diff options
Diffstat (limited to 'arch/arm64/kernel/module.c')
-rw-r--r-- | arch/arm64/kernel/module.c | 518 |
1 files changed, 518 insertions, 0 deletions
diff --git a/arch/arm64/kernel/module.c b/arch/arm64/kernel/module.c new file mode 100644 index 000000000..76b41e4ca --- /dev/null +++ b/arch/arm64/kernel/module.c @@ -0,0 +1,518 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * AArch64 loadable module support. + * + * Copyright (C) 2012 ARM Limited + * + * Author: Will Deacon <will.deacon@arm.com> + */ + +#include <linux/bitops.h> +#include <linux/elf.h> +#include <linux/ftrace.h> +#include <linux/gfp.h> +#include <linux/kasan.h> +#include <linux/kernel.h> +#include <linux/mm.h> +#include <linux/moduleloader.h> +#include <linux/vmalloc.h> +#include <asm/alternative.h> +#include <asm/insn.h> +#include <asm/sections.h> + +void *module_alloc(unsigned long size) +{ + u64 module_alloc_end = module_alloc_base + MODULES_VSIZE; + gfp_t gfp_mask = GFP_KERNEL; + void *p; + + /* Silence the initial allocation */ + if (IS_ENABLED(CONFIG_ARM64_MODULE_PLTS)) + gfp_mask |= __GFP_NOWARN; + + if (IS_ENABLED(CONFIG_KASAN_GENERIC) || + IS_ENABLED(CONFIG_KASAN_SW_TAGS)) + /* don't exceed the static module region - see below */ + module_alloc_end = MODULES_END; + + p = __vmalloc_node_range(size, MODULE_ALIGN, module_alloc_base, + module_alloc_end, gfp_mask, PAGE_KERNEL, VM_DEFER_KMEMLEAK, + NUMA_NO_NODE, __builtin_return_address(0)); + + if (!p && IS_ENABLED(CONFIG_ARM64_MODULE_PLTS) && + (IS_ENABLED(CONFIG_KASAN_VMALLOC) || + (!IS_ENABLED(CONFIG_KASAN_GENERIC) && + !IS_ENABLED(CONFIG_KASAN_SW_TAGS)))) + /* + * KASAN without KASAN_VMALLOC can only deal with module + * allocations being served from the reserved module region, + * since the remainder of the vmalloc region is already + * backed by zero shadow pages, and punching holes into it + * is non-trivial. Since the module region is not randomized + * when KASAN is enabled without KASAN_VMALLOC, it is even + * less likely that the module region gets exhausted, so we + * can simply omit this fallback in that case. + */ + p = __vmalloc_node_range(size, MODULE_ALIGN, module_alloc_base, + module_alloc_base + SZ_2G, GFP_KERNEL, + PAGE_KERNEL, 0, NUMA_NO_NODE, + __builtin_return_address(0)); + + if (p && (kasan_alloc_module_shadow(p, size, gfp_mask) < 0)) { + vfree(p); + return NULL; + } + + /* Memory is intended to be executable, reset the pointer tag. */ + return kasan_reset_tag(p); +} + +enum aarch64_reloc_op { + RELOC_OP_NONE, + RELOC_OP_ABS, + RELOC_OP_PREL, + RELOC_OP_PAGE, +}; + +static u64 do_reloc(enum aarch64_reloc_op reloc_op, __le32 *place, u64 val) +{ + switch (reloc_op) { + case RELOC_OP_ABS: + return val; + case RELOC_OP_PREL: + return val - (u64)place; + case RELOC_OP_PAGE: + return (val & ~0xfff) - ((u64)place & ~0xfff); + case RELOC_OP_NONE: + return 0; + } + + pr_err("do_reloc: unknown relocation operation %d\n", reloc_op); + return 0; +} + +static int reloc_data(enum aarch64_reloc_op op, void *place, u64 val, int len) +{ + s64 sval = do_reloc(op, place, val); + + /* + * The ELF psABI for AArch64 documents the 16-bit and 32-bit place + * relative and absolute relocations as having a range of [-2^15, 2^16) + * or [-2^31, 2^32), respectively. However, in order to be able to + * detect overflows reliably, we have to choose whether we interpret + * such quantities as signed or as unsigned, and stick with it. + * The way we organize our address space requires a signed + * interpretation of 32-bit relative references, so let's use that + * for all R_AARCH64_PRELxx relocations. This means our upper + * bound for overflow detection should be Sxx_MAX rather than Uxx_MAX. + */ + + switch (len) { + case 16: + *(s16 *)place = sval; + switch (op) { + case RELOC_OP_ABS: + if (sval < 0 || sval > U16_MAX) + return -ERANGE; + break; + case RELOC_OP_PREL: + if (sval < S16_MIN || sval > S16_MAX) + return -ERANGE; + break; + default: + pr_err("Invalid 16-bit data relocation (%d)\n", op); + return 0; + } + break; + case 32: + *(s32 *)place = sval; + switch (op) { + case RELOC_OP_ABS: + if (sval < 0 || sval > U32_MAX) + return -ERANGE; + break; + case RELOC_OP_PREL: + if (sval < S32_MIN || sval > S32_MAX) + return -ERANGE; + break; + default: + pr_err("Invalid 32-bit data relocation (%d)\n", op); + return 0; + } + break; + case 64: + *(s64 *)place = sval; + break; + default: + pr_err("Invalid length (%d) for data relocation\n", len); + return 0; + } + return 0; +} + +enum aarch64_insn_movw_imm_type { + AARCH64_INSN_IMM_MOVNZ, + AARCH64_INSN_IMM_MOVKZ, +}; + +static int reloc_insn_movw(enum aarch64_reloc_op op, __le32 *place, u64 val, + int lsb, enum aarch64_insn_movw_imm_type imm_type) +{ + u64 imm; + s64 sval; + u32 insn = le32_to_cpu(*place); + + sval = do_reloc(op, place, val); + imm = sval >> lsb; + + if (imm_type == AARCH64_INSN_IMM_MOVNZ) { + /* + * For signed MOVW relocations, we have to manipulate the + * instruction encoding depending on whether or not the + * immediate is less than zero. + */ + insn &= ~(3 << 29); + if (sval >= 0) { + /* >=0: Set the instruction to MOVZ (opcode 10b). */ + insn |= 2 << 29; + } else { + /* + * <0: Set the instruction to MOVN (opcode 00b). + * Since we've masked the opcode already, we + * don't need to do anything other than + * inverting the new immediate field. + */ + imm = ~imm; + } + } + + /* Update the instruction with the new encoding. */ + insn = aarch64_insn_encode_immediate(AARCH64_INSN_IMM_16, insn, imm); + *place = cpu_to_le32(insn); + + if (imm > U16_MAX) + return -ERANGE; + + return 0; +} + +static int reloc_insn_imm(enum aarch64_reloc_op op, __le32 *place, u64 val, + int lsb, int len, enum aarch64_insn_imm_type imm_type) +{ + u64 imm, imm_mask; + s64 sval; + u32 insn = le32_to_cpu(*place); + + /* Calculate the relocation value. */ + sval = do_reloc(op, place, val); + sval >>= lsb; + + /* Extract the value bits and shift them to bit 0. */ + imm_mask = (BIT(lsb + len) - 1) >> lsb; + imm = sval & imm_mask; + + /* Update the instruction's immediate field. */ + insn = aarch64_insn_encode_immediate(imm_type, insn, imm); + *place = cpu_to_le32(insn); + + /* + * Extract the upper value bits (including the sign bit) and + * shift them to bit 0. + */ + sval = (s64)(sval & ~(imm_mask >> 1)) >> (len - 1); + + /* + * Overflow has occurred if the upper bits are not all equal to + * the sign bit of the value. + */ + if ((u64)(sval + 1) >= 2) + return -ERANGE; + + return 0; +} + +static int reloc_insn_adrp(struct module *mod, Elf64_Shdr *sechdrs, + __le32 *place, u64 val) +{ + u32 insn; + + if (!is_forbidden_offset_for_adrp(place)) + return reloc_insn_imm(RELOC_OP_PAGE, place, val, 12, 21, + AARCH64_INSN_IMM_ADR); + + /* patch ADRP to ADR if it is in range */ + if (!reloc_insn_imm(RELOC_OP_PREL, place, val & ~0xfff, 0, 21, + AARCH64_INSN_IMM_ADR)) { + insn = le32_to_cpu(*place); + insn &= ~BIT(31); + } else { + /* out of range for ADR -> emit a veneer */ + val = module_emit_veneer_for_adrp(mod, sechdrs, place, val & ~0xfff); + if (!val) + return -ENOEXEC; + insn = aarch64_insn_gen_branch_imm((u64)place, val, + AARCH64_INSN_BRANCH_NOLINK); + } + + *place = cpu_to_le32(insn); + return 0; +} + +int apply_relocate_add(Elf64_Shdr *sechdrs, + const char *strtab, + unsigned int symindex, + unsigned int relsec, + struct module *me) +{ + unsigned int i; + int ovf; + bool overflow_check; + Elf64_Sym *sym; + void *loc; + u64 val; + Elf64_Rela *rel = (void *)sechdrs[relsec].sh_addr; + + for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) { + /* loc corresponds to P in the AArch64 ELF document. */ + loc = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr + + rel[i].r_offset; + + /* sym is the ELF symbol we're referring to. */ + sym = (Elf64_Sym *)sechdrs[symindex].sh_addr + + ELF64_R_SYM(rel[i].r_info); + + /* val corresponds to (S + A) in the AArch64 ELF document. */ + val = sym->st_value + rel[i].r_addend; + + /* Check for overflow by default. */ + overflow_check = true; + + /* Perform the static relocation. */ + switch (ELF64_R_TYPE(rel[i].r_info)) { + /* Null relocations. */ + case R_ARM_NONE: + case R_AARCH64_NONE: + ovf = 0; + break; + + /* Data relocations. */ + case R_AARCH64_ABS64: + overflow_check = false; + ovf = reloc_data(RELOC_OP_ABS, loc, val, 64); + break; + case R_AARCH64_ABS32: + ovf = reloc_data(RELOC_OP_ABS, loc, val, 32); + break; + case R_AARCH64_ABS16: + ovf = reloc_data(RELOC_OP_ABS, loc, val, 16); + break; + case R_AARCH64_PREL64: + overflow_check = false; + ovf = reloc_data(RELOC_OP_PREL, loc, val, 64); + break; + case R_AARCH64_PREL32: + ovf = reloc_data(RELOC_OP_PREL, loc, val, 32); + break; + case R_AARCH64_PREL16: + ovf = reloc_data(RELOC_OP_PREL, loc, val, 16); + break; + + /* MOVW instruction relocations. */ + case R_AARCH64_MOVW_UABS_G0_NC: + overflow_check = false; + fallthrough; + case R_AARCH64_MOVW_UABS_G0: + ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0, + AARCH64_INSN_IMM_MOVKZ); + break; + case R_AARCH64_MOVW_UABS_G1_NC: + overflow_check = false; + fallthrough; + case R_AARCH64_MOVW_UABS_G1: + ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16, + AARCH64_INSN_IMM_MOVKZ); + break; + case R_AARCH64_MOVW_UABS_G2_NC: + overflow_check = false; + fallthrough; + case R_AARCH64_MOVW_UABS_G2: + ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32, + AARCH64_INSN_IMM_MOVKZ); + break; + case R_AARCH64_MOVW_UABS_G3: + /* We're using the top bits so we can't overflow. */ + overflow_check = false; + ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 48, + AARCH64_INSN_IMM_MOVKZ); + break; + case R_AARCH64_MOVW_SABS_G0: + ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0, + AARCH64_INSN_IMM_MOVNZ); + break; + case R_AARCH64_MOVW_SABS_G1: + ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16, + AARCH64_INSN_IMM_MOVNZ); + break; + case R_AARCH64_MOVW_SABS_G2: + ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32, + AARCH64_INSN_IMM_MOVNZ); + break; + case R_AARCH64_MOVW_PREL_G0_NC: + overflow_check = false; + ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0, + AARCH64_INSN_IMM_MOVKZ); + break; + case R_AARCH64_MOVW_PREL_G0: + ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0, + AARCH64_INSN_IMM_MOVNZ); + break; + case R_AARCH64_MOVW_PREL_G1_NC: + overflow_check = false; + ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16, + AARCH64_INSN_IMM_MOVKZ); + break; + case R_AARCH64_MOVW_PREL_G1: + ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16, + AARCH64_INSN_IMM_MOVNZ); + break; + case R_AARCH64_MOVW_PREL_G2_NC: + overflow_check = false; + ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32, + AARCH64_INSN_IMM_MOVKZ); + break; + case R_AARCH64_MOVW_PREL_G2: + ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32, + AARCH64_INSN_IMM_MOVNZ); + break; + case R_AARCH64_MOVW_PREL_G3: + /* We're using the top bits so we can't overflow. */ + overflow_check = false; + ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 48, + AARCH64_INSN_IMM_MOVNZ); + break; + + /* Immediate instruction relocations. */ + case R_AARCH64_LD_PREL_LO19: + ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19, + AARCH64_INSN_IMM_19); + break; + case R_AARCH64_ADR_PREL_LO21: + ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 0, 21, + AARCH64_INSN_IMM_ADR); + break; + case R_AARCH64_ADR_PREL_PG_HI21_NC: + overflow_check = false; + fallthrough; + case R_AARCH64_ADR_PREL_PG_HI21: + ovf = reloc_insn_adrp(me, sechdrs, loc, val); + if (ovf && ovf != -ERANGE) + return ovf; + break; + case R_AARCH64_ADD_ABS_LO12_NC: + case R_AARCH64_LDST8_ABS_LO12_NC: + overflow_check = false; + ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 0, 12, + AARCH64_INSN_IMM_12); + break; + case R_AARCH64_LDST16_ABS_LO12_NC: + overflow_check = false; + ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 1, 11, + AARCH64_INSN_IMM_12); + break; + case R_AARCH64_LDST32_ABS_LO12_NC: + overflow_check = false; + ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 2, 10, + AARCH64_INSN_IMM_12); + break; + case R_AARCH64_LDST64_ABS_LO12_NC: + overflow_check = false; + ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 3, 9, + AARCH64_INSN_IMM_12); + break; + case R_AARCH64_LDST128_ABS_LO12_NC: + overflow_check = false; + ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 4, 8, + AARCH64_INSN_IMM_12); + break; + case R_AARCH64_TSTBR14: + ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 14, + AARCH64_INSN_IMM_14); + break; + case R_AARCH64_CONDBR19: + ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19, + AARCH64_INSN_IMM_19); + break; + case R_AARCH64_JUMP26: + case R_AARCH64_CALL26: + ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 26, + AARCH64_INSN_IMM_26); + + if (IS_ENABLED(CONFIG_ARM64_MODULE_PLTS) && + ovf == -ERANGE) { + val = module_emit_plt_entry(me, sechdrs, loc, &rel[i], sym); + if (!val) + return -ENOEXEC; + ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, + 26, AARCH64_INSN_IMM_26); + } + break; + + default: + pr_err("module %s: unsupported RELA relocation: %llu\n", + me->name, ELF64_R_TYPE(rel[i].r_info)); + return -ENOEXEC; + } + + if (overflow_check && ovf == -ERANGE) + goto overflow; + + } + + return 0; + +overflow: + pr_err("module %s: overflow in relocation type %d val %Lx\n", + me->name, (int)ELF64_R_TYPE(rel[i].r_info), val); + return -ENOEXEC; +} + +static inline void __init_plt(struct plt_entry *plt, unsigned long addr) +{ + *plt = get_plt_entry(addr, plt); +} + +static int module_init_ftrace_plt(const Elf_Ehdr *hdr, + const Elf_Shdr *sechdrs, + struct module *mod) +{ +#if defined(CONFIG_ARM64_MODULE_PLTS) && defined(CONFIG_DYNAMIC_FTRACE) + const Elf_Shdr *s; + struct plt_entry *plts; + + s = find_section(hdr, sechdrs, ".text.ftrace_trampoline"); + if (!s) + return -ENOEXEC; + + plts = (void *)s->sh_addr; + + __init_plt(&plts[FTRACE_PLT_IDX], FTRACE_ADDR); + + if (IS_ENABLED(CONFIG_DYNAMIC_FTRACE_WITH_REGS)) + __init_plt(&plts[FTRACE_REGS_PLT_IDX], FTRACE_REGS_ADDR); + + mod->arch.ftrace_trampolines = plts; +#endif + return 0; +} + +int module_finalize(const Elf_Ehdr *hdr, + const Elf_Shdr *sechdrs, + struct module *me) +{ + const Elf_Shdr *s; + s = find_section(hdr, sechdrs, ".altinstructions"); + if (s) + apply_alternatives_module((void *)s->sh_addr, s->sh_size); + + return module_init_ftrace_plt(hdr, sechdrs, me); +} |