summaryrefslogtreecommitdiffstats
path: root/arch/arm64/kvm/arm.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--arch/arm64/kvm/arm.c2371
1 files changed, 2371 insertions, 0 deletions
diff --git a/arch/arm64/kvm/arm.c b/arch/arm64/kvm/arm.c
new file mode 100644
index 000000000..de94515fb
--- /dev/null
+++ b/arch/arm64/kvm/arm.c
@@ -0,0 +1,2371 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2012 - Virtual Open Systems and Columbia University
+ * Author: Christoffer Dall <c.dall@virtualopensystems.com>
+ */
+
+#include <linux/bug.h>
+#include <linux/cpu_pm.h>
+#include <linux/entry-kvm.h>
+#include <linux/errno.h>
+#include <linux/err.h>
+#include <linux/kvm_host.h>
+#include <linux/list.h>
+#include <linux/module.h>
+#include <linux/vmalloc.h>
+#include <linux/fs.h>
+#include <linux/mman.h>
+#include <linux/sched.h>
+#include <linux/kmemleak.h>
+#include <linux/kvm.h>
+#include <linux/kvm_irqfd.h>
+#include <linux/irqbypass.h>
+#include <linux/sched/stat.h>
+#include <linux/psci.h>
+#include <trace/events/kvm.h>
+
+#define CREATE_TRACE_POINTS
+#include "trace_arm.h"
+
+#include <linux/uaccess.h>
+#include <asm/ptrace.h>
+#include <asm/mman.h>
+#include <asm/tlbflush.h>
+#include <asm/cacheflush.h>
+#include <asm/cpufeature.h>
+#include <asm/virt.h>
+#include <asm/kvm_arm.h>
+#include <asm/kvm_asm.h>
+#include <asm/kvm_mmu.h>
+#include <asm/kvm_emulate.h>
+#include <asm/sections.h>
+
+#include <kvm/arm_hypercalls.h>
+#include <kvm/arm_pmu.h>
+#include <kvm/arm_psci.h>
+
+static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
+DEFINE_STATIC_KEY_FALSE(kvm_protected_mode_initialized);
+
+DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);
+
+DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
+unsigned long kvm_arm_hyp_percpu_base[NR_CPUS];
+DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
+
+static bool vgic_present;
+
+static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
+DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
+
+int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
+{
+ return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
+}
+
+int kvm_arch_hardware_setup(void *opaque)
+{
+ return 0;
+}
+
+int kvm_arch_check_processor_compat(void *opaque)
+{
+ return 0;
+}
+
+int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
+ struct kvm_enable_cap *cap)
+{
+ int r;
+
+ if (cap->flags)
+ return -EINVAL;
+
+ switch (cap->cap) {
+ case KVM_CAP_ARM_NISV_TO_USER:
+ r = 0;
+ set_bit(KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER,
+ &kvm->arch.flags);
+ break;
+ case KVM_CAP_ARM_MTE:
+ mutex_lock(&kvm->lock);
+ if (!system_supports_mte() || kvm->created_vcpus) {
+ r = -EINVAL;
+ } else {
+ r = 0;
+ set_bit(KVM_ARCH_FLAG_MTE_ENABLED, &kvm->arch.flags);
+ }
+ mutex_unlock(&kvm->lock);
+ break;
+ case KVM_CAP_ARM_SYSTEM_SUSPEND:
+ r = 0;
+ set_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags);
+ break;
+ default:
+ r = -EINVAL;
+ break;
+ }
+
+ return r;
+}
+
+static int kvm_arm_default_max_vcpus(void)
+{
+ return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
+}
+
+static void set_default_spectre(struct kvm *kvm)
+{
+ /*
+ * The default is to expose CSV2 == 1 if the HW isn't affected.
+ * Although this is a per-CPU feature, we make it global because
+ * asymmetric systems are just a nuisance.
+ *
+ * Userspace can override this as long as it doesn't promise
+ * the impossible.
+ */
+ if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED)
+ kvm->arch.pfr0_csv2 = 1;
+ if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED)
+ kvm->arch.pfr0_csv3 = 1;
+}
+
+/**
+ * kvm_arch_init_vm - initializes a VM data structure
+ * @kvm: pointer to the KVM struct
+ */
+int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
+{
+ int ret;
+
+ ret = kvm_arm_setup_stage2(kvm, type);
+ if (ret)
+ return ret;
+
+ ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu);
+ if (ret)
+ return ret;
+
+ mutex_init(&kvm->arch.config_lock);
+
+#ifdef CONFIG_LOCKDEP
+ /* Clue in lockdep that the config_lock must be taken inside kvm->lock */
+ mutex_lock(&kvm->lock);
+ mutex_lock(&kvm->arch.config_lock);
+ mutex_unlock(&kvm->arch.config_lock);
+ mutex_unlock(&kvm->lock);
+#endif
+
+ ret = kvm_share_hyp(kvm, kvm + 1);
+ if (ret)
+ goto out_free_stage2_pgd;
+
+ if (!zalloc_cpumask_var(&kvm->arch.supported_cpus, GFP_KERNEL)) {
+ ret = -ENOMEM;
+ goto out_free_stage2_pgd;
+ }
+ cpumask_copy(kvm->arch.supported_cpus, cpu_possible_mask);
+
+ kvm_vgic_early_init(kvm);
+
+ /* The maximum number of VCPUs is limited by the host's GIC model */
+ kvm->max_vcpus = kvm_arm_default_max_vcpus();
+
+ set_default_spectre(kvm);
+ kvm_arm_init_hypercalls(kvm);
+
+ return ret;
+out_free_stage2_pgd:
+ kvm_free_stage2_pgd(&kvm->arch.mmu);
+ return ret;
+}
+
+vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
+{
+ return VM_FAULT_SIGBUS;
+}
+
+
+/**
+ * kvm_arch_destroy_vm - destroy the VM data structure
+ * @kvm: pointer to the KVM struct
+ */
+void kvm_arch_destroy_vm(struct kvm *kvm)
+{
+ bitmap_free(kvm->arch.pmu_filter);
+ free_cpumask_var(kvm->arch.supported_cpus);
+
+ kvm_vgic_destroy(kvm);
+
+ kvm_destroy_vcpus(kvm);
+
+ kvm_unshare_hyp(kvm, kvm + 1);
+}
+
+int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
+{
+ int r;
+ switch (ext) {
+ case KVM_CAP_IRQCHIP:
+ r = vgic_present;
+ break;
+ case KVM_CAP_IOEVENTFD:
+ case KVM_CAP_DEVICE_CTRL:
+ case KVM_CAP_USER_MEMORY:
+ case KVM_CAP_SYNC_MMU:
+ case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
+ case KVM_CAP_ONE_REG:
+ case KVM_CAP_ARM_PSCI:
+ case KVM_CAP_ARM_PSCI_0_2:
+ case KVM_CAP_READONLY_MEM:
+ case KVM_CAP_MP_STATE:
+ case KVM_CAP_IMMEDIATE_EXIT:
+ case KVM_CAP_VCPU_EVENTS:
+ case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
+ case KVM_CAP_ARM_NISV_TO_USER:
+ case KVM_CAP_ARM_INJECT_EXT_DABT:
+ case KVM_CAP_SET_GUEST_DEBUG:
+ case KVM_CAP_VCPU_ATTRIBUTES:
+ case KVM_CAP_PTP_KVM:
+ case KVM_CAP_ARM_SYSTEM_SUSPEND:
+ r = 1;
+ break;
+ case KVM_CAP_SET_GUEST_DEBUG2:
+ return KVM_GUESTDBG_VALID_MASK;
+ case KVM_CAP_ARM_SET_DEVICE_ADDR:
+ r = 1;
+ break;
+ case KVM_CAP_NR_VCPUS:
+ /*
+ * ARM64 treats KVM_CAP_NR_CPUS differently from all other
+ * architectures, as it does not always bound it to
+ * KVM_CAP_MAX_VCPUS. It should not matter much because
+ * this is just an advisory value.
+ */
+ r = min_t(unsigned int, num_online_cpus(),
+ kvm_arm_default_max_vcpus());
+ break;
+ case KVM_CAP_MAX_VCPUS:
+ case KVM_CAP_MAX_VCPU_ID:
+ if (kvm)
+ r = kvm->max_vcpus;
+ else
+ r = kvm_arm_default_max_vcpus();
+ break;
+ case KVM_CAP_MSI_DEVID:
+ if (!kvm)
+ r = -EINVAL;
+ else
+ r = kvm->arch.vgic.msis_require_devid;
+ break;
+ case KVM_CAP_ARM_USER_IRQ:
+ /*
+ * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
+ * (bump this number if adding more devices)
+ */
+ r = 1;
+ break;
+ case KVM_CAP_ARM_MTE:
+ r = system_supports_mte();
+ break;
+ case KVM_CAP_STEAL_TIME:
+ r = kvm_arm_pvtime_supported();
+ break;
+ case KVM_CAP_ARM_EL1_32BIT:
+ r = cpus_have_const_cap(ARM64_HAS_32BIT_EL1);
+ break;
+ case KVM_CAP_GUEST_DEBUG_HW_BPS:
+ r = get_num_brps();
+ break;
+ case KVM_CAP_GUEST_DEBUG_HW_WPS:
+ r = get_num_wrps();
+ break;
+ case KVM_CAP_ARM_PMU_V3:
+ r = kvm_arm_support_pmu_v3();
+ break;
+ case KVM_CAP_ARM_INJECT_SERROR_ESR:
+ r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
+ break;
+ case KVM_CAP_ARM_VM_IPA_SIZE:
+ r = get_kvm_ipa_limit();
+ break;
+ case KVM_CAP_ARM_SVE:
+ r = system_supports_sve();
+ break;
+ case KVM_CAP_ARM_PTRAUTH_ADDRESS:
+ case KVM_CAP_ARM_PTRAUTH_GENERIC:
+ r = system_has_full_ptr_auth();
+ break;
+ default:
+ r = 0;
+ }
+
+ return r;
+}
+
+long kvm_arch_dev_ioctl(struct file *filp,
+ unsigned int ioctl, unsigned long arg)
+{
+ return -EINVAL;
+}
+
+struct kvm *kvm_arch_alloc_vm(void)
+{
+ size_t sz = sizeof(struct kvm);
+
+ if (!has_vhe())
+ return kzalloc(sz, GFP_KERNEL_ACCOUNT);
+
+ return __vmalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_HIGHMEM | __GFP_ZERO);
+}
+
+int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
+{
+ if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
+ return -EBUSY;
+
+ if (id >= kvm->max_vcpus)
+ return -EINVAL;
+
+ return 0;
+}
+
+int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
+{
+ int err;
+
+ spin_lock_init(&vcpu->arch.mp_state_lock);
+
+#ifdef CONFIG_LOCKDEP
+ /* Inform lockdep that the config_lock is acquired after vcpu->mutex */
+ mutex_lock(&vcpu->mutex);
+ mutex_lock(&vcpu->kvm->arch.config_lock);
+ mutex_unlock(&vcpu->kvm->arch.config_lock);
+ mutex_unlock(&vcpu->mutex);
+#endif
+
+ /* Force users to call KVM_ARM_VCPU_INIT */
+ vcpu->arch.target = -1;
+ bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
+
+ vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
+
+ /*
+ * Default value for the FP state, will be overloaded at load
+ * time if we support FP (pretty likely)
+ */
+ vcpu->arch.fp_state = FP_STATE_FREE;
+
+ /* Set up the timer */
+ kvm_timer_vcpu_init(vcpu);
+
+ kvm_pmu_vcpu_init(vcpu);
+
+ kvm_arm_reset_debug_ptr(vcpu);
+
+ kvm_arm_pvtime_vcpu_init(&vcpu->arch);
+
+ vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
+
+ err = kvm_vgic_vcpu_init(vcpu);
+ if (err)
+ return err;
+
+ return kvm_share_hyp(vcpu, vcpu + 1);
+}
+
+void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
+{
+}
+
+void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
+{
+ if (vcpu_has_run_once(vcpu) && unlikely(!irqchip_in_kernel(vcpu->kvm)))
+ static_branch_dec(&userspace_irqchip_in_use);
+
+ kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
+ kvm_timer_vcpu_terminate(vcpu);
+ kvm_pmu_vcpu_destroy(vcpu);
+ kvm_vgic_vcpu_destroy(vcpu);
+ kvm_arm_vcpu_destroy(vcpu);
+}
+
+void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
+{
+
+}
+
+void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
+{
+
+}
+
+void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
+{
+ struct kvm_s2_mmu *mmu;
+ int *last_ran;
+
+ mmu = vcpu->arch.hw_mmu;
+ last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
+
+ /*
+ * We guarantee that both TLBs and I-cache are private to each
+ * vcpu. If detecting that a vcpu from the same VM has
+ * previously run on the same physical CPU, call into the
+ * hypervisor code to nuke the relevant contexts.
+ *
+ * We might get preempted before the vCPU actually runs, but
+ * over-invalidation doesn't affect correctness.
+ */
+ if (*last_ran != vcpu->vcpu_id) {
+ kvm_call_hyp(__kvm_flush_cpu_context, mmu);
+ *last_ran = vcpu->vcpu_id;
+ }
+
+ vcpu->cpu = cpu;
+
+ kvm_vgic_load(vcpu);
+ kvm_timer_vcpu_load(vcpu);
+ if (has_vhe())
+ kvm_vcpu_load_sysregs_vhe(vcpu);
+ kvm_arch_vcpu_load_fp(vcpu);
+ kvm_vcpu_pmu_restore_guest(vcpu);
+ if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
+ kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
+
+ if (single_task_running())
+ vcpu_clear_wfx_traps(vcpu);
+ else
+ vcpu_set_wfx_traps(vcpu);
+
+ if (vcpu_has_ptrauth(vcpu))
+ vcpu_ptrauth_disable(vcpu);
+ kvm_arch_vcpu_load_debug_state_flags(vcpu);
+
+ if (!cpumask_test_cpu(smp_processor_id(), vcpu->kvm->arch.supported_cpus))
+ vcpu_set_on_unsupported_cpu(vcpu);
+}
+
+void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
+{
+ kvm_arch_vcpu_put_debug_state_flags(vcpu);
+ kvm_arch_vcpu_put_fp(vcpu);
+ if (has_vhe())
+ kvm_vcpu_put_sysregs_vhe(vcpu);
+ kvm_timer_vcpu_put(vcpu);
+ kvm_vgic_put(vcpu);
+ kvm_vcpu_pmu_restore_host(vcpu);
+ kvm_arm_vmid_clear_active();
+
+ vcpu_clear_on_unsupported_cpu(vcpu);
+ vcpu->cpu = -1;
+}
+
+static void __kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
+{
+ WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_STOPPED);
+ kvm_make_request(KVM_REQ_SLEEP, vcpu);
+ kvm_vcpu_kick(vcpu);
+}
+
+void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
+{
+ spin_lock(&vcpu->arch.mp_state_lock);
+ __kvm_arm_vcpu_power_off(vcpu);
+ spin_unlock(&vcpu->arch.mp_state_lock);
+}
+
+bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu)
+{
+ return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_STOPPED;
+}
+
+static void kvm_arm_vcpu_suspend(struct kvm_vcpu *vcpu)
+{
+ WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_SUSPENDED);
+ kvm_make_request(KVM_REQ_SUSPEND, vcpu);
+ kvm_vcpu_kick(vcpu);
+}
+
+static bool kvm_arm_vcpu_suspended(struct kvm_vcpu *vcpu)
+{
+ return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_SUSPENDED;
+}
+
+int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
+ struct kvm_mp_state *mp_state)
+{
+ *mp_state = READ_ONCE(vcpu->arch.mp_state);
+
+ return 0;
+}
+
+int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
+ struct kvm_mp_state *mp_state)
+{
+ int ret = 0;
+
+ spin_lock(&vcpu->arch.mp_state_lock);
+
+ switch (mp_state->mp_state) {
+ case KVM_MP_STATE_RUNNABLE:
+ WRITE_ONCE(vcpu->arch.mp_state, *mp_state);
+ break;
+ case KVM_MP_STATE_STOPPED:
+ __kvm_arm_vcpu_power_off(vcpu);
+ break;
+ case KVM_MP_STATE_SUSPENDED:
+ kvm_arm_vcpu_suspend(vcpu);
+ break;
+ default:
+ ret = -EINVAL;
+ }
+
+ spin_unlock(&vcpu->arch.mp_state_lock);
+
+ return ret;
+}
+
+/**
+ * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
+ * @v: The VCPU pointer
+ *
+ * If the guest CPU is not waiting for interrupts or an interrupt line is
+ * asserted, the CPU is by definition runnable.
+ */
+int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
+{
+ bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
+ return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
+ && !kvm_arm_vcpu_stopped(v) && !v->arch.pause);
+}
+
+bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
+{
+ return vcpu_mode_priv(vcpu);
+}
+
+#ifdef CONFIG_GUEST_PERF_EVENTS
+unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
+{
+ return *vcpu_pc(vcpu);
+}
+#endif
+
+static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
+{
+ return vcpu->arch.target >= 0;
+}
+
+/*
+ * Handle both the initialisation that is being done when the vcpu is
+ * run for the first time, as well as the updates that must be
+ * performed each time we get a new thread dealing with this vcpu.
+ */
+int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
+{
+ struct kvm *kvm = vcpu->kvm;
+ int ret;
+
+ if (!kvm_vcpu_initialized(vcpu))
+ return -ENOEXEC;
+
+ if (!kvm_arm_vcpu_is_finalized(vcpu))
+ return -EPERM;
+
+ ret = kvm_arch_vcpu_run_map_fp(vcpu);
+ if (ret)
+ return ret;
+
+ if (likely(vcpu_has_run_once(vcpu)))
+ return 0;
+
+ kvm_arm_vcpu_init_debug(vcpu);
+
+ if (likely(irqchip_in_kernel(kvm))) {
+ /*
+ * Map the VGIC hardware resources before running a vcpu the
+ * first time on this VM.
+ */
+ ret = kvm_vgic_map_resources(kvm);
+ if (ret)
+ return ret;
+ }
+
+ ret = kvm_timer_enable(vcpu);
+ if (ret)
+ return ret;
+
+ ret = kvm_arm_pmu_v3_enable(vcpu);
+ if (ret)
+ return ret;
+
+ if (!irqchip_in_kernel(kvm)) {
+ /*
+ * Tell the rest of the code that there are userspace irqchip
+ * VMs in the wild.
+ */
+ static_branch_inc(&userspace_irqchip_in_use);
+ }
+
+ /*
+ * Initialize traps for protected VMs.
+ * NOTE: Move to run in EL2 directly, rather than via a hypercall, once
+ * the code is in place for first run initialization at EL2.
+ */
+ if (kvm_vm_is_protected(kvm))
+ kvm_call_hyp_nvhe(__pkvm_vcpu_init_traps, vcpu);
+
+ mutex_lock(&kvm->arch.config_lock);
+ set_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &kvm->arch.flags);
+ mutex_unlock(&kvm->arch.config_lock);
+
+ return ret;
+}
+
+bool kvm_arch_intc_initialized(struct kvm *kvm)
+{
+ return vgic_initialized(kvm);
+}
+
+void kvm_arm_halt_guest(struct kvm *kvm)
+{
+ unsigned long i;
+ struct kvm_vcpu *vcpu;
+
+ kvm_for_each_vcpu(i, vcpu, kvm)
+ vcpu->arch.pause = true;
+ kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
+}
+
+void kvm_arm_resume_guest(struct kvm *kvm)
+{
+ unsigned long i;
+ struct kvm_vcpu *vcpu;
+
+ kvm_for_each_vcpu(i, vcpu, kvm) {
+ vcpu->arch.pause = false;
+ __kvm_vcpu_wake_up(vcpu);
+ }
+}
+
+static void kvm_vcpu_sleep(struct kvm_vcpu *vcpu)
+{
+ struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
+
+ rcuwait_wait_event(wait,
+ (!kvm_arm_vcpu_stopped(vcpu)) && (!vcpu->arch.pause),
+ TASK_INTERRUPTIBLE);
+
+ if (kvm_arm_vcpu_stopped(vcpu) || vcpu->arch.pause) {
+ /* Awaken to handle a signal, request we sleep again later. */
+ kvm_make_request(KVM_REQ_SLEEP, vcpu);
+ }
+
+ /*
+ * Make sure we will observe a potential reset request if we've
+ * observed a change to the power state. Pairs with the smp_wmb() in
+ * kvm_psci_vcpu_on().
+ */
+ smp_rmb();
+}
+
+/**
+ * kvm_vcpu_wfi - emulate Wait-For-Interrupt behavior
+ * @vcpu: The VCPU pointer
+ *
+ * Suspend execution of a vCPU until a valid wake event is detected, i.e. until
+ * the vCPU is runnable. The vCPU may or may not be scheduled out, depending
+ * on when a wake event arrives, e.g. there may already be a pending wake event.
+ */
+void kvm_vcpu_wfi(struct kvm_vcpu *vcpu)
+{
+ /*
+ * Sync back the state of the GIC CPU interface so that we have
+ * the latest PMR and group enables. This ensures that
+ * kvm_arch_vcpu_runnable has up-to-date data to decide whether
+ * we have pending interrupts, e.g. when determining if the
+ * vCPU should block.
+ *
+ * For the same reason, we want to tell GICv4 that we need
+ * doorbells to be signalled, should an interrupt become pending.
+ */
+ preempt_disable();
+ kvm_vgic_vmcr_sync(vcpu);
+ vcpu_set_flag(vcpu, IN_WFI);
+ vgic_v4_put(vcpu);
+ preempt_enable();
+
+ kvm_vcpu_halt(vcpu);
+ vcpu_clear_flag(vcpu, IN_WFIT);
+
+ preempt_disable();
+ vcpu_clear_flag(vcpu, IN_WFI);
+ vgic_v4_load(vcpu);
+ preempt_enable();
+}
+
+static int kvm_vcpu_suspend(struct kvm_vcpu *vcpu)
+{
+ if (!kvm_arm_vcpu_suspended(vcpu))
+ return 1;
+
+ kvm_vcpu_wfi(vcpu);
+
+ /*
+ * The suspend state is sticky; we do not leave it until userspace
+ * explicitly marks the vCPU as runnable. Request that we suspend again
+ * later.
+ */
+ kvm_make_request(KVM_REQ_SUSPEND, vcpu);
+
+ /*
+ * Check to make sure the vCPU is actually runnable. If so, exit to
+ * userspace informing it of the wakeup condition.
+ */
+ if (kvm_arch_vcpu_runnable(vcpu)) {
+ memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event));
+ vcpu->run->system_event.type = KVM_SYSTEM_EVENT_WAKEUP;
+ vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
+ return 0;
+ }
+
+ /*
+ * Otherwise, we were unblocked to process a different event, such as a
+ * pending signal. Return 1 and allow kvm_arch_vcpu_ioctl_run() to
+ * process the event.
+ */
+ return 1;
+}
+
+/**
+ * check_vcpu_requests - check and handle pending vCPU requests
+ * @vcpu: the VCPU pointer
+ *
+ * Return: 1 if we should enter the guest
+ * 0 if we should exit to userspace
+ * < 0 if we should exit to userspace, where the return value indicates
+ * an error
+ */
+static int check_vcpu_requests(struct kvm_vcpu *vcpu)
+{
+ if (kvm_request_pending(vcpu)) {
+ if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
+ kvm_vcpu_sleep(vcpu);
+
+ if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
+ kvm_reset_vcpu(vcpu);
+
+ /*
+ * Clear IRQ_PENDING requests that were made to guarantee
+ * that a VCPU sees new virtual interrupts.
+ */
+ kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
+
+ if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
+ kvm_update_stolen_time(vcpu);
+
+ if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
+ /* The distributor enable bits were changed */
+ preempt_disable();
+ vgic_v4_put(vcpu);
+ vgic_v4_load(vcpu);
+ preempt_enable();
+ }
+
+ if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu))
+ kvm_pmu_handle_pmcr(vcpu,
+ __vcpu_sys_reg(vcpu, PMCR_EL0));
+
+ if (kvm_check_request(KVM_REQ_SUSPEND, vcpu))
+ return kvm_vcpu_suspend(vcpu);
+ }
+
+ return 1;
+}
+
+static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu)
+{
+ if (likely(!vcpu_mode_is_32bit(vcpu)))
+ return false;
+
+ return !kvm_supports_32bit_el0();
+}
+
+/**
+ * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest
+ * @vcpu: The VCPU pointer
+ * @ret: Pointer to write optional return code
+ *
+ * Returns: true if the VCPU needs to return to a preemptible + interruptible
+ * and skip guest entry.
+ *
+ * This function disambiguates between two different types of exits: exits to a
+ * preemptible + interruptible kernel context and exits to userspace. For an
+ * exit to userspace, this function will write the return code to ret and return
+ * true. For an exit to preemptible + interruptible kernel context (i.e. check
+ * for pending work and re-enter), return true without writing to ret.
+ */
+static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret)
+{
+ struct kvm_run *run = vcpu->run;
+
+ /*
+ * If we're using a userspace irqchip, then check if we need
+ * to tell a userspace irqchip about timer or PMU level
+ * changes and if so, exit to userspace (the actual level
+ * state gets updated in kvm_timer_update_run and
+ * kvm_pmu_update_run below).
+ */
+ if (static_branch_unlikely(&userspace_irqchip_in_use)) {
+ if (kvm_timer_should_notify_user(vcpu) ||
+ kvm_pmu_should_notify_user(vcpu)) {
+ *ret = -EINTR;
+ run->exit_reason = KVM_EXIT_INTR;
+ return true;
+ }
+ }
+
+ if (unlikely(vcpu_on_unsupported_cpu(vcpu))) {
+ run->exit_reason = KVM_EXIT_FAIL_ENTRY;
+ run->fail_entry.hardware_entry_failure_reason = KVM_EXIT_FAIL_ENTRY_CPU_UNSUPPORTED;
+ run->fail_entry.cpu = smp_processor_id();
+ *ret = 0;
+ return true;
+ }
+
+ return kvm_request_pending(vcpu) ||
+ xfer_to_guest_mode_work_pending();
+}
+
+/*
+ * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while
+ * the vCPU is running.
+ *
+ * This must be noinstr as instrumentation may make use of RCU, and this is not
+ * safe during the EQS.
+ */
+static int noinstr kvm_arm_vcpu_enter_exit(struct kvm_vcpu *vcpu)
+{
+ int ret;
+
+ guest_state_enter_irqoff();
+ ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
+ guest_state_exit_irqoff();
+
+ return ret;
+}
+
+/**
+ * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
+ * @vcpu: The VCPU pointer
+ *
+ * This function is called through the VCPU_RUN ioctl called from user space. It
+ * will execute VM code in a loop until the time slice for the process is used
+ * or some emulation is needed from user space in which case the function will
+ * return with return value 0 and with the kvm_run structure filled in with the
+ * required data for the requested emulation.
+ */
+int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
+{
+ struct kvm_run *run = vcpu->run;
+ int ret;
+
+ if (run->exit_reason == KVM_EXIT_MMIO) {
+ ret = kvm_handle_mmio_return(vcpu);
+ if (ret)
+ return ret;
+ }
+
+ vcpu_load(vcpu);
+
+ if (run->immediate_exit) {
+ ret = -EINTR;
+ goto out;
+ }
+
+ kvm_sigset_activate(vcpu);
+
+ ret = 1;
+ run->exit_reason = KVM_EXIT_UNKNOWN;
+ run->flags = 0;
+ while (ret > 0) {
+ /*
+ * Check conditions before entering the guest
+ */
+ ret = xfer_to_guest_mode_handle_work(vcpu);
+ if (!ret)
+ ret = 1;
+
+ if (ret > 0)
+ ret = check_vcpu_requests(vcpu);
+
+ /*
+ * Preparing the interrupts to be injected also
+ * involves poking the GIC, which must be done in a
+ * non-preemptible context.
+ */
+ preempt_disable();
+
+ /*
+ * The VMID allocator only tracks active VMIDs per
+ * physical CPU, and therefore the VMID allocated may not be
+ * preserved on VMID roll-over if the task was preempted,
+ * making a thread's VMID inactive. So we need to call
+ * kvm_arm_vmid_update() in non-premptible context.
+ */
+ kvm_arm_vmid_update(&vcpu->arch.hw_mmu->vmid);
+
+ kvm_pmu_flush_hwstate(vcpu);
+
+ local_irq_disable();
+
+ kvm_vgic_flush_hwstate(vcpu);
+
+ kvm_pmu_update_vcpu_events(vcpu);
+
+ /*
+ * Ensure we set mode to IN_GUEST_MODE after we disable
+ * interrupts and before the final VCPU requests check.
+ * See the comment in kvm_vcpu_exiting_guest_mode() and
+ * Documentation/virt/kvm/vcpu-requests.rst
+ */
+ smp_store_mb(vcpu->mode, IN_GUEST_MODE);
+
+ if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) {
+ vcpu->mode = OUTSIDE_GUEST_MODE;
+ isb(); /* Ensure work in x_flush_hwstate is committed */
+ kvm_pmu_sync_hwstate(vcpu);
+ if (static_branch_unlikely(&userspace_irqchip_in_use))
+ kvm_timer_sync_user(vcpu);
+ kvm_vgic_sync_hwstate(vcpu);
+ local_irq_enable();
+ preempt_enable();
+ continue;
+ }
+
+ kvm_arm_setup_debug(vcpu);
+ kvm_arch_vcpu_ctxflush_fp(vcpu);
+
+ /**************************************************************
+ * Enter the guest
+ */
+ trace_kvm_entry(*vcpu_pc(vcpu));
+ guest_timing_enter_irqoff();
+
+ ret = kvm_arm_vcpu_enter_exit(vcpu);
+
+ vcpu->mode = OUTSIDE_GUEST_MODE;
+ vcpu->stat.exits++;
+ /*
+ * Back from guest
+ *************************************************************/
+
+ kvm_arm_clear_debug(vcpu);
+
+ /*
+ * We must sync the PMU state before the vgic state so
+ * that the vgic can properly sample the updated state of the
+ * interrupt line.
+ */
+ kvm_pmu_sync_hwstate(vcpu);
+
+ /*
+ * Sync the vgic state before syncing the timer state because
+ * the timer code needs to know if the virtual timer
+ * interrupts are active.
+ */
+ kvm_vgic_sync_hwstate(vcpu);
+
+ /*
+ * Sync the timer hardware state before enabling interrupts as
+ * we don't want vtimer interrupts to race with syncing the
+ * timer virtual interrupt state.
+ */
+ if (static_branch_unlikely(&userspace_irqchip_in_use))
+ kvm_timer_sync_user(vcpu);
+
+ kvm_arch_vcpu_ctxsync_fp(vcpu);
+
+ /*
+ * We must ensure that any pending interrupts are taken before
+ * we exit guest timing so that timer ticks are accounted as
+ * guest time. Transiently unmask interrupts so that any
+ * pending interrupts are taken.
+ *
+ * Per ARM DDI 0487G.b section D1.13.4, an ISB (or other
+ * context synchronization event) is necessary to ensure that
+ * pending interrupts are taken.
+ */
+ if (ARM_EXCEPTION_CODE(ret) == ARM_EXCEPTION_IRQ) {
+ local_irq_enable();
+ isb();
+ local_irq_disable();
+ }
+
+ guest_timing_exit_irqoff();
+
+ local_irq_enable();
+
+ trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
+
+ /* Exit types that need handling before we can be preempted */
+ handle_exit_early(vcpu, ret);
+
+ preempt_enable();
+
+ /*
+ * The ARMv8 architecture doesn't give the hypervisor
+ * a mechanism to prevent a guest from dropping to AArch32 EL0
+ * if implemented by the CPU. If we spot the guest in such
+ * state and that we decided it wasn't supposed to do so (like
+ * with the asymmetric AArch32 case), return to userspace with
+ * a fatal error.
+ */
+ if (vcpu_mode_is_bad_32bit(vcpu)) {
+ /*
+ * As we have caught the guest red-handed, decide that
+ * it isn't fit for purpose anymore by making the vcpu
+ * invalid. The VMM can try and fix it by issuing a
+ * KVM_ARM_VCPU_INIT if it really wants to.
+ */
+ vcpu->arch.target = -1;
+ ret = ARM_EXCEPTION_IL;
+ }
+
+ ret = handle_exit(vcpu, ret);
+ }
+
+ /* Tell userspace about in-kernel device output levels */
+ if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
+ kvm_timer_update_run(vcpu);
+ kvm_pmu_update_run(vcpu);
+ }
+
+ kvm_sigset_deactivate(vcpu);
+
+out:
+ /*
+ * In the unlikely event that we are returning to userspace
+ * with pending exceptions or PC adjustment, commit these
+ * adjustments in order to give userspace a consistent view of
+ * the vcpu state. Note that this relies on __kvm_adjust_pc()
+ * being preempt-safe on VHE.
+ */
+ if (unlikely(vcpu_get_flag(vcpu, PENDING_EXCEPTION) ||
+ vcpu_get_flag(vcpu, INCREMENT_PC)))
+ kvm_call_hyp(__kvm_adjust_pc, vcpu);
+
+ vcpu_put(vcpu);
+ return ret;
+}
+
+static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
+{
+ int bit_index;
+ bool set;
+ unsigned long *hcr;
+
+ if (number == KVM_ARM_IRQ_CPU_IRQ)
+ bit_index = __ffs(HCR_VI);
+ else /* KVM_ARM_IRQ_CPU_FIQ */
+ bit_index = __ffs(HCR_VF);
+
+ hcr = vcpu_hcr(vcpu);
+ if (level)
+ set = test_and_set_bit(bit_index, hcr);
+ else
+ set = test_and_clear_bit(bit_index, hcr);
+
+ /*
+ * If we didn't change anything, no need to wake up or kick other CPUs
+ */
+ if (set == level)
+ return 0;
+
+ /*
+ * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
+ * trigger a world-switch round on the running physical CPU to set the
+ * virtual IRQ/FIQ fields in the HCR appropriately.
+ */
+ kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
+ kvm_vcpu_kick(vcpu);
+
+ return 0;
+}
+
+int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
+ bool line_status)
+{
+ u32 irq = irq_level->irq;
+ unsigned int irq_type, vcpu_idx, irq_num;
+ int nrcpus = atomic_read(&kvm->online_vcpus);
+ struct kvm_vcpu *vcpu = NULL;
+ bool level = irq_level->level;
+
+ irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
+ vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
+ vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
+ irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
+
+ trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
+
+ switch (irq_type) {
+ case KVM_ARM_IRQ_TYPE_CPU:
+ if (irqchip_in_kernel(kvm))
+ return -ENXIO;
+
+ if (vcpu_idx >= nrcpus)
+ return -EINVAL;
+
+ vcpu = kvm_get_vcpu(kvm, vcpu_idx);
+ if (!vcpu)
+ return -EINVAL;
+
+ if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
+ return -EINVAL;
+
+ return vcpu_interrupt_line(vcpu, irq_num, level);
+ case KVM_ARM_IRQ_TYPE_PPI:
+ if (!irqchip_in_kernel(kvm))
+ return -ENXIO;
+
+ if (vcpu_idx >= nrcpus)
+ return -EINVAL;
+
+ vcpu = kvm_get_vcpu(kvm, vcpu_idx);
+ if (!vcpu)
+ return -EINVAL;
+
+ if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
+ return -EINVAL;
+
+ return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
+ case KVM_ARM_IRQ_TYPE_SPI:
+ if (!irqchip_in_kernel(kvm))
+ return -ENXIO;
+
+ if (irq_num < VGIC_NR_PRIVATE_IRQS)
+ return -EINVAL;
+
+ return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
+ }
+
+ return -EINVAL;
+}
+
+static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
+ const struct kvm_vcpu_init *init)
+{
+ unsigned int i, ret;
+ u32 phys_target = kvm_target_cpu();
+
+ if (init->target != phys_target)
+ return -EINVAL;
+
+ /*
+ * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
+ * use the same target.
+ */
+ if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
+ return -EINVAL;
+
+ /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
+ for (i = 0; i < sizeof(init->features) * 8; i++) {
+ bool set = (init->features[i / 32] & (1 << (i % 32)));
+
+ if (set && i >= KVM_VCPU_MAX_FEATURES)
+ return -ENOENT;
+
+ /*
+ * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
+ * use the same feature set.
+ */
+ if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
+ test_bit(i, vcpu->arch.features) != set)
+ return -EINVAL;
+
+ if (set)
+ set_bit(i, vcpu->arch.features);
+ }
+
+ vcpu->arch.target = phys_target;
+
+ /* Now we know what it is, we can reset it. */
+ ret = kvm_reset_vcpu(vcpu);
+ if (ret) {
+ vcpu->arch.target = -1;
+ bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
+ }
+
+ return ret;
+}
+
+static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
+ struct kvm_vcpu_init *init)
+{
+ int ret;
+
+ ret = kvm_vcpu_set_target(vcpu, init);
+ if (ret)
+ return ret;
+
+ /*
+ * Ensure a rebooted VM will fault in RAM pages and detect if the
+ * guest MMU is turned off and flush the caches as needed.
+ *
+ * S2FWB enforces all memory accesses to RAM being cacheable,
+ * ensuring that the data side is always coherent. We still
+ * need to invalidate the I-cache though, as FWB does *not*
+ * imply CTR_EL0.DIC.
+ */
+ if (vcpu_has_run_once(vcpu)) {
+ if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
+ stage2_unmap_vm(vcpu->kvm);
+ else
+ icache_inval_all_pou();
+ }
+
+ vcpu_reset_hcr(vcpu);
+ vcpu->arch.cptr_el2 = CPTR_EL2_DEFAULT;
+
+ /*
+ * Handle the "start in power-off" case.
+ */
+ if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
+ kvm_arm_vcpu_power_off(vcpu);
+ else
+ WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_RUNNABLE);
+
+ return 0;
+}
+
+static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
+ struct kvm_device_attr *attr)
+{
+ int ret = -ENXIO;
+
+ switch (attr->group) {
+ default:
+ ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
+ break;
+ }
+
+ return ret;
+}
+
+static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
+ struct kvm_device_attr *attr)
+{
+ int ret = -ENXIO;
+
+ switch (attr->group) {
+ default:
+ ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
+ break;
+ }
+
+ return ret;
+}
+
+static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
+ struct kvm_device_attr *attr)
+{
+ int ret = -ENXIO;
+
+ switch (attr->group) {
+ default:
+ ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
+ break;
+ }
+
+ return ret;
+}
+
+static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
+ struct kvm_vcpu_events *events)
+{
+ memset(events, 0, sizeof(*events));
+
+ return __kvm_arm_vcpu_get_events(vcpu, events);
+}
+
+static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
+ struct kvm_vcpu_events *events)
+{
+ int i;
+
+ /* check whether the reserved field is zero */
+ for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
+ if (events->reserved[i])
+ return -EINVAL;
+
+ /* check whether the pad field is zero */
+ for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
+ if (events->exception.pad[i])
+ return -EINVAL;
+
+ return __kvm_arm_vcpu_set_events(vcpu, events);
+}
+
+long kvm_arch_vcpu_ioctl(struct file *filp,
+ unsigned int ioctl, unsigned long arg)
+{
+ struct kvm_vcpu *vcpu = filp->private_data;
+ void __user *argp = (void __user *)arg;
+ struct kvm_device_attr attr;
+ long r;
+
+ switch (ioctl) {
+ case KVM_ARM_VCPU_INIT: {
+ struct kvm_vcpu_init init;
+
+ r = -EFAULT;
+ if (copy_from_user(&init, argp, sizeof(init)))
+ break;
+
+ r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
+ break;
+ }
+ case KVM_SET_ONE_REG:
+ case KVM_GET_ONE_REG: {
+ struct kvm_one_reg reg;
+
+ r = -ENOEXEC;
+ if (unlikely(!kvm_vcpu_initialized(vcpu)))
+ break;
+
+ r = -EFAULT;
+ if (copy_from_user(&reg, argp, sizeof(reg)))
+ break;
+
+ /*
+ * We could owe a reset due to PSCI. Handle the pending reset
+ * here to ensure userspace register accesses are ordered after
+ * the reset.
+ */
+ if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
+ kvm_reset_vcpu(vcpu);
+
+ if (ioctl == KVM_SET_ONE_REG)
+ r = kvm_arm_set_reg(vcpu, &reg);
+ else
+ r = kvm_arm_get_reg(vcpu, &reg);
+ break;
+ }
+ case KVM_GET_REG_LIST: {
+ struct kvm_reg_list __user *user_list = argp;
+ struct kvm_reg_list reg_list;
+ unsigned n;
+
+ r = -ENOEXEC;
+ if (unlikely(!kvm_vcpu_initialized(vcpu)))
+ break;
+
+ r = -EPERM;
+ if (!kvm_arm_vcpu_is_finalized(vcpu))
+ break;
+
+ r = -EFAULT;
+ if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
+ break;
+ n = reg_list.n;
+ reg_list.n = kvm_arm_num_regs(vcpu);
+ if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
+ break;
+ r = -E2BIG;
+ if (n < reg_list.n)
+ break;
+ r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
+ break;
+ }
+ case KVM_SET_DEVICE_ATTR: {
+ r = -EFAULT;
+ if (copy_from_user(&attr, argp, sizeof(attr)))
+ break;
+ r = kvm_arm_vcpu_set_attr(vcpu, &attr);
+ break;
+ }
+ case KVM_GET_DEVICE_ATTR: {
+ r = -EFAULT;
+ if (copy_from_user(&attr, argp, sizeof(attr)))
+ break;
+ r = kvm_arm_vcpu_get_attr(vcpu, &attr);
+ break;
+ }
+ case KVM_HAS_DEVICE_ATTR: {
+ r = -EFAULT;
+ if (copy_from_user(&attr, argp, sizeof(attr)))
+ break;
+ r = kvm_arm_vcpu_has_attr(vcpu, &attr);
+ break;
+ }
+ case KVM_GET_VCPU_EVENTS: {
+ struct kvm_vcpu_events events;
+
+ if (kvm_arm_vcpu_get_events(vcpu, &events))
+ return -EINVAL;
+
+ if (copy_to_user(argp, &events, sizeof(events)))
+ return -EFAULT;
+
+ return 0;
+ }
+ case KVM_SET_VCPU_EVENTS: {
+ struct kvm_vcpu_events events;
+
+ if (copy_from_user(&events, argp, sizeof(events)))
+ return -EFAULT;
+
+ return kvm_arm_vcpu_set_events(vcpu, &events);
+ }
+ case KVM_ARM_VCPU_FINALIZE: {
+ int what;
+
+ if (!kvm_vcpu_initialized(vcpu))
+ return -ENOEXEC;
+
+ if (get_user(what, (const int __user *)argp))
+ return -EFAULT;
+
+ return kvm_arm_vcpu_finalize(vcpu, what);
+ }
+ default:
+ r = -EINVAL;
+ }
+
+ return r;
+}
+
+void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
+{
+
+}
+
+void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
+ const struct kvm_memory_slot *memslot)
+{
+ kvm_flush_remote_tlbs(kvm);
+}
+
+static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
+ struct kvm_arm_device_addr *dev_addr)
+{
+ switch (FIELD_GET(KVM_ARM_DEVICE_ID_MASK, dev_addr->id)) {
+ case KVM_ARM_DEVICE_VGIC_V2:
+ if (!vgic_present)
+ return -ENXIO;
+ return kvm_set_legacy_vgic_v2_addr(kvm, dev_addr);
+ default:
+ return -ENODEV;
+ }
+}
+
+long kvm_arch_vm_ioctl(struct file *filp,
+ unsigned int ioctl, unsigned long arg)
+{
+ struct kvm *kvm = filp->private_data;
+ void __user *argp = (void __user *)arg;
+
+ switch (ioctl) {
+ case KVM_CREATE_IRQCHIP: {
+ int ret;
+ if (!vgic_present)
+ return -ENXIO;
+ mutex_lock(&kvm->lock);
+ ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
+ mutex_unlock(&kvm->lock);
+ return ret;
+ }
+ case KVM_ARM_SET_DEVICE_ADDR: {
+ struct kvm_arm_device_addr dev_addr;
+
+ if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
+ return -EFAULT;
+ return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
+ }
+ case KVM_ARM_PREFERRED_TARGET: {
+ struct kvm_vcpu_init init;
+
+ kvm_vcpu_preferred_target(&init);
+
+ if (copy_to_user(argp, &init, sizeof(init)))
+ return -EFAULT;
+
+ return 0;
+ }
+ case KVM_ARM_MTE_COPY_TAGS: {
+ struct kvm_arm_copy_mte_tags copy_tags;
+
+ if (copy_from_user(&copy_tags, argp, sizeof(copy_tags)))
+ return -EFAULT;
+ return kvm_vm_ioctl_mte_copy_tags(kvm, &copy_tags);
+ }
+ default:
+ return -EINVAL;
+ }
+}
+
+static unsigned long nvhe_percpu_size(void)
+{
+ return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
+ (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
+}
+
+static unsigned long nvhe_percpu_order(void)
+{
+ unsigned long size = nvhe_percpu_size();
+
+ return size ? get_order(size) : 0;
+}
+
+/* A lookup table holding the hypervisor VA for each vector slot */
+static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];
+
+static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
+{
+ hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
+}
+
+static int kvm_init_vector_slots(void)
+{
+ int err;
+ void *base;
+
+ base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
+ kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);
+
+ base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
+ kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
+
+ if (kvm_system_needs_idmapped_vectors() &&
+ !is_protected_kvm_enabled()) {
+ err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
+ __BP_HARDEN_HYP_VECS_SZ, &base);
+ if (err)
+ return err;
+ }
+
+ kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
+ kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
+ return 0;
+}
+
+static void cpu_prepare_hyp_mode(int cpu)
+{
+ struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
+ unsigned long tcr;
+
+ /*
+ * Calculate the raw per-cpu offset without a translation from the
+ * kernel's mapping to the linear mapping, and store it in tpidr_el2
+ * so that we can use adr_l to access per-cpu variables in EL2.
+ * Also drop the KASAN tag which gets in the way...
+ */
+ params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
+ (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
+
+ params->mair_el2 = read_sysreg(mair_el1);
+
+ /*
+ * The ID map may be configured to use an extended virtual address
+ * range. This is only the case if system RAM is out of range for the
+ * currently configured page size and VA_BITS, in which case we will
+ * also need the extended virtual range for the HYP ID map, or we won't
+ * be able to enable the EL2 MMU.
+ *
+ * However, at EL2, there is only one TTBR register, and we can't switch
+ * between translation tables *and* update TCR_EL2.T0SZ at the same
+ * time. Bottom line: we need to use the extended range with *both* our
+ * translation tables.
+ *
+ * So use the same T0SZ value we use for the ID map.
+ */
+ tcr = (read_sysreg(tcr_el1) & TCR_EL2_MASK) | TCR_EL2_RES1;
+ tcr &= ~TCR_T0SZ_MASK;
+ tcr |= (idmap_t0sz & GENMASK(TCR_TxSZ_WIDTH - 1, 0)) << TCR_T0SZ_OFFSET;
+ params->tcr_el2 = tcr;
+
+ params->pgd_pa = kvm_mmu_get_httbr();
+ if (is_protected_kvm_enabled())
+ params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
+ else
+ params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
+ params->vttbr = params->vtcr = 0;
+
+ /*
+ * Flush the init params from the data cache because the struct will
+ * be read while the MMU is off.
+ */
+ kvm_flush_dcache_to_poc(params, sizeof(*params));
+}
+
+static void hyp_install_host_vector(void)
+{
+ struct kvm_nvhe_init_params *params;
+ struct arm_smccc_res res;
+
+ /* Switch from the HYP stub to our own HYP init vector */
+ __hyp_set_vectors(kvm_get_idmap_vector());
+
+ /*
+ * Call initialization code, and switch to the full blown HYP code.
+ * If the cpucaps haven't been finalized yet, something has gone very
+ * wrong, and hyp will crash and burn when it uses any
+ * cpus_have_const_cap() wrapper.
+ */
+ BUG_ON(!system_capabilities_finalized());
+ params = this_cpu_ptr_nvhe_sym(kvm_init_params);
+ arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
+ WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
+}
+
+static void cpu_init_hyp_mode(void)
+{
+ hyp_install_host_vector();
+
+ /*
+ * Disabling SSBD on a non-VHE system requires us to enable SSBS
+ * at EL2.
+ */
+ if (this_cpu_has_cap(ARM64_SSBS) &&
+ arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
+ kvm_call_hyp_nvhe(__kvm_enable_ssbs);
+ }
+}
+
+static void cpu_hyp_reset(void)
+{
+ if (!is_kernel_in_hyp_mode())
+ __hyp_reset_vectors();
+}
+
+/*
+ * EL2 vectors can be mapped and rerouted in a number of ways,
+ * depending on the kernel configuration and CPU present:
+ *
+ * - If the CPU is affected by Spectre-v2, the hardening sequence is
+ * placed in one of the vector slots, which is executed before jumping
+ * to the real vectors.
+ *
+ * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
+ * containing the hardening sequence is mapped next to the idmap page,
+ * and executed before jumping to the real vectors.
+ *
+ * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
+ * empty slot is selected, mapped next to the idmap page, and
+ * executed before jumping to the real vectors.
+ *
+ * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
+ * VHE, as we don't have hypervisor-specific mappings. If the system
+ * is VHE and yet selects this capability, it will be ignored.
+ */
+static void cpu_set_hyp_vector(void)
+{
+ struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
+ void *vector = hyp_spectre_vector_selector[data->slot];
+
+ if (!is_protected_kvm_enabled())
+ *this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
+ else
+ kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
+}
+
+static void cpu_hyp_init_context(void)
+{
+ kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
+
+ if (!is_kernel_in_hyp_mode())
+ cpu_init_hyp_mode();
+}
+
+static void cpu_hyp_init_features(void)
+{
+ cpu_set_hyp_vector();
+ kvm_arm_init_debug();
+
+ if (is_kernel_in_hyp_mode())
+ kvm_timer_init_vhe();
+
+ if (vgic_present)
+ kvm_vgic_init_cpu_hardware();
+}
+
+static void cpu_hyp_reinit(void)
+{
+ cpu_hyp_reset();
+ cpu_hyp_init_context();
+ cpu_hyp_init_features();
+}
+
+static void _kvm_arch_hardware_enable(void *discard)
+{
+ if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
+ cpu_hyp_reinit();
+ __this_cpu_write(kvm_arm_hardware_enabled, 1);
+ }
+}
+
+int kvm_arch_hardware_enable(void)
+{
+ _kvm_arch_hardware_enable(NULL);
+ return 0;
+}
+
+static void _kvm_arch_hardware_disable(void *discard)
+{
+ if (__this_cpu_read(kvm_arm_hardware_enabled)) {
+ cpu_hyp_reset();
+ __this_cpu_write(kvm_arm_hardware_enabled, 0);
+ }
+}
+
+void kvm_arch_hardware_disable(void)
+{
+ if (!is_protected_kvm_enabled())
+ _kvm_arch_hardware_disable(NULL);
+}
+
+#ifdef CONFIG_CPU_PM
+static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
+ unsigned long cmd,
+ void *v)
+{
+ /*
+ * kvm_arm_hardware_enabled is left with its old value over
+ * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
+ * re-enable hyp.
+ */
+ switch (cmd) {
+ case CPU_PM_ENTER:
+ if (__this_cpu_read(kvm_arm_hardware_enabled))
+ /*
+ * don't update kvm_arm_hardware_enabled here
+ * so that the hardware will be re-enabled
+ * when we resume. See below.
+ */
+ cpu_hyp_reset();
+
+ return NOTIFY_OK;
+ case CPU_PM_ENTER_FAILED:
+ case CPU_PM_EXIT:
+ if (__this_cpu_read(kvm_arm_hardware_enabled))
+ /* The hardware was enabled before suspend. */
+ cpu_hyp_reinit();
+
+ return NOTIFY_OK;
+
+ default:
+ return NOTIFY_DONE;
+ }
+}
+
+static struct notifier_block hyp_init_cpu_pm_nb = {
+ .notifier_call = hyp_init_cpu_pm_notifier,
+};
+
+static void hyp_cpu_pm_init(void)
+{
+ if (!is_protected_kvm_enabled())
+ cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
+}
+static void hyp_cpu_pm_exit(void)
+{
+ if (!is_protected_kvm_enabled())
+ cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
+}
+#else
+static inline void hyp_cpu_pm_init(void)
+{
+}
+static inline void hyp_cpu_pm_exit(void)
+{
+}
+#endif
+
+static void init_cpu_logical_map(void)
+{
+ unsigned int cpu;
+
+ /*
+ * Copy the MPIDR <-> logical CPU ID mapping to hyp.
+ * Only copy the set of online CPUs whose features have been checked
+ * against the finalized system capabilities. The hypervisor will not
+ * allow any other CPUs from the `possible` set to boot.
+ */
+ for_each_online_cpu(cpu)
+ hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
+}
+
+#define init_psci_0_1_impl_state(config, what) \
+ config.psci_0_1_ ## what ## _implemented = psci_ops.what
+
+static bool init_psci_relay(void)
+{
+ /*
+ * If PSCI has not been initialized, protected KVM cannot install
+ * itself on newly booted CPUs.
+ */
+ if (!psci_ops.get_version) {
+ kvm_err("Cannot initialize protected mode without PSCI\n");
+ return false;
+ }
+
+ kvm_host_psci_config.version = psci_ops.get_version();
+
+ if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
+ kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
+ init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
+ init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
+ init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
+ init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
+ }
+ return true;
+}
+
+static int init_subsystems(void)
+{
+ int err = 0;
+
+ /*
+ * Enable hardware so that subsystem initialisation can access EL2.
+ */
+ on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
+
+ /*
+ * Register CPU lower-power notifier
+ */
+ hyp_cpu_pm_init();
+
+ /*
+ * Init HYP view of VGIC
+ */
+ err = kvm_vgic_hyp_init();
+ switch (err) {
+ case 0:
+ vgic_present = true;
+ break;
+ case -ENODEV:
+ case -ENXIO:
+ vgic_present = false;
+ err = 0;
+ break;
+ default:
+ goto out;
+ }
+
+ /*
+ * Init HYP architected timer support
+ */
+ err = kvm_timer_hyp_init(vgic_present);
+ if (err)
+ goto out;
+
+ kvm_register_perf_callbacks(NULL);
+
+out:
+ if (err || !is_protected_kvm_enabled())
+ on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
+
+ return err;
+}
+
+static void teardown_hyp_mode(void)
+{
+ int cpu;
+
+ free_hyp_pgds();
+ for_each_possible_cpu(cpu) {
+ free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
+ free_pages(kvm_arm_hyp_percpu_base[cpu], nvhe_percpu_order());
+ }
+}
+
+static int do_pkvm_init(u32 hyp_va_bits)
+{
+ void *per_cpu_base = kvm_ksym_ref(kvm_arm_hyp_percpu_base);
+ int ret;
+
+ preempt_disable();
+ cpu_hyp_init_context();
+ ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
+ num_possible_cpus(), kern_hyp_va(per_cpu_base),
+ hyp_va_bits);
+ cpu_hyp_init_features();
+
+ /*
+ * The stub hypercalls are now disabled, so set our local flag to
+ * prevent a later re-init attempt in kvm_arch_hardware_enable().
+ */
+ __this_cpu_write(kvm_arm_hardware_enabled, 1);
+ preempt_enable();
+
+ return ret;
+}
+
+static u64 get_hyp_id_aa64pfr0_el1(void)
+{
+ /*
+ * Track whether the system isn't affected by spectre/meltdown in the
+ * hypervisor's view of id_aa64pfr0_el1, used for protected VMs.
+ * Although this is per-CPU, we make it global for simplicity, e.g., not
+ * to have to worry about vcpu migration.
+ *
+ * Unlike for non-protected VMs, userspace cannot override this for
+ * protected VMs.
+ */
+ u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
+
+ val &= ~(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2) |
+ ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3));
+
+ val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2),
+ arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED);
+ val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3),
+ arm64_get_meltdown_state() == SPECTRE_UNAFFECTED);
+
+ return val;
+}
+
+static void kvm_hyp_init_symbols(void)
+{
+ kvm_nvhe_sym(id_aa64pfr0_el1_sys_val) = get_hyp_id_aa64pfr0_el1();
+ kvm_nvhe_sym(id_aa64pfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1);
+ kvm_nvhe_sym(id_aa64isar0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR0_EL1);
+ kvm_nvhe_sym(id_aa64isar1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1);
+ kvm_nvhe_sym(id_aa64isar2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1);
+ kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
+ kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
+ kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1);
+}
+
+static int kvm_hyp_init_protection(u32 hyp_va_bits)
+{
+ void *addr = phys_to_virt(hyp_mem_base);
+ int ret;
+
+ ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
+ if (ret)
+ return ret;
+
+ ret = do_pkvm_init(hyp_va_bits);
+ if (ret)
+ return ret;
+
+ free_hyp_pgds();
+
+ return 0;
+}
+
+/**
+ * Inits Hyp-mode on all online CPUs
+ */
+static int init_hyp_mode(void)
+{
+ u32 hyp_va_bits;
+ int cpu;
+ int err = -ENOMEM;
+
+ /*
+ * The protected Hyp-mode cannot be initialized if the memory pool
+ * allocation has failed.
+ */
+ if (is_protected_kvm_enabled() && !hyp_mem_base)
+ goto out_err;
+
+ /*
+ * Allocate Hyp PGD and setup Hyp identity mapping
+ */
+ err = kvm_mmu_init(&hyp_va_bits);
+ if (err)
+ goto out_err;
+
+ /*
+ * Allocate stack pages for Hypervisor-mode
+ */
+ for_each_possible_cpu(cpu) {
+ unsigned long stack_page;
+
+ stack_page = __get_free_page(GFP_KERNEL);
+ if (!stack_page) {
+ err = -ENOMEM;
+ goto out_err;
+ }
+
+ per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
+ }
+
+ /*
+ * Allocate and initialize pages for Hypervisor-mode percpu regions.
+ */
+ for_each_possible_cpu(cpu) {
+ struct page *page;
+ void *page_addr;
+
+ page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
+ if (!page) {
+ err = -ENOMEM;
+ goto out_err;
+ }
+
+ page_addr = page_address(page);
+ memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
+ kvm_arm_hyp_percpu_base[cpu] = (unsigned long)page_addr;
+ }
+
+ /*
+ * Map the Hyp-code called directly from the host
+ */
+ err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
+ kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
+ if (err) {
+ kvm_err("Cannot map world-switch code\n");
+ goto out_err;
+ }
+
+ err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
+ kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
+ if (err) {
+ kvm_err("Cannot map .hyp.rodata section\n");
+ goto out_err;
+ }
+
+ err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
+ kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
+ if (err) {
+ kvm_err("Cannot map rodata section\n");
+ goto out_err;
+ }
+
+ /*
+ * .hyp.bss is guaranteed to be placed at the beginning of the .bss
+ * section thanks to an assertion in the linker script. Map it RW and
+ * the rest of .bss RO.
+ */
+ err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
+ kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
+ if (err) {
+ kvm_err("Cannot map hyp bss section: %d\n", err);
+ goto out_err;
+ }
+
+ err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
+ kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
+ if (err) {
+ kvm_err("Cannot map bss section\n");
+ goto out_err;
+ }
+
+ /*
+ * Map the Hyp stack pages
+ */
+ for_each_possible_cpu(cpu) {
+ struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
+ char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
+ unsigned long hyp_addr;
+
+ /*
+ * Allocate a contiguous HYP private VA range for the stack
+ * and guard page. The allocation is also aligned based on
+ * the order of its size.
+ */
+ err = hyp_alloc_private_va_range(PAGE_SIZE * 2, &hyp_addr);
+ if (err) {
+ kvm_err("Cannot allocate hyp stack guard page\n");
+ goto out_err;
+ }
+
+ /*
+ * Since the stack grows downwards, map the stack to the page
+ * at the higher address and leave the lower guard page
+ * unbacked.
+ *
+ * Any valid stack address now has the PAGE_SHIFT bit as 1
+ * and addresses corresponding to the guard page have the
+ * PAGE_SHIFT bit as 0 - this is used for overflow detection.
+ */
+ err = __create_hyp_mappings(hyp_addr + PAGE_SIZE, PAGE_SIZE,
+ __pa(stack_page), PAGE_HYP);
+ if (err) {
+ kvm_err("Cannot map hyp stack\n");
+ goto out_err;
+ }
+
+ /*
+ * Save the stack PA in nvhe_init_params. This will be needed
+ * to recreate the stack mapping in protected nVHE mode.
+ * __hyp_pa() won't do the right thing there, since the stack
+ * has been mapped in the flexible private VA space.
+ */
+ params->stack_pa = __pa(stack_page);
+
+ params->stack_hyp_va = hyp_addr + (2 * PAGE_SIZE);
+ }
+
+ for_each_possible_cpu(cpu) {
+ char *percpu_begin = (char *)kvm_arm_hyp_percpu_base[cpu];
+ char *percpu_end = percpu_begin + nvhe_percpu_size();
+
+ /* Map Hyp percpu pages */
+ err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
+ if (err) {
+ kvm_err("Cannot map hyp percpu region\n");
+ goto out_err;
+ }
+
+ /* Prepare the CPU initialization parameters */
+ cpu_prepare_hyp_mode(cpu);
+ }
+
+ kvm_hyp_init_symbols();
+
+ if (is_protected_kvm_enabled()) {
+ init_cpu_logical_map();
+
+ if (!init_psci_relay()) {
+ err = -ENODEV;
+ goto out_err;
+ }
+
+ err = kvm_hyp_init_protection(hyp_va_bits);
+ if (err) {
+ kvm_err("Failed to init hyp memory protection\n");
+ goto out_err;
+ }
+ }
+
+ return 0;
+
+out_err:
+ teardown_hyp_mode();
+ kvm_err("error initializing Hyp mode: %d\n", err);
+ return err;
+}
+
+static void _kvm_host_prot_finalize(void *arg)
+{
+ int *err = arg;
+
+ if (WARN_ON(kvm_call_hyp_nvhe(__pkvm_prot_finalize)))
+ WRITE_ONCE(*err, -EINVAL);
+}
+
+static int pkvm_drop_host_privileges(void)
+{
+ int ret = 0;
+
+ /*
+ * Flip the static key upfront as that may no longer be possible
+ * once the host stage 2 is installed.
+ */
+ static_branch_enable(&kvm_protected_mode_initialized);
+ on_each_cpu(_kvm_host_prot_finalize, &ret, 1);
+ return ret;
+}
+
+static int finalize_hyp_mode(void)
+{
+ if (!is_protected_kvm_enabled())
+ return 0;
+
+ /*
+ * Exclude HYP sections from kmemleak so that they don't get peeked
+ * at, which would end badly once inaccessible.
+ */
+ kmemleak_free_part(__hyp_bss_start, __hyp_bss_end - __hyp_bss_start);
+ kmemleak_free_part_phys(hyp_mem_base, hyp_mem_size);
+ return pkvm_drop_host_privileges();
+}
+
+struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
+{
+ struct kvm_vcpu *vcpu;
+ unsigned long i;
+
+ mpidr &= MPIDR_HWID_BITMASK;
+ kvm_for_each_vcpu(i, vcpu, kvm) {
+ if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
+ return vcpu;
+ }
+ return NULL;
+}
+
+bool kvm_arch_has_irq_bypass(void)
+{
+ return true;
+}
+
+int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
+ struct irq_bypass_producer *prod)
+{
+ struct kvm_kernel_irqfd *irqfd =
+ container_of(cons, struct kvm_kernel_irqfd, consumer);
+
+ return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
+ &irqfd->irq_entry);
+}
+void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
+ struct irq_bypass_producer *prod)
+{
+ struct kvm_kernel_irqfd *irqfd =
+ container_of(cons, struct kvm_kernel_irqfd, consumer);
+
+ kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
+ &irqfd->irq_entry);
+}
+
+void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
+{
+ struct kvm_kernel_irqfd *irqfd =
+ container_of(cons, struct kvm_kernel_irqfd, consumer);
+
+ kvm_arm_halt_guest(irqfd->kvm);
+}
+
+void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
+{
+ struct kvm_kernel_irqfd *irqfd =
+ container_of(cons, struct kvm_kernel_irqfd, consumer);
+
+ kvm_arm_resume_guest(irqfd->kvm);
+}
+
+/**
+ * Initialize Hyp-mode and memory mappings on all CPUs.
+ */
+int kvm_arch_init(void *opaque)
+{
+ int err;
+ bool in_hyp_mode;
+
+ if (!is_hyp_mode_available()) {
+ kvm_info("HYP mode not available\n");
+ return -ENODEV;
+ }
+
+ if (kvm_get_mode() == KVM_MODE_NONE) {
+ kvm_info("KVM disabled from command line\n");
+ return -ENODEV;
+ }
+
+ err = kvm_sys_reg_table_init();
+ if (err) {
+ kvm_info("Error initializing system register tables");
+ return err;
+ }
+
+ in_hyp_mode = is_kernel_in_hyp_mode();
+
+ if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
+ cpus_have_final_cap(ARM64_WORKAROUND_1508412))
+ kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
+ "Only trusted guests should be used on this system.\n");
+
+ err = kvm_set_ipa_limit();
+ if (err)
+ return err;
+
+ err = kvm_arm_init_sve();
+ if (err)
+ return err;
+
+ err = kvm_arm_vmid_alloc_init();
+ if (err) {
+ kvm_err("Failed to initialize VMID allocator.\n");
+ return err;
+ }
+
+ if (!in_hyp_mode) {
+ err = init_hyp_mode();
+ if (err)
+ goto out_err;
+ }
+
+ err = kvm_init_vector_slots();
+ if (err) {
+ kvm_err("Cannot initialise vector slots\n");
+ goto out_err;
+ }
+
+ err = init_subsystems();
+ if (err)
+ goto out_hyp;
+
+ if (!in_hyp_mode) {
+ err = finalize_hyp_mode();
+ if (err) {
+ kvm_err("Failed to finalize Hyp protection\n");
+ goto out_hyp;
+ }
+ }
+
+ if (is_protected_kvm_enabled()) {
+ kvm_info("Protected nVHE mode initialized successfully\n");
+ } else if (in_hyp_mode) {
+ kvm_info("VHE mode initialized successfully\n");
+ } else {
+ kvm_info("Hyp mode initialized successfully\n");
+ }
+
+ return 0;
+
+out_hyp:
+ hyp_cpu_pm_exit();
+ if (!in_hyp_mode)
+ teardown_hyp_mode();
+out_err:
+ kvm_arm_vmid_alloc_free();
+ return err;
+}
+
+/* NOP: Compiling as a module not supported */
+void kvm_arch_exit(void)
+{
+ kvm_unregister_perf_callbacks();
+}
+
+static int __init early_kvm_mode_cfg(char *arg)
+{
+ if (!arg)
+ return -EINVAL;
+
+ if (strcmp(arg, "none") == 0) {
+ kvm_mode = KVM_MODE_NONE;
+ return 0;
+ }
+
+ if (!is_hyp_mode_available()) {
+ pr_warn_once("KVM is not available. Ignoring kvm-arm.mode\n");
+ return 0;
+ }
+
+ if (strcmp(arg, "protected") == 0) {
+ if (!is_kernel_in_hyp_mode())
+ kvm_mode = KVM_MODE_PROTECTED;
+ else
+ pr_warn_once("Protected KVM not available with VHE\n");
+
+ return 0;
+ }
+
+ if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) {
+ kvm_mode = KVM_MODE_DEFAULT;
+ return 0;
+ }
+
+ return -EINVAL;
+}
+early_param("kvm-arm.mode", early_kvm_mode_cfg);
+
+enum kvm_mode kvm_get_mode(void)
+{
+ return kvm_mode;
+}
+
+static int arm_init(void)
+{
+ int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
+ return rc;
+}
+
+module_init(arm_init);