summaryrefslogtreecommitdiffstats
path: root/arch/x86/kvm/mmu/tdp_mmu.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/x86/kvm/mmu/tdp_mmu.c')
-rw-r--r--arch/x86/kvm/mmu/tdp_mmu.c1885
1 files changed, 1885 insertions, 0 deletions
diff --git a/arch/x86/kvm/mmu/tdp_mmu.c b/arch/x86/kvm/mmu/tdp_mmu.c
new file mode 100644
index 000000000..c3b0f9733
--- /dev/null
+++ b/arch/x86/kvm/mmu/tdp_mmu.c
@@ -0,0 +1,1885 @@
+// SPDX-License-Identifier: GPL-2.0
+
+#include "mmu.h"
+#include "mmu_internal.h"
+#include "mmutrace.h"
+#include "tdp_iter.h"
+#include "tdp_mmu.h"
+#include "spte.h"
+
+#include <asm/cmpxchg.h>
+#include <trace/events/kvm.h>
+
+static bool __read_mostly tdp_mmu_enabled = true;
+module_param_named(tdp_mmu, tdp_mmu_enabled, bool, 0644);
+
+/* Initializes the TDP MMU for the VM, if enabled. */
+void kvm_mmu_init_tdp_mmu(struct kvm *kvm)
+{
+ if (!tdp_enabled || !READ_ONCE(tdp_mmu_enabled))
+ return;
+
+ /* This should not be changed for the lifetime of the VM. */
+ kvm->arch.tdp_mmu_enabled = true;
+ INIT_LIST_HEAD(&kvm->arch.tdp_mmu_roots);
+ spin_lock_init(&kvm->arch.tdp_mmu_pages_lock);
+ INIT_LIST_HEAD(&kvm->arch.tdp_mmu_pages);
+}
+
+/* Arbitrarily returns true so that this may be used in if statements. */
+static __always_inline bool kvm_lockdep_assert_mmu_lock_held(struct kvm *kvm,
+ bool shared)
+{
+ if (shared)
+ lockdep_assert_held_read(&kvm->mmu_lock);
+ else
+ lockdep_assert_held_write(&kvm->mmu_lock);
+
+ return true;
+}
+
+void kvm_mmu_uninit_tdp_mmu(struct kvm *kvm)
+{
+ if (!kvm->arch.tdp_mmu_enabled)
+ return;
+
+ /*
+ * Invalidate all roots, which besides the obvious, schedules all roots
+ * for zapping and thus puts the TDP MMU's reference to each root, i.e.
+ * ultimately frees all roots.
+ */
+ kvm_tdp_mmu_invalidate_all_roots(kvm);
+ kvm_tdp_mmu_zap_invalidated_roots(kvm);
+
+ WARN_ON(!list_empty(&kvm->arch.tdp_mmu_pages));
+ WARN_ON(!list_empty(&kvm->arch.tdp_mmu_roots));
+
+ /*
+ * Ensure that all the outstanding RCU callbacks to free shadow pages
+ * can run before the VM is torn down. Putting the last reference to
+ * zapped roots will create new callbacks.
+ */
+ rcu_barrier();
+}
+
+static void tdp_mmu_free_sp(struct kvm_mmu_page *sp)
+{
+ free_page((unsigned long)sp->spt);
+ kmem_cache_free(mmu_page_header_cache, sp);
+}
+
+/*
+ * This is called through call_rcu in order to free TDP page table memory
+ * safely with respect to other kernel threads that may be operating on
+ * the memory.
+ * By only accessing TDP MMU page table memory in an RCU read critical
+ * section, and freeing it after a grace period, lockless access to that
+ * memory won't use it after it is freed.
+ */
+static void tdp_mmu_free_sp_rcu_callback(struct rcu_head *head)
+{
+ struct kvm_mmu_page *sp = container_of(head, struct kvm_mmu_page,
+ rcu_head);
+
+ tdp_mmu_free_sp(sp);
+}
+
+void kvm_tdp_mmu_put_root(struct kvm *kvm, struct kvm_mmu_page *root,
+ bool shared)
+{
+ kvm_lockdep_assert_mmu_lock_held(kvm, shared);
+
+ if (!refcount_dec_and_test(&root->tdp_mmu_root_count))
+ return;
+
+ /*
+ * The TDP MMU itself holds a reference to each root until the root is
+ * explicitly invalidated, i.e. the final reference should be never be
+ * put for a valid root.
+ */
+ KVM_BUG_ON(!is_tdp_mmu_page(root) || !root->role.invalid, kvm);
+
+ spin_lock(&kvm->arch.tdp_mmu_pages_lock);
+ list_del_rcu(&root->link);
+ spin_unlock(&kvm->arch.tdp_mmu_pages_lock);
+ call_rcu(&root->rcu_head, tdp_mmu_free_sp_rcu_callback);
+}
+
+/*
+ * Returns the next root after @prev_root (or the first root if @prev_root is
+ * NULL). A reference to the returned root is acquired, and the reference to
+ * @prev_root is released (the caller obviously must hold a reference to
+ * @prev_root if it's non-NULL).
+ *
+ * If @only_valid is true, invalid roots are skipped.
+ *
+ * Returns NULL if the end of tdp_mmu_roots was reached.
+ */
+static struct kvm_mmu_page *tdp_mmu_next_root(struct kvm *kvm,
+ struct kvm_mmu_page *prev_root,
+ bool shared, bool only_valid)
+{
+ struct kvm_mmu_page *next_root;
+
+ rcu_read_lock();
+
+ if (prev_root)
+ next_root = list_next_or_null_rcu(&kvm->arch.tdp_mmu_roots,
+ &prev_root->link,
+ typeof(*prev_root), link);
+ else
+ next_root = list_first_or_null_rcu(&kvm->arch.tdp_mmu_roots,
+ typeof(*next_root), link);
+
+ while (next_root) {
+ if ((!only_valid || !next_root->role.invalid) &&
+ kvm_tdp_mmu_get_root(next_root))
+ break;
+
+ next_root = list_next_or_null_rcu(&kvm->arch.tdp_mmu_roots,
+ &next_root->link, typeof(*next_root), link);
+ }
+
+ rcu_read_unlock();
+
+ if (prev_root)
+ kvm_tdp_mmu_put_root(kvm, prev_root, shared);
+
+ return next_root;
+}
+
+/*
+ * Note: this iterator gets and puts references to the roots it iterates over.
+ * This makes it safe to release the MMU lock and yield within the loop, but
+ * if exiting the loop early, the caller must drop the reference to the most
+ * recent root. (Unless keeping a live reference is desirable.)
+ *
+ * If shared is set, this function is operating under the MMU lock in read
+ * mode. In the unlikely event that this thread must free a root, the lock
+ * will be temporarily dropped and reacquired in write mode.
+ */
+#define __for_each_tdp_mmu_root_yield_safe(_kvm, _root, _as_id, _shared, _only_valid)\
+ for (_root = tdp_mmu_next_root(_kvm, NULL, _shared, _only_valid); \
+ _root; \
+ _root = tdp_mmu_next_root(_kvm, _root, _shared, _only_valid)) \
+ if (kvm_lockdep_assert_mmu_lock_held(_kvm, _shared) && \
+ kvm_mmu_page_as_id(_root) != _as_id) { \
+ } else
+
+#define for_each_valid_tdp_mmu_root_yield_safe(_kvm, _root, _as_id, _shared) \
+ __for_each_tdp_mmu_root_yield_safe(_kvm, _root, _as_id, _shared, true)
+
+#define for_each_tdp_mmu_root_yield_safe(_kvm, _root, _shared) \
+ for (_root = tdp_mmu_next_root(_kvm, NULL, _shared, false); \
+ _root; \
+ _root = tdp_mmu_next_root(_kvm, _root, _shared, false)) \
+ if (!kvm_lockdep_assert_mmu_lock_held(_kvm, _shared)) { \
+ } else
+
+/*
+ * Iterate over all TDP MMU roots. Requires that mmu_lock be held for write,
+ * the implication being that any flow that holds mmu_lock for read is
+ * inherently yield-friendly and should use the yield-safe variant above.
+ * Holding mmu_lock for write obviates the need for RCU protection as the list
+ * is guaranteed to be stable.
+ */
+#define for_each_tdp_mmu_root(_kvm, _root, _as_id) \
+ list_for_each_entry(_root, &_kvm->arch.tdp_mmu_roots, link) \
+ if (kvm_lockdep_assert_mmu_lock_held(_kvm, false) && \
+ kvm_mmu_page_as_id(_root) != _as_id) { \
+ } else
+
+static struct kvm_mmu_page *tdp_mmu_alloc_sp(struct kvm_vcpu *vcpu)
+{
+ struct kvm_mmu_page *sp;
+
+ sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
+ sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
+
+ return sp;
+}
+
+static void tdp_mmu_init_sp(struct kvm_mmu_page *sp, tdp_ptep_t sptep,
+ gfn_t gfn, union kvm_mmu_page_role role)
+{
+ set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
+
+ sp->role = role;
+ sp->gfn = gfn;
+ sp->ptep = sptep;
+ sp->tdp_mmu_page = true;
+
+ trace_kvm_mmu_get_page(sp, true);
+}
+
+static void tdp_mmu_init_child_sp(struct kvm_mmu_page *child_sp,
+ struct tdp_iter *iter)
+{
+ struct kvm_mmu_page *parent_sp;
+ union kvm_mmu_page_role role;
+
+ parent_sp = sptep_to_sp(rcu_dereference(iter->sptep));
+
+ role = parent_sp->role;
+ role.level--;
+
+ tdp_mmu_init_sp(child_sp, iter->sptep, iter->gfn, role);
+}
+
+hpa_t kvm_tdp_mmu_get_vcpu_root_hpa(struct kvm_vcpu *vcpu)
+{
+ union kvm_mmu_page_role role = vcpu->arch.mmu->root_role;
+ struct kvm *kvm = vcpu->kvm;
+ struct kvm_mmu_page *root;
+
+ lockdep_assert_held_write(&kvm->mmu_lock);
+
+ /*
+ * Check for an existing root before allocating a new one. Note, the
+ * role check prevents consuming an invalid root.
+ */
+ for_each_tdp_mmu_root(kvm, root, kvm_mmu_role_as_id(role)) {
+ if (root->role.word == role.word &&
+ kvm_tdp_mmu_get_root(root))
+ goto out;
+ }
+
+ root = tdp_mmu_alloc_sp(vcpu);
+ tdp_mmu_init_sp(root, NULL, 0, role);
+
+ /*
+ * TDP MMU roots are kept until they are explicitly invalidated, either
+ * by a memslot update or by the destruction of the VM. Initialize the
+ * refcount to two; one reference for the vCPU, and one reference for
+ * the TDP MMU itself, which is held until the root is invalidated and
+ * is ultimately put by kvm_tdp_mmu_zap_invalidated_roots().
+ */
+ refcount_set(&root->tdp_mmu_root_count, 2);
+
+ spin_lock(&kvm->arch.tdp_mmu_pages_lock);
+ list_add_rcu(&root->link, &kvm->arch.tdp_mmu_roots);
+ spin_unlock(&kvm->arch.tdp_mmu_pages_lock);
+
+out:
+ return __pa(root->spt);
+}
+
+static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
+ u64 old_spte, u64 new_spte, int level,
+ bool shared);
+
+static void handle_changed_spte_acc_track(u64 old_spte, u64 new_spte, int level)
+{
+ if (!is_shadow_present_pte(old_spte) || !is_last_spte(old_spte, level))
+ return;
+
+ if (is_accessed_spte(old_spte) &&
+ (!is_shadow_present_pte(new_spte) || !is_accessed_spte(new_spte) ||
+ spte_to_pfn(old_spte) != spte_to_pfn(new_spte)))
+ kvm_set_pfn_accessed(spte_to_pfn(old_spte));
+}
+
+static void handle_changed_spte_dirty_log(struct kvm *kvm, int as_id, gfn_t gfn,
+ u64 old_spte, u64 new_spte, int level)
+{
+ bool pfn_changed;
+ struct kvm_memory_slot *slot;
+
+ if (level > PG_LEVEL_4K)
+ return;
+
+ pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte);
+
+ if ((!is_writable_pte(old_spte) || pfn_changed) &&
+ is_writable_pte(new_spte)) {
+ slot = __gfn_to_memslot(__kvm_memslots(kvm, as_id), gfn);
+ mark_page_dirty_in_slot(kvm, slot, gfn);
+ }
+}
+
+static void tdp_account_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp)
+{
+ kvm_account_pgtable_pages((void *)sp->spt, +1);
+}
+
+static void tdp_unaccount_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp)
+{
+ kvm_account_pgtable_pages((void *)sp->spt, -1);
+}
+
+/**
+ * tdp_mmu_unlink_sp() - Remove a shadow page from the list of used pages
+ *
+ * @kvm: kvm instance
+ * @sp: the page to be removed
+ * @shared: This operation may not be running under the exclusive use of
+ * the MMU lock and the operation must synchronize with other
+ * threads that might be adding or removing pages.
+ */
+static void tdp_mmu_unlink_sp(struct kvm *kvm, struct kvm_mmu_page *sp,
+ bool shared)
+{
+ tdp_unaccount_mmu_page(kvm, sp);
+ if (shared)
+ spin_lock(&kvm->arch.tdp_mmu_pages_lock);
+ else
+ lockdep_assert_held_write(&kvm->mmu_lock);
+
+ list_del(&sp->link);
+ if (sp->lpage_disallowed)
+ unaccount_huge_nx_page(kvm, sp);
+
+ if (shared)
+ spin_unlock(&kvm->arch.tdp_mmu_pages_lock);
+}
+
+/**
+ * handle_removed_pt() - handle a page table removed from the TDP structure
+ *
+ * @kvm: kvm instance
+ * @pt: the page removed from the paging structure
+ * @shared: This operation may not be running under the exclusive use
+ * of the MMU lock and the operation must synchronize with other
+ * threads that might be modifying SPTEs.
+ *
+ * Given a page table that has been removed from the TDP paging structure,
+ * iterates through the page table to clear SPTEs and free child page tables.
+ *
+ * Note that pt is passed in as a tdp_ptep_t, but it does not need RCU
+ * protection. Since this thread removed it from the paging structure,
+ * this thread will be responsible for ensuring the page is freed. Hence the
+ * early rcu_dereferences in the function.
+ */
+static void handle_removed_pt(struct kvm *kvm, tdp_ptep_t pt, bool shared)
+{
+ struct kvm_mmu_page *sp = sptep_to_sp(rcu_dereference(pt));
+ int level = sp->role.level;
+ gfn_t base_gfn = sp->gfn;
+ int i;
+
+ trace_kvm_mmu_prepare_zap_page(sp);
+
+ tdp_mmu_unlink_sp(kvm, sp, shared);
+
+ for (i = 0; i < SPTE_ENT_PER_PAGE; i++) {
+ tdp_ptep_t sptep = pt + i;
+ gfn_t gfn = base_gfn + i * KVM_PAGES_PER_HPAGE(level);
+ u64 old_spte;
+
+ if (shared) {
+ /*
+ * Set the SPTE to a nonpresent value that other
+ * threads will not overwrite. If the SPTE was
+ * already marked as removed then another thread
+ * handling a page fault could overwrite it, so
+ * set the SPTE until it is set from some other
+ * value to the removed SPTE value.
+ */
+ for (;;) {
+ old_spte = kvm_tdp_mmu_write_spte_atomic(sptep, REMOVED_SPTE);
+ if (!is_removed_spte(old_spte))
+ break;
+ cpu_relax();
+ }
+ } else {
+ /*
+ * If the SPTE is not MMU-present, there is no backing
+ * page associated with the SPTE and so no side effects
+ * that need to be recorded, and exclusive ownership of
+ * mmu_lock ensures the SPTE can't be made present.
+ * Note, zapping MMIO SPTEs is also unnecessary as they
+ * are guarded by the memslots generation, not by being
+ * unreachable.
+ */
+ old_spte = kvm_tdp_mmu_read_spte(sptep);
+ if (!is_shadow_present_pte(old_spte))
+ continue;
+
+ /*
+ * Use the common helper instead of a raw WRITE_ONCE as
+ * the SPTE needs to be updated atomically if it can be
+ * modified by a different vCPU outside of mmu_lock.
+ * Even though the parent SPTE is !PRESENT, the TLB
+ * hasn't yet been flushed, and both Intel and AMD
+ * document that A/D assists can use upper-level PxE
+ * entries that are cached in the TLB, i.e. the CPU can
+ * still access the page and mark it dirty.
+ *
+ * No retry is needed in the atomic update path as the
+ * sole concern is dropping a Dirty bit, i.e. no other
+ * task can zap/remove the SPTE as mmu_lock is held for
+ * write. Marking the SPTE as a removed SPTE is not
+ * strictly necessary for the same reason, but using
+ * the remove SPTE value keeps the shared/exclusive
+ * paths consistent and allows the handle_changed_spte()
+ * call below to hardcode the new value to REMOVED_SPTE.
+ *
+ * Note, even though dropping a Dirty bit is the only
+ * scenario where a non-atomic update could result in a
+ * functional bug, simply checking the Dirty bit isn't
+ * sufficient as a fast page fault could read the upper
+ * level SPTE before it is zapped, and then make this
+ * target SPTE writable, resume the guest, and set the
+ * Dirty bit between reading the SPTE above and writing
+ * it here.
+ */
+ old_spte = kvm_tdp_mmu_write_spte(sptep, old_spte,
+ REMOVED_SPTE, level);
+ }
+ handle_changed_spte(kvm, kvm_mmu_page_as_id(sp), gfn,
+ old_spte, REMOVED_SPTE, level, shared);
+ }
+
+ call_rcu(&sp->rcu_head, tdp_mmu_free_sp_rcu_callback);
+}
+
+/**
+ * __handle_changed_spte - handle bookkeeping associated with an SPTE change
+ * @kvm: kvm instance
+ * @as_id: the address space of the paging structure the SPTE was a part of
+ * @gfn: the base GFN that was mapped by the SPTE
+ * @old_spte: The value of the SPTE before the change
+ * @new_spte: The value of the SPTE after the change
+ * @level: the level of the PT the SPTE is part of in the paging structure
+ * @shared: This operation may not be running under the exclusive use of
+ * the MMU lock and the operation must synchronize with other
+ * threads that might be modifying SPTEs.
+ *
+ * Handle bookkeeping that might result from the modification of a SPTE.
+ * This function must be called for all TDP SPTE modifications.
+ */
+static void __handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
+ u64 old_spte, u64 new_spte, int level,
+ bool shared)
+{
+ bool was_present = is_shadow_present_pte(old_spte);
+ bool is_present = is_shadow_present_pte(new_spte);
+ bool was_leaf = was_present && is_last_spte(old_spte, level);
+ bool is_leaf = is_present && is_last_spte(new_spte, level);
+ bool pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte);
+
+ WARN_ON(level > PT64_ROOT_MAX_LEVEL);
+ WARN_ON(level < PG_LEVEL_4K);
+ WARN_ON(gfn & (KVM_PAGES_PER_HPAGE(level) - 1));
+
+ /*
+ * If this warning were to trigger it would indicate that there was a
+ * missing MMU notifier or a race with some notifier handler.
+ * A present, leaf SPTE should never be directly replaced with another
+ * present leaf SPTE pointing to a different PFN. A notifier handler
+ * should be zapping the SPTE before the main MM's page table is
+ * changed, or the SPTE should be zeroed, and the TLBs flushed by the
+ * thread before replacement.
+ */
+ if (was_leaf && is_leaf && pfn_changed) {
+ pr_err("Invalid SPTE change: cannot replace a present leaf\n"
+ "SPTE with another present leaf SPTE mapping a\n"
+ "different PFN!\n"
+ "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d",
+ as_id, gfn, old_spte, new_spte, level);
+
+ /*
+ * Crash the host to prevent error propagation and guest data
+ * corruption.
+ */
+ BUG();
+ }
+
+ if (old_spte == new_spte)
+ return;
+
+ trace_kvm_tdp_mmu_spte_changed(as_id, gfn, level, old_spte, new_spte);
+
+ if (is_leaf)
+ check_spte_writable_invariants(new_spte);
+
+ /*
+ * The only times a SPTE should be changed from a non-present to
+ * non-present state is when an MMIO entry is installed/modified/
+ * removed. In that case, there is nothing to do here.
+ */
+ if (!was_present && !is_present) {
+ /*
+ * If this change does not involve a MMIO SPTE or removed SPTE,
+ * it is unexpected. Log the change, though it should not
+ * impact the guest since both the former and current SPTEs
+ * are nonpresent.
+ */
+ if (WARN_ON(!is_mmio_spte(old_spte) &&
+ !is_mmio_spte(new_spte) &&
+ !is_removed_spte(new_spte)))
+ pr_err("Unexpected SPTE change! Nonpresent SPTEs\n"
+ "should not be replaced with another,\n"
+ "different nonpresent SPTE, unless one or both\n"
+ "are MMIO SPTEs, or the new SPTE is\n"
+ "a temporary removed SPTE.\n"
+ "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d",
+ as_id, gfn, old_spte, new_spte, level);
+ return;
+ }
+
+ if (is_leaf != was_leaf)
+ kvm_update_page_stats(kvm, level, is_leaf ? 1 : -1);
+
+ if (was_leaf && is_dirty_spte(old_spte) &&
+ (!is_present || !is_dirty_spte(new_spte) || pfn_changed))
+ kvm_set_pfn_dirty(spte_to_pfn(old_spte));
+
+ /*
+ * Recursively handle child PTs if the change removed a subtree from
+ * the paging structure. Note the WARN on the PFN changing without the
+ * SPTE being converted to a hugepage (leaf) or being zapped. Shadow
+ * pages are kernel allocations and should never be migrated.
+ */
+ if (was_present && !was_leaf &&
+ (is_leaf || !is_present || WARN_ON_ONCE(pfn_changed)))
+ handle_removed_pt(kvm, spte_to_child_pt(old_spte, level), shared);
+}
+
+static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
+ u64 old_spte, u64 new_spte, int level,
+ bool shared)
+{
+ __handle_changed_spte(kvm, as_id, gfn, old_spte, new_spte, level,
+ shared);
+ handle_changed_spte_acc_track(old_spte, new_spte, level);
+ handle_changed_spte_dirty_log(kvm, as_id, gfn, old_spte,
+ new_spte, level);
+}
+
+/*
+ * tdp_mmu_set_spte_atomic - Set a TDP MMU SPTE atomically
+ * and handle the associated bookkeeping. Do not mark the page dirty
+ * in KVM's dirty bitmaps.
+ *
+ * If setting the SPTE fails because it has changed, iter->old_spte will be
+ * refreshed to the current value of the spte.
+ *
+ * @kvm: kvm instance
+ * @iter: a tdp_iter instance currently on the SPTE that should be set
+ * @new_spte: The value the SPTE should be set to
+ * Return:
+ * * 0 - If the SPTE was set.
+ * * -EBUSY - If the SPTE cannot be set. In this case this function will have
+ * no side-effects other than setting iter->old_spte to the last
+ * known value of the spte.
+ */
+static inline int tdp_mmu_set_spte_atomic(struct kvm *kvm,
+ struct tdp_iter *iter,
+ u64 new_spte)
+{
+ u64 *sptep = rcu_dereference(iter->sptep);
+
+ /*
+ * The caller is responsible for ensuring the old SPTE is not a REMOVED
+ * SPTE. KVM should never attempt to zap or manipulate a REMOVED SPTE,
+ * and pre-checking before inserting a new SPTE is advantageous as it
+ * avoids unnecessary work.
+ */
+ WARN_ON_ONCE(iter->yielded || is_removed_spte(iter->old_spte));
+
+ lockdep_assert_held_read(&kvm->mmu_lock);
+
+ /*
+ * Note, fast_pf_fix_direct_spte() can also modify TDP MMU SPTEs and
+ * does not hold the mmu_lock.
+ */
+ if (!try_cmpxchg64(sptep, &iter->old_spte, new_spte))
+ return -EBUSY;
+
+ __handle_changed_spte(kvm, iter->as_id, iter->gfn, iter->old_spte,
+ new_spte, iter->level, true);
+ handle_changed_spte_acc_track(iter->old_spte, new_spte, iter->level);
+
+ return 0;
+}
+
+static inline int tdp_mmu_zap_spte_atomic(struct kvm *kvm,
+ struct tdp_iter *iter)
+{
+ int ret;
+
+ /*
+ * Freeze the SPTE by setting it to a special,
+ * non-present value. This will stop other threads from
+ * immediately installing a present entry in its place
+ * before the TLBs are flushed.
+ */
+ ret = tdp_mmu_set_spte_atomic(kvm, iter, REMOVED_SPTE);
+ if (ret)
+ return ret;
+
+ kvm_flush_remote_tlbs_with_address(kvm, iter->gfn,
+ KVM_PAGES_PER_HPAGE(iter->level));
+
+ /*
+ * No other thread can overwrite the removed SPTE as they must either
+ * wait on the MMU lock or use tdp_mmu_set_spte_atomic() which will not
+ * overwrite the special removed SPTE value. No bookkeeping is needed
+ * here since the SPTE is going from non-present to non-present. Use
+ * the raw write helper to avoid an unnecessary check on volatile bits.
+ */
+ __kvm_tdp_mmu_write_spte(iter->sptep, 0);
+
+ return 0;
+}
+
+
+/*
+ * __tdp_mmu_set_spte - Set a TDP MMU SPTE and handle the associated bookkeeping
+ * @kvm: KVM instance
+ * @as_id: Address space ID, i.e. regular vs. SMM
+ * @sptep: Pointer to the SPTE
+ * @old_spte: The current value of the SPTE
+ * @new_spte: The new value that will be set for the SPTE
+ * @gfn: The base GFN that was (or will be) mapped by the SPTE
+ * @level: The level _containing_ the SPTE (its parent PT's level)
+ * @record_acc_track: Notify the MM subsystem of changes to the accessed state
+ * of the page. Should be set unless handling an MMU
+ * notifier for access tracking. Leaving record_acc_track
+ * unset in that case prevents page accesses from being
+ * double counted.
+ * @record_dirty_log: Record the page as dirty in the dirty bitmap if
+ * appropriate for the change being made. Should be set
+ * unless performing certain dirty logging operations.
+ * Leaving record_dirty_log unset in that case prevents page
+ * writes from being double counted.
+ *
+ * Returns the old SPTE value, which _may_ be different than @old_spte if the
+ * SPTE had voldatile bits.
+ */
+static u64 __tdp_mmu_set_spte(struct kvm *kvm, int as_id, tdp_ptep_t sptep,
+ u64 old_spte, u64 new_spte, gfn_t gfn, int level,
+ bool record_acc_track, bool record_dirty_log)
+{
+ lockdep_assert_held_write(&kvm->mmu_lock);
+
+ /*
+ * No thread should be using this function to set SPTEs to or from the
+ * temporary removed SPTE value.
+ * If operating under the MMU lock in read mode, tdp_mmu_set_spte_atomic
+ * should be used. If operating under the MMU lock in write mode, the
+ * use of the removed SPTE should not be necessary.
+ */
+ WARN_ON(is_removed_spte(old_spte) || is_removed_spte(new_spte));
+
+ old_spte = kvm_tdp_mmu_write_spte(sptep, old_spte, new_spte, level);
+
+ __handle_changed_spte(kvm, as_id, gfn, old_spte, new_spte, level, false);
+
+ if (record_acc_track)
+ handle_changed_spte_acc_track(old_spte, new_spte, level);
+ if (record_dirty_log)
+ handle_changed_spte_dirty_log(kvm, as_id, gfn, old_spte,
+ new_spte, level);
+ return old_spte;
+}
+
+static inline void _tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter,
+ u64 new_spte, bool record_acc_track,
+ bool record_dirty_log)
+{
+ WARN_ON_ONCE(iter->yielded);
+
+ iter->old_spte = __tdp_mmu_set_spte(kvm, iter->as_id, iter->sptep,
+ iter->old_spte, new_spte,
+ iter->gfn, iter->level,
+ record_acc_track, record_dirty_log);
+}
+
+static inline void tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter,
+ u64 new_spte)
+{
+ _tdp_mmu_set_spte(kvm, iter, new_spte, true, true);
+}
+
+static inline void tdp_mmu_set_spte_no_acc_track(struct kvm *kvm,
+ struct tdp_iter *iter,
+ u64 new_spte)
+{
+ _tdp_mmu_set_spte(kvm, iter, new_spte, false, true);
+}
+
+static inline void tdp_mmu_set_spte_no_dirty_log(struct kvm *kvm,
+ struct tdp_iter *iter,
+ u64 new_spte)
+{
+ _tdp_mmu_set_spte(kvm, iter, new_spte, true, false);
+}
+
+#define tdp_root_for_each_pte(_iter, _root, _start, _end) \
+ for_each_tdp_pte(_iter, _root, _start, _end)
+
+#define tdp_root_for_each_leaf_pte(_iter, _root, _start, _end) \
+ tdp_root_for_each_pte(_iter, _root, _start, _end) \
+ if (!is_shadow_present_pte(_iter.old_spte) || \
+ !is_last_spte(_iter.old_spte, _iter.level)) \
+ continue; \
+ else
+
+#define tdp_mmu_for_each_pte(_iter, _mmu, _start, _end) \
+ for_each_tdp_pte(_iter, to_shadow_page(_mmu->root.hpa), _start, _end)
+
+/*
+ * Yield if the MMU lock is contended or this thread needs to return control
+ * to the scheduler.
+ *
+ * If this function should yield and flush is set, it will perform a remote
+ * TLB flush before yielding.
+ *
+ * If this function yields, iter->yielded is set and the caller must skip to
+ * the next iteration, where tdp_iter_next() will reset the tdp_iter's walk
+ * over the paging structures to allow the iterator to continue its traversal
+ * from the paging structure root.
+ *
+ * Returns true if this function yielded.
+ */
+static inline bool __must_check tdp_mmu_iter_cond_resched(struct kvm *kvm,
+ struct tdp_iter *iter,
+ bool flush, bool shared)
+{
+ WARN_ON(iter->yielded);
+
+ /* Ensure forward progress has been made before yielding. */
+ if (iter->next_last_level_gfn == iter->yielded_gfn)
+ return false;
+
+ if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
+ if (flush)
+ kvm_flush_remote_tlbs(kvm);
+
+ rcu_read_unlock();
+
+ if (shared)
+ cond_resched_rwlock_read(&kvm->mmu_lock);
+ else
+ cond_resched_rwlock_write(&kvm->mmu_lock);
+
+ rcu_read_lock();
+
+ WARN_ON(iter->gfn > iter->next_last_level_gfn);
+
+ iter->yielded = true;
+ }
+
+ return iter->yielded;
+}
+
+static inline gfn_t tdp_mmu_max_gfn_exclusive(void)
+{
+ /*
+ * Bound TDP MMU walks at host.MAXPHYADDR. KVM disallows memslots with
+ * a gpa range that would exceed the max gfn, and KVM does not create
+ * MMIO SPTEs for "impossible" gfns, instead sending such accesses down
+ * the slow emulation path every time.
+ */
+ return kvm_mmu_max_gfn() + 1;
+}
+
+static void __tdp_mmu_zap_root(struct kvm *kvm, struct kvm_mmu_page *root,
+ bool shared, int zap_level)
+{
+ struct tdp_iter iter;
+
+ gfn_t end = tdp_mmu_max_gfn_exclusive();
+ gfn_t start = 0;
+
+ for_each_tdp_pte_min_level(iter, root, zap_level, start, end) {
+retry:
+ if (tdp_mmu_iter_cond_resched(kvm, &iter, false, shared))
+ continue;
+
+ if (!is_shadow_present_pte(iter.old_spte))
+ continue;
+
+ if (iter.level > zap_level)
+ continue;
+
+ if (!shared)
+ tdp_mmu_set_spte(kvm, &iter, 0);
+ else if (tdp_mmu_set_spte_atomic(kvm, &iter, 0))
+ goto retry;
+ }
+}
+
+static void tdp_mmu_zap_root(struct kvm *kvm, struct kvm_mmu_page *root,
+ bool shared)
+{
+
+ /*
+ * The root must have an elevated refcount so that it's reachable via
+ * mmu_notifier callbacks, which allows this path to yield and drop
+ * mmu_lock. When handling an unmap/release mmu_notifier command, KVM
+ * must drop all references to relevant pages prior to completing the
+ * callback. Dropping mmu_lock with an unreachable root would result
+ * in zapping SPTEs after a relevant mmu_notifier callback completes
+ * and lead to use-after-free as zapping a SPTE triggers "writeback" of
+ * dirty accessed bits to the SPTE's associated struct page.
+ */
+ WARN_ON_ONCE(!refcount_read(&root->tdp_mmu_root_count));
+
+ kvm_lockdep_assert_mmu_lock_held(kvm, shared);
+
+ rcu_read_lock();
+
+ /*
+ * To avoid RCU stalls due to recursively removing huge swaths of SPs,
+ * split the zap into two passes. On the first pass, zap at the 1gb
+ * level, and then zap top-level SPs on the second pass. "1gb" is not
+ * arbitrary, as KVM must be able to zap a 1gb shadow page without
+ * inducing a stall to allow in-place replacement with a 1gb hugepage.
+ *
+ * Because zapping a SP recurses on its children, stepping down to
+ * PG_LEVEL_4K in the iterator itself is unnecessary.
+ */
+ __tdp_mmu_zap_root(kvm, root, shared, PG_LEVEL_1G);
+ __tdp_mmu_zap_root(kvm, root, shared, root->role.level);
+
+ rcu_read_unlock();
+}
+
+bool kvm_tdp_mmu_zap_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
+{
+ u64 old_spte;
+
+ /*
+ * This helper intentionally doesn't allow zapping a root shadow page,
+ * which doesn't have a parent page table and thus no associated entry.
+ */
+ if (WARN_ON_ONCE(!sp->ptep))
+ return false;
+
+ old_spte = kvm_tdp_mmu_read_spte(sp->ptep);
+ if (WARN_ON_ONCE(!is_shadow_present_pte(old_spte)))
+ return false;
+
+ __tdp_mmu_set_spte(kvm, kvm_mmu_page_as_id(sp), sp->ptep, old_spte, 0,
+ sp->gfn, sp->role.level + 1, true, true);
+
+ return true;
+}
+
+/*
+ * If can_yield is true, will release the MMU lock and reschedule if the
+ * scheduler needs the CPU or there is contention on the MMU lock. If this
+ * function cannot yield, it will not release the MMU lock or reschedule and
+ * the caller must ensure it does not supply too large a GFN range, or the
+ * operation can cause a soft lockup.
+ */
+static bool tdp_mmu_zap_leafs(struct kvm *kvm, struct kvm_mmu_page *root,
+ gfn_t start, gfn_t end, bool can_yield, bool flush)
+{
+ struct tdp_iter iter;
+
+ end = min(end, tdp_mmu_max_gfn_exclusive());
+
+ lockdep_assert_held_write(&kvm->mmu_lock);
+
+ rcu_read_lock();
+
+ for_each_tdp_pte_min_level(iter, root, PG_LEVEL_4K, start, end) {
+ if (can_yield &&
+ tdp_mmu_iter_cond_resched(kvm, &iter, flush, false)) {
+ flush = false;
+ continue;
+ }
+
+ if (!is_shadow_present_pte(iter.old_spte) ||
+ !is_last_spte(iter.old_spte, iter.level))
+ continue;
+
+ tdp_mmu_set_spte(kvm, &iter, 0);
+ flush = true;
+ }
+
+ rcu_read_unlock();
+
+ /*
+ * Because this flow zaps _only_ leaf SPTEs, the caller doesn't need
+ * to provide RCU protection as no 'struct kvm_mmu_page' will be freed.
+ */
+ return flush;
+}
+
+/*
+ * Zap leaf SPTEs for the range of gfns, [start, end), for all roots. Returns
+ * true if a TLB flush is needed before releasing the MMU lock, i.e. if one or
+ * more SPTEs were zapped since the MMU lock was last acquired.
+ */
+bool kvm_tdp_mmu_zap_leafs(struct kvm *kvm, gfn_t start, gfn_t end, bool flush)
+{
+ struct kvm_mmu_page *root;
+
+ for_each_tdp_mmu_root_yield_safe(kvm, root, false)
+ flush = tdp_mmu_zap_leafs(kvm, root, start, end, true, flush);
+
+ return flush;
+}
+
+void kvm_tdp_mmu_zap_all(struct kvm *kvm)
+{
+ struct kvm_mmu_page *root;
+
+ /*
+ * Zap all roots, including invalid roots, as all SPTEs must be dropped
+ * before returning to the caller. Zap directly even if the root is
+ * also being zapped by a worker. Walking zapped top-level SPTEs isn't
+ * all that expensive and mmu_lock is already held, which means the
+ * worker has yielded, i.e. flushing the work instead of zapping here
+ * isn't guaranteed to be any faster.
+ *
+ * A TLB flush is unnecessary, KVM zaps everything if and only the VM
+ * is being destroyed or the userspace VMM has exited. In both cases,
+ * KVM_RUN is unreachable, i.e. no vCPUs will ever service the request.
+ */
+ for_each_tdp_mmu_root_yield_safe(kvm, root, false)
+ tdp_mmu_zap_root(kvm, root, false);
+}
+
+/*
+ * Zap all invalidated roots to ensure all SPTEs are dropped before the "fast
+ * zap" completes.
+ */
+void kvm_tdp_mmu_zap_invalidated_roots(struct kvm *kvm)
+{
+ struct kvm_mmu_page *root;
+
+ read_lock(&kvm->mmu_lock);
+
+ for_each_tdp_mmu_root_yield_safe(kvm, root, true) {
+ if (!root->tdp_mmu_scheduled_root_to_zap)
+ continue;
+
+ root->tdp_mmu_scheduled_root_to_zap = false;
+ KVM_BUG_ON(!root->role.invalid, kvm);
+
+ /*
+ * A TLB flush is not necessary as KVM performs a local TLB
+ * flush when allocating a new root (see kvm_mmu_load()), and
+ * when migrating a vCPU to a different pCPU. Note, the local
+ * TLB flush on reuse also invalidates paging-structure-cache
+ * entries, i.e. TLB entries for intermediate paging structures,
+ * that may be zapped, as such entries are associated with the
+ * ASID on both VMX and SVM.
+ */
+ tdp_mmu_zap_root(kvm, root, true);
+
+ /*
+ * The referenced needs to be put *after* zapping the root, as
+ * the root must be reachable by mmu_notifiers while it's being
+ * zapped
+ */
+ kvm_tdp_mmu_put_root(kvm, root, true);
+ }
+
+ read_unlock(&kvm->mmu_lock);
+}
+
+/*
+ * Mark each TDP MMU root as invalid to prevent vCPUs from reusing a root that
+ * is about to be zapped, e.g. in response to a memslots update. The actual
+ * zapping is done separately so that it happens with mmu_lock with read,
+ * whereas invalidating roots must be done with mmu_lock held for write (unless
+ * the VM is being destroyed).
+ *
+ * Note, kvm_tdp_mmu_zap_invalidated_roots() is gifted the TDP MMU's reference.
+ * See kvm_tdp_mmu_get_vcpu_root_hpa().
+ */
+void kvm_tdp_mmu_invalidate_all_roots(struct kvm *kvm)
+{
+ struct kvm_mmu_page *root;
+
+ /*
+ * mmu_lock must be held for write to ensure that a root doesn't become
+ * invalid while there are active readers (invalidating a root while
+ * there are active readers may or may not be problematic in practice,
+ * but it's uncharted territory and not supported).
+ *
+ * Waive the assertion if there are no users of @kvm, i.e. the VM is
+ * being destroyed after all references have been put, or if no vCPUs
+ * have been created (which means there are no roots), i.e. the VM is
+ * being destroyed in an error path of KVM_CREATE_VM.
+ */
+ if (IS_ENABLED(CONFIG_PROVE_LOCKING) &&
+ refcount_read(&kvm->users_count) && kvm->created_vcpus)
+ lockdep_assert_held_write(&kvm->mmu_lock);
+
+ /*
+ * As above, mmu_lock isn't held when destroying the VM! There can't
+ * be other references to @kvm, i.e. nothing else can invalidate roots
+ * or get/put references to roots.
+ */
+ list_for_each_entry(root, &kvm->arch.tdp_mmu_roots, link) {
+ /*
+ * Note, invalid roots can outlive a memslot update! Invalid
+ * roots must be *zapped* before the memslot update completes,
+ * but a different task can acquire a reference and keep the
+ * root alive after its been zapped.
+ */
+ if (!root->role.invalid) {
+ root->tdp_mmu_scheduled_root_to_zap = true;
+ root->role.invalid = true;
+ }
+ }
+}
+
+/*
+ * Installs a last-level SPTE to handle a TDP page fault.
+ * (NPT/EPT violation/misconfiguration)
+ */
+static int tdp_mmu_map_handle_target_level(struct kvm_vcpu *vcpu,
+ struct kvm_page_fault *fault,
+ struct tdp_iter *iter)
+{
+ struct kvm_mmu_page *sp = sptep_to_sp(rcu_dereference(iter->sptep));
+ u64 new_spte;
+ int ret = RET_PF_FIXED;
+ bool wrprot = false;
+
+ WARN_ON(sp->role.level != fault->goal_level);
+ if (unlikely(!fault->slot))
+ new_spte = make_mmio_spte(vcpu, iter->gfn, ACC_ALL);
+ else
+ wrprot = make_spte(vcpu, sp, fault->slot, ACC_ALL, iter->gfn,
+ fault->pfn, iter->old_spte, fault->prefetch, true,
+ fault->map_writable, &new_spte);
+
+ if (new_spte == iter->old_spte)
+ ret = RET_PF_SPURIOUS;
+ else if (tdp_mmu_set_spte_atomic(vcpu->kvm, iter, new_spte))
+ return RET_PF_RETRY;
+ else if (is_shadow_present_pte(iter->old_spte) &&
+ !is_last_spte(iter->old_spte, iter->level))
+ kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
+ KVM_PAGES_PER_HPAGE(iter->level + 1));
+
+ /*
+ * If the page fault was caused by a write but the page is write
+ * protected, emulation is needed. If the emulation was skipped,
+ * the vCPU would have the same fault again.
+ */
+ if (wrprot) {
+ if (fault->write)
+ ret = RET_PF_EMULATE;
+ }
+
+ /* If a MMIO SPTE is installed, the MMIO will need to be emulated. */
+ if (unlikely(is_mmio_spte(new_spte))) {
+ vcpu->stat.pf_mmio_spte_created++;
+ trace_mark_mmio_spte(rcu_dereference(iter->sptep), iter->gfn,
+ new_spte);
+ ret = RET_PF_EMULATE;
+ } else {
+ trace_kvm_mmu_set_spte(iter->level, iter->gfn,
+ rcu_dereference(iter->sptep));
+ }
+
+ return ret;
+}
+
+/*
+ * tdp_mmu_link_sp - Replace the given spte with an spte pointing to the
+ * provided page table.
+ *
+ * @kvm: kvm instance
+ * @iter: a tdp_iter instance currently on the SPTE that should be set
+ * @sp: The new TDP page table to install.
+ * @account_nx: True if this page table is being installed to split a
+ * non-executable huge page.
+ * @shared: This operation is running under the MMU lock in read mode.
+ *
+ * Returns: 0 if the new page table was installed. Non-0 if the page table
+ * could not be installed (e.g. the atomic compare-exchange failed).
+ */
+static int tdp_mmu_link_sp(struct kvm *kvm, struct tdp_iter *iter,
+ struct kvm_mmu_page *sp, bool account_nx,
+ bool shared)
+{
+ u64 spte = make_nonleaf_spte(sp->spt, !kvm_ad_enabled());
+ int ret = 0;
+
+ if (shared) {
+ ret = tdp_mmu_set_spte_atomic(kvm, iter, spte);
+ if (ret)
+ return ret;
+ } else {
+ tdp_mmu_set_spte(kvm, iter, spte);
+ }
+
+ spin_lock(&kvm->arch.tdp_mmu_pages_lock);
+ list_add(&sp->link, &kvm->arch.tdp_mmu_pages);
+ if (account_nx)
+ account_huge_nx_page(kvm, sp);
+ spin_unlock(&kvm->arch.tdp_mmu_pages_lock);
+ tdp_account_mmu_page(kvm, sp);
+
+ return 0;
+}
+
+/*
+ * Handle a TDP page fault (NPT/EPT violation/misconfiguration) by installing
+ * page tables and SPTEs to translate the faulting guest physical address.
+ */
+int kvm_tdp_mmu_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
+{
+ struct kvm_mmu *mmu = vcpu->arch.mmu;
+ struct tdp_iter iter;
+ struct kvm_mmu_page *sp;
+ int ret;
+
+ kvm_mmu_hugepage_adjust(vcpu, fault);
+
+ trace_kvm_mmu_spte_requested(fault);
+
+ rcu_read_lock();
+
+ tdp_mmu_for_each_pte(iter, mmu, fault->gfn, fault->gfn + 1) {
+ if (fault->nx_huge_page_workaround_enabled)
+ disallowed_hugepage_adjust(fault, iter.old_spte, iter.level);
+
+ if (iter.level == fault->goal_level)
+ break;
+
+ /*
+ * If there is an SPTE mapping a large page at a higher level
+ * than the target, that SPTE must be cleared and replaced
+ * with a non-leaf SPTE.
+ */
+ if (is_shadow_present_pte(iter.old_spte) &&
+ is_large_pte(iter.old_spte)) {
+ if (tdp_mmu_zap_spte_atomic(vcpu->kvm, &iter))
+ break;
+
+ /*
+ * The iter must explicitly re-read the spte here
+ * because the new value informs the !present
+ * path below.
+ */
+ iter.old_spte = kvm_tdp_mmu_read_spte(iter.sptep);
+ }
+
+ if (!is_shadow_present_pte(iter.old_spte)) {
+ bool account_nx = fault->huge_page_disallowed &&
+ fault->req_level >= iter.level;
+
+ /*
+ * If SPTE has been frozen by another thread, just
+ * give up and retry, avoiding unnecessary page table
+ * allocation and free.
+ */
+ if (is_removed_spte(iter.old_spte))
+ break;
+
+ sp = tdp_mmu_alloc_sp(vcpu);
+ tdp_mmu_init_child_sp(sp, &iter);
+
+ if (tdp_mmu_link_sp(vcpu->kvm, &iter, sp, account_nx, true)) {
+ tdp_mmu_free_sp(sp);
+ break;
+ }
+ }
+ }
+
+ /*
+ * Force the guest to retry the access if the upper level SPTEs aren't
+ * in place, or if the target leaf SPTE is frozen by another CPU.
+ */
+ if (iter.level != fault->goal_level || is_removed_spte(iter.old_spte)) {
+ rcu_read_unlock();
+ return RET_PF_RETRY;
+ }
+
+ ret = tdp_mmu_map_handle_target_level(vcpu, fault, &iter);
+ rcu_read_unlock();
+
+ return ret;
+}
+
+bool kvm_tdp_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range,
+ bool flush)
+{
+ struct kvm_mmu_page *root;
+
+ __for_each_tdp_mmu_root_yield_safe(kvm, root, range->slot->as_id, false, false)
+ flush = tdp_mmu_zap_leafs(kvm, root, range->start, range->end,
+ range->may_block, flush);
+
+ return flush;
+}
+
+typedef bool (*tdp_handler_t)(struct kvm *kvm, struct tdp_iter *iter,
+ struct kvm_gfn_range *range);
+
+static __always_inline bool kvm_tdp_mmu_handle_gfn(struct kvm *kvm,
+ struct kvm_gfn_range *range,
+ tdp_handler_t handler)
+{
+ struct kvm_mmu_page *root;
+ struct tdp_iter iter;
+ bool ret = false;
+
+ /*
+ * Don't support rescheduling, none of the MMU notifiers that funnel
+ * into this helper allow blocking; it'd be dead, wasteful code.
+ */
+ for_each_tdp_mmu_root(kvm, root, range->slot->as_id) {
+ rcu_read_lock();
+
+ tdp_root_for_each_leaf_pte(iter, root, range->start, range->end)
+ ret |= handler(kvm, &iter, range);
+
+ rcu_read_unlock();
+ }
+
+ return ret;
+}
+
+/*
+ * Mark the SPTEs range of GFNs [start, end) unaccessed and return non-zero
+ * if any of the GFNs in the range have been accessed.
+ */
+static bool age_gfn_range(struct kvm *kvm, struct tdp_iter *iter,
+ struct kvm_gfn_range *range)
+{
+ u64 new_spte = 0;
+
+ /* If we have a non-accessed entry we don't need to change the pte. */
+ if (!is_accessed_spte(iter->old_spte))
+ return false;
+
+ new_spte = iter->old_spte;
+
+ if (spte_ad_enabled(new_spte)) {
+ new_spte &= ~shadow_accessed_mask;
+ } else {
+ /*
+ * Capture the dirty status of the page, so that it doesn't get
+ * lost when the SPTE is marked for access tracking.
+ */
+ if (is_writable_pte(new_spte))
+ kvm_set_pfn_dirty(spte_to_pfn(new_spte));
+
+ new_spte = mark_spte_for_access_track(new_spte);
+ }
+
+ tdp_mmu_set_spte_no_acc_track(kvm, iter, new_spte);
+
+ return true;
+}
+
+bool kvm_tdp_mmu_age_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
+{
+ return kvm_tdp_mmu_handle_gfn(kvm, range, age_gfn_range);
+}
+
+static bool test_age_gfn(struct kvm *kvm, struct tdp_iter *iter,
+ struct kvm_gfn_range *range)
+{
+ return is_accessed_spte(iter->old_spte);
+}
+
+bool kvm_tdp_mmu_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
+{
+ return kvm_tdp_mmu_handle_gfn(kvm, range, test_age_gfn);
+}
+
+static bool set_spte_gfn(struct kvm *kvm, struct tdp_iter *iter,
+ struct kvm_gfn_range *range)
+{
+ u64 new_spte;
+
+ /* Huge pages aren't expected to be modified without first being zapped. */
+ WARN_ON(pte_huge(range->pte) || range->start + 1 != range->end);
+
+ if (iter->level != PG_LEVEL_4K ||
+ !is_shadow_present_pte(iter->old_spte))
+ return false;
+
+ /*
+ * Note, when changing a read-only SPTE, it's not strictly necessary to
+ * zero the SPTE before setting the new PFN, but doing so preserves the
+ * invariant that the PFN of a present * leaf SPTE can never change.
+ * See __handle_changed_spte().
+ */
+ tdp_mmu_set_spte(kvm, iter, 0);
+
+ if (!pte_write(range->pte)) {
+ new_spte = kvm_mmu_changed_pte_notifier_make_spte(iter->old_spte,
+ pte_pfn(range->pte));
+
+ tdp_mmu_set_spte(kvm, iter, new_spte);
+ }
+
+ return true;
+}
+
+/*
+ * Handle the changed_pte MMU notifier for the TDP MMU.
+ * data is a pointer to the new pte_t mapping the HVA specified by the MMU
+ * notifier.
+ * Returns non-zero if a flush is needed before releasing the MMU lock.
+ */
+bool kvm_tdp_mmu_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
+{
+ /*
+ * No need to handle the remote TLB flush under RCU protection, the
+ * target SPTE _must_ be a leaf SPTE, i.e. cannot result in freeing a
+ * shadow page. See the WARN on pfn_changed in __handle_changed_spte().
+ */
+ return kvm_tdp_mmu_handle_gfn(kvm, range, set_spte_gfn);
+}
+
+/*
+ * Remove write access from all SPTEs at or above min_level that map GFNs
+ * [start, end). Returns true if an SPTE has been changed and the TLBs need to
+ * be flushed.
+ */
+static bool wrprot_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
+ gfn_t start, gfn_t end, int min_level)
+{
+ struct tdp_iter iter;
+ u64 new_spte;
+ bool spte_set = false;
+
+ rcu_read_lock();
+
+ BUG_ON(min_level > KVM_MAX_HUGEPAGE_LEVEL);
+
+ for_each_tdp_pte_min_level(iter, root, min_level, start, end) {
+retry:
+ if (tdp_mmu_iter_cond_resched(kvm, &iter, false, true))
+ continue;
+
+ if (!is_shadow_present_pte(iter.old_spte) ||
+ !is_last_spte(iter.old_spte, iter.level) ||
+ !(iter.old_spte & PT_WRITABLE_MASK))
+ continue;
+
+ new_spte = iter.old_spte & ~PT_WRITABLE_MASK;
+
+ if (tdp_mmu_set_spte_atomic(kvm, &iter, new_spte))
+ goto retry;
+
+ spte_set = true;
+ }
+
+ rcu_read_unlock();
+ return spte_set;
+}
+
+/*
+ * Remove write access from all the SPTEs mapping GFNs in the memslot. Will
+ * only affect leaf SPTEs down to min_level.
+ * Returns true if an SPTE has been changed and the TLBs need to be flushed.
+ */
+bool kvm_tdp_mmu_wrprot_slot(struct kvm *kvm,
+ const struct kvm_memory_slot *slot, int min_level)
+{
+ struct kvm_mmu_page *root;
+ bool spte_set = false;
+
+ lockdep_assert_held_read(&kvm->mmu_lock);
+
+ for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id, true)
+ spte_set |= wrprot_gfn_range(kvm, root, slot->base_gfn,
+ slot->base_gfn + slot->npages, min_level);
+
+ return spte_set;
+}
+
+static struct kvm_mmu_page *__tdp_mmu_alloc_sp_for_split(gfp_t gfp)
+{
+ struct kvm_mmu_page *sp;
+
+ gfp |= __GFP_ZERO;
+
+ sp = kmem_cache_alloc(mmu_page_header_cache, gfp);
+ if (!sp)
+ return NULL;
+
+ sp->spt = (void *)__get_free_page(gfp);
+ if (!sp->spt) {
+ kmem_cache_free(mmu_page_header_cache, sp);
+ return NULL;
+ }
+
+ return sp;
+}
+
+static struct kvm_mmu_page *tdp_mmu_alloc_sp_for_split(struct kvm *kvm,
+ struct tdp_iter *iter,
+ bool shared)
+{
+ struct kvm_mmu_page *sp;
+
+ /*
+ * Since we are allocating while under the MMU lock we have to be
+ * careful about GFP flags. Use GFP_NOWAIT to avoid blocking on direct
+ * reclaim and to avoid making any filesystem callbacks (which can end
+ * up invoking KVM MMU notifiers, resulting in a deadlock).
+ *
+ * If this allocation fails we drop the lock and retry with reclaim
+ * allowed.
+ */
+ sp = __tdp_mmu_alloc_sp_for_split(GFP_NOWAIT | __GFP_ACCOUNT);
+ if (sp)
+ return sp;
+
+ rcu_read_unlock();
+
+ if (shared)
+ read_unlock(&kvm->mmu_lock);
+ else
+ write_unlock(&kvm->mmu_lock);
+
+ iter->yielded = true;
+ sp = __tdp_mmu_alloc_sp_for_split(GFP_KERNEL_ACCOUNT);
+
+ if (shared)
+ read_lock(&kvm->mmu_lock);
+ else
+ write_lock(&kvm->mmu_lock);
+
+ rcu_read_lock();
+
+ return sp;
+}
+
+static int tdp_mmu_split_huge_page(struct kvm *kvm, struct tdp_iter *iter,
+ struct kvm_mmu_page *sp, bool shared)
+{
+ const u64 huge_spte = iter->old_spte;
+ const int level = iter->level;
+ int ret, i;
+
+ tdp_mmu_init_child_sp(sp, iter);
+
+ /*
+ * No need for atomics when writing to sp->spt since the page table has
+ * not been linked in yet and thus is not reachable from any other CPU.
+ */
+ for (i = 0; i < SPTE_ENT_PER_PAGE; i++)
+ sp->spt[i] = make_huge_page_split_spte(kvm, huge_spte, sp->role, i);
+
+ /*
+ * Replace the huge spte with a pointer to the populated lower level
+ * page table. Since we are making this change without a TLB flush vCPUs
+ * will see a mix of the split mappings and the original huge mapping,
+ * depending on what's currently in their TLB. This is fine from a
+ * correctness standpoint since the translation will be the same either
+ * way.
+ */
+ ret = tdp_mmu_link_sp(kvm, iter, sp, false, shared);
+ if (ret)
+ goto out;
+
+ /*
+ * tdp_mmu_link_sp_atomic() will handle subtracting the huge page we
+ * are overwriting from the page stats. But we have to manually update
+ * the page stats with the new present child pages.
+ */
+ kvm_update_page_stats(kvm, level - 1, SPTE_ENT_PER_PAGE);
+
+out:
+ trace_kvm_mmu_split_huge_page(iter->gfn, huge_spte, level, ret);
+ return ret;
+}
+
+static int tdp_mmu_split_huge_pages_root(struct kvm *kvm,
+ struct kvm_mmu_page *root,
+ gfn_t start, gfn_t end,
+ int target_level, bool shared)
+{
+ struct kvm_mmu_page *sp = NULL;
+ struct tdp_iter iter;
+ int ret = 0;
+
+ rcu_read_lock();
+
+ /*
+ * Traverse the page table splitting all huge pages above the target
+ * level into one lower level. For example, if we encounter a 1GB page
+ * we split it into 512 2MB pages.
+ *
+ * Since the TDP iterator uses a pre-order traversal, we are guaranteed
+ * to visit an SPTE before ever visiting its children, which means we
+ * will correctly recursively split huge pages that are more than one
+ * level above the target level (e.g. splitting a 1GB to 512 2MB pages,
+ * and then splitting each of those to 512 4KB pages).
+ */
+ for_each_tdp_pte_min_level(iter, root, target_level + 1, start, end) {
+retry:
+ if (tdp_mmu_iter_cond_resched(kvm, &iter, false, shared))
+ continue;
+
+ if (!is_shadow_present_pte(iter.old_spte) || !is_large_pte(iter.old_spte))
+ continue;
+
+ if (!sp) {
+ sp = tdp_mmu_alloc_sp_for_split(kvm, &iter, shared);
+ if (!sp) {
+ ret = -ENOMEM;
+ trace_kvm_mmu_split_huge_page(iter.gfn,
+ iter.old_spte,
+ iter.level, ret);
+ break;
+ }
+
+ if (iter.yielded)
+ continue;
+ }
+
+ if (tdp_mmu_split_huge_page(kvm, &iter, sp, shared))
+ goto retry;
+
+ sp = NULL;
+ }
+
+ rcu_read_unlock();
+
+ /*
+ * It's possible to exit the loop having never used the last sp if, for
+ * example, a vCPU doing HugePage NX splitting wins the race and
+ * installs its own sp in place of the last sp we tried to split.
+ */
+ if (sp)
+ tdp_mmu_free_sp(sp);
+
+ return ret;
+}
+
+
+/*
+ * Try to split all huge pages mapped by the TDP MMU down to the target level.
+ */
+void kvm_tdp_mmu_try_split_huge_pages(struct kvm *kvm,
+ const struct kvm_memory_slot *slot,
+ gfn_t start, gfn_t end,
+ int target_level, bool shared)
+{
+ struct kvm_mmu_page *root;
+ int r = 0;
+
+ kvm_lockdep_assert_mmu_lock_held(kvm, shared);
+
+ for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id, shared) {
+ r = tdp_mmu_split_huge_pages_root(kvm, root, start, end, target_level, shared);
+ if (r) {
+ kvm_tdp_mmu_put_root(kvm, root, shared);
+ break;
+ }
+ }
+}
+
+/*
+ * Clear the dirty status of all the SPTEs mapping GFNs in the memslot. If
+ * AD bits are enabled, this will involve clearing the dirty bit on each SPTE.
+ * If AD bits are not enabled, this will require clearing the writable bit on
+ * each SPTE. Returns true if an SPTE has been changed and the TLBs need to
+ * be flushed.
+ */
+static bool clear_dirty_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
+ gfn_t start, gfn_t end)
+{
+ struct tdp_iter iter;
+ u64 new_spte;
+ bool spte_set = false;
+
+ rcu_read_lock();
+
+ tdp_root_for_each_leaf_pte(iter, root, start, end) {
+retry:
+ if (tdp_mmu_iter_cond_resched(kvm, &iter, false, true))
+ continue;
+
+ if (!is_shadow_present_pte(iter.old_spte))
+ continue;
+
+ if (spte_ad_need_write_protect(iter.old_spte)) {
+ if (is_writable_pte(iter.old_spte))
+ new_spte = iter.old_spte & ~PT_WRITABLE_MASK;
+ else
+ continue;
+ } else {
+ if (iter.old_spte & shadow_dirty_mask)
+ new_spte = iter.old_spte & ~shadow_dirty_mask;
+ else
+ continue;
+ }
+
+ if (tdp_mmu_set_spte_atomic(kvm, &iter, new_spte))
+ goto retry;
+
+ spte_set = true;
+ }
+
+ rcu_read_unlock();
+ return spte_set;
+}
+
+/*
+ * Clear the dirty status of all the SPTEs mapping GFNs in the memslot. If
+ * AD bits are enabled, this will involve clearing the dirty bit on each SPTE.
+ * If AD bits are not enabled, this will require clearing the writable bit on
+ * each SPTE. Returns true if an SPTE has been changed and the TLBs need to
+ * be flushed.
+ */
+bool kvm_tdp_mmu_clear_dirty_slot(struct kvm *kvm,
+ const struct kvm_memory_slot *slot)
+{
+ struct kvm_mmu_page *root;
+ bool spte_set = false;
+
+ lockdep_assert_held_read(&kvm->mmu_lock);
+
+ for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id, true)
+ spte_set |= clear_dirty_gfn_range(kvm, root, slot->base_gfn,
+ slot->base_gfn + slot->npages);
+
+ return spte_set;
+}
+
+/*
+ * Clears the dirty status of all the 4k SPTEs mapping GFNs for which a bit is
+ * set in mask, starting at gfn. The given memslot is expected to contain all
+ * the GFNs represented by set bits in the mask. If AD bits are enabled,
+ * clearing the dirty status will involve clearing the dirty bit on each SPTE
+ * or, if AD bits are not enabled, clearing the writable bit on each SPTE.
+ */
+static void clear_dirty_pt_masked(struct kvm *kvm, struct kvm_mmu_page *root,
+ gfn_t gfn, unsigned long mask, bool wrprot)
+{
+ struct tdp_iter iter;
+ u64 new_spte;
+
+ rcu_read_lock();
+
+ tdp_root_for_each_leaf_pte(iter, root, gfn + __ffs(mask),
+ gfn + BITS_PER_LONG) {
+ if (!mask)
+ break;
+
+ if (iter.level > PG_LEVEL_4K ||
+ !(mask & (1UL << (iter.gfn - gfn))))
+ continue;
+
+ mask &= ~(1UL << (iter.gfn - gfn));
+
+ if (wrprot || spte_ad_need_write_protect(iter.old_spte)) {
+ if (is_writable_pte(iter.old_spte))
+ new_spte = iter.old_spte & ~PT_WRITABLE_MASK;
+ else
+ continue;
+ } else {
+ if (iter.old_spte & shadow_dirty_mask)
+ new_spte = iter.old_spte & ~shadow_dirty_mask;
+ else
+ continue;
+ }
+
+ tdp_mmu_set_spte_no_dirty_log(kvm, &iter, new_spte);
+ }
+
+ rcu_read_unlock();
+}
+
+/*
+ * Clears the dirty status of all the 4k SPTEs mapping GFNs for which a bit is
+ * set in mask, starting at gfn. The given memslot is expected to contain all
+ * the GFNs represented by set bits in the mask. If AD bits are enabled,
+ * clearing the dirty status will involve clearing the dirty bit on each SPTE
+ * or, if AD bits are not enabled, clearing the writable bit on each SPTE.
+ */
+void kvm_tdp_mmu_clear_dirty_pt_masked(struct kvm *kvm,
+ struct kvm_memory_slot *slot,
+ gfn_t gfn, unsigned long mask,
+ bool wrprot)
+{
+ struct kvm_mmu_page *root;
+
+ lockdep_assert_held_write(&kvm->mmu_lock);
+ for_each_tdp_mmu_root(kvm, root, slot->as_id)
+ clear_dirty_pt_masked(kvm, root, gfn, mask, wrprot);
+}
+
+static void zap_collapsible_spte_range(struct kvm *kvm,
+ struct kvm_mmu_page *root,
+ const struct kvm_memory_slot *slot)
+{
+ gfn_t start = slot->base_gfn;
+ gfn_t end = start + slot->npages;
+ struct tdp_iter iter;
+ int max_mapping_level;
+
+ rcu_read_lock();
+
+ for_each_tdp_pte_min_level(iter, root, PG_LEVEL_2M, start, end) {
+retry:
+ if (tdp_mmu_iter_cond_resched(kvm, &iter, false, true))
+ continue;
+
+ if (iter.level > KVM_MAX_HUGEPAGE_LEVEL ||
+ !is_shadow_present_pte(iter.old_spte))
+ continue;
+
+ /*
+ * Don't zap leaf SPTEs, if a leaf SPTE could be replaced with
+ * a large page size, then its parent would have been zapped
+ * instead of stepping down.
+ */
+ if (is_last_spte(iter.old_spte, iter.level))
+ continue;
+
+ /*
+ * If iter.gfn resides outside of the slot, i.e. the page for
+ * the current level overlaps but is not contained by the slot,
+ * then the SPTE can't be made huge. More importantly, trying
+ * to query that info from slot->arch.lpage_info will cause an
+ * out-of-bounds access.
+ */
+ if (iter.gfn < start || iter.gfn >= end)
+ continue;
+
+ max_mapping_level = kvm_mmu_max_mapping_level(kvm, slot,
+ iter.gfn, PG_LEVEL_NUM);
+ if (max_mapping_level < iter.level)
+ continue;
+
+ /* Note, a successful atomic zap also does a remote TLB flush. */
+ if (tdp_mmu_zap_spte_atomic(kvm, &iter))
+ goto retry;
+ }
+
+ rcu_read_unlock();
+}
+
+/*
+ * Zap non-leaf SPTEs (and free their associated page tables) which could
+ * be replaced by huge pages, for GFNs within the slot.
+ */
+void kvm_tdp_mmu_zap_collapsible_sptes(struct kvm *kvm,
+ const struct kvm_memory_slot *slot)
+{
+ struct kvm_mmu_page *root;
+
+ lockdep_assert_held_read(&kvm->mmu_lock);
+
+ for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id, true)
+ zap_collapsible_spte_range(kvm, root, slot);
+}
+
+/*
+ * Removes write access on the last level SPTE mapping this GFN and unsets the
+ * MMU-writable bit to ensure future writes continue to be intercepted.
+ * Returns true if an SPTE was set and a TLB flush is needed.
+ */
+static bool write_protect_gfn(struct kvm *kvm, struct kvm_mmu_page *root,
+ gfn_t gfn, int min_level)
+{
+ struct tdp_iter iter;
+ u64 new_spte;
+ bool spte_set = false;
+
+ BUG_ON(min_level > KVM_MAX_HUGEPAGE_LEVEL);
+
+ rcu_read_lock();
+
+ for_each_tdp_pte_min_level(iter, root, min_level, gfn, gfn + 1) {
+ if (!is_shadow_present_pte(iter.old_spte) ||
+ !is_last_spte(iter.old_spte, iter.level))
+ continue;
+
+ new_spte = iter.old_spte &
+ ~(PT_WRITABLE_MASK | shadow_mmu_writable_mask);
+
+ if (new_spte == iter.old_spte)
+ break;
+
+ tdp_mmu_set_spte(kvm, &iter, new_spte);
+ spte_set = true;
+ }
+
+ rcu_read_unlock();
+
+ return spte_set;
+}
+
+/*
+ * Removes write access on the last level SPTE mapping this GFN and unsets the
+ * MMU-writable bit to ensure future writes continue to be intercepted.
+ * Returns true if an SPTE was set and a TLB flush is needed.
+ */
+bool kvm_tdp_mmu_write_protect_gfn(struct kvm *kvm,
+ struct kvm_memory_slot *slot, gfn_t gfn,
+ int min_level)
+{
+ struct kvm_mmu_page *root;
+ bool spte_set = false;
+
+ lockdep_assert_held_write(&kvm->mmu_lock);
+ for_each_tdp_mmu_root(kvm, root, slot->as_id)
+ spte_set |= write_protect_gfn(kvm, root, gfn, min_level);
+
+ return spte_set;
+}
+
+/*
+ * Return the level of the lowest level SPTE added to sptes.
+ * That SPTE may be non-present.
+ *
+ * Must be called between kvm_tdp_mmu_walk_lockless_{begin,end}.
+ */
+int kvm_tdp_mmu_get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes,
+ int *root_level)
+{
+ struct tdp_iter iter;
+ struct kvm_mmu *mmu = vcpu->arch.mmu;
+ gfn_t gfn = addr >> PAGE_SHIFT;
+ int leaf = -1;
+
+ *root_level = vcpu->arch.mmu->root_role.level;
+
+ tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) {
+ leaf = iter.level;
+ sptes[leaf] = iter.old_spte;
+ }
+
+ return leaf;
+}
+
+/*
+ * Returns the last level spte pointer of the shadow page walk for the given
+ * gpa, and sets *spte to the spte value. This spte may be non-preset. If no
+ * walk could be performed, returns NULL and *spte does not contain valid data.
+ *
+ * Contract:
+ * - Must be called between kvm_tdp_mmu_walk_lockless_{begin,end}.
+ * - The returned sptep must not be used after kvm_tdp_mmu_walk_lockless_end.
+ *
+ * WARNING: This function is only intended to be called during fast_page_fault.
+ */
+u64 *kvm_tdp_mmu_fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, u64 addr,
+ u64 *spte)
+{
+ struct tdp_iter iter;
+ struct kvm_mmu *mmu = vcpu->arch.mmu;
+ gfn_t gfn = addr >> PAGE_SHIFT;
+ tdp_ptep_t sptep = NULL;
+
+ tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) {
+ *spte = iter.old_spte;
+ sptep = iter.sptep;
+ }
+
+ /*
+ * Perform the rcu_dereference to get the raw spte pointer value since
+ * we are passing it up to fast_page_fault, which is shared with the
+ * legacy MMU and thus does not retain the TDP MMU-specific __rcu
+ * annotation.
+ *
+ * This is safe since fast_page_fault obeys the contracts of this
+ * function as well as all TDP MMU contracts around modifying SPTEs
+ * outside of mmu_lock.
+ */
+ return rcu_dereference(sptep);
+}