diff options
Diffstat (limited to 'drivers/edac/amd64_edac.c')
-rw-r--r-- | drivers/edac/amd64_edac.c | 4433 |
1 files changed, 4433 insertions, 0 deletions
diff --git a/drivers/edac/amd64_edac.c b/drivers/edac/amd64_edac.c new file mode 100644 index 000000000..2f854feee --- /dev/null +++ b/drivers/edac/amd64_edac.c @@ -0,0 +1,4433 @@ +// SPDX-License-Identifier: GPL-2.0-only +#include "amd64_edac.h" +#include <asm/amd_nb.h> + +static struct edac_pci_ctl_info *pci_ctl; + +/* + * Set by command line parameter. If BIOS has enabled the ECC, this override is + * cleared to prevent re-enabling the hardware by this driver. + */ +static int ecc_enable_override; +module_param(ecc_enable_override, int, 0644); + +static struct msr __percpu *msrs; + +static struct amd64_family_type *fam_type; + +static inline u32 get_umc_reg(u32 reg) +{ + if (!fam_type->flags.zn_regs_v2) + return reg; + + switch (reg) { + case UMCCH_ADDR_CFG: return UMCCH_ADDR_CFG_DDR5; + case UMCCH_ADDR_MASK_SEC: return UMCCH_ADDR_MASK_SEC_DDR5; + case UMCCH_DIMM_CFG: return UMCCH_DIMM_CFG_DDR5; + } + + WARN_ONCE(1, "%s: unknown register 0x%x", __func__, reg); + return 0; +} + +/* Per-node stuff */ +static struct ecc_settings **ecc_stngs; + +/* Device for the PCI component */ +static struct device *pci_ctl_dev; + +/* + * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing + * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching- + * or higher value'. + * + *FIXME: Produce a better mapping/linearisation. + */ +static const struct scrubrate { + u32 scrubval; /* bit pattern for scrub rate */ + u32 bandwidth; /* bandwidth consumed (bytes/sec) */ +} scrubrates[] = { + { 0x01, 1600000000UL}, + { 0x02, 800000000UL}, + { 0x03, 400000000UL}, + { 0x04, 200000000UL}, + { 0x05, 100000000UL}, + { 0x06, 50000000UL}, + { 0x07, 25000000UL}, + { 0x08, 12284069UL}, + { 0x09, 6274509UL}, + { 0x0A, 3121951UL}, + { 0x0B, 1560975UL}, + { 0x0C, 781440UL}, + { 0x0D, 390720UL}, + { 0x0E, 195300UL}, + { 0x0F, 97650UL}, + { 0x10, 48854UL}, + { 0x11, 24427UL}, + { 0x12, 12213UL}, + { 0x13, 6101UL}, + { 0x14, 3051UL}, + { 0x15, 1523UL}, + { 0x16, 761UL}, + { 0x00, 0UL}, /* scrubbing off */ +}; + +int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset, + u32 *val, const char *func) +{ + int err = 0; + + err = pci_read_config_dword(pdev, offset, val); + if (err) + amd64_warn("%s: error reading F%dx%03x.\n", + func, PCI_FUNC(pdev->devfn), offset); + + return err; +} + +int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset, + u32 val, const char *func) +{ + int err = 0; + + err = pci_write_config_dword(pdev, offset, val); + if (err) + amd64_warn("%s: error writing to F%dx%03x.\n", + func, PCI_FUNC(pdev->devfn), offset); + + return err; +} + +/* + * Select DCT to which PCI cfg accesses are routed + */ +static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct) +{ + u32 reg = 0; + + amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, ®); + reg &= (pvt->model == 0x30) ? ~3 : ~1; + reg |= dct; + amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg); +} + +/* + * + * Depending on the family, F2 DCT reads need special handling: + * + * K8: has a single DCT only and no address offsets >= 0x100 + * + * F10h: each DCT has its own set of regs + * DCT0 -> F2x040.. + * DCT1 -> F2x140.. + * + * F16h: has only 1 DCT + * + * F15h: we select which DCT we access using F1x10C[DctCfgSel] + */ +static inline int amd64_read_dct_pci_cfg(struct amd64_pvt *pvt, u8 dct, + int offset, u32 *val) +{ + switch (pvt->fam) { + case 0xf: + if (dct || offset >= 0x100) + return -EINVAL; + break; + + case 0x10: + if (dct) { + /* + * Note: If ganging is enabled, barring the regs + * F2x[1,0]98 and F2x[1,0]9C; reads reads to F2x1xx + * return 0. (cf. Section 2.8.1 F10h BKDG) + */ + if (dct_ganging_enabled(pvt)) + return 0; + + offset += 0x100; + } + break; + + case 0x15: + /* + * F15h: F2x1xx addresses do not map explicitly to DCT1. + * We should select which DCT we access using F1x10C[DctCfgSel] + */ + dct = (dct && pvt->model == 0x30) ? 3 : dct; + f15h_select_dct(pvt, dct); + break; + + case 0x16: + if (dct) + return -EINVAL; + break; + + default: + break; + } + return amd64_read_pci_cfg(pvt->F2, offset, val); +} + +/* + * Memory scrubber control interface. For K8, memory scrubbing is handled by + * hardware and can involve L2 cache, dcache as well as the main memory. With + * F10, this is extended to L3 cache scrubbing on CPU models sporting that + * functionality. + * + * This causes the "units" for the scrubbing speed to vary from 64 byte blocks + * (dram) over to cache lines. This is nasty, so we will use bandwidth in + * bytes/sec for the setting. + * + * Currently, we only do dram scrubbing. If the scrubbing is done in software on + * other archs, we might not have access to the caches directly. + */ + +static inline void __f17h_set_scrubval(struct amd64_pvt *pvt, u32 scrubval) +{ + /* + * Fam17h supports scrub values between 0x5 and 0x14. Also, the values + * are shifted down by 0x5, so scrubval 0x5 is written to the register + * as 0x0, scrubval 0x6 as 0x1, etc. + */ + if (scrubval >= 0x5 && scrubval <= 0x14) { + scrubval -= 0x5; + pci_write_bits32(pvt->F6, F17H_SCR_LIMIT_ADDR, scrubval, 0xF); + pci_write_bits32(pvt->F6, F17H_SCR_BASE_ADDR, 1, 0x1); + } else { + pci_write_bits32(pvt->F6, F17H_SCR_BASE_ADDR, 0, 0x1); + } +} +/* + * Scan the scrub rate mapping table for a close or matching bandwidth value to + * issue. If requested is too big, then use last maximum value found. + */ +static int __set_scrub_rate(struct amd64_pvt *pvt, u32 new_bw, u32 min_rate) +{ + u32 scrubval; + int i; + + /* + * map the configured rate (new_bw) to a value specific to the AMD64 + * memory controller and apply to register. Search for the first + * bandwidth entry that is greater or equal than the setting requested + * and program that. If at last entry, turn off DRAM scrubbing. + * + * If no suitable bandwidth is found, turn off DRAM scrubbing entirely + * by falling back to the last element in scrubrates[]. + */ + for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) { + /* + * skip scrub rates which aren't recommended + * (see F10 BKDG, F3x58) + */ + if (scrubrates[i].scrubval < min_rate) + continue; + + if (scrubrates[i].bandwidth <= new_bw) + break; + } + + scrubval = scrubrates[i].scrubval; + + if (pvt->umc) { + __f17h_set_scrubval(pvt, scrubval); + } else if (pvt->fam == 0x15 && pvt->model == 0x60) { + f15h_select_dct(pvt, 0); + pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F); + f15h_select_dct(pvt, 1); + pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F); + } else { + pci_write_bits32(pvt->F3, SCRCTRL, scrubval, 0x001F); + } + + if (scrubval) + return scrubrates[i].bandwidth; + + return 0; +} + +static int set_scrub_rate(struct mem_ctl_info *mci, u32 bw) +{ + struct amd64_pvt *pvt = mci->pvt_info; + u32 min_scrubrate = 0x5; + + if (pvt->fam == 0xf) + min_scrubrate = 0x0; + + if (pvt->fam == 0x15) { + /* Erratum #505 */ + if (pvt->model < 0x10) + f15h_select_dct(pvt, 0); + + if (pvt->model == 0x60) + min_scrubrate = 0x6; + } + return __set_scrub_rate(pvt, bw, min_scrubrate); +} + +static int get_scrub_rate(struct mem_ctl_info *mci) +{ + struct amd64_pvt *pvt = mci->pvt_info; + int i, retval = -EINVAL; + u32 scrubval = 0; + + if (pvt->umc) { + amd64_read_pci_cfg(pvt->F6, F17H_SCR_BASE_ADDR, &scrubval); + if (scrubval & BIT(0)) { + amd64_read_pci_cfg(pvt->F6, F17H_SCR_LIMIT_ADDR, &scrubval); + scrubval &= 0xF; + scrubval += 0x5; + } else { + scrubval = 0; + } + } else if (pvt->fam == 0x15) { + /* Erratum #505 */ + if (pvt->model < 0x10) + f15h_select_dct(pvt, 0); + + if (pvt->model == 0x60) + amd64_read_pci_cfg(pvt->F2, F15H_M60H_SCRCTRL, &scrubval); + else + amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval); + } else { + amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval); + } + + scrubval = scrubval & 0x001F; + + for (i = 0; i < ARRAY_SIZE(scrubrates); i++) { + if (scrubrates[i].scrubval == scrubval) { + retval = scrubrates[i].bandwidth; + break; + } + } + return retval; +} + +/* + * returns true if the SysAddr given by sys_addr matches the + * DRAM base/limit associated with node_id + */ +static bool base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, u8 nid) +{ + u64 addr; + + /* The K8 treats this as a 40-bit value. However, bits 63-40 will be + * all ones if the most significant implemented address bit is 1. + * Here we discard bits 63-40. See section 3.4.2 of AMD publication + * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1 + * Application Programming. + */ + addr = sys_addr & 0x000000ffffffffffull; + + return ((addr >= get_dram_base(pvt, nid)) && + (addr <= get_dram_limit(pvt, nid))); +} + +/* + * Attempt to map a SysAddr to a node. On success, return a pointer to the + * mem_ctl_info structure for the node that the SysAddr maps to. + * + * On failure, return NULL. + */ +static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci, + u64 sys_addr) +{ + struct amd64_pvt *pvt; + u8 node_id; + u32 intlv_en, bits; + + /* + * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section + * 3.4.4.2) registers to map the SysAddr to a node ID. + */ + pvt = mci->pvt_info; + + /* + * The value of this field should be the same for all DRAM Base + * registers. Therefore we arbitrarily choose to read it from the + * register for node 0. + */ + intlv_en = dram_intlv_en(pvt, 0); + + if (intlv_en == 0) { + for (node_id = 0; node_id < DRAM_RANGES; node_id++) { + if (base_limit_match(pvt, sys_addr, node_id)) + goto found; + } + goto err_no_match; + } + + if (unlikely((intlv_en != 0x01) && + (intlv_en != 0x03) && + (intlv_en != 0x07))) { + amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en); + return NULL; + } + + bits = (((u32) sys_addr) >> 12) & intlv_en; + + for (node_id = 0; ; ) { + if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits) + break; /* intlv_sel field matches */ + + if (++node_id >= DRAM_RANGES) + goto err_no_match; + } + + /* sanity test for sys_addr */ + if (unlikely(!base_limit_match(pvt, sys_addr, node_id))) { + amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address" + "range for node %d with node interleaving enabled.\n", + __func__, sys_addr, node_id); + return NULL; + } + +found: + return edac_mc_find((int)node_id); + +err_no_match: + edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n", + (unsigned long)sys_addr); + + return NULL; +} + +/* + * compute the CS base address of the @csrow on the DRAM controller @dct. + * For details see F2x[5C:40] in the processor's BKDG + */ +static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct, + u64 *base, u64 *mask) +{ + u64 csbase, csmask, base_bits, mask_bits; + u8 addr_shift; + + if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) { + csbase = pvt->csels[dct].csbases[csrow]; + csmask = pvt->csels[dct].csmasks[csrow]; + base_bits = GENMASK_ULL(31, 21) | GENMASK_ULL(15, 9); + mask_bits = GENMASK_ULL(29, 21) | GENMASK_ULL(15, 9); + addr_shift = 4; + + /* + * F16h and F15h, models 30h and later need two addr_shift values: + * 8 for high and 6 for low (cf. F16h BKDG). + */ + } else if (pvt->fam == 0x16 || + (pvt->fam == 0x15 && pvt->model >= 0x30)) { + csbase = pvt->csels[dct].csbases[csrow]; + csmask = pvt->csels[dct].csmasks[csrow >> 1]; + + *base = (csbase & GENMASK_ULL(15, 5)) << 6; + *base |= (csbase & GENMASK_ULL(30, 19)) << 8; + + *mask = ~0ULL; + /* poke holes for the csmask */ + *mask &= ~((GENMASK_ULL(15, 5) << 6) | + (GENMASK_ULL(30, 19) << 8)); + + *mask |= (csmask & GENMASK_ULL(15, 5)) << 6; + *mask |= (csmask & GENMASK_ULL(30, 19)) << 8; + + return; + } else { + csbase = pvt->csels[dct].csbases[csrow]; + csmask = pvt->csels[dct].csmasks[csrow >> 1]; + addr_shift = 8; + + if (pvt->fam == 0x15) + base_bits = mask_bits = + GENMASK_ULL(30,19) | GENMASK_ULL(13,5); + else + base_bits = mask_bits = + GENMASK_ULL(28,19) | GENMASK_ULL(13,5); + } + + *base = (csbase & base_bits) << addr_shift; + + *mask = ~0ULL; + /* poke holes for the csmask */ + *mask &= ~(mask_bits << addr_shift); + /* OR them in */ + *mask |= (csmask & mask_bits) << addr_shift; +} + +#define for_each_chip_select(i, dct, pvt) \ + for (i = 0; i < pvt->csels[dct].b_cnt; i++) + +#define chip_select_base(i, dct, pvt) \ + pvt->csels[dct].csbases[i] + +#define for_each_chip_select_mask(i, dct, pvt) \ + for (i = 0; i < pvt->csels[dct].m_cnt; i++) + +#define for_each_umc(i) \ + for (i = 0; i < fam_type->max_mcs; i++) + +/* + * @input_addr is an InputAddr associated with the node given by mci. Return the + * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr). + */ +static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr) +{ + struct amd64_pvt *pvt; + int csrow; + u64 base, mask; + + pvt = mci->pvt_info; + + for_each_chip_select(csrow, 0, pvt) { + if (!csrow_enabled(csrow, 0, pvt)) + continue; + + get_cs_base_and_mask(pvt, csrow, 0, &base, &mask); + + mask = ~mask; + + if ((input_addr & mask) == (base & mask)) { + edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n", + (unsigned long)input_addr, csrow, + pvt->mc_node_id); + + return csrow; + } + } + edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n", + (unsigned long)input_addr, pvt->mc_node_id); + + return -1; +} + +/* + * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094) + * for the node represented by mci. Info is passed back in *hole_base, + * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if + * info is invalid. Info may be invalid for either of the following reasons: + * + * - The revision of the node is not E or greater. In this case, the DRAM Hole + * Address Register does not exist. + * + * - The DramHoleValid bit is cleared in the DRAM Hole Address Register, + * indicating that its contents are not valid. + * + * The values passed back in *hole_base, *hole_offset, and *hole_size are + * complete 32-bit values despite the fact that the bitfields in the DHAR + * only represent bits 31-24 of the base and offset values. + */ +static int get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base, + u64 *hole_offset, u64 *hole_size) +{ + struct amd64_pvt *pvt = mci->pvt_info; + + /* only revE and later have the DRAM Hole Address Register */ + if (pvt->fam == 0xf && pvt->ext_model < K8_REV_E) { + edac_dbg(1, " revision %d for node %d does not support DHAR\n", + pvt->ext_model, pvt->mc_node_id); + return 1; + } + + /* valid for Fam10h and above */ + if (pvt->fam >= 0x10 && !dhar_mem_hoist_valid(pvt)) { + edac_dbg(1, " Dram Memory Hoisting is DISABLED on this system\n"); + return 1; + } + + if (!dhar_valid(pvt)) { + edac_dbg(1, " Dram Memory Hoisting is DISABLED on this node %d\n", + pvt->mc_node_id); + return 1; + } + + /* This node has Memory Hoisting */ + + /* +------------------+--------------------+--------------------+----- + * | memory | DRAM hole | relocated | + * | [0, (x - 1)] | [x, 0xffffffff] | addresses from | + * | | | DRAM hole | + * | | | [0x100000000, | + * | | | (0x100000000+ | + * | | | (0xffffffff-x))] | + * +------------------+--------------------+--------------------+----- + * + * Above is a diagram of physical memory showing the DRAM hole and the + * relocated addresses from the DRAM hole. As shown, the DRAM hole + * starts at address x (the base address) and extends through address + * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the + * addresses in the hole so that they start at 0x100000000. + */ + + *hole_base = dhar_base(pvt); + *hole_size = (1ULL << 32) - *hole_base; + + *hole_offset = (pvt->fam > 0xf) ? f10_dhar_offset(pvt) + : k8_dhar_offset(pvt); + + edac_dbg(1, " DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n", + pvt->mc_node_id, (unsigned long)*hole_base, + (unsigned long)*hole_offset, (unsigned long)*hole_size); + + return 0; +} + +#ifdef CONFIG_EDAC_DEBUG +#define EDAC_DCT_ATTR_SHOW(reg) \ +static ssize_t reg##_show(struct device *dev, \ + struct device_attribute *mattr, char *data) \ +{ \ + struct mem_ctl_info *mci = to_mci(dev); \ + struct amd64_pvt *pvt = mci->pvt_info; \ + \ + return sprintf(data, "0x%016llx\n", (u64)pvt->reg); \ +} + +EDAC_DCT_ATTR_SHOW(dhar); +EDAC_DCT_ATTR_SHOW(dbam0); +EDAC_DCT_ATTR_SHOW(top_mem); +EDAC_DCT_ATTR_SHOW(top_mem2); + +static ssize_t dram_hole_show(struct device *dev, struct device_attribute *mattr, + char *data) +{ + struct mem_ctl_info *mci = to_mci(dev); + + u64 hole_base = 0; + u64 hole_offset = 0; + u64 hole_size = 0; + + get_dram_hole_info(mci, &hole_base, &hole_offset, &hole_size); + + return sprintf(data, "%llx %llx %llx\n", hole_base, hole_offset, + hole_size); +} + +/* + * update NUM_DBG_ATTRS in case you add new members + */ +static DEVICE_ATTR(dhar, S_IRUGO, dhar_show, NULL); +static DEVICE_ATTR(dbam, S_IRUGO, dbam0_show, NULL); +static DEVICE_ATTR(topmem, S_IRUGO, top_mem_show, NULL); +static DEVICE_ATTR(topmem2, S_IRUGO, top_mem2_show, NULL); +static DEVICE_ATTR_RO(dram_hole); + +static struct attribute *dbg_attrs[] = { + &dev_attr_dhar.attr, + &dev_attr_dbam.attr, + &dev_attr_topmem.attr, + &dev_attr_topmem2.attr, + &dev_attr_dram_hole.attr, + NULL +}; + +static const struct attribute_group dbg_group = { + .attrs = dbg_attrs, +}; + +static ssize_t inject_section_show(struct device *dev, + struct device_attribute *mattr, char *buf) +{ + struct mem_ctl_info *mci = to_mci(dev); + struct amd64_pvt *pvt = mci->pvt_info; + return sprintf(buf, "0x%x\n", pvt->injection.section); +} + +/* + * store error injection section value which refers to one of 4 16-byte sections + * within a 64-byte cacheline + * + * range: 0..3 + */ +static ssize_t inject_section_store(struct device *dev, + struct device_attribute *mattr, + const char *data, size_t count) +{ + struct mem_ctl_info *mci = to_mci(dev); + struct amd64_pvt *pvt = mci->pvt_info; + unsigned long value; + int ret; + + ret = kstrtoul(data, 10, &value); + if (ret < 0) + return ret; + + if (value > 3) { + amd64_warn("%s: invalid section 0x%lx\n", __func__, value); + return -EINVAL; + } + + pvt->injection.section = (u32) value; + return count; +} + +static ssize_t inject_word_show(struct device *dev, + struct device_attribute *mattr, char *buf) +{ + struct mem_ctl_info *mci = to_mci(dev); + struct amd64_pvt *pvt = mci->pvt_info; + return sprintf(buf, "0x%x\n", pvt->injection.word); +} + +/* + * store error injection word value which refers to one of 9 16-bit word of the + * 16-byte (128-bit + ECC bits) section + * + * range: 0..8 + */ +static ssize_t inject_word_store(struct device *dev, + struct device_attribute *mattr, + const char *data, size_t count) +{ + struct mem_ctl_info *mci = to_mci(dev); + struct amd64_pvt *pvt = mci->pvt_info; + unsigned long value; + int ret; + + ret = kstrtoul(data, 10, &value); + if (ret < 0) + return ret; + + if (value > 8) { + amd64_warn("%s: invalid word 0x%lx\n", __func__, value); + return -EINVAL; + } + + pvt->injection.word = (u32) value; + return count; +} + +static ssize_t inject_ecc_vector_show(struct device *dev, + struct device_attribute *mattr, + char *buf) +{ + struct mem_ctl_info *mci = to_mci(dev); + struct amd64_pvt *pvt = mci->pvt_info; + return sprintf(buf, "0x%x\n", pvt->injection.bit_map); +} + +/* + * store 16 bit error injection vector which enables injecting errors to the + * corresponding bit within the error injection word above. When used during a + * DRAM ECC read, it holds the contents of the of the DRAM ECC bits. + */ +static ssize_t inject_ecc_vector_store(struct device *dev, + struct device_attribute *mattr, + const char *data, size_t count) +{ + struct mem_ctl_info *mci = to_mci(dev); + struct amd64_pvt *pvt = mci->pvt_info; + unsigned long value; + int ret; + + ret = kstrtoul(data, 16, &value); + if (ret < 0) + return ret; + + if (value & 0xFFFF0000) { + amd64_warn("%s: invalid EccVector: 0x%lx\n", __func__, value); + return -EINVAL; + } + + pvt->injection.bit_map = (u32) value; + return count; +} + +/* + * Do a DRAM ECC read. Assemble staged values in the pvt area, format into + * fields needed by the injection registers and read the NB Array Data Port. + */ +static ssize_t inject_read_store(struct device *dev, + struct device_attribute *mattr, + const char *data, size_t count) +{ + struct mem_ctl_info *mci = to_mci(dev); + struct amd64_pvt *pvt = mci->pvt_info; + unsigned long value; + u32 section, word_bits; + int ret; + + ret = kstrtoul(data, 10, &value); + if (ret < 0) + return ret; + + /* Form value to choose 16-byte section of cacheline */ + section = F10_NB_ARRAY_DRAM | SET_NB_ARRAY_ADDR(pvt->injection.section); + + amd64_write_pci_cfg(pvt->F3, F10_NB_ARRAY_ADDR, section); + + word_bits = SET_NB_DRAM_INJECTION_READ(pvt->injection); + + /* Issue 'word' and 'bit' along with the READ request */ + amd64_write_pci_cfg(pvt->F3, F10_NB_ARRAY_DATA, word_bits); + + edac_dbg(0, "section=0x%x word_bits=0x%x\n", section, word_bits); + + return count; +} + +/* + * Do a DRAM ECC write. Assemble staged values in the pvt area and format into + * fields needed by the injection registers. + */ +static ssize_t inject_write_store(struct device *dev, + struct device_attribute *mattr, + const char *data, size_t count) +{ + struct mem_ctl_info *mci = to_mci(dev); + struct amd64_pvt *pvt = mci->pvt_info; + u32 section, word_bits, tmp; + unsigned long value; + int ret; + + ret = kstrtoul(data, 10, &value); + if (ret < 0) + return ret; + + /* Form value to choose 16-byte section of cacheline */ + section = F10_NB_ARRAY_DRAM | SET_NB_ARRAY_ADDR(pvt->injection.section); + + amd64_write_pci_cfg(pvt->F3, F10_NB_ARRAY_ADDR, section); + + word_bits = SET_NB_DRAM_INJECTION_WRITE(pvt->injection); + + pr_notice_once("Don't forget to decrease MCE polling interval in\n" + "/sys/bus/machinecheck/devices/machinecheck<CPUNUM>/check_interval\n" + "so that you can get the error report faster.\n"); + + on_each_cpu(disable_caches, NULL, 1); + + /* Issue 'word' and 'bit' along with the READ request */ + amd64_write_pci_cfg(pvt->F3, F10_NB_ARRAY_DATA, word_bits); + + retry: + /* wait until injection happens */ + amd64_read_pci_cfg(pvt->F3, F10_NB_ARRAY_DATA, &tmp); + if (tmp & F10_NB_ARR_ECC_WR_REQ) { + cpu_relax(); + goto retry; + } + + on_each_cpu(enable_caches, NULL, 1); + + edac_dbg(0, "section=0x%x word_bits=0x%x\n", section, word_bits); + + return count; +} + +/* + * update NUM_INJ_ATTRS in case you add new members + */ + +static DEVICE_ATTR_RW(inject_section); +static DEVICE_ATTR_RW(inject_word); +static DEVICE_ATTR_RW(inject_ecc_vector); +static DEVICE_ATTR_WO(inject_write); +static DEVICE_ATTR_WO(inject_read); + +static struct attribute *inj_attrs[] = { + &dev_attr_inject_section.attr, + &dev_attr_inject_word.attr, + &dev_attr_inject_ecc_vector.attr, + &dev_attr_inject_write.attr, + &dev_attr_inject_read.attr, + NULL +}; + +static umode_t inj_is_visible(struct kobject *kobj, struct attribute *attr, int idx) +{ + struct device *dev = kobj_to_dev(kobj); + struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev); + struct amd64_pvt *pvt = mci->pvt_info; + + /* Families which have that injection hw */ + if (pvt->fam >= 0x10 && pvt->fam <= 0x16) + return attr->mode; + + return 0; +} + +static const struct attribute_group inj_group = { + .attrs = inj_attrs, + .is_visible = inj_is_visible, +}; +#endif /* CONFIG_EDAC_DEBUG */ + +/* + * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is + * assumed that sys_addr maps to the node given by mci. + * + * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section + * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a + * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled, + * then it is also involved in translating a SysAddr to a DramAddr. Sections + * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting. + * These parts of the documentation are unclear. I interpret them as follows: + * + * When node n receives a SysAddr, it processes the SysAddr as follows: + * + * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM + * Limit registers for node n. If the SysAddr is not within the range + * specified by the base and limit values, then node n ignores the Sysaddr + * (since it does not map to node n). Otherwise continue to step 2 below. + * + * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is + * disabled so skip to step 3 below. Otherwise see if the SysAddr is within + * the range of relocated addresses (starting at 0x100000000) from the DRAM + * hole. If not, skip to step 3 below. Else get the value of the + * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the + * offset defined by this value from the SysAddr. + * + * 3. Obtain the base address for node n from the DRAMBase field of the DRAM + * Base register for node n. To obtain the DramAddr, subtract the base + * address from the SysAddr, as shown near the start of section 3.4.4 (p.70). + */ +static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr) +{ + struct amd64_pvt *pvt = mci->pvt_info; + u64 dram_base, hole_base, hole_offset, hole_size, dram_addr; + int ret; + + dram_base = get_dram_base(pvt, pvt->mc_node_id); + + ret = get_dram_hole_info(mci, &hole_base, &hole_offset, &hole_size); + if (!ret) { + if ((sys_addr >= (1ULL << 32)) && + (sys_addr < ((1ULL << 32) + hole_size))) { + /* use DHAR to translate SysAddr to DramAddr */ + dram_addr = sys_addr - hole_offset; + + edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n", + (unsigned long)sys_addr, + (unsigned long)dram_addr); + + return dram_addr; + } + } + + /* + * Translate the SysAddr to a DramAddr as shown near the start of + * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8 + * only deals with 40-bit values. Therefore we discard bits 63-40 of + * sys_addr below. If bit 39 of sys_addr is 1 then the bits we + * discard are all 1s. Otherwise the bits we discard are all 0s. See + * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture + * Programmer's Manual Volume 1 Application Programming. + */ + dram_addr = (sys_addr & GENMASK_ULL(39, 0)) - dram_base; + + edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n", + (unsigned long)sys_addr, (unsigned long)dram_addr); + return dram_addr; +} + +/* + * @intlv_en is the value of the IntlvEn field from a DRAM Base register + * (section 3.4.4.1). Return the number of bits from a SysAddr that are used + * for node interleaving. + */ +static int num_node_interleave_bits(unsigned intlv_en) +{ + static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 }; + int n; + + BUG_ON(intlv_en > 7); + n = intlv_shift_table[intlv_en]; + return n; +} + +/* Translate the DramAddr given by @dram_addr to an InputAddr. */ +static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr) +{ + struct amd64_pvt *pvt; + int intlv_shift; + u64 input_addr; + + pvt = mci->pvt_info; + + /* + * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E) + * concerning translating a DramAddr to an InputAddr. + */ + intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0)); + input_addr = ((dram_addr >> intlv_shift) & GENMASK_ULL(35, 12)) + + (dram_addr & 0xfff); + + edac_dbg(2, " Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n", + intlv_shift, (unsigned long)dram_addr, + (unsigned long)input_addr); + + return input_addr; +} + +/* + * Translate the SysAddr represented by @sys_addr to an InputAddr. It is + * assumed that @sys_addr maps to the node given by mci. + */ +static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr) +{ + u64 input_addr; + + input_addr = + dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr)); + + edac_dbg(2, "SysAddr 0x%lx translates to InputAddr 0x%lx\n", + (unsigned long)sys_addr, (unsigned long)input_addr); + + return input_addr; +} + +/* Map the Error address to a PAGE and PAGE OFFSET. */ +static inline void error_address_to_page_and_offset(u64 error_address, + struct err_info *err) +{ + err->page = (u32) (error_address >> PAGE_SHIFT); + err->offset = ((u32) error_address) & ~PAGE_MASK; +} + +/* + * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address + * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers + * of a node that detected an ECC memory error. mci represents the node that + * the error address maps to (possibly different from the node that detected + * the error). Return the number of the csrow that sys_addr maps to, or -1 on + * error. + */ +static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr) +{ + int csrow; + + csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr)); + + if (csrow == -1) + amd64_mc_err(mci, "Failed to translate InputAddr to csrow for " + "address 0x%lx\n", (unsigned long)sys_addr); + return csrow; +} + +/* Protect the PCI config register pairs used for DF indirect access. */ +static DEFINE_MUTEX(df_indirect_mutex); + +/* + * Data Fabric Indirect Access uses FICAA/FICAD. + * + * Fabric Indirect Configuration Access Address (FICAA): Constructed based + * on the device's Instance Id and the PCI function and register offset of + * the desired register. + * + * Fabric Indirect Configuration Access Data (FICAD): There are FICAD LO + * and FICAD HI registers but so far we only need the LO register. + * + * Use Instance Id 0xFF to indicate a broadcast read. + */ +#define DF_BROADCAST 0xFF +static int __df_indirect_read(u16 node, u8 func, u16 reg, u8 instance_id, u32 *lo) +{ + struct pci_dev *F4; + u32 ficaa; + int err = -ENODEV; + + if (node >= amd_nb_num()) + goto out; + + F4 = node_to_amd_nb(node)->link; + if (!F4) + goto out; + + ficaa = (instance_id == DF_BROADCAST) ? 0 : 1; + ficaa |= reg & 0x3FC; + ficaa |= (func & 0x7) << 11; + ficaa |= instance_id << 16; + + mutex_lock(&df_indirect_mutex); + + err = pci_write_config_dword(F4, 0x5C, ficaa); + if (err) { + pr_warn("Error writing DF Indirect FICAA, FICAA=0x%x\n", ficaa); + goto out_unlock; + } + + err = pci_read_config_dword(F4, 0x98, lo); + if (err) + pr_warn("Error reading DF Indirect FICAD LO, FICAA=0x%x.\n", ficaa); + +out_unlock: + mutex_unlock(&df_indirect_mutex); + +out: + return err; +} + +static int df_indirect_read_instance(u16 node, u8 func, u16 reg, u8 instance_id, u32 *lo) +{ + return __df_indirect_read(node, func, reg, instance_id, lo); +} + +static int df_indirect_read_broadcast(u16 node, u8 func, u16 reg, u32 *lo) +{ + return __df_indirect_read(node, func, reg, DF_BROADCAST, lo); +} + +struct addr_ctx { + u64 ret_addr; + u32 tmp; + u16 nid; + u8 inst_id; +}; + +static int umc_normaddr_to_sysaddr(u64 norm_addr, u16 nid, u8 umc, u64 *sys_addr) +{ + u64 dram_base_addr, dram_limit_addr, dram_hole_base; + + u8 die_id_shift, die_id_mask, socket_id_shift, socket_id_mask; + u8 intlv_num_dies, intlv_num_chan, intlv_num_sockets; + u8 intlv_addr_sel, intlv_addr_bit; + u8 num_intlv_bits, hashed_bit; + u8 lgcy_mmio_hole_en, base = 0; + u8 cs_mask, cs_id = 0; + bool hash_enabled = false; + + struct addr_ctx ctx; + + memset(&ctx, 0, sizeof(ctx)); + + /* Start from the normalized address */ + ctx.ret_addr = norm_addr; + + ctx.nid = nid; + ctx.inst_id = umc; + + /* Read D18F0x1B4 (DramOffset), check if base 1 is used. */ + if (df_indirect_read_instance(nid, 0, 0x1B4, umc, &ctx.tmp)) + goto out_err; + + /* Remove HiAddrOffset from normalized address, if enabled: */ + if (ctx.tmp & BIT(0)) { + u64 hi_addr_offset = (ctx.tmp & GENMASK_ULL(31, 20)) << 8; + + if (norm_addr >= hi_addr_offset) { + ctx.ret_addr -= hi_addr_offset; + base = 1; + } + } + + /* Read D18F0x110 (DramBaseAddress). */ + if (df_indirect_read_instance(nid, 0, 0x110 + (8 * base), umc, &ctx.tmp)) + goto out_err; + + /* Check if address range is valid. */ + if (!(ctx.tmp & BIT(0))) { + pr_err("%s: Invalid DramBaseAddress range: 0x%x.\n", + __func__, ctx.tmp); + goto out_err; + } + + lgcy_mmio_hole_en = ctx.tmp & BIT(1); + intlv_num_chan = (ctx.tmp >> 4) & 0xF; + intlv_addr_sel = (ctx.tmp >> 8) & 0x7; + dram_base_addr = (ctx.tmp & GENMASK_ULL(31, 12)) << 16; + + /* {0, 1, 2, 3} map to address bits {8, 9, 10, 11} respectively */ + if (intlv_addr_sel > 3) { + pr_err("%s: Invalid interleave address select %d.\n", + __func__, intlv_addr_sel); + goto out_err; + } + + /* Read D18F0x114 (DramLimitAddress). */ + if (df_indirect_read_instance(nid, 0, 0x114 + (8 * base), umc, &ctx.tmp)) + goto out_err; + + intlv_num_sockets = (ctx.tmp >> 8) & 0x1; + intlv_num_dies = (ctx.tmp >> 10) & 0x3; + dram_limit_addr = ((ctx.tmp & GENMASK_ULL(31, 12)) << 16) | GENMASK_ULL(27, 0); + + intlv_addr_bit = intlv_addr_sel + 8; + + /* Re-use intlv_num_chan by setting it equal to log2(#channels) */ + switch (intlv_num_chan) { + case 0: intlv_num_chan = 0; break; + case 1: intlv_num_chan = 1; break; + case 3: intlv_num_chan = 2; break; + case 5: intlv_num_chan = 3; break; + case 7: intlv_num_chan = 4; break; + + case 8: intlv_num_chan = 1; + hash_enabled = true; + break; + default: + pr_err("%s: Invalid number of interleaved channels %d.\n", + __func__, intlv_num_chan); + goto out_err; + } + + num_intlv_bits = intlv_num_chan; + + if (intlv_num_dies > 2) { + pr_err("%s: Invalid number of interleaved nodes/dies %d.\n", + __func__, intlv_num_dies); + goto out_err; + } + + num_intlv_bits += intlv_num_dies; + + /* Add a bit if sockets are interleaved. */ + num_intlv_bits += intlv_num_sockets; + + /* Assert num_intlv_bits <= 4 */ + if (num_intlv_bits > 4) { + pr_err("%s: Invalid interleave bits %d.\n", + __func__, num_intlv_bits); + goto out_err; + } + + if (num_intlv_bits > 0) { + u64 temp_addr_x, temp_addr_i, temp_addr_y; + u8 die_id_bit, sock_id_bit, cs_fabric_id; + + /* + * Read FabricBlockInstanceInformation3_CS[BlockFabricID]. + * This is the fabric id for this coherent slave. Use + * umc/channel# as instance id of the coherent slave + * for FICAA. + */ + if (df_indirect_read_instance(nid, 0, 0x50, umc, &ctx.tmp)) + goto out_err; + + cs_fabric_id = (ctx.tmp >> 8) & 0xFF; + die_id_bit = 0; + + /* If interleaved over more than 1 channel: */ + if (intlv_num_chan) { + die_id_bit = intlv_num_chan; + cs_mask = (1 << die_id_bit) - 1; + cs_id = cs_fabric_id & cs_mask; + } + + sock_id_bit = die_id_bit; + + /* Read D18F1x208 (SystemFabricIdMask). */ + if (intlv_num_dies || intlv_num_sockets) + if (df_indirect_read_broadcast(nid, 1, 0x208, &ctx.tmp)) + goto out_err; + + /* If interleaved over more than 1 die. */ + if (intlv_num_dies) { + sock_id_bit = die_id_bit + intlv_num_dies; + die_id_shift = (ctx.tmp >> 24) & 0xF; + die_id_mask = (ctx.tmp >> 8) & 0xFF; + + cs_id |= ((cs_fabric_id & die_id_mask) >> die_id_shift) << die_id_bit; + } + + /* If interleaved over more than 1 socket. */ + if (intlv_num_sockets) { + socket_id_shift = (ctx.tmp >> 28) & 0xF; + socket_id_mask = (ctx.tmp >> 16) & 0xFF; + + cs_id |= ((cs_fabric_id & socket_id_mask) >> socket_id_shift) << sock_id_bit; + } + + /* + * The pre-interleaved address consists of XXXXXXIIIYYYYY + * where III is the ID for this CS, and XXXXXXYYYYY are the + * address bits from the post-interleaved address. + * "num_intlv_bits" has been calculated to tell us how many "I" + * bits there are. "intlv_addr_bit" tells us how many "Y" bits + * there are (where "I" starts). + */ + temp_addr_y = ctx.ret_addr & GENMASK_ULL(intlv_addr_bit - 1, 0); + temp_addr_i = (cs_id << intlv_addr_bit); + temp_addr_x = (ctx.ret_addr & GENMASK_ULL(63, intlv_addr_bit)) << num_intlv_bits; + ctx.ret_addr = temp_addr_x | temp_addr_i | temp_addr_y; + } + + /* Add dram base address */ + ctx.ret_addr += dram_base_addr; + + /* If legacy MMIO hole enabled */ + if (lgcy_mmio_hole_en) { + if (df_indirect_read_broadcast(nid, 0, 0x104, &ctx.tmp)) + goto out_err; + + dram_hole_base = ctx.tmp & GENMASK(31, 24); + if (ctx.ret_addr >= dram_hole_base) + ctx.ret_addr += (BIT_ULL(32) - dram_hole_base); + } + + if (hash_enabled) { + /* Save some parentheses and grab ls-bit at the end. */ + hashed_bit = (ctx.ret_addr >> 12) ^ + (ctx.ret_addr >> 18) ^ + (ctx.ret_addr >> 21) ^ + (ctx.ret_addr >> 30) ^ + cs_id; + + hashed_bit &= BIT(0); + + if (hashed_bit != ((ctx.ret_addr >> intlv_addr_bit) & BIT(0))) + ctx.ret_addr ^= BIT(intlv_addr_bit); + } + + /* Is calculated system address is above DRAM limit address? */ + if (ctx.ret_addr > dram_limit_addr) + goto out_err; + + *sys_addr = ctx.ret_addr; + return 0; + +out_err: + return -EINVAL; +} + +static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16); + +/* + * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs + * are ECC capable. + */ +static unsigned long determine_edac_cap(struct amd64_pvt *pvt) +{ + unsigned long edac_cap = EDAC_FLAG_NONE; + u8 bit; + + if (pvt->umc) { + u8 i, umc_en_mask = 0, dimm_ecc_en_mask = 0; + + for_each_umc(i) { + if (!(pvt->umc[i].sdp_ctrl & UMC_SDP_INIT)) + continue; + + umc_en_mask |= BIT(i); + + /* UMC Configuration bit 12 (DimmEccEn) */ + if (pvt->umc[i].umc_cfg & BIT(12)) + dimm_ecc_en_mask |= BIT(i); + } + + if (umc_en_mask == dimm_ecc_en_mask) + edac_cap = EDAC_FLAG_SECDED; + } else { + bit = (pvt->fam > 0xf || pvt->ext_model >= K8_REV_F) + ? 19 + : 17; + + if (pvt->dclr0 & BIT(bit)) + edac_cap = EDAC_FLAG_SECDED; + } + + return edac_cap; +} + +static void debug_display_dimm_sizes(struct amd64_pvt *, u8); + +static void debug_dump_dramcfg_low(struct amd64_pvt *pvt, u32 dclr, int chan) +{ + edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr); + + if (pvt->dram_type == MEM_LRDDR3) { + u32 dcsm = pvt->csels[chan].csmasks[0]; + /* + * It's assumed all LRDIMMs in a DCT are going to be of + * same 'type' until proven otherwise. So, use a cs + * value of '0' here to get dcsm value. + */ + edac_dbg(1, " LRDIMM %dx rank multiply\n", (dcsm & 0x3)); + } + + edac_dbg(1, "All DIMMs support ECC:%s\n", + (dclr & BIT(19)) ? "yes" : "no"); + + + edac_dbg(1, " PAR/ERR parity: %s\n", + (dclr & BIT(8)) ? "enabled" : "disabled"); + + if (pvt->fam == 0x10) + edac_dbg(1, " DCT 128bit mode width: %s\n", + (dclr & BIT(11)) ? "128b" : "64b"); + + edac_dbg(1, " x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n", + (dclr & BIT(12)) ? "yes" : "no", + (dclr & BIT(13)) ? "yes" : "no", + (dclr & BIT(14)) ? "yes" : "no", + (dclr & BIT(15)) ? "yes" : "no"); +} + +#define CS_EVEN_PRIMARY BIT(0) +#define CS_ODD_PRIMARY BIT(1) +#define CS_EVEN_SECONDARY BIT(2) +#define CS_ODD_SECONDARY BIT(3) +#define CS_3R_INTERLEAVE BIT(4) + +#define CS_EVEN (CS_EVEN_PRIMARY | CS_EVEN_SECONDARY) +#define CS_ODD (CS_ODD_PRIMARY | CS_ODD_SECONDARY) + +static int f17_get_cs_mode(int dimm, u8 ctrl, struct amd64_pvt *pvt) +{ + u8 base, count = 0; + int cs_mode = 0; + + if (csrow_enabled(2 * dimm, ctrl, pvt)) + cs_mode |= CS_EVEN_PRIMARY; + + if (csrow_enabled(2 * dimm + 1, ctrl, pvt)) + cs_mode |= CS_ODD_PRIMARY; + + /* Asymmetric dual-rank DIMM support. */ + if (csrow_sec_enabled(2 * dimm + 1, ctrl, pvt)) + cs_mode |= CS_ODD_SECONDARY; + + /* + * 3 Rank inteleaving support. + * There should be only three bases enabled and their two masks should + * be equal. + */ + for_each_chip_select(base, ctrl, pvt) + count += csrow_enabled(base, ctrl, pvt); + + if (count == 3 && + pvt->csels[ctrl].csmasks[0] == pvt->csels[ctrl].csmasks[1]) { + edac_dbg(1, "3R interleaving in use.\n"); + cs_mode |= CS_3R_INTERLEAVE; + } + + return cs_mode; +} + +static void debug_display_dimm_sizes_df(struct amd64_pvt *pvt, u8 ctrl) +{ + int dimm, size0, size1, cs0, cs1, cs_mode; + + edac_printk(KERN_DEBUG, EDAC_MC, "UMC%d chip selects:\n", ctrl); + + for (dimm = 0; dimm < 2; dimm++) { + cs0 = dimm * 2; + cs1 = dimm * 2 + 1; + + cs_mode = f17_get_cs_mode(dimm, ctrl, pvt); + + size0 = pvt->ops->dbam_to_cs(pvt, ctrl, cs_mode, cs0); + size1 = pvt->ops->dbam_to_cs(pvt, ctrl, cs_mode, cs1); + + amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n", + cs0, size0, + cs1, size1); + } +} + +static void __dump_misc_regs_df(struct amd64_pvt *pvt) +{ + struct amd64_umc *umc; + u32 i, tmp, umc_base; + + for_each_umc(i) { + umc_base = get_umc_base(i); + umc = &pvt->umc[i]; + + edac_dbg(1, "UMC%d DIMM cfg: 0x%x\n", i, umc->dimm_cfg); + edac_dbg(1, "UMC%d UMC cfg: 0x%x\n", i, umc->umc_cfg); + edac_dbg(1, "UMC%d SDP ctrl: 0x%x\n", i, umc->sdp_ctrl); + edac_dbg(1, "UMC%d ECC ctrl: 0x%x\n", i, umc->ecc_ctrl); + + amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_ECC_BAD_SYMBOL, &tmp); + edac_dbg(1, "UMC%d ECC bad symbol: 0x%x\n", i, tmp); + + amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_UMC_CAP, &tmp); + edac_dbg(1, "UMC%d UMC cap: 0x%x\n", i, tmp); + edac_dbg(1, "UMC%d UMC cap high: 0x%x\n", i, umc->umc_cap_hi); + + edac_dbg(1, "UMC%d ECC capable: %s, ChipKill ECC capable: %s\n", + i, (umc->umc_cap_hi & BIT(30)) ? "yes" : "no", + (umc->umc_cap_hi & BIT(31)) ? "yes" : "no"); + edac_dbg(1, "UMC%d All DIMMs support ECC: %s\n", + i, (umc->umc_cfg & BIT(12)) ? "yes" : "no"); + edac_dbg(1, "UMC%d x4 DIMMs present: %s\n", + i, (umc->dimm_cfg & BIT(6)) ? "yes" : "no"); + edac_dbg(1, "UMC%d x16 DIMMs present: %s\n", + i, (umc->dimm_cfg & BIT(7)) ? "yes" : "no"); + + if (umc->dram_type == MEM_LRDDR4 || umc->dram_type == MEM_LRDDR5) { + amd_smn_read(pvt->mc_node_id, + umc_base + get_umc_reg(UMCCH_ADDR_CFG), + &tmp); + edac_dbg(1, "UMC%d LRDIMM %dx rank multiply\n", + i, 1 << ((tmp >> 4) & 0x3)); + } + + debug_display_dimm_sizes_df(pvt, i); + } + + edac_dbg(1, "F0x104 (DRAM Hole Address): 0x%08x, base: 0x%08x\n", + pvt->dhar, dhar_base(pvt)); +} + +/* Display and decode various NB registers for debug purposes. */ +static void __dump_misc_regs(struct amd64_pvt *pvt) +{ + edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap); + + edac_dbg(1, " NB two channel DRAM capable: %s\n", + (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no"); + + edac_dbg(1, " ECC capable: %s, ChipKill ECC capable: %s\n", + (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no", + (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no"); + + debug_dump_dramcfg_low(pvt, pvt->dclr0, 0); + + edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare); + + edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n", + pvt->dhar, dhar_base(pvt), + (pvt->fam == 0xf) ? k8_dhar_offset(pvt) + : f10_dhar_offset(pvt)); + + debug_display_dimm_sizes(pvt, 0); + + /* everything below this point is Fam10h and above */ + if (pvt->fam == 0xf) + return; + + debug_display_dimm_sizes(pvt, 1); + + /* Only if NOT ganged does dclr1 have valid info */ + if (!dct_ganging_enabled(pvt)) + debug_dump_dramcfg_low(pvt, pvt->dclr1, 1); +} + +/* Display and decode various NB registers for debug purposes. */ +static void dump_misc_regs(struct amd64_pvt *pvt) +{ + if (pvt->umc) + __dump_misc_regs_df(pvt); + else + __dump_misc_regs(pvt); + + edac_dbg(1, " DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no"); + + amd64_info("using x%u syndromes.\n", pvt->ecc_sym_sz); +} + +/* + * See BKDG, F2x[1,0][5C:40], F2[1,0][6C:60] + */ +static void prep_chip_selects(struct amd64_pvt *pvt) +{ + if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) { + pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8; + pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8; + } else if (pvt->fam == 0x15 && pvt->model == 0x30) { + pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 4; + pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 2; + } else if (pvt->fam >= 0x17) { + int umc; + + for_each_umc(umc) { + pvt->csels[umc].b_cnt = 4; + pvt->csels[umc].m_cnt = fam_type->flags.zn_regs_v2 ? 4 : 2; + } + + } else { + pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8; + pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4; + } +} + +static void read_umc_base_mask(struct amd64_pvt *pvt) +{ + u32 umc_base_reg, umc_base_reg_sec; + u32 umc_mask_reg, umc_mask_reg_sec; + u32 base_reg, base_reg_sec; + u32 mask_reg, mask_reg_sec; + u32 *base, *base_sec; + u32 *mask, *mask_sec; + int cs, umc; + + for_each_umc(umc) { + umc_base_reg = get_umc_base(umc) + UMCCH_BASE_ADDR; + umc_base_reg_sec = get_umc_base(umc) + UMCCH_BASE_ADDR_SEC; + + for_each_chip_select(cs, umc, pvt) { + base = &pvt->csels[umc].csbases[cs]; + base_sec = &pvt->csels[umc].csbases_sec[cs]; + + base_reg = umc_base_reg + (cs * 4); + base_reg_sec = umc_base_reg_sec + (cs * 4); + + if (!amd_smn_read(pvt->mc_node_id, base_reg, base)) + edac_dbg(0, " DCSB%d[%d]=0x%08x reg: 0x%x\n", + umc, cs, *base, base_reg); + + if (!amd_smn_read(pvt->mc_node_id, base_reg_sec, base_sec)) + edac_dbg(0, " DCSB_SEC%d[%d]=0x%08x reg: 0x%x\n", + umc, cs, *base_sec, base_reg_sec); + } + + umc_mask_reg = get_umc_base(umc) + UMCCH_ADDR_MASK; + umc_mask_reg_sec = get_umc_base(umc) + get_umc_reg(UMCCH_ADDR_MASK_SEC); + + for_each_chip_select_mask(cs, umc, pvt) { + mask = &pvt->csels[umc].csmasks[cs]; + mask_sec = &pvt->csels[umc].csmasks_sec[cs]; + + mask_reg = umc_mask_reg + (cs * 4); + mask_reg_sec = umc_mask_reg_sec + (cs * 4); + + if (!amd_smn_read(pvt->mc_node_id, mask_reg, mask)) + edac_dbg(0, " DCSM%d[%d]=0x%08x reg: 0x%x\n", + umc, cs, *mask, mask_reg); + + if (!amd_smn_read(pvt->mc_node_id, mask_reg_sec, mask_sec)) + edac_dbg(0, " DCSM_SEC%d[%d]=0x%08x reg: 0x%x\n", + umc, cs, *mask_sec, mask_reg_sec); + } + } +} + +/* + * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers + */ +static void read_dct_base_mask(struct amd64_pvt *pvt) +{ + int cs; + + prep_chip_selects(pvt); + + if (pvt->umc) + return read_umc_base_mask(pvt); + + for_each_chip_select(cs, 0, pvt) { + int reg0 = DCSB0 + (cs * 4); + int reg1 = DCSB1 + (cs * 4); + u32 *base0 = &pvt->csels[0].csbases[cs]; + u32 *base1 = &pvt->csels[1].csbases[cs]; + + if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, base0)) + edac_dbg(0, " DCSB0[%d]=0x%08x reg: F2x%x\n", + cs, *base0, reg0); + + if (pvt->fam == 0xf) + continue; + + if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, base1)) + edac_dbg(0, " DCSB1[%d]=0x%08x reg: F2x%x\n", + cs, *base1, (pvt->fam == 0x10) ? reg1 + : reg0); + } + + for_each_chip_select_mask(cs, 0, pvt) { + int reg0 = DCSM0 + (cs * 4); + int reg1 = DCSM1 + (cs * 4); + u32 *mask0 = &pvt->csels[0].csmasks[cs]; + u32 *mask1 = &pvt->csels[1].csmasks[cs]; + + if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, mask0)) + edac_dbg(0, " DCSM0[%d]=0x%08x reg: F2x%x\n", + cs, *mask0, reg0); + + if (pvt->fam == 0xf) + continue; + + if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, mask1)) + edac_dbg(0, " DCSM1[%d]=0x%08x reg: F2x%x\n", + cs, *mask1, (pvt->fam == 0x10) ? reg1 + : reg0); + } +} + +static void determine_memory_type_df(struct amd64_pvt *pvt) +{ + struct amd64_umc *umc; + u32 i; + + for_each_umc(i) { + umc = &pvt->umc[i]; + + if (!(umc->sdp_ctrl & UMC_SDP_INIT)) { + umc->dram_type = MEM_EMPTY; + continue; + } + + /* + * Check if the system supports the "DDR Type" field in UMC Config + * and has DDR5 DIMMs in use. + */ + if (fam_type->flags.zn_regs_v2 && ((umc->umc_cfg & GENMASK(2, 0)) == 0x1)) { + if (umc->dimm_cfg & BIT(5)) + umc->dram_type = MEM_LRDDR5; + else if (umc->dimm_cfg & BIT(4)) + umc->dram_type = MEM_RDDR5; + else + umc->dram_type = MEM_DDR5; + } else { + if (umc->dimm_cfg & BIT(5)) + umc->dram_type = MEM_LRDDR4; + else if (umc->dimm_cfg & BIT(4)) + umc->dram_type = MEM_RDDR4; + else + umc->dram_type = MEM_DDR4; + } + + edac_dbg(1, " UMC%d DIMM type: %s\n", i, edac_mem_types[umc->dram_type]); + } +} + +static void determine_memory_type(struct amd64_pvt *pvt) +{ + u32 dram_ctrl, dcsm; + + if (pvt->umc) + return determine_memory_type_df(pvt); + + switch (pvt->fam) { + case 0xf: + if (pvt->ext_model >= K8_REV_F) + goto ddr3; + + pvt->dram_type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR; + return; + + case 0x10: + if (pvt->dchr0 & DDR3_MODE) + goto ddr3; + + pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2; + return; + + case 0x15: + if (pvt->model < 0x60) + goto ddr3; + + /* + * Model 0x60h needs special handling: + * + * We use a Chip Select value of '0' to obtain dcsm. + * Theoretically, it is possible to populate LRDIMMs of different + * 'Rank' value on a DCT. But this is not the common case. So, + * it's reasonable to assume all DIMMs are going to be of same + * 'type' until proven otherwise. + */ + amd64_read_dct_pci_cfg(pvt, 0, DRAM_CONTROL, &dram_ctrl); + dcsm = pvt->csels[0].csmasks[0]; + + if (((dram_ctrl >> 8) & 0x7) == 0x2) + pvt->dram_type = MEM_DDR4; + else if (pvt->dclr0 & BIT(16)) + pvt->dram_type = MEM_DDR3; + else if (dcsm & 0x3) + pvt->dram_type = MEM_LRDDR3; + else + pvt->dram_type = MEM_RDDR3; + + return; + + case 0x16: + goto ddr3; + + default: + WARN(1, KERN_ERR "%s: Family??? 0x%x\n", __func__, pvt->fam); + pvt->dram_type = MEM_EMPTY; + } + return; + +ddr3: + pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3; +} + +/* Get the number of DCT channels the memory controller is using. */ +static int k8_early_channel_count(struct amd64_pvt *pvt) +{ + int flag; + + if (pvt->ext_model >= K8_REV_F) + /* RevF (NPT) and later */ + flag = pvt->dclr0 & WIDTH_128; + else + /* RevE and earlier */ + flag = pvt->dclr0 & REVE_WIDTH_128; + + /* not used */ + pvt->dclr1 = 0; + + return (flag) ? 2 : 1; +} + +/* On F10h and later ErrAddr is MC4_ADDR[47:1] */ +static u64 get_error_address(struct amd64_pvt *pvt, struct mce *m) +{ + u16 mce_nid = topology_die_id(m->extcpu); + struct mem_ctl_info *mci; + u8 start_bit = 1; + u8 end_bit = 47; + u64 addr; + + mci = edac_mc_find(mce_nid); + if (!mci) + return 0; + + pvt = mci->pvt_info; + + if (pvt->fam == 0xf) { + start_bit = 3; + end_bit = 39; + } + + addr = m->addr & GENMASK_ULL(end_bit, start_bit); + + /* + * Erratum 637 workaround + */ + if (pvt->fam == 0x15) { + u64 cc6_base, tmp_addr; + u32 tmp; + u8 intlv_en; + + if ((addr & GENMASK_ULL(47, 24)) >> 24 != 0x00fdf7) + return addr; + + + amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp); + intlv_en = tmp >> 21 & 0x7; + + /* add [47:27] + 3 trailing bits */ + cc6_base = (tmp & GENMASK_ULL(20, 0)) << 3; + + /* reverse and add DramIntlvEn */ + cc6_base |= intlv_en ^ 0x7; + + /* pin at [47:24] */ + cc6_base <<= 24; + + if (!intlv_en) + return cc6_base | (addr & GENMASK_ULL(23, 0)); + + amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp); + + /* faster log2 */ + tmp_addr = (addr & GENMASK_ULL(23, 12)) << __fls(intlv_en + 1); + + /* OR DramIntlvSel into bits [14:12] */ + tmp_addr |= (tmp & GENMASK_ULL(23, 21)) >> 9; + + /* add remaining [11:0] bits from original MC4_ADDR */ + tmp_addr |= addr & GENMASK_ULL(11, 0); + + return cc6_base | tmp_addr; + } + + return addr; +} + +static struct pci_dev *pci_get_related_function(unsigned int vendor, + unsigned int device, + struct pci_dev *related) +{ + struct pci_dev *dev = NULL; + + while ((dev = pci_get_device(vendor, device, dev))) { + if (pci_domain_nr(dev->bus) == pci_domain_nr(related->bus) && + (dev->bus->number == related->bus->number) && + (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn))) + break; + } + + return dev; +} + +static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range) +{ + struct amd_northbridge *nb; + struct pci_dev *f1 = NULL; + unsigned int pci_func; + int off = range << 3; + u32 llim; + + amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo); + amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo); + + if (pvt->fam == 0xf) + return; + + if (!dram_rw(pvt, range)) + return; + + amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi); + amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi); + + /* F15h: factor in CC6 save area by reading dst node's limit reg */ + if (pvt->fam != 0x15) + return; + + nb = node_to_amd_nb(dram_dst_node(pvt, range)); + if (WARN_ON(!nb)) + return; + + if (pvt->model == 0x60) + pci_func = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1; + else if (pvt->model == 0x30) + pci_func = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1; + else + pci_func = PCI_DEVICE_ID_AMD_15H_NB_F1; + + f1 = pci_get_related_function(nb->misc->vendor, pci_func, nb->misc); + if (WARN_ON(!f1)) + return; + + amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim); + + pvt->ranges[range].lim.lo &= GENMASK_ULL(15, 0); + + /* {[39:27],111b} */ + pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16; + + pvt->ranges[range].lim.hi &= GENMASK_ULL(7, 0); + + /* [47:40] */ + pvt->ranges[range].lim.hi |= llim >> 13; + + pci_dev_put(f1); +} + +static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr, + struct err_info *err) +{ + struct amd64_pvt *pvt = mci->pvt_info; + + error_address_to_page_and_offset(sys_addr, err); + + /* + * Find out which node the error address belongs to. This may be + * different from the node that detected the error. + */ + err->src_mci = find_mc_by_sys_addr(mci, sys_addr); + if (!err->src_mci) { + amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n", + (unsigned long)sys_addr); + err->err_code = ERR_NODE; + return; + } + + /* Now map the sys_addr to a CSROW */ + err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr); + if (err->csrow < 0) { + err->err_code = ERR_CSROW; + return; + } + + /* CHIPKILL enabled */ + if (pvt->nbcfg & NBCFG_CHIPKILL) { + err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome); + if (err->channel < 0) { + /* + * Syndrome didn't map, so we don't know which of the + * 2 DIMMs is in error. So we need to ID 'both' of them + * as suspect. + */ + amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - " + "possible error reporting race\n", + err->syndrome); + err->err_code = ERR_CHANNEL; + return; + } + } else { + /* + * non-chipkill ecc mode + * + * The k8 documentation is unclear about how to determine the + * channel number when using non-chipkill memory. This method + * was obtained from email communication with someone at AMD. + * (Wish the email was placed in this comment - norsk) + */ + err->channel = ((sys_addr & BIT(3)) != 0); + } +} + +static int ddr2_cs_size(unsigned i, bool dct_width) +{ + unsigned shift = 0; + + if (i <= 2) + shift = i; + else if (!(i & 0x1)) + shift = i >> 1; + else + shift = (i + 1) >> 1; + + return 128 << (shift + !!dct_width); +} + +static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct, + unsigned cs_mode, int cs_mask_nr) +{ + u32 dclr = dct ? pvt->dclr1 : pvt->dclr0; + + if (pvt->ext_model >= K8_REV_F) { + WARN_ON(cs_mode > 11); + return ddr2_cs_size(cs_mode, dclr & WIDTH_128); + } + else if (pvt->ext_model >= K8_REV_D) { + unsigned diff; + WARN_ON(cs_mode > 10); + + /* + * the below calculation, besides trying to win an obfuscated C + * contest, maps cs_mode values to DIMM chip select sizes. The + * mappings are: + * + * cs_mode CS size (mb) + * ======= ============ + * 0 32 + * 1 64 + * 2 128 + * 3 128 + * 4 256 + * 5 512 + * 6 256 + * 7 512 + * 8 1024 + * 9 1024 + * 10 2048 + * + * Basically, it calculates a value with which to shift the + * smallest CS size of 32MB. + * + * ddr[23]_cs_size have a similar purpose. + */ + diff = cs_mode/3 + (unsigned)(cs_mode > 5); + + return 32 << (cs_mode - diff); + } + else { + WARN_ON(cs_mode > 6); + return 32 << cs_mode; + } +} + +/* + * Get the number of DCT channels in use. + * + * Return: + * number of Memory Channels in operation + * Pass back: + * contents of the DCL0_LOW register + */ +static int f1x_early_channel_count(struct amd64_pvt *pvt) +{ + int i, j, channels = 0; + + /* On F10h, if we are in 128 bit mode, then we are using 2 channels */ + if (pvt->fam == 0x10 && (pvt->dclr0 & WIDTH_128)) + return 2; + + /* + * Need to check if in unganged mode: In such, there are 2 channels, + * but they are not in 128 bit mode and thus the above 'dclr0' status + * bit will be OFF. + * + * Need to check DCT0[0] and DCT1[0] to see if only one of them has + * their CSEnable bit on. If so, then SINGLE DIMM case. + */ + edac_dbg(0, "Data width is not 128 bits - need more decoding\n"); + + /* + * Check DRAM Bank Address Mapping values for each DIMM to see if there + * is more than just one DIMM present in unganged mode. Need to check + * both controllers since DIMMs can be placed in either one. + */ + for (i = 0; i < 2; i++) { + u32 dbam = (i ? pvt->dbam1 : pvt->dbam0); + + for (j = 0; j < 4; j++) { + if (DBAM_DIMM(j, dbam) > 0) { + channels++; + break; + } + } + } + + if (channels > 2) + channels = 2; + + amd64_info("MCT channel count: %d\n", channels); + + return channels; +} + +static int f17_early_channel_count(struct amd64_pvt *pvt) +{ + int i, channels = 0; + + /* SDP Control bit 31 (SdpInit) is clear for unused UMC channels */ + for_each_umc(i) + channels += !!(pvt->umc[i].sdp_ctrl & UMC_SDP_INIT); + + amd64_info("MCT channel count: %d\n", channels); + + return channels; +} + +static int ddr3_cs_size(unsigned i, bool dct_width) +{ + unsigned shift = 0; + int cs_size = 0; + + if (i == 0 || i == 3 || i == 4) + cs_size = -1; + else if (i <= 2) + shift = i; + else if (i == 12) + shift = 7; + else if (!(i & 0x1)) + shift = i >> 1; + else + shift = (i + 1) >> 1; + + if (cs_size != -1) + cs_size = (128 * (1 << !!dct_width)) << shift; + + return cs_size; +} + +static int ddr3_lrdimm_cs_size(unsigned i, unsigned rank_multiply) +{ + unsigned shift = 0; + int cs_size = 0; + + if (i < 4 || i == 6) + cs_size = -1; + else if (i == 12) + shift = 7; + else if (!(i & 0x1)) + shift = i >> 1; + else + shift = (i + 1) >> 1; + + if (cs_size != -1) + cs_size = rank_multiply * (128 << shift); + + return cs_size; +} + +static int ddr4_cs_size(unsigned i) +{ + int cs_size = 0; + + if (i == 0) + cs_size = -1; + else if (i == 1) + cs_size = 1024; + else + /* Min cs_size = 1G */ + cs_size = 1024 * (1 << (i >> 1)); + + return cs_size; +} + +static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct, + unsigned cs_mode, int cs_mask_nr) +{ + u32 dclr = dct ? pvt->dclr1 : pvt->dclr0; + + WARN_ON(cs_mode > 11); + + if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE) + return ddr3_cs_size(cs_mode, dclr & WIDTH_128); + else + return ddr2_cs_size(cs_mode, dclr & WIDTH_128); +} + +/* + * F15h supports only 64bit DCT interfaces + */ +static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct, + unsigned cs_mode, int cs_mask_nr) +{ + WARN_ON(cs_mode > 12); + + return ddr3_cs_size(cs_mode, false); +} + +/* F15h M60h supports DDR4 mapping as well.. */ +static int f15_m60h_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct, + unsigned cs_mode, int cs_mask_nr) +{ + int cs_size; + u32 dcsm = pvt->csels[dct].csmasks[cs_mask_nr]; + + WARN_ON(cs_mode > 12); + + if (pvt->dram_type == MEM_DDR4) { + if (cs_mode > 9) + return -1; + + cs_size = ddr4_cs_size(cs_mode); + } else if (pvt->dram_type == MEM_LRDDR3) { + unsigned rank_multiply = dcsm & 0xf; + + if (rank_multiply == 3) + rank_multiply = 4; + cs_size = ddr3_lrdimm_cs_size(cs_mode, rank_multiply); + } else { + /* Minimum cs size is 512mb for F15hM60h*/ + if (cs_mode == 0x1) + return -1; + + cs_size = ddr3_cs_size(cs_mode, false); + } + + return cs_size; +} + +/* + * F16h and F15h model 30h have only limited cs_modes. + */ +static int f16_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct, + unsigned cs_mode, int cs_mask_nr) +{ + WARN_ON(cs_mode > 12); + + if (cs_mode == 6 || cs_mode == 8 || + cs_mode == 9 || cs_mode == 12) + return -1; + else + return ddr3_cs_size(cs_mode, false); +} + +static int f17_addr_mask_to_cs_size(struct amd64_pvt *pvt, u8 umc, + unsigned int cs_mode, int csrow_nr) +{ + u32 addr_mask_orig, addr_mask_deinterleaved; + u32 msb, weight, num_zero_bits; + int cs_mask_nr = csrow_nr; + int dimm, size = 0; + + /* No Chip Selects are enabled. */ + if (!cs_mode) + return size; + + /* Requested size of an even CS but none are enabled. */ + if (!(cs_mode & CS_EVEN) && !(csrow_nr & 1)) + return size; + + /* Requested size of an odd CS but none are enabled. */ + if (!(cs_mode & CS_ODD) && (csrow_nr & 1)) + return size; + + /* + * Family 17h introduced systems with one mask per DIMM, + * and two Chip Selects per DIMM. + * + * CS0 and CS1 -> MASK0 / DIMM0 + * CS2 and CS3 -> MASK1 / DIMM1 + * + * Family 19h Model 10h introduced systems with one mask per Chip Select, + * and two Chip Selects per DIMM. + * + * CS0 -> MASK0 -> DIMM0 + * CS1 -> MASK1 -> DIMM0 + * CS2 -> MASK2 -> DIMM1 + * CS3 -> MASK3 -> DIMM1 + * + * Keep the mask number equal to the Chip Select number for newer systems, + * and shift the mask number for older systems. + */ + dimm = csrow_nr >> 1; + + if (!fam_type->flags.zn_regs_v2) + cs_mask_nr >>= 1; + + /* Asymmetric dual-rank DIMM support. */ + if ((csrow_nr & 1) && (cs_mode & CS_ODD_SECONDARY)) + addr_mask_orig = pvt->csels[umc].csmasks_sec[cs_mask_nr]; + else + addr_mask_orig = pvt->csels[umc].csmasks[cs_mask_nr]; + + /* + * The number of zero bits in the mask is equal to the number of bits + * in a full mask minus the number of bits in the current mask. + * + * The MSB is the number of bits in the full mask because BIT[0] is + * always 0. + * + * In the special 3 Rank interleaving case, a single bit is flipped + * without swapping with the most significant bit. This can be handled + * by keeping the MSB where it is and ignoring the single zero bit. + */ + msb = fls(addr_mask_orig) - 1; + weight = hweight_long(addr_mask_orig); + num_zero_bits = msb - weight - !!(cs_mode & CS_3R_INTERLEAVE); + + /* Take the number of zero bits off from the top of the mask. */ + addr_mask_deinterleaved = GENMASK_ULL(msb - num_zero_bits, 1); + + edac_dbg(1, "CS%d DIMM%d AddrMasks:\n", csrow_nr, dimm); + edac_dbg(1, " Original AddrMask: 0x%x\n", addr_mask_orig); + edac_dbg(1, " Deinterleaved AddrMask: 0x%x\n", addr_mask_deinterleaved); + + /* Register [31:1] = Address [39:9]. Size is in kBs here. */ + size = (addr_mask_deinterleaved >> 2) + 1; + + /* Return size in MBs. */ + return size >> 10; +} + +static void read_dram_ctl_register(struct amd64_pvt *pvt) +{ + + if (pvt->fam == 0xf) + return; + + if (!amd64_read_pci_cfg(pvt->F2, DCT_SEL_LO, &pvt->dct_sel_lo)) { + edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n", + pvt->dct_sel_lo, dct_sel_baseaddr(pvt)); + + edac_dbg(0, " DCTs operate in %s mode\n", + (dct_ganging_enabled(pvt) ? "ganged" : "unganged")); + + if (!dct_ganging_enabled(pvt)) + edac_dbg(0, " Address range split per DCT: %s\n", + (dct_high_range_enabled(pvt) ? "yes" : "no")); + + edac_dbg(0, " data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n", + (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"), + (dct_memory_cleared(pvt) ? "yes" : "no")); + + edac_dbg(0, " channel interleave: %s, " + "interleave bits selector: 0x%x\n", + (dct_interleave_enabled(pvt) ? "enabled" : "disabled"), + dct_sel_interleave_addr(pvt)); + } + + amd64_read_pci_cfg(pvt->F2, DCT_SEL_HI, &pvt->dct_sel_hi); +} + +/* + * Determine channel (DCT) based on the interleaving mode (see F15h M30h BKDG, + * 2.10.12 Memory Interleaving Modes). + */ +static u8 f15_m30h_determine_channel(struct amd64_pvt *pvt, u64 sys_addr, + u8 intlv_en, int num_dcts_intlv, + u32 dct_sel) +{ + u8 channel = 0; + u8 select; + + if (!(intlv_en)) + return (u8)(dct_sel); + + if (num_dcts_intlv == 2) { + select = (sys_addr >> 8) & 0x3; + channel = select ? 0x3 : 0; + } else if (num_dcts_intlv == 4) { + u8 intlv_addr = dct_sel_interleave_addr(pvt); + switch (intlv_addr) { + case 0x4: + channel = (sys_addr >> 8) & 0x3; + break; + case 0x5: + channel = (sys_addr >> 9) & 0x3; + break; + } + } + return channel; +} + +/* + * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory + * Interleaving Modes. + */ +static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr, + bool hi_range_sel, u8 intlv_en) +{ + u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1; + + if (dct_ganging_enabled(pvt)) + return 0; + + if (hi_range_sel) + return dct_sel_high; + + /* + * see F2x110[DctSelIntLvAddr] - channel interleave mode + */ + if (dct_interleave_enabled(pvt)) { + u8 intlv_addr = dct_sel_interleave_addr(pvt); + + /* return DCT select function: 0=DCT0, 1=DCT1 */ + if (!intlv_addr) + return sys_addr >> 6 & 1; + + if (intlv_addr & 0x2) { + u8 shift = intlv_addr & 0x1 ? 9 : 6; + u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) & 1; + + return ((sys_addr >> shift) & 1) ^ temp; + } + + if (intlv_addr & 0x4) { + u8 shift = intlv_addr & 0x1 ? 9 : 8; + + return (sys_addr >> shift) & 1; + } + + return (sys_addr >> (12 + hweight8(intlv_en))) & 1; + } + + if (dct_high_range_enabled(pvt)) + return ~dct_sel_high & 1; + + return 0; +} + +/* Convert the sys_addr to the normalized DCT address */ +static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, u8 range, + u64 sys_addr, bool hi_rng, + u32 dct_sel_base_addr) +{ + u64 chan_off; + u64 dram_base = get_dram_base(pvt, range); + u64 hole_off = f10_dhar_offset(pvt); + u64 dct_sel_base_off = (u64)(pvt->dct_sel_hi & 0xFFFFFC00) << 16; + + if (hi_rng) { + /* + * if + * base address of high range is below 4Gb + * (bits [47:27] at [31:11]) + * DRAM address space on this DCT is hoisted above 4Gb && + * sys_addr > 4Gb + * + * remove hole offset from sys_addr + * else + * remove high range offset from sys_addr + */ + if ((!(dct_sel_base_addr >> 16) || + dct_sel_base_addr < dhar_base(pvt)) && + dhar_valid(pvt) && + (sys_addr >= BIT_64(32))) + chan_off = hole_off; + else + chan_off = dct_sel_base_off; + } else { + /* + * if + * we have a valid hole && + * sys_addr > 4Gb + * + * remove hole + * else + * remove dram base to normalize to DCT address + */ + if (dhar_valid(pvt) && (sys_addr >= BIT_64(32))) + chan_off = hole_off; + else + chan_off = dram_base; + } + + return (sys_addr & GENMASK_ULL(47,6)) - (chan_off & GENMASK_ULL(47,23)); +} + +/* + * checks if the csrow passed in is marked as SPARED, if so returns the new + * spare row + */ +static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow) +{ + int tmp_cs; + + if (online_spare_swap_done(pvt, dct) && + csrow == online_spare_bad_dramcs(pvt, dct)) { + + for_each_chip_select(tmp_cs, dct, pvt) { + if (chip_select_base(tmp_cs, dct, pvt) & 0x2) { + csrow = tmp_cs; + break; + } + } + } + return csrow; +} + +/* + * Iterate over the DRAM DCT "base" and "mask" registers looking for a + * SystemAddr match on the specified 'ChannelSelect' and 'NodeID' + * + * Return: + * -EINVAL: NOT FOUND + * 0..csrow = Chip-Select Row + */ +static int f1x_lookup_addr_in_dct(u64 in_addr, u8 nid, u8 dct) +{ + struct mem_ctl_info *mci; + struct amd64_pvt *pvt; + u64 cs_base, cs_mask; + int cs_found = -EINVAL; + int csrow; + + mci = edac_mc_find(nid); + if (!mci) + return cs_found; + + pvt = mci->pvt_info; + + edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct); + + for_each_chip_select(csrow, dct, pvt) { + if (!csrow_enabled(csrow, dct, pvt)) + continue; + + get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask); + + edac_dbg(1, " CSROW=%d CSBase=0x%llx CSMask=0x%llx\n", + csrow, cs_base, cs_mask); + + cs_mask = ~cs_mask; + + edac_dbg(1, " (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n", + (in_addr & cs_mask), (cs_base & cs_mask)); + + if ((in_addr & cs_mask) == (cs_base & cs_mask)) { + if (pvt->fam == 0x15 && pvt->model >= 0x30) { + cs_found = csrow; + break; + } + cs_found = f10_process_possible_spare(pvt, dct, csrow); + + edac_dbg(1, " MATCH csrow=%d\n", cs_found); + break; + } + } + return cs_found; +} + +/* + * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is + * swapped with a region located at the bottom of memory so that the GPU can use + * the interleaved region and thus two channels. + */ +static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr) +{ + u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr; + + if (pvt->fam == 0x10) { + /* only revC3 and revE have that feature */ + if (pvt->model < 4 || (pvt->model < 0xa && pvt->stepping < 3)) + return sys_addr; + } + + amd64_read_pci_cfg(pvt->F2, SWAP_INTLV_REG, &swap_reg); + + if (!(swap_reg & 0x1)) + return sys_addr; + + swap_base = (swap_reg >> 3) & 0x7f; + swap_limit = (swap_reg >> 11) & 0x7f; + rgn_size = (swap_reg >> 20) & 0x7f; + tmp_addr = sys_addr >> 27; + + if (!(sys_addr >> 34) && + (((tmp_addr >= swap_base) && + (tmp_addr <= swap_limit)) || + (tmp_addr < rgn_size))) + return sys_addr ^ (u64)swap_base << 27; + + return sys_addr; +} + +/* For a given @dram_range, check if @sys_addr falls within it. */ +static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range, + u64 sys_addr, int *chan_sel) +{ + int cs_found = -EINVAL; + u64 chan_addr; + u32 dct_sel_base; + u8 channel; + bool high_range = false; + + u8 node_id = dram_dst_node(pvt, range); + u8 intlv_en = dram_intlv_en(pvt, range); + u32 intlv_sel = dram_intlv_sel(pvt, range); + + edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n", + range, sys_addr, get_dram_limit(pvt, range)); + + if (dhar_valid(pvt) && + dhar_base(pvt) <= sys_addr && + sys_addr < BIT_64(32)) { + amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n", + sys_addr); + return -EINVAL; + } + + if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en))) + return -EINVAL; + + sys_addr = f1x_swap_interleaved_region(pvt, sys_addr); + + dct_sel_base = dct_sel_baseaddr(pvt); + + /* + * check whether addresses >= DctSelBaseAddr[47:27] are to be used to + * select between DCT0 and DCT1. + */ + if (dct_high_range_enabled(pvt) && + !dct_ganging_enabled(pvt) && + ((sys_addr >> 27) >= (dct_sel_base >> 11))) + high_range = true; + + channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en); + + chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr, + high_range, dct_sel_base); + + /* Remove node interleaving, see F1x120 */ + if (intlv_en) + chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) | + (chan_addr & 0xfff); + + /* remove channel interleave */ + if (dct_interleave_enabled(pvt) && + !dct_high_range_enabled(pvt) && + !dct_ganging_enabled(pvt)) { + + if (dct_sel_interleave_addr(pvt) != 1) { + if (dct_sel_interleave_addr(pvt) == 0x3) + /* hash 9 */ + chan_addr = ((chan_addr >> 10) << 9) | + (chan_addr & 0x1ff); + else + /* A[6] or hash 6 */ + chan_addr = ((chan_addr >> 7) << 6) | + (chan_addr & 0x3f); + } else + /* A[12] */ + chan_addr = ((chan_addr >> 13) << 12) | + (chan_addr & 0xfff); + } + + edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr); + + cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel); + + if (cs_found >= 0) + *chan_sel = channel; + + return cs_found; +} + +static int f15_m30h_match_to_this_node(struct amd64_pvt *pvt, unsigned range, + u64 sys_addr, int *chan_sel) +{ + int cs_found = -EINVAL; + int num_dcts_intlv = 0; + u64 chan_addr, chan_offset; + u64 dct_base, dct_limit; + u32 dct_cont_base_reg, dct_cont_limit_reg, tmp; + u8 channel, alias_channel, leg_mmio_hole, dct_sel, dct_offset_en; + + u64 dhar_offset = f10_dhar_offset(pvt); + u8 intlv_addr = dct_sel_interleave_addr(pvt); + u8 node_id = dram_dst_node(pvt, range); + u8 intlv_en = dram_intlv_en(pvt, range); + + amd64_read_pci_cfg(pvt->F1, DRAM_CONT_BASE, &dct_cont_base_reg); + amd64_read_pci_cfg(pvt->F1, DRAM_CONT_LIMIT, &dct_cont_limit_reg); + + dct_offset_en = (u8) ((dct_cont_base_reg >> 3) & BIT(0)); + dct_sel = (u8) ((dct_cont_base_reg >> 4) & 0x7); + + edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n", + range, sys_addr, get_dram_limit(pvt, range)); + + if (!(get_dram_base(pvt, range) <= sys_addr) && + !(get_dram_limit(pvt, range) >= sys_addr)) + return -EINVAL; + + if (dhar_valid(pvt) && + dhar_base(pvt) <= sys_addr && + sys_addr < BIT_64(32)) { + amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n", + sys_addr); + return -EINVAL; + } + + /* Verify sys_addr is within DCT Range. */ + dct_base = (u64) dct_sel_baseaddr(pvt); + dct_limit = (dct_cont_limit_reg >> 11) & 0x1FFF; + + if (!(dct_cont_base_reg & BIT(0)) && + !(dct_base <= (sys_addr >> 27) && + dct_limit >= (sys_addr >> 27))) + return -EINVAL; + + /* Verify number of dct's that participate in channel interleaving. */ + num_dcts_intlv = (int) hweight8(intlv_en); + + if (!(num_dcts_intlv % 2 == 0) || (num_dcts_intlv > 4)) + return -EINVAL; + + if (pvt->model >= 0x60) + channel = f1x_determine_channel(pvt, sys_addr, false, intlv_en); + else + channel = f15_m30h_determine_channel(pvt, sys_addr, intlv_en, + num_dcts_intlv, dct_sel); + + /* Verify we stay within the MAX number of channels allowed */ + if (channel > 3) + return -EINVAL; + + leg_mmio_hole = (u8) (dct_cont_base_reg >> 1 & BIT(0)); + + /* Get normalized DCT addr */ + if (leg_mmio_hole && (sys_addr >= BIT_64(32))) + chan_offset = dhar_offset; + else + chan_offset = dct_base << 27; + + chan_addr = sys_addr - chan_offset; + + /* remove channel interleave */ + if (num_dcts_intlv == 2) { + if (intlv_addr == 0x4) + chan_addr = ((chan_addr >> 9) << 8) | + (chan_addr & 0xff); + else if (intlv_addr == 0x5) + chan_addr = ((chan_addr >> 10) << 9) | + (chan_addr & 0x1ff); + else + return -EINVAL; + + } else if (num_dcts_intlv == 4) { + if (intlv_addr == 0x4) + chan_addr = ((chan_addr >> 10) << 8) | + (chan_addr & 0xff); + else if (intlv_addr == 0x5) + chan_addr = ((chan_addr >> 11) << 9) | + (chan_addr & 0x1ff); + else + return -EINVAL; + } + + if (dct_offset_en) { + amd64_read_pci_cfg(pvt->F1, + DRAM_CONT_HIGH_OFF + (int) channel * 4, + &tmp); + chan_addr += (u64) ((tmp >> 11) & 0xfff) << 27; + } + + f15h_select_dct(pvt, channel); + + edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr); + + /* + * Find Chip select: + * if channel = 3, then alias it to 1. This is because, in F15 M30h, + * there is support for 4 DCT's, but only 2 are currently functional. + * They are DCT0 and DCT3. But we have read all registers of DCT3 into + * pvt->csels[1]. So we need to use '1' here to get correct info. + * Refer F15 M30h BKDG Section 2.10 and 2.10.3 for clarifications. + */ + alias_channel = (channel == 3) ? 1 : channel; + + cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, alias_channel); + + if (cs_found >= 0) + *chan_sel = alias_channel; + + return cs_found; +} + +static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt, + u64 sys_addr, + int *chan_sel) +{ + int cs_found = -EINVAL; + unsigned range; + + for (range = 0; range < DRAM_RANGES; range++) { + if (!dram_rw(pvt, range)) + continue; + + if (pvt->fam == 0x15 && pvt->model >= 0x30) + cs_found = f15_m30h_match_to_this_node(pvt, range, + sys_addr, + chan_sel); + + else if ((get_dram_base(pvt, range) <= sys_addr) && + (get_dram_limit(pvt, range) >= sys_addr)) { + cs_found = f1x_match_to_this_node(pvt, range, + sys_addr, chan_sel); + if (cs_found >= 0) + break; + } + } + return cs_found; +} + +/* + * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps + * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW). + * + * The @sys_addr is usually an error address received from the hardware + * (MCX_ADDR). + */ +static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr, + struct err_info *err) +{ + struct amd64_pvt *pvt = mci->pvt_info; + + error_address_to_page_and_offset(sys_addr, err); + + err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel); + if (err->csrow < 0) { + err->err_code = ERR_CSROW; + return; + } + + /* + * We need the syndromes for channel detection only when we're + * ganged. Otherwise @chan should already contain the channel at + * this point. + */ + if (dct_ganging_enabled(pvt)) + err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome); +} + +/* + * debug routine to display the memory sizes of all logical DIMMs and its + * CSROWs + */ +static void debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl) +{ + int dimm, size0, size1; + u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases; + u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0; + + if (pvt->fam == 0xf) { + /* K8 families < revF not supported yet */ + if (pvt->ext_model < K8_REV_F) + return; + else + WARN_ON(ctrl != 0); + } + + if (pvt->fam == 0x10) { + dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 + : pvt->dbam0; + dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? + pvt->csels[1].csbases : + pvt->csels[0].csbases; + } else if (ctrl) { + dbam = pvt->dbam0; + dcsb = pvt->csels[1].csbases; + } + edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", + ctrl, dbam); + + edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl); + + /* Dump memory sizes for DIMM and its CSROWs */ + for (dimm = 0; dimm < 4; dimm++) { + + size0 = 0; + if (dcsb[dimm*2] & DCSB_CS_ENABLE) + /* + * For F15m60h, we need multiplier for LRDIMM cs_size + * calculation. We pass dimm value to the dbam_to_cs + * mapper so we can find the multiplier from the + * corresponding DCSM. + */ + size0 = pvt->ops->dbam_to_cs(pvt, ctrl, + DBAM_DIMM(dimm, dbam), + dimm); + + size1 = 0; + if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE) + size1 = pvt->ops->dbam_to_cs(pvt, ctrl, + DBAM_DIMM(dimm, dbam), + dimm); + + amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n", + dimm * 2, size0, + dimm * 2 + 1, size1); + } +} + +static struct amd64_family_type family_types[] = { + [K8_CPUS] = { + .ctl_name = "K8", + .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP, + .f2_id = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL, + .max_mcs = 2, + .ops = { + .early_channel_count = k8_early_channel_count, + .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow, + .dbam_to_cs = k8_dbam_to_chip_select, + } + }, + [F10_CPUS] = { + .ctl_name = "F10h", + .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP, + .f2_id = PCI_DEVICE_ID_AMD_10H_NB_DRAM, + .max_mcs = 2, + .ops = { + .early_channel_count = f1x_early_channel_count, + .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow, + .dbam_to_cs = f10_dbam_to_chip_select, + } + }, + [F15_CPUS] = { + .ctl_name = "F15h", + .f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1, + .f2_id = PCI_DEVICE_ID_AMD_15H_NB_F2, + .max_mcs = 2, + .ops = { + .early_channel_count = f1x_early_channel_count, + .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow, + .dbam_to_cs = f15_dbam_to_chip_select, + } + }, + [F15_M30H_CPUS] = { + .ctl_name = "F15h_M30h", + .f1_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1, + .f2_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F2, + .max_mcs = 2, + .ops = { + .early_channel_count = f1x_early_channel_count, + .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow, + .dbam_to_cs = f16_dbam_to_chip_select, + } + }, + [F15_M60H_CPUS] = { + .ctl_name = "F15h_M60h", + .f1_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1, + .f2_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F2, + .max_mcs = 2, + .ops = { + .early_channel_count = f1x_early_channel_count, + .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow, + .dbam_to_cs = f15_m60h_dbam_to_chip_select, + } + }, + [F16_CPUS] = { + .ctl_name = "F16h", + .f1_id = PCI_DEVICE_ID_AMD_16H_NB_F1, + .f2_id = PCI_DEVICE_ID_AMD_16H_NB_F2, + .max_mcs = 2, + .ops = { + .early_channel_count = f1x_early_channel_count, + .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow, + .dbam_to_cs = f16_dbam_to_chip_select, + } + }, + [F16_M30H_CPUS] = { + .ctl_name = "F16h_M30h", + .f1_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F1, + .f2_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F2, + .max_mcs = 2, + .ops = { + .early_channel_count = f1x_early_channel_count, + .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow, + .dbam_to_cs = f16_dbam_to_chip_select, + } + }, + [F17_CPUS] = { + .ctl_name = "F17h", + .f0_id = PCI_DEVICE_ID_AMD_17H_DF_F0, + .f6_id = PCI_DEVICE_ID_AMD_17H_DF_F6, + .max_mcs = 2, + .ops = { + .early_channel_count = f17_early_channel_count, + .dbam_to_cs = f17_addr_mask_to_cs_size, + } + }, + [F17_M10H_CPUS] = { + .ctl_name = "F17h_M10h", + .f0_id = PCI_DEVICE_ID_AMD_17H_M10H_DF_F0, + .f6_id = PCI_DEVICE_ID_AMD_17H_M10H_DF_F6, + .max_mcs = 2, + .ops = { + .early_channel_count = f17_early_channel_count, + .dbam_to_cs = f17_addr_mask_to_cs_size, + } + }, + [F17_M30H_CPUS] = { + .ctl_name = "F17h_M30h", + .f0_id = PCI_DEVICE_ID_AMD_17H_M30H_DF_F0, + .f6_id = PCI_DEVICE_ID_AMD_17H_M30H_DF_F6, + .max_mcs = 8, + .ops = { + .early_channel_count = f17_early_channel_count, + .dbam_to_cs = f17_addr_mask_to_cs_size, + } + }, + [F17_M60H_CPUS] = { + .ctl_name = "F17h_M60h", + .f0_id = PCI_DEVICE_ID_AMD_17H_M60H_DF_F0, + .f6_id = PCI_DEVICE_ID_AMD_17H_M60H_DF_F6, + .max_mcs = 2, + .ops = { + .early_channel_count = f17_early_channel_count, + .dbam_to_cs = f17_addr_mask_to_cs_size, + } + }, + [F17_M70H_CPUS] = { + .ctl_name = "F17h_M70h", + .f0_id = PCI_DEVICE_ID_AMD_17H_M70H_DF_F0, + .f6_id = PCI_DEVICE_ID_AMD_17H_M70H_DF_F6, + .max_mcs = 2, + .ops = { + .early_channel_count = f17_early_channel_count, + .dbam_to_cs = f17_addr_mask_to_cs_size, + } + }, + [F19_CPUS] = { + .ctl_name = "F19h", + .f0_id = PCI_DEVICE_ID_AMD_19H_DF_F0, + .f6_id = PCI_DEVICE_ID_AMD_19H_DF_F6, + .max_mcs = 8, + .ops = { + .early_channel_count = f17_early_channel_count, + .dbam_to_cs = f17_addr_mask_to_cs_size, + } + }, + [F19_M10H_CPUS] = { + .ctl_name = "F19h_M10h", + .f0_id = PCI_DEVICE_ID_AMD_19H_M10H_DF_F0, + .f6_id = PCI_DEVICE_ID_AMD_19H_M10H_DF_F6, + .max_mcs = 12, + .flags.zn_regs_v2 = 1, + .ops = { + .early_channel_count = f17_early_channel_count, + .dbam_to_cs = f17_addr_mask_to_cs_size, + } + }, + [F19_M50H_CPUS] = { + .ctl_name = "F19h_M50h", + .f0_id = PCI_DEVICE_ID_AMD_19H_M50H_DF_F0, + .f6_id = PCI_DEVICE_ID_AMD_19H_M50H_DF_F6, + .max_mcs = 2, + .ops = { + .early_channel_count = f17_early_channel_count, + .dbam_to_cs = f17_addr_mask_to_cs_size, + } + }, +}; + +/* + * These are tables of eigenvectors (one per line) which can be used for the + * construction of the syndrome tables. The modified syndrome search algorithm + * uses those to find the symbol in error and thus the DIMM. + * + * Algorithm courtesy of Ross LaFetra from AMD. + */ +static const u16 x4_vectors[] = { + 0x2f57, 0x1afe, 0x66cc, 0xdd88, + 0x11eb, 0x3396, 0x7f4c, 0xeac8, + 0x0001, 0x0002, 0x0004, 0x0008, + 0x1013, 0x3032, 0x4044, 0x8088, + 0x106b, 0x30d6, 0x70fc, 0xe0a8, + 0x4857, 0xc4fe, 0x13cc, 0x3288, + 0x1ac5, 0x2f4a, 0x5394, 0xa1e8, + 0x1f39, 0x251e, 0xbd6c, 0x6bd8, + 0x15c1, 0x2a42, 0x89ac, 0x4758, + 0x2b03, 0x1602, 0x4f0c, 0xca08, + 0x1f07, 0x3a0e, 0x6b04, 0xbd08, + 0x8ba7, 0x465e, 0x244c, 0x1cc8, + 0x2b87, 0x164e, 0x642c, 0xdc18, + 0x40b9, 0x80de, 0x1094, 0x20e8, + 0x27db, 0x1eb6, 0x9dac, 0x7b58, + 0x11c1, 0x2242, 0x84ac, 0x4c58, + 0x1be5, 0x2d7a, 0x5e34, 0xa718, + 0x4b39, 0x8d1e, 0x14b4, 0x28d8, + 0x4c97, 0xc87e, 0x11fc, 0x33a8, + 0x8e97, 0x497e, 0x2ffc, 0x1aa8, + 0x16b3, 0x3d62, 0x4f34, 0x8518, + 0x1e2f, 0x391a, 0x5cac, 0xf858, + 0x1d9f, 0x3b7a, 0x572c, 0xfe18, + 0x15f5, 0x2a5a, 0x5264, 0xa3b8, + 0x1dbb, 0x3b66, 0x715c, 0xe3f8, + 0x4397, 0xc27e, 0x17fc, 0x3ea8, + 0x1617, 0x3d3e, 0x6464, 0xb8b8, + 0x23ff, 0x12aa, 0xab6c, 0x56d8, + 0x2dfb, 0x1ba6, 0x913c, 0x7328, + 0x185d, 0x2ca6, 0x7914, 0x9e28, + 0x171b, 0x3e36, 0x7d7c, 0xebe8, + 0x4199, 0x82ee, 0x19f4, 0x2e58, + 0x4807, 0xc40e, 0x130c, 0x3208, + 0x1905, 0x2e0a, 0x5804, 0xac08, + 0x213f, 0x132a, 0xadfc, 0x5ba8, + 0x19a9, 0x2efe, 0xb5cc, 0x6f88, +}; + +static const u16 x8_vectors[] = { + 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480, + 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80, + 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80, + 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80, + 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780, + 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080, + 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080, + 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080, + 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80, + 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580, + 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880, + 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280, + 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180, + 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580, + 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280, + 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180, + 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080, + 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, + 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000, +}; + +static int decode_syndrome(u16 syndrome, const u16 *vectors, unsigned num_vecs, + unsigned v_dim) +{ + unsigned int i, err_sym; + + for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) { + u16 s = syndrome; + unsigned v_idx = err_sym * v_dim; + unsigned v_end = (err_sym + 1) * v_dim; + + /* walk over all 16 bits of the syndrome */ + for (i = 1; i < (1U << 16); i <<= 1) { + + /* if bit is set in that eigenvector... */ + if (v_idx < v_end && vectors[v_idx] & i) { + u16 ev_comp = vectors[v_idx++]; + + /* ... and bit set in the modified syndrome, */ + if (s & i) { + /* remove it. */ + s ^= ev_comp; + + if (!s) + return err_sym; + } + + } else if (s & i) + /* can't get to zero, move to next symbol */ + break; + } + } + + edac_dbg(0, "syndrome(%x) not found\n", syndrome); + return -1; +} + +static int map_err_sym_to_channel(int err_sym, int sym_size) +{ + if (sym_size == 4) + switch (err_sym) { + case 0x20: + case 0x21: + return 0; + case 0x22: + case 0x23: + return 1; + default: + return err_sym >> 4; + } + /* x8 symbols */ + else + switch (err_sym) { + /* imaginary bits not in a DIMM */ + case 0x10: + WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n", + err_sym); + return -1; + case 0x11: + return 0; + case 0x12: + return 1; + default: + return err_sym >> 3; + } + return -1; +} + +static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome) +{ + struct amd64_pvt *pvt = mci->pvt_info; + int err_sym = -1; + + if (pvt->ecc_sym_sz == 8) + err_sym = decode_syndrome(syndrome, x8_vectors, + ARRAY_SIZE(x8_vectors), + pvt->ecc_sym_sz); + else if (pvt->ecc_sym_sz == 4) + err_sym = decode_syndrome(syndrome, x4_vectors, + ARRAY_SIZE(x4_vectors), + pvt->ecc_sym_sz); + else { + amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz); + return err_sym; + } + + return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz); +} + +static void __log_ecc_error(struct mem_ctl_info *mci, struct err_info *err, + u8 ecc_type) +{ + enum hw_event_mc_err_type err_type; + const char *string; + + if (ecc_type == 2) + err_type = HW_EVENT_ERR_CORRECTED; + else if (ecc_type == 1) + err_type = HW_EVENT_ERR_UNCORRECTED; + else if (ecc_type == 3) + err_type = HW_EVENT_ERR_DEFERRED; + else { + WARN(1, "Something is rotten in the state of Denmark.\n"); + return; + } + + switch (err->err_code) { + case DECODE_OK: + string = ""; + break; + case ERR_NODE: + string = "Failed to map error addr to a node"; + break; + case ERR_CSROW: + string = "Failed to map error addr to a csrow"; + break; + case ERR_CHANNEL: + string = "Unknown syndrome - possible error reporting race"; + break; + case ERR_SYND: + string = "MCA_SYND not valid - unknown syndrome and csrow"; + break; + case ERR_NORM_ADDR: + string = "Cannot decode normalized address"; + break; + default: + string = "WTF error"; + break; + } + + edac_mc_handle_error(err_type, mci, 1, + err->page, err->offset, err->syndrome, + err->csrow, err->channel, -1, + string, ""); +} + +static inline void decode_bus_error(int node_id, struct mce *m) +{ + struct mem_ctl_info *mci; + struct amd64_pvt *pvt; + u8 ecc_type = (m->status >> 45) & 0x3; + u8 xec = XEC(m->status, 0x1f); + u16 ec = EC(m->status); + u64 sys_addr; + struct err_info err; + + mci = edac_mc_find(node_id); + if (!mci) + return; + + pvt = mci->pvt_info; + + /* Bail out early if this was an 'observed' error */ + if (PP(ec) == NBSL_PP_OBS) + return; + + /* Do only ECC errors */ + if (xec && xec != F10_NBSL_EXT_ERR_ECC) + return; + + memset(&err, 0, sizeof(err)); + + sys_addr = get_error_address(pvt, m); + + if (ecc_type == 2) + err.syndrome = extract_syndrome(m->status); + + pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err); + + __log_ecc_error(mci, &err, ecc_type); +} + +/* + * To find the UMC channel represented by this bank we need to match on its + * instance_id. The instance_id of a bank is held in the lower 32 bits of its + * IPID. + * + * Currently, we can derive the channel number by looking at the 6th nibble in + * the instance_id. For example, instance_id=0xYXXXXX where Y is the channel + * number. + */ +static int find_umc_channel(struct mce *m) +{ + return (m->ipid & GENMASK(31, 0)) >> 20; +} + +static void decode_umc_error(int node_id, struct mce *m) +{ + u8 ecc_type = (m->status >> 45) & 0x3; + struct mem_ctl_info *mci; + struct amd64_pvt *pvt; + struct err_info err; + u64 sys_addr; + + mci = edac_mc_find(node_id); + if (!mci) + return; + + pvt = mci->pvt_info; + + memset(&err, 0, sizeof(err)); + + if (m->status & MCI_STATUS_DEFERRED) + ecc_type = 3; + + err.channel = find_umc_channel(m); + + if (!(m->status & MCI_STATUS_SYNDV)) { + err.err_code = ERR_SYND; + goto log_error; + } + + if (ecc_type == 2) { + u8 length = (m->synd >> 18) & 0x3f; + + if (length) + err.syndrome = (m->synd >> 32) & GENMASK(length - 1, 0); + else + err.err_code = ERR_CHANNEL; + } + + err.csrow = m->synd & 0x7; + + if (umc_normaddr_to_sysaddr(m->addr, pvt->mc_node_id, err.channel, &sys_addr)) { + err.err_code = ERR_NORM_ADDR; + goto log_error; + } + + error_address_to_page_and_offset(sys_addr, &err); + +log_error: + __log_ecc_error(mci, &err, ecc_type); +} + +/* + * Use pvt->F3 which contains the F3 CPU PCI device to get the related + * F1 (AddrMap) and F2 (Dct) devices. Return negative value on error. + * Reserve F0 and F6 on systems with a UMC. + */ +static int +reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 pci_id1, u16 pci_id2) +{ + if (pvt->umc) { + pvt->F0 = pci_get_related_function(pvt->F3->vendor, pci_id1, pvt->F3); + if (!pvt->F0) { + edac_dbg(1, "F0 not found, device 0x%x\n", pci_id1); + return -ENODEV; + } + + pvt->F6 = pci_get_related_function(pvt->F3->vendor, pci_id2, pvt->F3); + if (!pvt->F6) { + pci_dev_put(pvt->F0); + pvt->F0 = NULL; + + edac_dbg(1, "F6 not found: device 0x%x\n", pci_id2); + return -ENODEV; + } + + if (!pci_ctl_dev) + pci_ctl_dev = &pvt->F0->dev; + + edac_dbg(1, "F0: %s\n", pci_name(pvt->F0)); + edac_dbg(1, "F3: %s\n", pci_name(pvt->F3)); + edac_dbg(1, "F6: %s\n", pci_name(pvt->F6)); + + return 0; + } + + /* Reserve the ADDRESS MAP Device */ + pvt->F1 = pci_get_related_function(pvt->F3->vendor, pci_id1, pvt->F3); + if (!pvt->F1) { + edac_dbg(1, "F1 not found: device 0x%x\n", pci_id1); + return -ENODEV; + } + + /* Reserve the DCT Device */ + pvt->F2 = pci_get_related_function(pvt->F3->vendor, pci_id2, pvt->F3); + if (!pvt->F2) { + pci_dev_put(pvt->F1); + pvt->F1 = NULL; + + edac_dbg(1, "F2 not found: device 0x%x\n", pci_id2); + return -ENODEV; + } + + if (!pci_ctl_dev) + pci_ctl_dev = &pvt->F2->dev; + + edac_dbg(1, "F1: %s\n", pci_name(pvt->F1)); + edac_dbg(1, "F2: %s\n", pci_name(pvt->F2)); + edac_dbg(1, "F3: %s\n", pci_name(pvt->F3)); + + return 0; +} + +static void free_mc_sibling_devs(struct amd64_pvt *pvt) +{ + if (pvt->umc) { + pci_dev_put(pvt->F0); + pci_dev_put(pvt->F6); + } else { + pci_dev_put(pvt->F1); + pci_dev_put(pvt->F2); + } +} + +static void determine_ecc_sym_sz(struct amd64_pvt *pvt) +{ + pvt->ecc_sym_sz = 4; + + if (pvt->umc) { + u8 i; + + for_each_umc(i) { + /* Check enabled channels only: */ + if (pvt->umc[i].sdp_ctrl & UMC_SDP_INIT) { + if (pvt->umc[i].ecc_ctrl & BIT(9)) { + pvt->ecc_sym_sz = 16; + return; + } else if (pvt->umc[i].ecc_ctrl & BIT(7)) { + pvt->ecc_sym_sz = 8; + return; + } + } + } + } else if (pvt->fam >= 0x10) { + u32 tmp; + + amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp); + /* F16h has only DCT0, so no need to read dbam1. */ + if (pvt->fam != 0x16) + amd64_read_dct_pci_cfg(pvt, 1, DBAM0, &pvt->dbam1); + + /* F10h, revD and later can do x8 ECC too. */ + if ((pvt->fam > 0x10 || pvt->model > 7) && tmp & BIT(25)) + pvt->ecc_sym_sz = 8; + } +} + +/* + * Retrieve the hardware registers of the memory controller. + */ +static void __read_mc_regs_df(struct amd64_pvt *pvt) +{ + u8 nid = pvt->mc_node_id; + struct amd64_umc *umc; + u32 i, umc_base; + + /* Read registers from each UMC */ + for_each_umc(i) { + + umc_base = get_umc_base(i); + umc = &pvt->umc[i]; + + amd_smn_read(nid, umc_base + get_umc_reg(UMCCH_DIMM_CFG), &umc->dimm_cfg); + amd_smn_read(nid, umc_base + UMCCH_UMC_CFG, &umc->umc_cfg); + amd_smn_read(nid, umc_base + UMCCH_SDP_CTRL, &umc->sdp_ctrl); + amd_smn_read(nid, umc_base + UMCCH_ECC_CTRL, &umc->ecc_ctrl); + amd_smn_read(nid, umc_base + UMCCH_UMC_CAP_HI, &umc->umc_cap_hi); + } +} + +/* + * Retrieve the hardware registers of the memory controller (this includes the + * 'Address Map' and 'Misc' device regs) + */ +static void read_mc_regs(struct amd64_pvt *pvt) +{ + unsigned int range; + u64 msr_val; + + /* + * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since + * those are Read-As-Zero. + */ + rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem); + edac_dbg(0, " TOP_MEM: 0x%016llx\n", pvt->top_mem); + + /* Check first whether TOP_MEM2 is enabled: */ + rdmsrl(MSR_AMD64_SYSCFG, msr_val); + if (msr_val & BIT(21)) { + rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2); + edac_dbg(0, " TOP_MEM2: 0x%016llx\n", pvt->top_mem2); + } else { + edac_dbg(0, " TOP_MEM2 disabled\n"); + } + + if (pvt->umc) { + __read_mc_regs_df(pvt); + amd64_read_pci_cfg(pvt->F0, DF_DHAR, &pvt->dhar); + + goto skip; + } + + amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap); + + read_dram_ctl_register(pvt); + + for (range = 0; range < DRAM_RANGES; range++) { + u8 rw; + + /* read settings for this DRAM range */ + read_dram_base_limit_regs(pvt, range); + + rw = dram_rw(pvt, range); + if (!rw) + continue; + + edac_dbg(1, " DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n", + range, + get_dram_base(pvt, range), + get_dram_limit(pvt, range)); + + edac_dbg(1, " IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n", + dram_intlv_en(pvt, range) ? "Enabled" : "Disabled", + (rw & 0x1) ? "R" : "-", + (rw & 0x2) ? "W" : "-", + dram_intlv_sel(pvt, range), + dram_dst_node(pvt, range)); + } + + amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar); + amd64_read_dct_pci_cfg(pvt, 0, DBAM0, &pvt->dbam0); + + amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare); + + amd64_read_dct_pci_cfg(pvt, 0, DCLR0, &pvt->dclr0); + amd64_read_dct_pci_cfg(pvt, 0, DCHR0, &pvt->dchr0); + + if (!dct_ganging_enabled(pvt)) { + amd64_read_dct_pci_cfg(pvt, 1, DCLR0, &pvt->dclr1); + amd64_read_dct_pci_cfg(pvt, 1, DCHR0, &pvt->dchr1); + } + +skip: + read_dct_base_mask(pvt); + + determine_memory_type(pvt); + + if (!pvt->umc) + edac_dbg(1, " DIMM type: %s\n", edac_mem_types[pvt->dram_type]); + + determine_ecc_sym_sz(pvt); +} + +/* + * NOTE: CPU Revision Dependent code + * + * Input: + * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1) + * k8 private pointer to --> + * DRAM Bank Address mapping register + * node_id + * DCL register where dual_channel_active is + * + * The DBAM register consists of 4 sets of 4 bits each definitions: + * + * Bits: CSROWs + * 0-3 CSROWs 0 and 1 + * 4-7 CSROWs 2 and 3 + * 8-11 CSROWs 4 and 5 + * 12-15 CSROWs 6 and 7 + * + * Values range from: 0 to 15 + * The meaning of the values depends on CPU revision and dual-channel state, + * see relevant BKDG more info. + * + * The memory controller provides for total of only 8 CSROWs in its current + * architecture. Each "pair" of CSROWs normally represents just one DIMM in + * single channel or two (2) DIMMs in dual channel mode. + * + * The following code logic collapses the various tables for CSROW based on CPU + * revision. + * + * Returns: + * The number of PAGE_SIZE pages on the specified CSROW number it + * encompasses + * + */ +static u32 get_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr_orig) +{ + u32 dbam = dct ? pvt->dbam1 : pvt->dbam0; + int csrow_nr = csrow_nr_orig; + u32 cs_mode, nr_pages; + + if (!pvt->umc) { + csrow_nr >>= 1; + cs_mode = DBAM_DIMM(csrow_nr, dbam); + } else { + cs_mode = f17_get_cs_mode(csrow_nr >> 1, dct, pvt); + } + + nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode, csrow_nr); + nr_pages <<= 20 - PAGE_SHIFT; + + edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n", + csrow_nr_orig, dct, cs_mode); + edac_dbg(0, "nr_pages/channel: %u\n", nr_pages); + + return nr_pages; +} + +static int init_csrows_df(struct mem_ctl_info *mci) +{ + struct amd64_pvt *pvt = mci->pvt_info; + enum edac_type edac_mode = EDAC_NONE; + enum dev_type dev_type = DEV_UNKNOWN; + struct dimm_info *dimm; + int empty = 1; + u8 umc, cs; + + if (mci->edac_ctl_cap & EDAC_FLAG_S16ECD16ED) { + edac_mode = EDAC_S16ECD16ED; + dev_type = DEV_X16; + } else if (mci->edac_ctl_cap & EDAC_FLAG_S8ECD8ED) { + edac_mode = EDAC_S8ECD8ED; + dev_type = DEV_X8; + } else if (mci->edac_ctl_cap & EDAC_FLAG_S4ECD4ED) { + edac_mode = EDAC_S4ECD4ED; + dev_type = DEV_X4; + } else if (mci->edac_ctl_cap & EDAC_FLAG_SECDED) { + edac_mode = EDAC_SECDED; + } + + for_each_umc(umc) { + for_each_chip_select(cs, umc, pvt) { + if (!csrow_enabled(cs, umc, pvt)) + continue; + + empty = 0; + dimm = mci->csrows[cs]->channels[umc]->dimm; + + edac_dbg(1, "MC node: %d, csrow: %d\n", + pvt->mc_node_id, cs); + + dimm->nr_pages = get_csrow_nr_pages(pvt, umc, cs); + dimm->mtype = pvt->umc[umc].dram_type; + dimm->edac_mode = edac_mode; + dimm->dtype = dev_type; + dimm->grain = 64; + } + } + + return empty; +} + +/* + * Initialize the array of csrow attribute instances, based on the values + * from pci config hardware registers. + */ +static int init_csrows(struct mem_ctl_info *mci) +{ + struct amd64_pvt *pvt = mci->pvt_info; + enum edac_type edac_mode = EDAC_NONE; + struct csrow_info *csrow; + struct dimm_info *dimm; + int i, j, empty = 1; + int nr_pages = 0; + u32 val; + + if (pvt->umc) + return init_csrows_df(mci); + + amd64_read_pci_cfg(pvt->F3, NBCFG, &val); + + pvt->nbcfg = val; + + edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n", + pvt->mc_node_id, val, + !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE)); + + /* + * We iterate over DCT0 here but we look at DCT1 in parallel, if needed. + */ + for_each_chip_select(i, 0, pvt) { + bool row_dct0 = !!csrow_enabled(i, 0, pvt); + bool row_dct1 = false; + + if (pvt->fam != 0xf) + row_dct1 = !!csrow_enabled(i, 1, pvt); + + if (!row_dct0 && !row_dct1) + continue; + + csrow = mci->csrows[i]; + empty = 0; + + edac_dbg(1, "MC node: %d, csrow: %d\n", + pvt->mc_node_id, i); + + if (row_dct0) { + nr_pages = get_csrow_nr_pages(pvt, 0, i); + csrow->channels[0]->dimm->nr_pages = nr_pages; + } + + /* K8 has only one DCT */ + if (pvt->fam != 0xf && row_dct1) { + int row_dct1_pages = get_csrow_nr_pages(pvt, 1, i); + + csrow->channels[1]->dimm->nr_pages = row_dct1_pages; + nr_pages += row_dct1_pages; + } + + edac_dbg(1, "Total csrow%d pages: %u\n", i, nr_pages); + + /* Determine DIMM ECC mode: */ + if (pvt->nbcfg & NBCFG_ECC_ENABLE) { + edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL) + ? EDAC_S4ECD4ED + : EDAC_SECDED; + } + + for (j = 0; j < pvt->channel_count; j++) { + dimm = csrow->channels[j]->dimm; + dimm->mtype = pvt->dram_type; + dimm->edac_mode = edac_mode; + dimm->grain = 64; + } + } + + return empty; +} + +/* get all cores on this DCT */ +static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, u16 nid) +{ + int cpu; + + for_each_online_cpu(cpu) + if (topology_die_id(cpu) == nid) + cpumask_set_cpu(cpu, mask); +} + +/* check MCG_CTL on all the cpus on this node */ +static bool nb_mce_bank_enabled_on_node(u16 nid) +{ + cpumask_var_t mask; + int cpu, nbe; + bool ret = false; + + if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) { + amd64_warn("%s: Error allocating mask\n", __func__); + return false; + } + + get_cpus_on_this_dct_cpumask(mask, nid); + + rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs); + + for_each_cpu(cpu, mask) { + struct msr *reg = per_cpu_ptr(msrs, cpu); + nbe = reg->l & MSR_MCGCTL_NBE; + + edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n", + cpu, reg->q, + (nbe ? "enabled" : "disabled")); + + if (!nbe) + goto out; + } + ret = true; + +out: + free_cpumask_var(mask); + return ret; +} + +static int toggle_ecc_err_reporting(struct ecc_settings *s, u16 nid, bool on) +{ + cpumask_var_t cmask; + int cpu; + + if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) { + amd64_warn("%s: error allocating mask\n", __func__); + return -ENOMEM; + } + + get_cpus_on_this_dct_cpumask(cmask, nid); + + rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs); + + for_each_cpu(cpu, cmask) { + + struct msr *reg = per_cpu_ptr(msrs, cpu); + + if (on) { + if (reg->l & MSR_MCGCTL_NBE) + s->flags.nb_mce_enable = 1; + + reg->l |= MSR_MCGCTL_NBE; + } else { + /* + * Turn off NB MCE reporting only when it was off before + */ + if (!s->flags.nb_mce_enable) + reg->l &= ~MSR_MCGCTL_NBE; + } + } + wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs); + + free_cpumask_var(cmask); + + return 0; +} + +static bool enable_ecc_error_reporting(struct ecc_settings *s, u16 nid, + struct pci_dev *F3) +{ + bool ret = true; + u32 value, mask = 0x3; /* UECC/CECC enable */ + + if (toggle_ecc_err_reporting(s, nid, ON)) { + amd64_warn("Error enabling ECC reporting over MCGCTL!\n"); + return false; + } + + amd64_read_pci_cfg(F3, NBCTL, &value); + + s->old_nbctl = value & mask; + s->nbctl_valid = true; + + value |= mask; + amd64_write_pci_cfg(F3, NBCTL, value); + + amd64_read_pci_cfg(F3, NBCFG, &value); + + edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n", + nid, value, !!(value & NBCFG_ECC_ENABLE)); + + if (!(value & NBCFG_ECC_ENABLE)) { + amd64_warn("DRAM ECC disabled on this node, enabling...\n"); + + s->flags.nb_ecc_prev = 0; + + /* Attempt to turn on DRAM ECC Enable */ + value |= NBCFG_ECC_ENABLE; + amd64_write_pci_cfg(F3, NBCFG, value); + + amd64_read_pci_cfg(F3, NBCFG, &value); + + if (!(value & NBCFG_ECC_ENABLE)) { + amd64_warn("Hardware rejected DRAM ECC enable," + "check memory DIMM configuration.\n"); + ret = false; + } else { + amd64_info("Hardware accepted DRAM ECC Enable\n"); + } + } else { + s->flags.nb_ecc_prev = 1; + } + + edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n", + nid, value, !!(value & NBCFG_ECC_ENABLE)); + + return ret; +} + +static void restore_ecc_error_reporting(struct ecc_settings *s, u16 nid, + struct pci_dev *F3) +{ + u32 value, mask = 0x3; /* UECC/CECC enable */ + + if (!s->nbctl_valid) + return; + + amd64_read_pci_cfg(F3, NBCTL, &value); + value &= ~mask; + value |= s->old_nbctl; + + amd64_write_pci_cfg(F3, NBCTL, value); + + /* restore previous BIOS DRAM ECC "off" setting we force-enabled */ + if (!s->flags.nb_ecc_prev) { + amd64_read_pci_cfg(F3, NBCFG, &value); + value &= ~NBCFG_ECC_ENABLE; + amd64_write_pci_cfg(F3, NBCFG, value); + } + + /* restore the NB Enable MCGCTL bit */ + if (toggle_ecc_err_reporting(s, nid, OFF)) + amd64_warn("Error restoring NB MCGCTL settings!\n"); +} + +static bool ecc_enabled(struct amd64_pvt *pvt) +{ + u16 nid = pvt->mc_node_id; + bool nb_mce_en = false; + u8 ecc_en = 0, i; + u32 value; + + if (boot_cpu_data.x86 >= 0x17) { + u8 umc_en_mask = 0, ecc_en_mask = 0; + struct amd64_umc *umc; + + for_each_umc(i) { + umc = &pvt->umc[i]; + + /* Only check enabled UMCs. */ + if (!(umc->sdp_ctrl & UMC_SDP_INIT)) + continue; + + umc_en_mask |= BIT(i); + + if (umc->umc_cap_hi & UMC_ECC_ENABLED) + ecc_en_mask |= BIT(i); + } + + /* Check whether at least one UMC is enabled: */ + if (umc_en_mask) + ecc_en = umc_en_mask == ecc_en_mask; + else + edac_dbg(0, "Node %d: No enabled UMCs.\n", nid); + + /* Assume UMC MCA banks are enabled. */ + nb_mce_en = true; + } else { + amd64_read_pci_cfg(pvt->F3, NBCFG, &value); + + ecc_en = !!(value & NBCFG_ECC_ENABLE); + + nb_mce_en = nb_mce_bank_enabled_on_node(nid); + if (!nb_mce_en) + edac_dbg(0, "NB MCE bank disabled, set MSR 0x%08x[4] on node %d to enable.\n", + MSR_IA32_MCG_CTL, nid); + } + + edac_dbg(3, "Node %d: DRAM ECC %s.\n", nid, (ecc_en ? "enabled" : "disabled")); + + if (!ecc_en || !nb_mce_en) + return false; + else + return true; +} + +static inline void +f17h_determine_edac_ctl_cap(struct mem_ctl_info *mci, struct amd64_pvt *pvt) +{ + u8 i, ecc_en = 1, cpk_en = 1, dev_x4 = 1, dev_x16 = 1; + + for_each_umc(i) { + if (pvt->umc[i].sdp_ctrl & UMC_SDP_INIT) { + ecc_en &= !!(pvt->umc[i].umc_cap_hi & UMC_ECC_ENABLED); + cpk_en &= !!(pvt->umc[i].umc_cap_hi & UMC_ECC_CHIPKILL_CAP); + + dev_x4 &= !!(pvt->umc[i].dimm_cfg & BIT(6)); + dev_x16 &= !!(pvt->umc[i].dimm_cfg & BIT(7)); + } + } + + /* Set chipkill only if ECC is enabled: */ + if (ecc_en) { + mci->edac_ctl_cap |= EDAC_FLAG_SECDED; + + if (!cpk_en) + return; + + if (dev_x4) + mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED; + else if (dev_x16) + mci->edac_ctl_cap |= EDAC_FLAG_S16ECD16ED; + else + mci->edac_ctl_cap |= EDAC_FLAG_S8ECD8ED; + } +} + +static void setup_mci_misc_attrs(struct mem_ctl_info *mci) +{ + struct amd64_pvt *pvt = mci->pvt_info; + + mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2; + mci->edac_ctl_cap = EDAC_FLAG_NONE; + + if (pvt->umc) { + f17h_determine_edac_ctl_cap(mci, pvt); + } else { + if (pvt->nbcap & NBCAP_SECDED) + mci->edac_ctl_cap |= EDAC_FLAG_SECDED; + + if (pvt->nbcap & NBCAP_CHIPKILL) + mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED; + } + + mci->edac_cap = determine_edac_cap(pvt); + mci->mod_name = EDAC_MOD_STR; + mci->ctl_name = fam_type->ctl_name; + mci->dev_name = pci_name(pvt->F3); + mci->ctl_page_to_phys = NULL; + + /* memory scrubber interface */ + mci->set_sdram_scrub_rate = set_scrub_rate; + mci->get_sdram_scrub_rate = get_scrub_rate; +} + +/* + * returns a pointer to the family descriptor on success, NULL otherwise. + */ +static struct amd64_family_type *per_family_init(struct amd64_pvt *pvt) +{ + pvt->ext_model = boot_cpu_data.x86_model >> 4; + pvt->stepping = boot_cpu_data.x86_stepping; + pvt->model = boot_cpu_data.x86_model; + pvt->fam = boot_cpu_data.x86; + + switch (pvt->fam) { + case 0xf: + fam_type = &family_types[K8_CPUS]; + pvt->ops = &family_types[K8_CPUS].ops; + break; + + case 0x10: + fam_type = &family_types[F10_CPUS]; + pvt->ops = &family_types[F10_CPUS].ops; + break; + + case 0x15: + if (pvt->model == 0x30) { + fam_type = &family_types[F15_M30H_CPUS]; + pvt->ops = &family_types[F15_M30H_CPUS].ops; + break; + } else if (pvt->model == 0x60) { + fam_type = &family_types[F15_M60H_CPUS]; + pvt->ops = &family_types[F15_M60H_CPUS].ops; + break; + /* Richland is only client */ + } else if (pvt->model == 0x13) { + return NULL; + } else { + fam_type = &family_types[F15_CPUS]; + pvt->ops = &family_types[F15_CPUS].ops; + } + break; + + case 0x16: + if (pvt->model == 0x30) { + fam_type = &family_types[F16_M30H_CPUS]; + pvt->ops = &family_types[F16_M30H_CPUS].ops; + break; + } + fam_type = &family_types[F16_CPUS]; + pvt->ops = &family_types[F16_CPUS].ops; + break; + + case 0x17: + if (pvt->model >= 0x10 && pvt->model <= 0x2f) { + fam_type = &family_types[F17_M10H_CPUS]; + pvt->ops = &family_types[F17_M10H_CPUS].ops; + break; + } else if (pvt->model >= 0x30 && pvt->model <= 0x3f) { + fam_type = &family_types[F17_M30H_CPUS]; + pvt->ops = &family_types[F17_M30H_CPUS].ops; + break; + } else if (pvt->model >= 0x60 && pvt->model <= 0x6f) { + fam_type = &family_types[F17_M60H_CPUS]; + pvt->ops = &family_types[F17_M60H_CPUS].ops; + break; + } else if (pvt->model >= 0x70 && pvt->model <= 0x7f) { + fam_type = &family_types[F17_M70H_CPUS]; + pvt->ops = &family_types[F17_M70H_CPUS].ops; + break; + } + fallthrough; + case 0x18: + fam_type = &family_types[F17_CPUS]; + pvt->ops = &family_types[F17_CPUS].ops; + + if (pvt->fam == 0x18) + family_types[F17_CPUS].ctl_name = "F18h"; + break; + + case 0x19: + if (pvt->model >= 0x10 && pvt->model <= 0x1f) { + fam_type = &family_types[F19_M10H_CPUS]; + pvt->ops = &family_types[F19_M10H_CPUS].ops; + break; + } else if (pvt->model >= 0x20 && pvt->model <= 0x2f) { + fam_type = &family_types[F17_M70H_CPUS]; + pvt->ops = &family_types[F17_M70H_CPUS].ops; + fam_type->ctl_name = "F19h_M20h"; + break; + } else if (pvt->model >= 0x50 && pvt->model <= 0x5f) { + fam_type = &family_types[F19_M50H_CPUS]; + pvt->ops = &family_types[F19_M50H_CPUS].ops; + fam_type->ctl_name = "F19h_M50h"; + break; + } else if (pvt->model >= 0xa0 && pvt->model <= 0xaf) { + fam_type = &family_types[F19_M10H_CPUS]; + pvt->ops = &family_types[F19_M10H_CPUS].ops; + fam_type->ctl_name = "F19h_MA0h"; + break; + } + fam_type = &family_types[F19_CPUS]; + pvt->ops = &family_types[F19_CPUS].ops; + family_types[F19_CPUS].ctl_name = "F19h"; + break; + + default: + amd64_err("Unsupported family!\n"); + return NULL; + } + + return fam_type; +} + +static const struct attribute_group *amd64_edac_attr_groups[] = { +#ifdef CONFIG_EDAC_DEBUG + &dbg_group, + &inj_group, +#endif + NULL +}; + +static int hw_info_get(struct amd64_pvt *pvt) +{ + u16 pci_id1, pci_id2; + int ret; + + if (pvt->fam >= 0x17) { + pvt->umc = kcalloc(fam_type->max_mcs, sizeof(struct amd64_umc), GFP_KERNEL); + if (!pvt->umc) + return -ENOMEM; + + pci_id1 = fam_type->f0_id; + pci_id2 = fam_type->f6_id; + } else { + pci_id1 = fam_type->f1_id; + pci_id2 = fam_type->f2_id; + } + + ret = reserve_mc_sibling_devs(pvt, pci_id1, pci_id2); + if (ret) + return ret; + + read_mc_regs(pvt); + + return 0; +} + +static void hw_info_put(struct amd64_pvt *pvt) +{ + if (pvt->F0 || pvt->F1) + free_mc_sibling_devs(pvt); + + kfree(pvt->umc); +} + +static int init_one_instance(struct amd64_pvt *pvt) +{ + struct mem_ctl_info *mci = NULL; + struct edac_mc_layer layers[2]; + int ret = -EINVAL; + + /* + * We need to determine how many memory channels there are. Then use + * that information for calculating the size of the dynamic instance + * tables in the 'mci' structure. + */ + pvt->channel_count = pvt->ops->early_channel_count(pvt); + if (pvt->channel_count < 0) + return ret; + + ret = -ENOMEM; + layers[0].type = EDAC_MC_LAYER_CHIP_SELECT; + layers[0].size = pvt->csels[0].b_cnt; + layers[0].is_virt_csrow = true; + layers[1].type = EDAC_MC_LAYER_CHANNEL; + + /* + * Always allocate two channels since we can have setups with DIMMs on + * only one channel. Also, this simplifies handling later for the price + * of a couple of KBs tops. + */ + layers[1].size = fam_type->max_mcs; + layers[1].is_virt_csrow = false; + + mci = edac_mc_alloc(pvt->mc_node_id, ARRAY_SIZE(layers), layers, 0); + if (!mci) + return ret; + + mci->pvt_info = pvt; + mci->pdev = &pvt->F3->dev; + + setup_mci_misc_attrs(mci); + + if (init_csrows(mci)) + mci->edac_cap = EDAC_FLAG_NONE; + + ret = -ENODEV; + if (edac_mc_add_mc_with_groups(mci, amd64_edac_attr_groups)) { + edac_dbg(1, "failed edac_mc_add_mc()\n"); + edac_mc_free(mci); + return ret; + } + + return 0; +} + +static bool instance_has_memory(struct amd64_pvt *pvt) +{ + bool cs_enabled = false; + int cs = 0, dct = 0; + + for (dct = 0; dct < fam_type->max_mcs; dct++) { + for_each_chip_select(cs, dct, pvt) + cs_enabled |= csrow_enabled(cs, dct, pvt); + } + + return cs_enabled; +} + +static int probe_one_instance(unsigned int nid) +{ + struct pci_dev *F3 = node_to_amd_nb(nid)->misc; + struct amd64_pvt *pvt = NULL; + struct ecc_settings *s; + int ret; + + ret = -ENOMEM; + s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL); + if (!s) + goto err_out; + + ecc_stngs[nid] = s; + + pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL); + if (!pvt) + goto err_settings; + + pvt->mc_node_id = nid; + pvt->F3 = F3; + + ret = -ENODEV; + fam_type = per_family_init(pvt); + if (!fam_type) + goto err_enable; + + ret = hw_info_get(pvt); + if (ret < 0) + goto err_enable; + + ret = 0; + if (!instance_has_memory(pvt)) { + amd64_info("Node %d: No DIMMs detected.\n", nid); + goto err_enable; + } + + if (!ecc_enabled(pvt)) { + ret = -ENODEV; + + if (!ecc_enable_override) + goto err_enable; + + if (boot_cpu_data.x86 >= 0x17) { + amd64_warn("Forcing ECC on is not recommended on newer systems. Please enable ECC in BIOS."); + goto err_enable; + } else + amd64_warn("Forcing ECC on!\n"); + + if (!enable_ecc_error_reporting(s, nid, F3)) + goto err_enable; + } + + ret = init_one_instance(pvt); + if (ret < 0) { + amd64_err("Error probing instance: %d\n", nid); + + if (boot_cpu_data.x86 < 0x17) + restore_ecc_error_reporting(s, nid, F3); + + goto err_enable; + } + + amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name, + (pvt->fam == 0xf ? + (pvt->ext_model >= K8_REV_F ? "revF or later " + : "revE or earlier ") + : ""), pvt->mc_node_id); + + dump_misc_regs(pvt); + + return ret; + +err_enable: + hw_info_put(pvt); + kfree(pvt); + +err_settings: + kfree(s); + ecc_stngs[nid] = NULL; + +err_out: + return ret; +} + +static void remove_one_instance(unsigned int nid) +{ + struct pci_dev *F3 = node_to_amd_nb(nid)->misc; + struct ecc_settings *s = ecc_stngs[nid]; + struct mem_ctl_info *mci; + struct amd64_pvt *pvt; + + /* Remove from EDAC CORE tracking list */ + mci = edac_mc_del_mc(&F3->dev); + if (!mci) + return; + + pvt = mci->pvt_info; + + restore_ecc_error_reporting(s, nid, F3); + + kfree(ecc_stngs[nid]); + ecc_stngs[nid] = NULL; + + /* Free the EDAC CORE resources */ + mci->pvt_info = NULL; + + hw_info_put(pvt); + kfree(pvt); + edac_mc_free(mci); +} + +static void setup_pci_device(void) +{ + if (pci_ctl) + return; + + pci_ctl = edac_pci_create_generic_ctl(pci_ctl_dev, EDAC_MOD_STR); + if (!pci_ctl) { + pr_warn("%s(): Unable to create PCI control\n", __func__); + pr_warn("%s(): PCI error report via EDAC not set\n", __func__); + } +} + +static const struct x86_cpu_id amd64_cpuids[] = { + X86_MATCH_VENDOR_FAM(AMD, 0x0F, NULL), + X86_MATCH_VENDOR_FAM(AMD, 0x10, NULL), + X86_MATCH_VENDOR_FAM(AMD, 0x15, NULL), + X86_MATCH_VENDOR_FAM(AMD, 0x16, NULL), + X86_MATCH_VENDOR_FAM(AMD, 0x17, NULL), + X86_MATCH_VENDOR_FAM(HYGON, 0x18, NULL), + X86_MATCH_VENDOR_FAM(AMD, 0x19, NULL), + { } +}; +MODULE_DEVICE_TABLE(x86cpu, amd64_cpuids); + +static int __init amd64_edac_init(void) +{ + const char *owner; + int err = -ENODEV; + int i; + + owner = edac_get_owner(); + if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR))) + return -EBUSY; + + if (!x86_match_cpu(amd64_cpuids)) + return -ENODEV; + + if (!amd_nb_num()) + return -ENODEV; + + opstate_init(); + + err = -ENOMEM; + ecc_stngs = kcalloc(amd_nb_num(), sizeof(ecc_stngs[0]), GFP_KERNEL); + if (!ecc_stngs) + goto err_free; + + msrs = msrs_alloc(); + if (!msrs) + goto err_free; + + for (i = 0; i < amd_nb_num(); i++) { + err = probe_one_instance(i); + if (err) { + /* unwind properly */ + while (--i >= 0) + remove_one_instance(i); + + goto err_pci; + } + } + + if (!edac_has_mcs()) { + err = -ENODEV; + goto err_pci; + } + + /* register stuff with EDAC MCE */ + if (boot_cpu_data.x86 >= 0x17) + amd_register_ecc_decoder(decode_umc_error); + else + amd_register_ecc_decoder(decode_bus_error); + + setup_pci_device(); + +#ifdef CONFIG_X86_32 + amd64_err("%s on 32-bit is unsupported. USE AT YOUR OWN RISK!\n", EDAC_MOD_STR); +#endif + + printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION); + + return 0; + +err_pci: + pci_ctl_dev = NULL; + + msrs_free(msrs); + msrs = NULL; + +err_free: + kfree(ecc_stngs); + ecc_stngs = NULL; + + return err; +} + +static void __exit amd64_edac_exit(void) +{ + int i; + + if (pci_ctl) + edac_pci_release_generic_ctl(pci_ctl); + + /* unregister from EDAC MCE */ + if (boot_cpu_data.x86 >= 0x17) + amd_unregister_ecc_decoder(decode_umc_error); + else + amd_unregister_ecc_decoder(decode_bus_error); + + for (i = 0; i < amd_nb_num(); i++) + remove_one_instance(i); + + kfree(ecc_stngs); + ecc_stngs = NULL; + + pci_ctl_dev = NULL; + + msrs_free(msrs); + msrs = NULL; +} + +module_init(amd64_edac_init); +module_exit(amd64_edac_exit); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, " + "Dave Peterson, Thayne Harbaugh"); +MODULE_DESCRIPTION("MC support for AMD64 memory controllers - " + EDAC_AMD64_VERSION); + +module_param(edac_op_state, int, 0444); +MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); |