writing to COW private page(s), a page fault will migrate pages
+ * back to system memory first. Then, these pages will be duplicated. In case
+ * of COW device coherent type, pages are duplicated directly from device
+ * memory.
+ */
+TEST_F(hmm, hmm_cow_in_device)
+{
+ struct hmm_buffer *buffer;
+ unsigned long npages;
+ unsigned long size;
+ unsigned long i;
+ int *ptr;
+ int ret;
+ unsigned char *m;
+ pid_t pid;
+ int status;
+
+ npages = 4;
+ size = npages << self->page_shift;
+
+ buffer = malloc(sizeof(*buffer));
+ ASSERT_NE(buffer, NULL);
+
+ buffer->fd = -1;
+ buffer->size = size;
+ buffer->mirror = malloc(size);
+ ASSERT_NE(buffer->mirror, NULL);
+
+ buffer->ptr = mmap(NULL, size,
+ PROT_READ | PROT_WRITE,
+ MAP_PRIVATE | MAP_ANONYMOUS,
+ buffer->fd, 0);
+ ASSERT_NE(buffer->ptr, MAP_FAILED);
+
+ /* Initialize buffer in system memory. */
+ for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+ ptr[i] = i;
+
+ /* Migrate memory to device. */
+
+ ret = hmm_migrate_sys_to_dev(self->fd, buffer, npages);
+ ASSERT_EQ(ret, 0);
+ ASSERT_EQ(buffer->cpages, npages);
+
+ pid = fork();
+ if (pid == -1)
+ ASSERT_EQ(pid, 0);
+ if (!pid) {
+ /* Child process waitd for SIGTERM from the parent. */
+ while (1) {
+ }
+ perror("Should not reach this\n");
+ exit(0);
+ }
+ /* Parent process writes to COW pages(s) and gets a
+ * new copy in system. In case of device private pages,
+ * this write causes a migration to system mem first.
+ */
+ for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+ ptr[i] = i;
+
+ /* Terminate child and wait */
+ EXPECT_EQ(0, kill(pid, SIGTERM));
+ EXPECT_EQ(pid, waitpid(pid, &status, 0));
+ EXPECT_NE(0, WIFSIGNALED(status));
+ EXPECT_EQ(SIGTERM, WTERMSIG(status));
+
+ /* Take snapshot to CPU pagetables */
+ ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_SNAPSHOT, buffer, npages);
+ ASSERT_EQ(ret, 0);
+ ASSERT_EQ(buffer->cpages, npages);
+ m = buffer->mirror;
+ for (i = 0; i < npages; i++)
+ ASSERT_EQ(HMM_DMIRROR_PROT_WRITE, m[i]);
+
+ hmm_buffer_free(buffer);
+}
+TEST_HARNESS_MAIN