summaryrefslogtreecommitdiffstats
path: root/drivers/gpu/drm/amd/display/modules/color/color_gamma.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/gpu/drm/amd/display/modules/color/color_gamma.c')
-rw-r--r--drivers/gpu/drm/amd/display/modules/color/color_gamma.c2303
1 files changed, 2303 insertions, 0 deletions
diff --git a/drivers/gpu/drm/amd/display/modules/color/color_gamma.c b/drivers/gpu/drm/amd/display/modules/color/color_gamma.c
new file mode 100644
index 000000000..447a0ec9c
--- /dev/null
+++ b/drivers/gpu/drm/amd/display/modules/color/color_gamma.c
@@ -0,0 +1,2303 @@
+/*
+ * Copyright 2016 Advanced Micro Devices, Inc.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
+ * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
+ * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
+ * OTHER DEALINGS IN THE SOFTWARE.
+ *
+ * Authors: AMD
+ *
+ */
+
+#include "dc.h"
+#include "opp.h"
+#include "color_gamma.h"
+
+/* When calculating LUT values the first region and at least one subsequent
+ * region are calculated with full precision. These defines are a demarcation
+ * of where the second region starts and ends.
+ * These are hardcoded values to avoid recalculating them in loops.
+ */
+#define PRECISE_LUT_REGION_START 224
+#define PRECISE_LUT_REGION_END 239
+
+static struct hw_x_point coordinates_x[MAX_HW_POINTS + 2];
+
+// these are helpers for calculations to reduce stack usage
+// do not depend on these being preserved across calls
+
+/* Helper to optimize gamma calculation, only use in translate_from_linear, in
+ * particular the dc_fixpt_pow function which is very expensive
+ * The idea is that our regions for X points are exponential and currently they all use
+ * the same number of points (NUM_PTS_IN_REGION) and in each region every point
+ * is exactly 2x the one at the same index in the previous region. In other words
+ * X[i] = 2 * X[i-NUM_PTS_IN_REGION] for i>=16
+ * The other fact is that (2x)^gamma = 2^gamma * x^gamma
+ * So we compute and save x^gamma for the first 16 regions, and for every next region
+ * just multiply with 2^gamma which can be computed once, and save the result so we
+ * recursively compute all the values.
+ */
+
+/*
+ * Regamma coefficients are used for both regamma and degamma. Degamma
+ * coefficients are calculated in our formula using the regamma coefficients.
+ */
+ /*sRGB 709 2.2 2.4 P3*/
+static const int32_t numerator01[] = { 31308, 180000, 0, 0, 0};
+static const int32_t numerator02[] = { 12920, 4500, 0, 0, 0};
+static const int32_t numerator03[] = { 55, 99, 0, 0, 0};
+static const int32_t numerator04[] = { 55, 99, 0, 0, 0};
+static const int32_t numerator05[] = { 2400, 2200, 2200, 2400, 2600};
+
+/* one-time setup of X points */
+void setup_x_points_distribution(void)
+{
+ struct fixed31_32 region_size = dc_fixpt_from_int(128);
+ int32_t segment;
+ uint32_t seg_offset;
+ uint32_t index;
+ struct fixed31_32 increment;
+
+ coordinates_x[MAX_HW_POINTS].x = region_size;
+ coordinates_x[MAX_HW_POINTS + 1].x = region_size;
+
+ for (segment = 6; segment > (6 - NUM_REGIONS); segment--) {
+ region_size = dc_fixpt_div_int(region_size, 2);
+ increment = dc_fixpt_div_int(region_size,
+ NUM_PTS_IN_REGION);
+ seg_offset = (segment + (NUM_REGIONS - 7)) * NUM_PTS_IN_REGION;
+ coordinates_x[seg_offset].x = region_size;
+
+ for (index = seg_offset + 1;
+ index < seg_offset + NUM_PTS_IN_REGION;
+ index++) {
+ coordinates_x[index].x = dc_fixpt_add
+ (coordinates_x[index-1].x, increment);
+ }
+ }
+}
+
+void log_x_points_distribution(struct dal_logger *logger)
+{
+ int i = 0;
+
+ if (logger != NULL) {
+ LOG_GAMMA_WRITE("Log X Distribution\n");
+
+ for (i = 0; i < MAX_HW_POINTS; i++)
+ LOG_GAMMA_WRITE("%llu\n", coordinates_x[i].x.value);
+ }
+}
+
+static void compute_pq(struct fixed31_32 in_x, struct fixed31_32 *out_y)
+{
+ /* consts for PQ gamma formula. */
+ const struct fixed31_32 m1 =
+ dc_fixpt_from_fraction(159301758, 1000000000);
+ const struct fixed31_32 m2 =
+ dc_fixpt_from_fraction(7884375, 100000);
+ const struct fixed31_32 c1 =
+ dc_fixpt_from_fraction(8359375, 10000000);
+ const struct fixed31_32 c2 =
+ dc_fixpt_from_fraction(188515625, 10000000);
+ const struct fixed31_32 c3 =
+ dc_fixpt_from_fraction(186875, 10000);
+
+ struct fixed31_32 l_pow_m1;
+ struct fixed31_32 base;
+
+ if (dc_fixpt_lt(in_x, dc_fixpt_zero))
+ in_x = dc_fixpt_zero;
+
+ l_pow_m1 = dc_fixpt_pow(in_x, m1);
+ base = dc_fixpt_div(
+ dc_fixpt_add(c1,
+ (dc_fixpt_mul(c2, l_pow_m1))),
+ dc_fixpt_add(dc_fixpt_one,
+ (dc_fixpt_mul(c3, l_pow_m1))));
+ *out_y = dc_fixpt_pow(base, m2);
+}
+
+static void compute_de_pq(struct fixed31_32 in_x, struct fixed31_32 *out_y)
+{
+ /* consts for dePQ gamma formula. */
+ const struct fixed31_32 m1 =
+ dc_fixpt_from_fraction(159301758, 1000000000);
+ const struct fixed31_32 m2 =
+ dc_fixpt_from_fraction(7884375, 100000);
+ const struct fixed31_32 c1 =
+ dc_fixpt_from_fraction(8359375, 10000000);
+ const struct fixed31_32 c2 =
+ dc_fixpt_from_fraction(188515625, 10000000);
+ const struct fixed31_32 c3 =
+ dc_fixpt_from_fraction(186875, 10000);
+
+ struct fixed31_32 l_pow_m1;
+ struct fixed31_32 base, div;
+ struct fixed31_32 base2;
+
+
+ if (dc_fixpt_lt(in_x, dc_fixpt_zero))
+ in_x = dc_fixpt_zero;
+
+ l_pow_m1 = dc_fixpt_pow(in_x,
+ dc_fixpt_div(dc_fixpt_one, m2));
+ base = dc_fixpt_sub(l_pow_m1, c1);
+
+ div = dc_fixpt_sub(c2, dc_fixpt_mul(c3, l_pow_m1));
+
+ base2 = dc_fixpt_div(base, div);
+ // avoid complex numbers
+ if (dc_fixpt_lt(base2, dc_fixpt_zero))
+ base2 = dc_fixpt_sub(dc_fixpt_zero, base2);
+
+
+ *out_y = dc_fixpt_pow(base2, dc_fixpt_div(dc_fixpt_one, m1));
+
+}
+
+
+/* de gamma, non-linear to linear */
+static void compute_hlg_eotf(struct fixed31_32 in_x,
+ struct fixed31_32 *out_y,
+ uint32_t sdr_white_level, uint32_t max_luminance_nits)
+{
+ struct fixed31_32 a;
+ struct fixed31_32 b;
+ struct fixed31_32 c;
+ struct fixed31_32 threshold;
+ struct fixed31_32 x;
+
+ struct fixed31_32 scaling_factor =
+ dc_fixpt_from_fraction(max_luminance_nits, sdr_white_level);
+ a = dc_fixpt_from_fraction(17883277, 100000000);
+ b = dc_fixpt_from_fraction(28466892, 100000000);
+ c = dc_fixpt_from_fraction(55991073, 100000000);
+ threshold = dc_fixpt_from_fraction(1, 2);
+
+ if (dc_fixpt_lt(in_x, threshold)) {
+ x = dc_fixpt_mul(in_x, in_x);
+ x = dc_fixpt_div_int(x, 3);
+ } else {
+ x = dc_fixpt_sub(in_x, c);
+ x = dc_fixpt_div(x, a);
+ x = dc_fixpt_exp(x);
+ x = dc_fixpt_add(x, b);
+ x = dc_fixpt_div_int(x, 12);
+ }
+ *out_y = dc_fixpt_mul(x, scaling_factor);
+
+}
+
+/* re gamma, linear to non-linear */
+static void compute_hlg_oetf(struct fixed31_32 in_x, struct fixed31_32 *out_y,
+ uint32_t sdr_white_level, uint32_t max_luminance_nits)
+{
+ struct fixed31_32 a;
+ struct fixed31_32 b;
+ struct fixed31_32 c;
+ struct fixed31_32 threshold;
+ struct fixed31_32 x;
+
+ struct fixed31_32 scaling_factor =
+ dc_fixpt_from_fraction(sdr_white_level, max_luminance_nits);
+ a = dc_fixpt_from_fraction(17883277, 100000000);
+ b = dc_fixpt_from_fraction(28466892, 100000000);
+ c = dc_fixpt_from_fraction(55991073, 100000000);
+ threshold = dc_fixpt_from_fraction(1, 12);
+ x = dc_fixpt_mul(in_x, scaling_factor);
+
+
+ if (dc_fixpt_lt(x, threshold)) {
+ x = dc_fixpt_mul(x, dc_fixpt_from_fraction(3, 1));
+ *out_y = dc_fixpt_pow(x, dc_fixpt_half);
+ } else {
+ x = dc_fixpt_mul(x, dc_fixpt_from_fraction(12, 1));
+ x = dc_fixpt_sub(x, b);
+ x = dc_fixpt_log(x);
+ x = dc_fixpt_mul(a, x);
+ *out_y = dc_fixpt_add(x, c);
+ }
+}
+
+
+/* one-time pre-compute PQ values - only for sdr_white_level 80 */
+void precompute_pq(void)
+{
+ int i;
+ struct fixed31_32 x;
+ const struct hw_x_point *coord_x = coordinates_x + 32;
+ struct fixed31_32 scaling_factor =
+ dc_fixpt_from_fraction(80, 10000);
+
+ struct fixed31_32 *pq_table = mod_color_get_table(type_pq_table);
+
+ /* pow function has problems with arguments too small */
+ for (i = 0; i < 32; i++)
+ pq_table[i] = dc_fixpt_zero;
+
+ for (i = 32; i <= MAX_HW_POINTS; i++) {
+ x = dc_fixpt_mul(coord_x->x, scaling_factor);
+ compute_pq(x, &pq_table[i]);
+ ++coord_x;
+ }
+}
+
+/* one-time pre-compute dePQ values - only for max pixel value 125 FP16 */
+void precompute_de_pq(void)
+{
+ int i;
+ struct fixed31_32 y;
+ uint32_t begin_index, end_index;
+
+ struct fixed31_32 scaling_factor = dc_fixpt_from_int(125);
+ struct fixed31_32 *de_pq_table = mod_color_get_table(type_de_pq_table);
+ /* X points is 2^-25 to 2^7
+ * De-gamma X is 2^-12 to 2^0 – we are skipping first -12-(-25) = 13 regions
+ */
+ begin_index = 13 * NUM_PTS_IN_REGION;
+ end_index = begin_index + 12 * NUM_PTS_IN_REGION;
+
+ for (i = 0; i <= begin_index; i++)
+ de_pq_table[i] = dc_fixpt_zero;
+
+ for (; i <= end_index; i++) {
+ compute_de_pq(coordinates_x[i].x, &y);
+ de_pq_table[i] = dc_fixpt_mul(y, scaling_factor);
+ }
+
+ for (; i <= MAX_HW_POINTS; i++)
+ de_pq_table[i] = de_pq_table[i-1];
+}
+struct dividers {
+ struct fixed31_32 divider1;
+ struct fixed31_32 divider2;
+ struct fixed31_32 divider3;
+};
+
+
+static bool build_coefficients(struct gamma_coefficients *coefficients,
+ enum dc_transfer_func_predefined type)
+{
+
+ uint32_t i = 0;
+ uint32_t index = 0;
+ bool ret = true;
+
+ if (type == TRANSFER_FUNCTION_SRGB)
+ index = 0;
+ else if (type == TRANSFER_FUNCTION_BT709)
+ index = 1;
+ else if (type == TRANSFER_FUNCTION_GAMMA22)
+ index = 2;
+ else if (type == TRANSFER_FUNCTION_GAMMA24)
+ index = 3;
+ else if (type == TRANSFER_FUNCTION_GAMMA26)
+ index = 4;
+ else {
+ ret = false;
+ goto release;
+ }
+
+ do {
+ coefficients->a0[i] = dc_fixpt_from_fraction(
+ numerator01[index], 10000000);
+ coefficients->a1[i] = dc_fixpt_from_fraction(
+ numerator02[index], 1000);
+ coefficients->a2[i] = dc_fixpt_from_fraction(
+ numerator03[index], 1000);
+ coefficients->a3[i] = dc_fixpt_from_fraction(
+ numerator04[index], 1000);
+ coefficients->user_gamma[i] = dc_fixpt_from_fraction(
+ numerator05[index], 1000);
+
+ ++i;
+ } while (i != ARRAY_SIZE(coefficients->a0));
+release:
+ return ret;
+}
+
+static struct fixed31_32 translate_from_linear_space(
+ struct translate_from_linear_space_args *args)
+{
+ const struct fixed31_32 one = dc_fixpt_from_int(1);
+
+ struct fixed31_32 scratch_1, scratch_2;
+ struct calculate_buffer *cal_buffer = args->cal_buffer;
+
+ if (dc_fixpt_le(one, args->arg))
+ return one;
+
+ if (dc_fixpt_le(args->arg, dc_fixpt_neg(args->a0))) {
+ scratch_1 = dc_fixpt_add(one, args->a3);
+ scratch_2 = dc_fixpt_pow(
+ dc_fixpt_neg(args->arg),
+ dc_fixpt_recip(args->gamma));
+ scratch_1 = dc_fixpt_mul(scratch_1, scratch_2);
+ scratch_1 = dc_fixpt_sub(args->a2, scratch_1);
+
+ return scratch_1;
+ } else if (dc_fixpt_le(args->a0, args->arg)) {
+ if (cal_buffer->buffer_index == 0) {
+ cal_buffer->gamma_of_2 = dc_fixpt_pow(dc_fixpt_from_int(2),
+ dc_fixpt_recip(args->gamma));
+ }
+ scratch_1 = dc_fixpt_add(one, args->a3);
+ /* In the first region (first 16 points) and in the
+ * region delimited by START/END we calculate with
+ * full precision to avoid error accumulation.
+ */
+ if ((cal_buffer->buffer_index >= PRECISE_LUT_REGION_START &&
+ cal_buffer->buffer_index <= PRECISE_LUT_REGION_END) ||
+ (cal_buffer->buffer_index < 16))
+ scratch_2 = dc_fixpt_pow(args->arg,
+ dc_fixpt_recip(args->gamma));
+ else
+ scratch_2 = dc_fixpt_mul(cal_buffer->gamma_of_2,
+ cal_buffer->buffer[cal_buffer->buffer_index%16]);
+
+ if (cal_buffer->buffer_index != -1) {
+ cal_buffer->buffer[cal_buffer->buffer_index%16] = scratch_2;
+ cal_buffer->buffer_index++;
+ }
+
+ scratch_1 = dc_fixpt_mul(scratch_1, scratch_2);
+ scratch_1 = dc_fixpt_sub(scratch_1, args->a2);
+
+ return scratch_1;
+ }
+ else
+ return dc_fixpt_mul(args->arg, args->a1);
+}
+
+
+static struct fixed31_32 translate_from_linear_space_long(
+ struct translate_from_linear_space_args *args)
+{
+ const struct fixed31_32 one = dc_fixpt_from_int(1);
+
+ if (dc_fixpt_lt(one, args->arg))
+ return one;
+
+ if (dc_fixpt_le(args->arg, dc_fixpt_neg(args->a0)))
+ return dc_fixpt_sub(
+ args->a2,
+ dc_fixpt_mul(
+ dc_fixpt_add(
+ one,
+ args->a3),
+ dc_fixpt_pow(
+ dc_fixpt_neg(args->arg),
+ dc_fixpt_recip(args->gamma))));
+ else if (dc_fixpt_le(args->a0, args->arg))
+ return dc_fixpt_sub(
+ dc_fixpt_mul(
+ dc_fixpt_add(
+ one,
+ args->a3),
+ dc_fixpt_pow(
+ args->arg,
+ dc_fixpt_recip(args->gamma))),
+ args->a2);
+ else
+ return dc_fixpt_mul(args->arg, args->a1);
+}
+
+static struct fixed31_32 calculate_gamma22(struct fixed31_32 arg, bool use_eetf, struct calculate_buffer *cal_buffer)
+{
+ struct fixed31_32 gamma = dc_fixpt_from_fraction(22, 10);
+ struct translate_from_linear_space_args scratch_gamma_args;
+
+ scratch_gamma_args.arg = arg;
+ scratch_gamma_args.a0 = dc_fixpt_zero;
+ scratch_gamma_args.a1 = dc_fixpt_zero;
+ scratch_gamma_args.a2 = dc_fixpt_zero;
+ scratch_gamma_args.a3 = dc_fixpt_zero;
+ scratch_gamma_args.cal_buffer = cal_buffer;
+ scratch_gamma_args.gamma = gamma;
+
+ if (use_eetf)
+ return translate_from_linear_space_long(&scratch_gamma_args);
+
+ return translate_from_linear_space(&scratch_gamma_args);
+}
+
+
+static struct fixed31_32 translate_to_linear_space(
+ struct fixed31_32 arg,
+ struct fixed31_32 a0,
+ struct fixed31_32 a1,
+ struct fixed31_32 a2,
+ struct fixed31_32 a3,
+ struct fixed31_32 gamma)
+{
+ struct fixed31_32 linear;
+
+ a0 = dc_fixpt_mul(a0, a1);
+ if (dc_fixpt_le(arg, dc_fixpt_neg(a0)))
+
+ linear = dc_fixpt_neg(
+ dc_fixpt_pow(
+ dc_fixpt_div(
+ dc_fixpt_sub(a2, arg),
+ dc_fixpt_add(
+ dc_fixpt_one, a3)), gamma));
+
+ else if (dc_fixpt_le(dc_fixpt_neg(a0), arg) &&
+ dc_fixpt_le(arg, a0))
+ linear = dc_fixpt_div(arg, a1);
+ else
+ linear = dc_fixpt_pow(
+ dc_fixpt_div(
+ dc_fixpt_add(a2, arg),
+ dc_fixpt_add(
+ dc_fixpt_one, a3)), gamma);
+
+ return linear;
+}
+
+static struct fixed31_32 translate_from_linear_space_ex(
+ struct fixed31_32 arg,
+ struct gamma_coefficients *coeff,
+ uint32_t color_index,
+ struct calculate_buffer *cal_buffer)
+{
+ struct translate_from_linear_space_args scratch_gamma_args;
+
+ scratch_gamma_args.arg = arg;
+ scratch_gamma_args.a0 = coeff->a0[color_index];
+ scratch_gamma_args.a1 = coeff->a1[color_index];
+ scratch_gamma_args.a2 = coeff->a2[color_index];
+ scratch_gamma_args.a3 = coeff->a3[color_index];
+ scratch_gamma_args.gamma = coeff->user_gamma[color_index];
+ scratch_gamma_args.cal_buffer = cal_buffer;
+
+ return translate_from_linear_space(&scratch_gamma_args);
+}
+
+
+static inline struct fixed31_32 translate_to_linear_space_ex(
+ struct fixed31_32 arg,
+ struct gamma_coefficients *coeff,
+ uint32_t color_index)
+{
+ return translate_to_linear_space(
+ arg,
+ coeff->a0[color_index],
+ coeff->a1[color_index],
+ coeff->a2[color_index],
+ coeff->a3[color_index],
+ coeff->user_gamma[color_index]);
+}
+
+
+static bool find_software_points(
+ const struct dc_gamma *ramp,
+ const struct gamma_pixel *axis_x,
+ struct fixed31_32 hw_point,
+ enum channel_name channel,
+ uint32_t *index_to_start,
+ uint32_t *index_left,
+ uint32_t *index_right,
+ enum hw_point_position *pos)
+{
+ const uint32_t max_number = ramp->num_entries + 3;
+
+ struct fixed31_32 left, right;
+
+ uint32_t i = *index_to_start;
+
+ while (i < max_number) {
+ if (channel == CHANNEL_NAME_RED) {
+ left = axis_x[i].r;
+
+ if (i < max_number - 1)
+ right = axis_x[i + 1].r;
+ else
+ right = axis_x[max_number - 1].r;
+ } else if (channel == CHANNEL_NAME_GREEN) {
+ left = axis_x[i].g;
+
+ if (i < max_number - 1)
+ right = axis_x[i + 1].g;
+ else
+ right = axis_x[max_number - 1].g;
+ } else {
+ left = axis_x[i].b;
+
+ if (i < max_number - 1)
+ right = axis_x[i + 1].b;
+ else
+ right = axis_x[max_number - 1].b;
+ }
+
+ if (dc_fixpt_le(left, hw_point) &&
+ dc_fixpt_le(hw_point, right)) {
+ *index_to_start = i;
+ *index_left = i;
+
+ if (i < max_number - 1)
+ *index_right = i + 1;
+ else
+ *index_right = max_number - 1;
+
+ *pos = HW_POINT_POSITION_MIDDLE;
+
+ return true;
+ } else if ((i == *index_to_start) &&
+ dc_fixpt_le(hw_point, left)) {
+ *index_to_start = i;
+ *index_left = i;
+ *index_right = i;
+
+ *pos = HW_POINT_POSITION_LEFT;
+
+ return true;
+ } else if ((i == max_number - 1) &&
+ dc_fixpt_le(right, hw_point)) {
+ *index_to_start = i;
+ *index_left = i;
+ *index_right = i;
+
+ *pos = HW_POINT_POSITION_RIGHT;
+
+ return true;
+ }
+
+ ++i;
+ }
+
+ return false;
+}
+
+static bool build_custom_gamma_mapping_coefficients_worker(
+ const struct dc_gamma *ramp,
+ struct pixel_gamma_point *coeff,
+ const struct hw_x_point *coordinates_x,
+ const struct gamma_pixel *axis_x,
+ enum channel_name channel,
+ uint32_t number_of_points)
+{
+ uint32_t i = 0;
+
+ while (i <= number_of_points) {
+ struct fixed31_32 coord_x;
+
+ uint32_t index_to_start = 0;
+ uint32_t index_left = 0;
+ uint32_t index_right = 0;
+
+ enum hw_point_position hw_pos;
+
+ struct gamma_point *point;
+
+ struct fixed31_32 left_pos;
+ struct fixed31_32 right_pos;
+
+ if (channel == CHANNEL_NAME_RED)
+ coord_x = coordinates_x[i].regamma_y_red;
+ else if (channel == CHANNEL_NAME_GREEN)
+ coord_x = coordinates_x[i].regamma_y_green;
+ else
+ coord_x = coordinates_x[i].regamma_y_blue;
+
+ if (!find_software_points(
+ ramp, axis_x, coord_x, channel,
+ &index_to_start, &index_left, &index_right, &hw_pos)) {
+ BREAK_TO_DEBUGGER();
+ return false;
+ }
+
+ if (index_left >= ramp->num_entries + 3) {
+ BREAK_TO_DEBUGGER();
+ return false;
+ }
+
+ if (index_right >= ramp->num_entries + 3) {
+ BREAK_TO_DEBUGGER();
+ return false;
+ }
+
+ if (channel == CHANNEL_NAME_RED) {
+ point = &coeff[i].r;
+
+ left_pos = axis_x[index_left].r;
+ right_pos = axis_x[index_right].r;
+ } else if (channel == CHANNEL_NAME_GREEN) {
+ point = &coeff[i].g;
+
+ left_pos = axis_x[index_left].g;
+ right_pos = axis_x[index_right].g;
+ } else {
+ point = &coeff[i].b;
+
+ left_pos = axis_x[index_left].b;
+ right_pos = axis_x[index_right].b;
+ }
+
+ if (hw_pos == HW_POINT_POSITION_MIDDLE)
+ point->coeff = dc_fixpt_div(
+ dc_fixpt_sub(
+ coord_x,
+ left_pos),
+ dc_fixpt_sub(
+ right_pos,
+ left_pos));
+ else if (hw_pos == HW_POINT_POSITION_LEFT)
+ point->coeff = dc_fixpt_zero;
+ else if (hw_pos == HW_POINT_POSITION_RIGHT)
+ point->coeff = dc_fixpt_from_int(2);
+ else {
+ BREAK_TO_DEBUGGER();
+ return false;
+ }
+
+ point->left_index = index_left;
+ point->right_index = index_right;
+ point->pos = hw_pos;
+
+ ++i;
+ }
+
+ return true;
+}
+
+static struct fixed31_32 calculate_mapped_value(
+ struct pwl_float_data *rgb,
+ const struct pixel_gamma_point *coeff,
+ enum channel_name channel,
+ uint32_t max_index)
+{
+ const struct gamma_point *point;
+
+ struct fixed31_32 result;
+
+ if (channel == CHANNEL_NAME_RED)
+ point = &coeff->r;
+ else if (channel == CHANNEL_NAME_GREEN)
+ point = &coeff->g;
+ else
+ point = &coeff->b;
+
+ if ((point->left_index < 0) || (point->left_index > max_index)) {
+ BREAK_TO_DEBUGGER();
+ return dc_fixpt_zero;
+ }
+
+ if ((point->right_index < 0) || (point->right_index > max_index)) {
+ BREAK_TO_DEBUGGER();
+ return dc_fixpt_zero;
+ }
+
+ if (point->pos == HW_POINT_POSITION_MIDDLE)
+ if (channel == CHANNEL_NAME_RED)
+ result = dc_fixpt_add(
+ dc_fixpt_mul(
+ point->coeff,
+ dc_fixpt_sub(
+ rgb[point->right_index].r,
+ rgb[point->left_index].r)),
+ rgb[point->left_index].r);
+ else if (channel == CHANNEL_NAME_GREEN)
+ result = dc_fixpt_add(
+ dc_fixpt_mul(
+ point->coeff,
+ dc_fixpt_sub(
+ rgb[point->right_index].g,
+ rgb[point->left_index].g)),
+ rgb[point->left_index].g);
+ else
+ result = dc_fixpt_add(
+ dc_fixpt_mul(
+ point->coeff,
+ dc_fixpt_sub(
+ rgb[point->right_index].b,
+ rgb[point->left_index].b)),
+ rgb[point->left_index].b);
+ else if (point->pos == HW_POINT_POSITION_LEFT) {
+ BREAK_TO_DEBUGGER();
+ result = dc_fixpt_zero;
+ } else {
+ result = dc_fixpt_one;
+ }
+
+ return result;
+}
+
+static void build_pq(struct pwl_float_data_ex *rgb_regamma,
+ uint32_t hw_points_num,
+ const struct hw_x_point *coordinate_x,
+ uint32_t sdr_white_level)
+{
+ uint32_t i, start_index;
+
+ struct pwl_float_data_ex *rgb = rgb_regamma;
+ const struct hw_x_point *coord_x = coordinate_x;
+ struct fixed31_32 x;
+ struct fixed31_32 output;
+ struct fixed31_32 scaling_factor =
+ dc_fixpt_from_fraction(sdr_white_level, 10000);
+ struct fixed31_32 *pq_table = mod_color_get_table(type_pq_table);
+
+ if (!mod_color_is_table_init(type_pq_table) && sdr_white_level == 80) {
+ precompute_pq();
+ mod_color_set_table_init_state(type_pq_table, true);
+ }
+
+ /* TODO: start index is from segment 2^-24, skipping first segment
+ * due to x values too small for power calculations
+ */
+ start_index = 32;
+ rgb += start_index;
+ coord_x += start_index;
+
+ for (i = start_index; i <= hw_points_num; i++) {
+ /* Multiply 0.008 as regamma is 0-1 and FP16 input is 0-125.
+ * FP 1.0 = 80nits
+ */
+ if (sdr_white_level == 80) {
+ output = pq_table[i];
+ } else {
+ x = dc_fixpt_mul(coord_x->x, scaling_factor);
+ compute_pq(x, &output);
+ }
+
+ /* should really not happen? */
+ if (dc_fixpt_lt(output, dc_fixpt_zero))
+ output = dc_fixpt_zero;
+ else if (dc_fixpt_lt(dc_fixpt_one, output))
+ output = dc_fixpt_one;
+
+ rgb->r = output;
+ rgb->g = output;
+ rgb->b = output;
+
+ ++coord_x;
+ ++rgb;
+ }
+}
+
+static void build_de_pq(struct pwl_float_data_ex *de_pq,
+ uint32_t hw_points_num,
+ const struct hw_x_point *coordinate_x)
+{
+ uint32_t i;
+ struct fixed31_32 output;
+ struct fixed31_32 *de_pq_table = mod_color_get_table(type_de_pq_table);
+ struct fixed31_32 scaling_factor = dc_fixpt_from_int(125);
+
+ if (!mod_color_is_table_init(type_de_pq_table)) {
+ precompute_de_pq();
+ mod_color_set_table_init_state(type_de_pq_table, true);
+ }
+
+
+ for (i = 0; i <= hw_points_num; i++) {
+ output = de_pq_table[i];
+ /* should really not happen? */
+ if (dc_fixpt_lt(output, dc_fixpt_zero))
+ output = dc_fixpt_zero;
+ else if (dc_fixpt_lt(scaling_factor, output))
+ output = scaling_factor;
+ de_pq[i].r = output;
+ de_pq[i].g = output;
+ de_pq[i].b = output;
+ }
+}
+
+static bool build_regamma(struct pwl_float_data_ex *rgb_regamma,
+ uint32_t hw_points_num,
+ const struct hw_x_point *coordinate_x,
+ enum dc_transfer_func_predefined type,
+ struct calculate_buffer *cal_buffer)
+{
+ uint32_t i;
+ bool ret = false;
+
+ struct gamma_coefficients *coeff;
+ struct pwl_float_data_ex *rgb = rgb_regamma;
+ const struct hw_x_point *coord_x = coordinate_x;
+
+ coeff = kvzalloc(sizeof(*coeff), GFP_KERNEL);
+ if (!coeff)
+ goto release;
+
+ if (!build_coefficients(coeff, type))
+ goto release;
+
+ memset(cal_buffer->buffer, 0, NUM_PTS_IN_REGION * sizeof(struct fixed31_32));
+ cal_buffer->buffer_index = 0; // see variable definition for more info
+
+ i = 0;
+ while (i <= hw_points_num) {
+ /* TODO use y vs r,g,b */
+ rgb->r = translate_from_linear_space_ex(
+ coord_x->x, coeff, 0, cal_buffer);
+ rgb->g = rgb->r;
+ rgb->b = rgb->r;
+ ++coord_x;
+ ++rgb;
+ ++i;
+ }
+ cal_buffer->buffer_index = -1;
+ ret = true;
+release:
+ kvfree(coeff);
+ return ret;
+}
+
+static void hermite_spline_eetf(struct fixed31_32 input_x,
+ struct fixed31_32 max_display,
+ struct fixed31_32 min_display,
+ struct fixed31_32 max_content,
+ struct fixed31_32 *out_x)
+{
+ struct fixed31_32 min_lum_pq;
+ struct fixed31_32 max_lum_pq;
+ struct fixed31_32 max_content_pq;
+ struct fixed31_32 ks;
+ struct fixed31_32 E1;
+ struct fixed31_32 E2;
+ struct fixed31_32 E3;
+ struct fixed31_32 t;
+ struct fixed31_32 t2;
+ struct fixed31_32 t3;
+ struct fixed31_32 two;
+ struct fixed31_32 three;
+ struct fixed31_32 temp1;
+ struct fixed31_32 temp2;
+ struct fixed31_32 a = dc_fixpt_from_fraction(15, 10);
+ struct fixed31_32 b = dc_fixpt_from_fraction(5, 10);
+ struct fixed31_32 epsilon = dc_fixpt_from_fraction(1, 1000000); // dc_fixpt_epsilon is a bit too small
+
+ if (dc_fixpt_eq(max_content, dc_fixpt_zero)) {
+ *out_x = dc_fixpt_zero;
+ return;
+ }
+
+ compute_pq(input_x, &E1);
+ compute_pq(dc_fixpt_div(min_display, max_content), &min_lum_pq);
+ compute_pq(dc_fixpt_div(max_display, max_content), &max_lum_pq);
+ compute_pq(dc_fixpt_one, &max_content_pq); // always 1? DAL2 code is weird
+ a = dc_fixpt_div(dc_fixpt_add(dc_fixpt_one, b), max_content_pq); // (1+b)/maxContent
+ ks = dc_fixpt_sub(dc_fixpt_mul(a, max_lum_pq), b); // a * max_lum_pq - b
+
+ if (dc_fixpt_lt(E1, ks))
+ E2 = E1;
+ else if (dc_fixpt_le(ks, E1) && dc_fixpt_le(E1, dc_fixpt_one)) {
+ if (dc_fixpt_lt(epsilon, dc_fixpt_sub(dc_fixpt_one, ks)))
+ // t = (E1 - ks) / (1 - ks)
+ t = dc_fixpt_div(dc_fixpt_sub(E1, ks),
+ dc_fixpt_sub(dc_fixpt_one, ks));
+ else
+ t = dc_fixpt_zero;
+
+ two = dc_fixpt_from_int(2);
+ three = dc_fixpt_from_int(3);
+
+ t2 = dc_fixpt_mul(t, t);
+ t3 = dc_fixpt_mul(t2, t);
+ temp1 = dc_fixpt_mul(two, t3);
+ temp2 = dc_fixpt_mul(three, t2);
+
+ // (2t^3 - 3t^2 + 1) * ks
+ E2 = dc_fixpt_mul(ks, dc_fixpt_add(dc_fixpt_one,
+ dc_fixpt_sub(temp1, temp2)));
+
+ // (-2t^3 + 3t^2) * max_lum_pq
+ E2 = dc_fixpt_add(E2, dc_fixpt_mul(max_lum_pq,
+ dc_fixpt_sub(temp2, temp1)));
+
+ temp1 = dc_fixpt_mul(two, t2);
+ temp2 = dc_fixpt_sub(dc_fixpt_one, ks);
+
+ // (t^3 - 2t^2 + t) * (1-ks)
+ E2 = dc_fixpt_add(E2, dc_fixpt_mul(temp2,
+ dc_fixpt_add(t, dc_fixpt_sub(t3, temp1))));
+ } else
+ E2 = dc_fixpt_one;
+
+ temp1 = dc_fixpt_sub(dc_fixpt_one, E2);
+ temp2 = dc_fixpt_mul(temp1, temp1);
+ temp2 = dc_fixpt_mul(temp2, temp2);
+ // temp2 = (1-E2)^4
+
+ E3 = dc_fixpt_add(E2, dc_fixpt_mul(min_lum_pq, temp2));
+ compute_de_pq(E3, out_x);
+
+ *out_x = dc_fixpt_div(*out_x, dc_fixpt_div(max_display, max_content));
+}
+
+static bool build_freesync_hdr(struct pwl_float_data_ex *rgb_regamma,
+ uint32_t hw_points_num,
+ const struct hw_x_point *coordinate_x,
+ const struct hdr_tm_params *fs_params,
+ struct calculate_buffer *cal_buffer)
+{
+ uint32_t i;
+ struct pwl_float_data_ex *rgb = rgb_regamma;
+ const struct hw_x_point *coord_x = coordinate_x;
+ const struct hw_x_point *prv_coord_x = coord_x;
+ struct fixed31_32 scaledX = dc_fixpt_zero;
+ struct fixed31_32 scaledX1 = dc_fixpt_zero;
+ struct fixed31_32 max_display;
+ struct fixed31_32 min_display;
+ struct fixed31_32 max_content;
+ struct fixed31_32 clip = dc_fixpt_one;
+ struct fixed31_32 output;
+ bool use_eetf = false;
+ bool is_clipped = false;
+ struct fixed31_32 sdr_white_level;
+ struct fixed31_32 coordX_diff;
+ struct fixed31_32 out_dist_max;
+ struct fixed31_32 bright_norm;
+
+ if (fs_params->max_content == 0 ||
+ fs_params->max_display == 0)
+ return false;
+
+ max_display = dc_fixpt_from_int(fs_params->max_display);
+ min_display = dc_fixpt_from_fraction(fs_params->min_display, 10000);
+ max_content = dc_fixpt_from_int(fs_params->max_content);
+ sdr_white_level = dc_fixpt_from_int(fs_params->sdr_white_level);
+
+ if (fs_params->min_display > 1000) // cap at 0.1 at the bottom
+ min_display = dc_fixpt_from_fraction(1, 10);
+ if (fs_params->max_display < 100) // cap at 100 at the top
+ max_display = dc_fixpt_from_int(100);
+
+ // only max used, we don't adjust min luminance
+ if (fs_params->max_content > fs_params->max_display)
+ use_eetf = true;
+ else
+ max_content = max_display;
+
+ if (!use_eetf)
+ cal_buffer->buffer_index = 0; // see var definition for more info
+ rgb += 32; // first 32 points have problems with fixed point, too small
+ coord_x += 32;
+
+ for (i = 32; i <= hw_points_num; i++) {
+ if (!is_clipped) {
+ if (use_eetf) {
+ /* max content is equal 1 */
+ scaledX1 = dc_fixpt_div(coord_x->x,
+ dc_fixpt_div(max_content, sdr_white_level));
+ hermite_spline_eetf(scaledX1, max_display, min_display,
+ max_content, &scaledX);
+ } else
+ scaledX = dc_fixpt_div(coord_x->x,
+ dc_fixpt_div(max_display, sdr_white_level));
+
+ if (dc_fixpt_lt(scaledX, clip)) {
+ if (dc_fixpt_lt(scaledX, dc_fixpt_zero))
+ output = dc_fixpt_zero;
+ else
+ output = calculate_gamma22(scaledX, use_eetf, cal_buffer);
+
+ // Ensure output respects reasonable boundaries
+ output = dc_fixpt_clamp(output, dc_fixpt_zero, dc_fixpt_one);
+
+ rgb->r = output;
+ rgb->g = output;
+ rgb->b = output;
+ } else {
+ /* Here clipping happens for the first time */
+ is_clipped = true;
+
+ /* The next few lines implement the equation
+ * output = prev_out +
+ * (coord_x->x - prev_coord_x->x) *
+ * (1.0 - prev_out) /
+ * (maxDisp/sdr_white_level - prevCoordX)
+ *
+ * This equation interpolates the first point
+ * after max_display/80 so that the slope from
+ * hw_x_before_max and hw_x_after_max is such
+ * that we hit Y=1.0 at max_display/80.
+ */
+
+ coordX_diff = dc_fixpt_sub(coord_x->x, prv_coord_x->x);
+ out_dist_max = dc_fixpt_sub(dc_fixpt_one, output);
+ bright_norm = dc_fixpt_div(max_display, sdr_white_level);
+
+ output = dc_fixpt_add(
+ output, dc_fixpt_mul(
+ coordX_diff, dc_fixpt_div(
+ out_dist_max,
+ dc_fixpt_sub(bright_norm, prv_coord_x->x)
+ )
+ )
+ );
+
+ /* Relaxing the maximum boundary to 1.07 (instead of 1.0)
+ * because the last point in the curve must be such that
+ * the maximum display pixel brightness interpolates to
+ * exactly 1.0. The worst case scenario was calculated
+ * around 1.057, so the limit of 1.07 leaves some safety
+ * margin.
+ */
+ output = dc_fixpt_clamp(output, dc_fixpt_zero,
+ dc_fixpt_from_fraction(107, 100));
+
+ rgb->r = output;
+ rgb->g = output;
+ rgb->b = output;
+ }
+ } else {
+ /* Every other clipping after the first
+ * one is dealt with here
+ */
+ rgb->r = clip;
+ rgb->g = clip;
+ rgb->b = clip;
+ }
+
+ prv_coord_x = coord_x;
+ ++coord_x;
+ ++rgb;
+ }
+ cal_buffer->buffer_index = -1;
+
+ return true;
+}
+
+static bool build_degamma(struct pwl_float_data_ex *curve,
+ uint32_t hw_points_num,
+ const struct hw_x_point *coordinate_x, enum dc_transfer_func_predefined type)
+{
+ uint32_t i;
+ struct gamma_coefficients coeff;
+ uint32_t begin_index, end_index;
+ bool ret = false;
+
+ if (!build_coefficients(&coeff, type))
+ goto release;
+
+ i = 0;
+
+ /* X points is 2^-25 to 2^7
+ * De-gamma X is 2^-12 to 2^0 – we are skipping first -12-(-25) = 13 regions
+ */
+ begin_index = 13 * NUM_PTS_IN_REGION;
+ end_index = begin_index + 12 * NUM_PTS_IN_REGION;
+
+ while (i != begin_index) {
+ curve[i].r = dc_fixpt_zero;
+ curve[i].g = dc_fixpt_zero;
+ curve[i].b = dc_fixpt_zero;
+ i++;
+ }
+
+ while (i != end_index) {
+ curve[i].r = translate_to_linear_space_ex(
+ coordinate_x[i].x, &coeff, 0);
+ curve[i].g = curve[i].r;
+ curve[i].b = curve[i].r;
+ i++;
+ }
+ while (i != hw_points_num + 1) {
+ curve[i].r = dc_fixpt_one;
+ curve[i].g = dc_fixpt_one;
+ curve[i].b = dc_fixpt_one;
+ i++;
+ }
+ ret = true;
+release:
+ return ret;
+}
+
+
+
+
+
+static void build_hlg_degamma(struct pwl_float_data_ex *degamma,
+ uint32_t hw_points_num,
+ const struct hw_x_point *coordinate_x,
+ uint32_t sdr_white_level, uint32_t max_luminance_nits)
+{
+ uint32_t i;
+
+ struct pwl_float_data_ex *rgb = degamma;
+ const struct hw_x_point *coord_x = coordinate_x;
+
+ i = 0;
+ // check when i == 434
+ while (i != hw_points_num + 1) {
+ compute_hlg_eotf(coord_x->x, &rgb->r, sdr_white_level, max_luminance_nits);
+ rgb->g = rgb->r;
+ rgb->b = rgb->r;
+ ++coord_x;
+ ++rgb;
+ ++i;
+ }
+}
+
+
+static void build_hlg_regamma(struct pwl_float_data_ex *regamma,
+ uint32_t hw_points_num,
+ const struct hw_x_point *coordinate_x,
+ uint32_t sdr_white_level, uint32_t max_luminance_nits)
+{
+ uint32_t i;
+
+ struct pwl_float_data_ex *rgb = regamma;
+ const struct hw_x_point *coord_x = coordinate_x;
+
+ i = 0;
+
+ // when i == 471
+ while (i != hw_points_num + 1) {
+ compute_hlg_oetf(coord_x->x, &rgb->r, sdr_white_level, max_luminance_nits);
+ rgb->g = rgb->r;
+ rgb->b = rgb->r;
+ ++coord_x;
+ ++rgb;
+ ++i;
+ }
+}
+
+static void scale_gamma(struct pwl_float_data *pwl_rgb,
+ const struct dc_gamma *ramp,
+ struct dividers dividers)
+{
+ const struct fixed31_32 max_driver = dc_fixpt_from_int(0xFFFF);
+ const struct fixed31_32 max_os = dc_fixpt_from_int(0xFF00);
+ struct fixed31_32 scaler = max_os;
+ uint32_t i;
+ struct pwl_float_data *rgb = pwl_rgb;
+ struct pwl_float_data *rgb_last = rgb + ramp->num_entries - 1;
+
+ i = 0;
+
+ do {
+ if (dc_fixpt_lt(max_os, ramp->entries.red[i]) ||
+ dc_fixpt_lt(max_os, ramp->entries.green[i]) ||
+ dc_fixpt_lt(max_os, ramp->entries.blue[i])) {
+ scaler = max_driver;
+ break;
+ }
+ ++i;
+ } while (i != ramp->num_entries);
+
+ i = 0;
+
+ do {
+ rgb->r = dc_fixpt_div(
+ ramp->entries.red[i], scaler);
+ rgb->g = dc_fixpt_div(
+ ramp->entries.green[i], scaler);
+ rgb->b = dc_fixpt_div(
+ ramp->entries.blue[i], scaler);
+
+ ++rgb;
+ ++i;
+ } while (i != ramp->num_entries);
+
+ rgb->r = dc_fixpt_mul(rgb_last->r,
+ dividers.divider1);
+ rgb->g = dc_fixpt_mul(rgb_last->g,
+ dividers.divider1);
+ rgb->b = dc_fixpt_mul(rgb_last->b,
+ dividers.divider1);
+
+ ++rgb;
+
+ rgb->r = dc_fixpt_mul(rgb_last->r,
+ dividers.divider2);
+ rgb->g = dc_fixpt_mul(rgb_last->g,
+ dividers.divider2);
+ rgb->b = dc_fixpt_mul(rgb_last->b,
+ dividers.divider2);
+
+ ++rgb;
+
+ rgb->r = dc_fixpt_mul(rgb_last->r,
+ dividers.divider3);
+ rgb->g = dc_fixpt_mul(rgb_last->g,
+ dividers.divider3);
+ rgb->b = dc_fixpt_mul(rgb_last->b,
+ dividers.divider3);
+}
+
+static void scale_gamma_dx(struct pwl_float_data *pwl_rgb,
+ const struct dc_gamma *ramp,
+ struct dividers dividers)
+{
+ uint32_t i;
+ struct fixed31_32 min = dc_fixpt_zero;
+ struct fixed31_32 max = dc_fixpt_one;
+
+ struct fixed31_32 delta = dc_fixpt_zero;
+ struct fixed31_32 offset = dc_fixpt_zero;
+
+ for (i = 0 ; i < ramp->num_entries; i++) {
+ if (dc_fixpt_lt(ramp->entries.red[i], min))
+ min = ramp->entries.red[i];
+
+ if (dc_fixpt_lt(ramp->entries.green[i], min))
+ min = ramp->entries.green[i];
+
+ if (dc_fixpt_lt(ramp->entries.blue[i], min))
+ min = ramp->entries.blue[i];
+
+ if (dc_fixpt_lt(max, ramp->entries.red[i]))
+ max = ramp->entries.red[i];
+
+ if (dc_fixpt_lt(max, ramp->entries.green[i]))
+ max = ramp->entries.green[i];
+
+ if (dc_fixpt_lt(max, ramp->entries.blue[i]))
+ max = ramp->entries.blue[i];
+ }
+
+ if (dc_fixpt_lt(min, dc_fixpt_zero))
+ delta = dc_fixpt_neg(min);
+
+ offset = dc_fixpt_add(min, max);
+
+ for (i = 0 ; i < ramp->num_entries; i++) {
+ pwl_rgb[i].r = dc_fixpt_div(
+ dc_fixpt_add(
+ ramp->entries.red[i], delta), offset);
+ pwl_rgb[i].g = dc_fixpt_div(
+ dc_fixpt_add(
+ ramp->entries.green[i], delta), offset);
+ pwl_rgb[i].b = dc_fixpt_div(
+ dc_fixpt_add(
+ ramp->entries.blue[i], delta), offset);
+
+ }
+
+ pwl_rgb[i].r = dc_fixpt_sub(dc_fixpt_mul_int(
+ pwl_rgb[i-1].r, 2), pwl_rgb[i-2].r);
+ pwl_rgb[i].g = dc_fixpt_sub(dc_fixpt_mul_int(
+ pwl_rgb[i-1].g, 2), pwl_rgb[i-2].g);
+ pwl_rgb[i].b = dc_fixpt_sub(dc_fixpt_mul_int(
+ pwl_rgb[i-1].b, 2), pwl_rgb[i-2].b);
+ ++i;
+ pwl_rgb[i].r = dc_fixpt_sub(dc_fixpt_mul_int(
+ pwl_rgb[i-1].r, 2), pwl_rgb[i-2].r);
+ pwl_rgb[i].g = dc_fixpt_sub(dc_fixpt_mul_int(
+ pwl_rgb[i-1].g, 2), pwl_rgb[i-2].g);
+ pwl_rgb[i].b = dc_fixpt_sub(dc_fixpt_mul_int(
+ pwl_rgb[i-1].b, 2), pwl_rgb[i-2].b);
+}
+
+/* todo: all these scale_gamma functions are inherently the same but
+ * take different structures as params or different format for ramp
+ * values. We could probably implement it in a more generic fashion
+ */
+static void scale_user_regamma_ramp(struct pwl_float_data *pwl_rgb,
+ const struct regamma_ramp *ramp,
+ struct dividers dividers)
+{
+ unsigned short max_driver = 0xFFFF;
+ unsigned short max_os = 0xFF00;
+ unsigned short scaler = max_os;
+ uint32_t i;
+ struct pwl_float_data *rgb = pwl_rgb;
+ struct pwl_float_data *rgb_last = rgb + GAMMA_RGB_256_ENTRIES - 1;
+
+ i = 0;
+ do {
+ if (ramp->gamma[i] > max_os ||
+ ramp->gamma[i + 256] > max_os ||
+ ramp->gamma[i + 512] > max_os) {
+ scaler = max_driver;
+ break;
+ }
+ i++;
+ } while (i != GAMMA_RGB_256_ENTRIES);
+
+ i = 0;
+ do {
+ rgb->r = dc_fixpt_from_fraction(
+ ramp->gamma[i], scaler);
+ rgb->g = dc_fixpt_from_fraction(
+ ramp->gamma[i + 256], scaler);
+ rgb->b = dc_fixpt_from_fraction(
+ ramp->gamma[i + 512], scaler);
+
+ ++rgb;
+ ++i;
+ } while (i != GAMMA_RGB_256_ENTRIES);
+
+ rgb->r = dc_fixpt_mul(rgb_last->r,
+ dividers.divider1);
+ rgb->g = dc_fixpt_mul(rgb_last->g,
+ dividers.divider1);
+ rgb->b = dc_fixpt_mul(rgb_last->b,
+ dividers.divider1);
+
+ ++rgb;
+
+ rgb->r = dc_fixpt_mul(rgb_last->r,
+ dividers.divider2);
+ rgb->g = dc_fixpt_mul(rgb_last->g,
+ dividers.divider2);
+ rgb->b = dc_fixpt_mul(rgb_last->b,
+ dividers.divider2);
+
+ ++rgb;
+
+ rgb->r = dc_fixpt_mul(rgb_last->r,
+ dividers.divider3);
+ rgb->g = dc_fixpt_mul(rgb_last->g,
+ dividers.divider3);
+ rgb->b = dc_fixpt_mul(rgb_last->b,
+ dividers.divider3);
+}
+
+/*
+ * RS3+ color transform DDI - 1D LUT adjustment is composed with regamma here
+ * Input is evenly distributed in the output color space as specified in
+ * SetTimings
+ *
+ * Interpolation details:
+ * 1D LUT has 4096 values which give curve correction in 0-1 float range
+ * for evenly spaced points in 0-1 range. lut1D[index] gives correction
+ * for index/4095.
+ * First we find index for which:
+ * index/4095 < regamma_y < (index+1)/4095 =>
+ * index < 4095*regamma_y < index + 1
+ * norm_y = 4095*regamma_y, and index is just truncating to nearest integer
+ * lut1 = lut1D[index], lut2 = lut1D[index+1]
+ *
+ * adjustedY is then linearly interpolating regamma Y between lut1 and lut2
+ *
+ * Custom degamma on Linux uses the same interpolation math, so is handled here
+ */
+static void apply_lut_1d(
+ const struct dc_gamma *ramp,
+ uint32_t num_hw_points,
+ struct dc_transfer_func_distributed_points *tf_pts)
+{
+ int i = 0;
+ int color = 0;
+ struct fixed31_32 *regamma_y;
+ struct fixed31_32 norm_y;
+ struct fixed31_32 lut1;
+ struct fixed31_32 lut2;
+ const int max_lut_index = 4095;
+ const struct fixed31_32 penult_lut_index_f =
+ dc_fixpt_from_int(max_lut_index-1);
+ const struct fixed31_32 max_lut_index_f =
+ dc_fixpt_from_int(max_lut_index);
+ int32_t index = 0, index_next = 0;
+ struct fixed31_32 index_f;
+ struct fixed31_32 delta_lut;
+ struct fixed31_32 delta_index;
+
+ if (ramp->type != GAMMA_CS_TFM_1D && ramp->type != GAMMA_CUSTOM)
+ return; // this is not expected
+
+ for (i = 0; i < num_hw_points; i++) {
+ for (color = 0; color < 3; color++) {
+ if (color == 0)
+ regamma_y = &tf_pts->red[i];
+ else if (color == 1)
+ regamma_y = &tf_pts->green[i];
+ else
+ regamma_y = &tf_pts->blue[i];
+
+ norm_y = dc_fixpt_mul(max_lut_index_f,
+ *regamma_y);
+ index = dc_fixpt_floor(norm_y);
+ index_f = dc_fixpt_from_int(index);
+
+ if (index < 0)
+ continue;
+
+ if (index <= max_lut_index)
+ index_next = (index == max_lut_index) ? index : index+1;
+ else {
+ /* Here we are dealing with the last point in the curve,
+ * which in some cases might exceed the range given by
+ * max_lut_index. So we interpolate the value using
+ * max_lut_index and max_lut_index - 1.
+ */
+ index = max_lut_index - 1;
+ index_next = max_lut_index;
+ index_f = penult_lut_index_f;
+ }
+
+ if (color == 0) {
+ lut1 = ramp->entries.red[index];
+ lut2 = ramp->entries.red[index_next];
+ } else if (color == 1) {
+ lut1 = ramp->entries.green[index];
+ lut2 = ramp->entries.green[index_next];
+ } else {
+ lut1 = ramp->entries.blue[index];
+ lut2 = ramp->entries.blue[index_next];
+ }
+
+ // we have everything now, so interpolate
+ delta_lut = dc_fixpt_sub(lut2, lut1);
+ delta_index = dc_fixpt_sub(norm_y, index_f);
+
+ *regamma_y = dc_fixpt_add(lut1,
+ dc_fixpt_mul(delta_index, delta_lut));
+ }
+ }
+}
+
+static void build_evenly_distributed_points(
+ struct gamma_pixel *points,
+ uint32_t numberof_points,
+ struct dividers dividers)
+{
+ struct gamma_pixel *p = points;
+ struct gamma_pixel *p_last;
+
+ uint32_t i = 0;
+
+ // This function should not gets called with 0 as a parameter
+ ASSERT(numberof_points > 0);
+ p_last = p + numberof_points - 1;
+
+ do {
+ struct fixed31_32 value = dc_fixpt_from_fraction(i,
+ numberof_points - 1);
+
+ p->r = value;
+ p->g = value;
+ p->b = value;
+
+ ++p;
+ ++i;
+ } while (i < numberof_points);
+
+ p->r = dc_fixpt_div(p_last->r, dividers.divider1);
+ p->g = dc_fixpt_div(p_last->g, dividers.divider1);
+ p->b = dc_fixpt_div(p_last->b, dividers.divider1);
+
+ ++p;
+
+ p->r = dc_fixpt_div(p_last->r, dividers.divider2);
+ p->g = dc_fixpt_div(p_last->g, dividers.divider2);
+ p->b = dc_fixpt_div(p_last->b, dividers.divider2);
+
+ ++p;
+
+ p->r = dc_fixpt_div(p_last->r, dividers.divider3);
+ p->g = dc_fixpt_div(p_last->g, dividers.divider3);
+ p->b = dc_fixpt_div(p_last->b, dividers.divider3);
+}
+
+static inline void copy_rgb_regamma_to_coordinates_x(
+ struct hw_x_point *coordinates_x,
+ uint32_t hw_points_num,
+ const struct pwl_float_data_ex *rgb_ex)
+{
+ struct hw_x_point *coords = coordinates_x;
+ uint32_t i = 0;
+ const struct pwl_float_data_ex *rgb_regamma = rgb_ex;
+
+ while (i <= hw_points_num + 1) {
+ coords->regamma_y_red = rgb_regamma->r;
+ coords->regamma_y_green = rgb_regamma->g;
+ coords->regamma_y_blue = rgb_regamma->b;
+
+ ++coords;
+ ++rgb_regamma;
+ ++i;
+ }
+}
+
+static bool calculate_interpolated_hardware_curve(
+ const struct dc_gamma *ramp,
+ struct pixel_gamma_point *coeff128,
+ struct pwl_float_data *rgb_user,
+ const struct hw_x_point *coordinates_x,
+ const struct gamma_pixel *axis_x,
+ uint32_t number_of_points,
+ struct dc_transfer_func_distributed_points *tf_pts)
+{
+
+ const struct pixel_gamma_point *coeff = coeff128;
+ uint32_t max_entries = 3 - 1;
+
+ uint32_t i = 0;
+
+ for (i = 0; i < 3; i++) {
+ if (!build_custom_gamma_mapping_coefficients_worker(
+ ramp, coeff128, coordinates_x, axis_x, i,
+ number_of_points))
+ return false;
+ }
+
+ i = 0;
+ max_entries += ramp->num_entries;
+
+ /* TODO: float point case */
+
+ while (i <= number_of_points) {
+ tf_pts->red[i] = calculate_mapped_value(
+ rgb_user, coeff, CHANNEL_NAME_RED, max_entries);
+ tf_pts->green[i] = calculate_mapped_value(
+ rgb_user, coeff, CHANNEL_NAME_GREEN, max_entries);
+ tf_pts->blue[i] = calculate_mapped_value(
+ rgb_user, coeff, CHANNEL_NAME_BLUE, max_entries);
+
+ ++coeff;
+ ++i;
+ }
+
+ return true;
+}
+
+/* The "old" interpolation uses a complicated scheme to build an array of
+ * coefficients while also using an array of 0-255 normalized to 0-1
+ * Then there's another loop using both of the above + new scaled user ramp
+ * and we concatenate them. It also searches for points of interpolation and
+ * uses enums for positions.
+ *
+ * This function uses a different approach:
+ * user ramp is always applied on X with 0/255, 1/255, 2/255, ..., 255/255
+ * To find index for hwX , we notice the following:
+ * i/255 <= hwX < (i+1)/255 <=> i <= 255*hwX < i+1
+ * See apply_lut_1d which is the same principle, but on 4K entry 1D LUT
+ *
+ * Once the index is known, combined Y is simply:
+ * user_ramp(index) + (hwX-index/255)*(user_ramp(index+1) - user_ramp(index)
+ *
+ * We should switch to this method in all cases, it's simpler and faster
+ * ToDo one day - for now this only applies to ADL regamma to avoid regression
+ * for regular use cases (sRGB and PQ)
+ */
+static void interpolate_user_regamma(uint32_t hw_points_num,
+ struct pwl_float_data *rgb_user,
+ bool apply_degamma,
+ struct dc_transfer_func_distributed_points *tf_pts)
+{
+ uint32_t i;
+ uint32_t color = 0;
+ int32_t index;
+ int32_t index_next;
+ struct fixed31_32 *tf_point;
+ struct fixed31_32 hw_x;
+ struct fixed31_32 norm_factor =
+ dc_fixpt_from_int(255);
+ struct fixed31_32 norm_x;
+ struct fixed31_32 index_f;
+ struct fixed31_32 lut1;
+ struct fixed31_32 lut2;
+ struct fixed31_32 delta_lut;
+ struct fixed31_32 delta_index;
+ const struct fixed31_32 one = dc_fixpt_from_int(1);
+
+ i = 0;
+ /* fixed_pt library has problems handling too small values */
+ while (i != 32) {
+ tf_pts->red[i] = dc_fixpt_zero;
+ tf_pts->green[i] = dc_fixpt_zero;
+ tf_pts->blue[i] = dc_fixpt_zero;
+ ++i;
+ }
+ while (i <= hw_points_num + 1) {
+ for (color = 0; color < 3; color++) {
+ if (color == 0)
+ tf_point = &tf_pts->red[i];
+ else if (color == 1)
+ tf_point = &tf_pts->green[i];
+ else
+ tf_point = &tf_pts->blue[i];
+
+ if (apply_degamma) {
+ if (color == 0)
+ hw_x = coordinates_x[i].regamma_y_red;
+ else if (color == 1)
+ hw_x = coordinates_x[i].regamma_y_green;
+ else
+ hw_x = coordinates_x[i].regamma_y_blue;
+ } else
+ hw_x = coordinates_x[i].x;
+
+ if (dc_fixpt_le(one, hw_x))
+ hw_x = one;
+
+ norm_x = dc_fixpt_mul(norm_factor, hw_x);
+ index = dc_fixpt_floor(norm_x);
+ if (index < 0 || index > 255)
+ continue;
+
+ index_f = dc_fixpt_from_int(index);
+ index_next = (index == 255) ? index : index + 1;
+
+ if (color == 0) {
+ lut1 = rgb_user[index].r;
+ lut2 = rgb_user[index_next].r;
+ } else if (color == 1) {
+ lut1 = rgb_user[index].g;
+ lut2 = rgb_user[index_next].g;
+ } else {
+ lut1 = rgb_user[index].b;
+ lut2 = rgb_user[index_next].b;
+ }
+
+ // we have everything now, so interpolate
+ delta_lut = dc_fixpt_sub(lut2, lut1);
+ delta_index = dc_fixpt_sub(norm_x, index_f);
+
+ *tf_point = dc_fixpt_add(lut1,
+ dc_fixpt_mul(delta_index, delta_lut));
+ }
+ ++i;
+ }
+}
+
+static void build_new_custom_resulted_curve(
+ uint32_t hw_points_num,
+ struct dc_transfer_func_distributed_points *tf_pts)
+{
+ uint32_t i = 0;
+
+ while (i != hw_points_num + 1) {
+ tf_pts->red[i] = dc_fixpt_clamp(
+ tf_pts->red[i], dc_fixpt_zero,
+ dc_fixpt_one);
+ tf_pts->green[i] = dc_fixpt_clamp(
+ tf_pts->green[i], dc_fixpt_zero,
+ dc_fixpt_one);
+ tf_pts->blue[i] = dc_fixpt_clamp(
+ tf_pts->blue[i], dc_fixpt_zero,
+ dc_fixpt_one);
+
+ ++i;
+ }
+}
+
+static void apply_degamma_for_user_regamma(struct pwl_float_data_ex *rgb_regamma,
+ uint32_t hw_points_num, struct calculate_buffer *cal_buffer)
+{
+ uint32_t i;
+
+ struct gamma_coefficients coeff;
+ struct pwl_float_data_ex *rgb = rgb_regamma;
+ const struct hw_x_point *coord_x = coordinates_x;
+
+ build_coefficients(&coeff, TRANSFER_FUNCTION_SRGB);
+
+ i = 0;
+ while (i != hw_points_num + 1) {
+ rgb->r = translate_from_linear_space_ex(
+ coord_x->x, &coeff, 0, cal_buffer);
+ rgb->g = rgb->r;
+ rgb->b = rgb->r;
+ ++coord_x;
+ ++rgb;
+ ++i;
+ }
+}
+
+static bool map_regamma_hw_to_x_user(
+ const struct dc_gamma *ramp,
+ struct pixel_gamma_point *coeff128,
+ struct pwl_float_data *rgb_user,
+ struct hw_x_point *coords_x,
+ const struct gamma_pixel *axis_x,
+ const struct pwl_float_data_ex *rgb_regamma,
+ uint32_t hw_points_num,
+ struct dc_transfer_func_distributed_points *tf_pts,
+ bool mapUserRamp,
+ bool doClamping)
+{
+ /* setup to spare calculated ideal regamma values */
+
+ int i = 0;
+ struct hw_x_point *coords = coords_x;
+ const struct pwl_float_data_ex *regamma = rgb_regamma;
+
+ if (ramp && mapUserRamp) {
+ copy_rgb_regamma_to_coordinates_x(coords,
+ hw_points_num,
+ rgb_regamma);
+
+ calculate_interpolated_hardware_curve(
+ ramp, coeff128, rgb_user, coords, axis_x,
+ hw_points_num, tf_pts);
+ } else {
+ /* just copy current rgb_regamma into tf_pts */
+ while (i <= hw_points_num) {
+ tf_pts->red[i] = regamma->r;
+ tf_pts->green[i] = regamma->g;
+ tf_pts->blue[i] = regamma->b;
+
+ ++regamma;
+ ++i;
+ }
+ }
+
+ if (doClamping) {
+ /* this should be named differently, all it does is clamp to 0-1 */
+ build_new_custom_resulted_curve(hw_points_num, tf_pts);
+ }
+
+ return true;
+}
+
+#define _EXTRA_POINTS 3
+
+bool calculate_user_regamma_coeff(struct dc_transfer_func *output_tf,
+ const struct regamma_lut *regamma,
+ struct calculate_buffer *cal_buffer,
+ const struct dc_gamma *ramp)
+{
+ struct gamma_coefficients coeff;
+ const struct hw_x_point *coord_x = coordinates_x;
+ uint32_t i = 0;
+
+ do {
+ coeff.a0[i] = dc_fixpt_from_fraction(
+ regamma->coeff.A0[i], 10000000);
+ coeff.a1[i] = dc_fixpt_from_fraction(
+ regamma->coeff.A1[i], 1000);
+ coeff.a2[i] = dc_fixpt_from_fraction(
+ regamma->coeff.A2[i], 1000);
+ coeff.a3[i] = dc_fixpt_from_fraction(
+ regamma->coeff.A3[i], 1000);
+ coeff.user_gamma[i] = dc_fixpt_from_fraction(
+ regamma->coeff.gamma[i], 1000);
+
+ ++i;
+ } while (i != 3);
+
+ i = 0;
+ /* fixed_pt library has problems handling too small values */
+ while (i != 32) {
+ output_tf->tf_pts.red[i] = dc_fixpt_zero;
+ output_tf->tf_pts.green[i] = dc_fixpt_zero;
+ output_tf->tf_pts.blue[i] = dc_fixpt_zero;
+ ++coord_x;
+ ++i;
+ }
+ while (i != MAX_HW_POINTS + 1) {
+ output_tf->tf_pts.red[i] = translate_from_linear_space_ex(
+ coord_x->x, &coeff, 0, cal_buffer);
+ output_tf->tf_pts.green[i] = translate_from_linear_space_ex(
+ coord_x->x, &coeff, 1, cal_buffer);
+ output_tf->tf_pts.blue[i] = translate_from_linear_space_ex(
+ coord_x->x, &coeff, 2, cal_buffer);
+ ++coord_x;
+ ++i;
+ }
+
+ if (ramp && ramp->type == GAMMA_CS_TFM_1D)
+ apply_lut_1d(ramp, MAX_HW_POINTS, &output_tf->tf_pts);
+
+ // this function just clamps output to 0-1
+ build_new_custom_resulted_curve(MAX_HW_POINTS, &output_tf->tf_pts);
+ output_tf->type = TF_TYPE_DISTRIBUTED_POINTS;
+
+ return true;
+}
+
+bool calculate_user_regamma_ramp(struct dc_transfer_func *output_tf,
+ const struct regamma_lut *regamma,
+ struct calculate_buffer *cal_buffer,
+ const struct dc_gamma *ramp)
+{
+ struct dc_transfer_func_distributed_points *tf_pts = &output_tf->tf_pts;
+ struct dividers dividers;
+
+ struct pwl_float_data *rgb_user = NULL;
+ struct pwl_float_data_ex *rgb_regamma = NULL;
+ bool ret = false;
+
+ if (regamma == NULL)
+ return false;
+
+ output_tf->type = TF_TYPE_DISTRIBUTED_POINTS;
+
+ rgb_user = kcalloc(GAMMA_RGB_256_ENTRIES + _EXTRA_POINTS,
+ sizeof(*rgb_user),
+ GFP_KERNEL);
+ if (!rgb_user)
+ goto rgb_user_alloc_fail;
+
+ rgb_regamma = kcalloc(MAX_HW_POINTS + _EXTRA_POINTS,
+ sizeof(*rgb_regamma),
+ GFP_KERNEL);
+ if (!rgb_regamma)
+ goto rgb_regamma_alloc_fail;
+
+ dividers.divider1 = dc_fixpt_from_fraction(3, 2);
+ dividers.divider2 = dc_fixpt_from_int(2);
+ dividers.divider3 = dc_fixpt_from_fraction(5, 2);
+
+ scale_user_regamma_ramp(rgb_user, &regamma->ramp, dividers);
+
+ if (regamma->flags.bits.applyDegamma == 1) {
+ apply_degamma_for_user_regamma(rgb_regamma, MAX_HW_POINTS, cal_buffer);
+ copy_rgb_regamma_to_coordinates_x(coordinates_x,
+ MAX_HW_POINTS, rgb_regamma);
+ }
+
+ interpolate_user_regamma(MAX_HW_POINTS, rgb_user,
+ regamma->flags.bits.applyDegamma, tf_pts);
+
+ // no custom HDR curves!
+ tf_pts->end_exponent = 0;
+ tf_pts->x_point_at_y1_red = 1;
+ tf_pts->x_point_at_y1_green = 1;
+ tf_pts->x_point_at_y1_blue = 1;
+
+ if (ramp && ramp->type == GAMMA_CS_TFM_1D)
+ apply_lut_1d(ramp, MAX_HW_POINTS, &output_tf->tf_pts);
+
+ // this function just clamps output to 0-1
+ build_new_custom_resulted_curve(MAX_HW_POINTS, tf_pts);
+
+ ret = true;
+
+ kfree(rgb_regamma);
+rgb_regamma_alloc_fail:
+ kfree(rgb_user);
+rgb_user_alloc_fail:
+ return ret;
+}
+
+bool mod_color_calculate_degamma_params(struct dc_color_caps *dc_caps,
+ struct dc_transfer_func *input_tf,
+ const struct dc_gamma *ramp, bool mapUserRamp)
+{
+ struct dc_transfer_func_distributed_points *tf_pts = &input_tf->tf_pts;
+ struct dividers dividers;
+ struct pwl_float_data *rgb_user = NULL;
+ struct pwl_float_data_ex *curve = NULL;
+ struct gamma_pixel *axis_x = NULL;
+ struct pixel_gamma_point *coeff = NULL;
+ enum dc_transfer_func_predefined tf = TRANSFER_FUNCTION_SRGB;
+ uint32_t i;
+ bool ret = false;
+
+ if (input_tf->type == TF_TYPE_BYPASS)
+ return false;
+
+ /* we can use hardcoded curve for plain SRGB TF
+ * If linear, it's bypass if on user ramp
+ */
+ if (input_tf->type == TF_TYPE_PREDEFINED) {
+ if ((input_tf->tf == TRANSFER_FUNCTION_SRGB ||
+ input_tf->tf == TRANSFER_FUNCTION_LINEAR) &&
+ !mapUserRamp)
+ return true;
+
+ if (dc_caps != NULL &&
+ dc_caps->dpp.dcn_arch == 1) {
+
+ if (input_tf->tf == TRANSFER_FUNCTION_PQ &&
+ dc_caps->dpp.dgam_rom_caps.pq == 1)
+ return true;
+
+ if (input_tf->tf == TRANSFER_FUNCTION_GAMMA22 &&
+ dc_caps->dpp.dgam_rom_caps.gamma2_2 == 1)
+ return true;
+
+ // HLG OOTF not accounted for
+ if (input_tf->tf == TRANSFER_FUNCTION_HLG &&
+ dc_caps->dpp.dgam_rom_caps.hlg == 1)
+ return true;
+ }
+ }
+
+ input_tf->type = TF_TYPE_DISTRIBUTED_POINTS;
+
+ if (mapUserRamp && ramp && ramp->type == GAMMA_RGB_256) {
+ rgb_user = kvcalloc(ramp->num_entries + _EXTRA_POINTS,
+ sizeof(*rgb_user),
+ GFP_KERNEL);
+ if (!rgb_user)
+ goto rgb_user_alloc_fail;
+
+ axis_x = kvcalloc(ramp->num_entries + _EXTRA_POINTS, sizeof(*axis_x),
+ GFP_KERNEL);
+ if (!axis_x)
+ goto axis_x_alloc_fail;
+
+ dividers.divider1 = dc_fixpt_from_fraction(3, 2);
+ dividers.divider2 = dc_fixpt_from_int(2);
+ dividers.divider3 = dc_fixpt_from_fraction(5, 2);
+
+ build_evenly_distributed_points(
+ axis_x,
+ ramp->num_entries,
+ dividers);
+
+ scale_gamma(rgb_user, ramp, dividers);
+ }
+
+ curve = kvcalloc(MAX_HW_POINTS + _EXTRA_POINTS, sizeof(*curve),
+ GFP_KERNEL);
+ if (!curve)
+ goto curve_alloc_fail;
+
+ coeff = kvcalloc(MAX_HW_POINTS + _EXTRA_POINTS, sizeof(*coeff),
+ GFP_KERNEL);
+ if (!coeff)
+ goto coeff_alloc_fail;
+
+ tf = input_tf->tf;
+
+ if (tf == TRANSFER_FUNCTION_PQ)
+ build_de_pq(curve,
+ MAX_HW_POINTS,
+ coordinates_x);
+ else if (tf == TRANSFER_FUNCTION_SRGB ||
+ tf == TRANSFER_FUNCTION_BT709 ||
+ tf == TRANSFER_FUNCTION_GAMMA22 ||
+ tf == TRANSFER_FUNCTION_GAMMA24 ||
+ tf == TRANSFER_FUNCTION_GAMMA26)
+ build_degamma(curve,
+ MAX_HW_POINTS,
+ coordinates_x,
+ tf);
+ else if (tf == TRANSFER_FUNCTION_HLG)
+ build_hlg_degamma(curve,
+ MAX_HW_POINTS,
+ coordinates_x,
+ 80, 1000);
+ else if (tf == TRANSFER_FUNCTION_LINEAR) {
+ // just copy coordinates_x into curve
+ i = 0;
+ while (i != MAX_HW_POINTS + 1) {
+ curve[i].r = coordinates_x[i].x;
+ curve[i].g = curve[i].r;
+ curve[i].b = curve[i].r;
+ i++;
+ }
+ } else
+ goto invalid_tf_fail;
+
+ tf_pts->end_exponent = 0;
+ tf_pts->x_point_at_y1_red = 1;
+ tf_pts->x_point_at_y1_green = 1;
+ tf_pts->x_point_at_y1_blue = 1;
+
+ if (input_tf->tf == TRANSFER_FUNCTION_PQ) {
+ /* just copy current rgb_regamma into tf_pts */
+ struct pwl_float_data_ex *curvePt = curve;
+ int i = 0;
+
+ while (i <= MAX_HW_POINTS) {
+ tf_pts->red[i] = curvePt->r;
+ tf_pts->green[i] = curvePt->g;
+ tf_pts->blue[i] = curvePt->b;
+ ++curvePt;
+ ++i;
+ }
+ } else {
+ // clamps to 0-1
+ map_regamma_hw_to_x_user(ramp, coeff, rgb_user,
+ coordinates_x, axis_x, curve,
+ MAX_HW_POINTS, tf_pts,
+ mapUserRamp && ramp && ramp->type == GAMMA_RGB_256,
+ true);
+ }
+
+
+
+ if (ramp && ramp->type == GAMMA_CUSTOM)
+ apply_lut_1d(ramp, MAX_HW_POINTS, tf_pts);
+
+ ret = true;
+
+invalid_tf_fail:
+ kvfree(coeff);
+coeff_alloc_fail:
+ kvfree(curve);
+curve_alloc_fail:
+ kvfree(axis_x);
+axis_x_alloc_fail:
+ kvfree(rgb_user);
+rgb_user_alloc_fail:
+
+ return ret;
+}
+
+static bool calculate_curve(enum dc_transfer_func_predefined trans,
+ struct dc_transfer_func_distributed_points *points,
+ struct pwl_float_data_ex *rgb_regamma,
+ const struct hdr_tm_params *fs_params,
+ uint32_t sdr_ref_white_level,
+ struct calculate_buffer *cal_buffer)
+{
+ uint32_t i;
+ bool ret = false;
+
+ if (trans == TRANSFER_FUNCTION_UNITY ||
+ trans == TRANSFER_FUNCTION_LINEAR) {
+ points->end_exponent = 0;
+ points->x_point_at_y1_red = 1;
+ points->x_point_at_y1_green = 1;
+ points->x_point_at_y1_blue = 1;
+
+ for (i = 0; i <= MAX_HW_POINTS ; i++) {
+ rgb_regamma[i].r = coordinates_x[i].x;
+ rgb_regamma[i].g = coordinates_x[i].x;
+ rgb_regamma[i].b = coordinates_x[i].x;
+ }
+
+ ret = true;
+ } else if (trans == TRANSFER_FUNCTION_PQ) {
+ points->end_exponent = 7;
+ points->x_point_at_y1_red = 125;
+ points->x_point_at_y1_green = 125;
+ points->x_point_at_y1_blue = 125;
+
+ build_pq(rgb_regamma,
+ MAX_HW_POINTS,
+ coordinates_x,
+ sdr_ref_white_level);
+
+ ret = true;
+ } else if (trans == TRANSFER_FUNCTION_GAMMA22 &&
+ fs_params != NULL && fs_params->skip_tm == 0) {
+ build_freesync_hdr(rgb_regamma,
+ MAX_HW_POINTS,
+ coordinates_x,
+ fs_params,
+ cal_buffer);
+
+ ret = true;
+ } else if (trans == TRANSFER_FUNCTION_HLG) {
+ points->end_exponent = 4;
+ points->x_point_at_y1_red = 12;
+ points->x_point_at_y1_green = 12;
+ points->x_point_at_y1_blue = 12;
+
+ build_hlg_regamma(rgb_regamma,
+ MAX_HW_POINTS,
+ coordinates_x,
+ 80, 1000);
+
+ ret = true;
+ } else {
+ // trans == TRANSFER_FUNCTION_SRGB
+ // trans == TRANSFER_FUNCTION_BT709
+ // trans == TRANSFER_FUNCTION_GAMMA22
+ // trans == TRANSFER_FUNCTION_GAMMA24
+ // trans == TRANSFER_FUNCTION_GAMMA26
+ points->end_exponent = 0;
+ points->x_point_at_y1_red = 1;
+ points->x_point_at_y1_green = 1;
+ points->x_point_at_y1_blue = 1;
+
+ build_regamma(rgb_regamma,
+ MAX_HW_POINTS,
+ coordinates_x,
+ trans,
+ cal_buffer);
+
+ ret = true;
+ }
+
+ return ret;
+}
+
+bool mod_color_calculate_regamma_params(struct dc_transfer_func *output_tf,
+ const struct dc_gamma *ramp, bool mapUserRamp, bool canRomBeUsed,
+ const struct hdr_tm_params *fs_params,
+ struct calculate_buffer *cal_buffer)
+{
+ struct dc_transfer_func_distributed_points *tf_pts = &output_tf->tf_pts;
+ struct dividers dividers;
+
+ struct pwl_float_data *rgb_user = NULL;
+ struct pwl_float_data_ex *rgb_regamma = NULL;
+ struct gamma_pixel *axis_x = NULL;
+ struct pixel_gamma_point *coeff = NULL;
+ enum dc_transfer_func_predefined tf = TRANSFER_FUNCTION_SRGB;
+ bool doClamping = true;
+ bool ret = false;
+
+ if (output_tf->type == TF_TYPE_BYPASS)
+ return false;
+
+ /* we can use hardcoded curve for plain SRGB TF */
+ if (output_tf->type == TF_TYPE_PREDEFINED && canRomBeUsed == true &&
+ output_tf->tf == TRANSFER_FUNCTION_SRGB) {
+ if (ramp == NULL)
+ return true;
+ if ((ramp->is_identity && ramp->type != GAMMA_CS_TFM_1D) ||
+ (!mapUserRamp && ramp->type == GAMMA_RGB_256))
+ return true;
+ }
+
+ output_tf->type = TF_TYPE_DISTRIBUTED_POINTS;
+
+ if (ramp && ramp->type != GAMMA_CS_TFM_1D &&
+ (mapUserRamp || ramp->type != GAMMA_RGB_256)) {
+ rgb_user = kvcalloc(ramp->num_entries + _EXTRA_POINTS,
+ sizeof(*rgb_user),
+ GFP_KERNEL);
+ if (!rgb_user)
+ goto rgb_user_alloc_fail;
+
+ axis_x = kvcalloc(ramp->num_entries + 3, sizeof(*axis_x),
+ GFP_KERNEL);
+ if (!axis_x)
+ goto axis_x_alloc_fail;
+
+ dividers.divider1 = dc_fixpt_from_fraction(3, 2);
+ dividers.divider2 = dc_fixpt_from_int(2);
+ dividers.divider3 = dc_fixpt_from_fraction(5, 2);
+
+ build_evenly_distributed_points(
+ axis_x,
+ ramp->num_entries,
+ dividers);
+
+ if (ramp->type == GAMMA_RGB_256 && mapUserRamp)
+ scale_gamma(rgb_user, ramp, dividers);
+ else if (ramp->type == GAMMA_RGB_FLOAT_1024)
+ scale_gamma_dx(rgb_user, ramp, dividers);
+ }
+
+ rgb_regamma = kvcalloc(MAX_HW_POINTS + _EXTRA_POINTS,
+ sizeof(*rgb_regamma),
+ GFP_KERNEL);
+ if (!rgb_regamma)
+ goto rgb_regamma_alloc_fail;
+
+ coeff = kvcalloc(MAX_HW_POINTS + _EXTRA_POINTS, sizeof(*coeff),
+ GFP_KERNEL);
+ if (!coeff)
+ goto coeff_alloc_fail;
+
+ tf = output_tf->tf;
+
+ ret = calculate_curve(tf,
+ tf_pts,
+ rgb_regamma,
+ fs_params,
+ output_tf->sdr_ref_white_level,
+ cal_buffer);
+
+ if (ret) {
+ doClamping = !(output_tf->tf == TRANSFER_FUNCTION_GAMMA22 &&
+ fs_params != NULL && fs_params->skip_tm == 0);
+
+ map_regamma_hw_to_x_user(ramp, coeff, rgb_user,
+ coordinates_x, axis_x, rgb_regamma,
+ MAX_HW_POINTS, tf_pts,
+ (mapUserRamp || (ramp && ramp->type != GAMMA_RGB_256)) &&
+ (ramp && ramp->type != GAMMA_CS_TFM_1D),
+ doClamping);
+
+ if (ramp && ramp->type == GAMMA_CS_TFM_1D)
+ apply_lut_1d(ramp, MAX_HW_POINTS, tf_pts);
+ }
+
+ kvfree(coeff);
+coeff_alloc_fail:
+ kvfree(rgb_regamma);
+rgb_regamma_alloc_fail:
+ kvfree(axis_x);
+axis_x_alloc_fail:
+ kvfree(rgb_user);
+rgb_user_alloc_fail:
+ return ret;
+}
+
+bool mod_color_calculate_degamma_curve(enum dc_transfer_func_predefined trans,
+ struct dc_transfer_func_distributed_points *points)
+{
+ uint32_t i;
+ bool ret = false;
+ struct pwl_float_data_ex *rgb_degamma = NULL;
+
+ if (trans == TRANSFER_FUNCTION_UNITY ||
+ trans == TRANSFER_FUNCTION_LINEAR) {
+
+ for (i = 0; i <= MAX_HW_POINTS ; i++) {
+ points->red[i] = coordinates_x[i].x;
+ points->green[i] = coordinates_x[i].x;
+ points->blue[i] = coordinates_x[i].x;
+ }
+ ret = true;
+ } else if (trans == TRANSFER_FUNCTION_PQ) {
+ rgb_degamma = kvcalloc(MAX_HW_POINTS + _EXTRA_POINTS,
+ sizeof(*rgb_degamma),
+ GFP_KERNEL);
+ if (!rgb_degamma)
+ goto rgb_degamma_alloc_fail;
+
+
+ build_de_pq(rgb_degamma,
+ MAX_HW_POINTS,
+ coordinates_x);
+ for (i = 0; i <= MAX_HW_POINTS ; i++) {
+ points->red[i] = rgb_degamma[i].r;
+ points->green[i] = rgb_degamma[i].g;
+ points->blue[i] = rgb_degamma[i].b;
+ }
+ ret = true;
+
+ kvfree(rgb_degamma);
+ } else if (trans == TRANSFER_FUNCTION_SRGB ||
+ trans == TRANSFER_FUNCTION_BT709 ||
+ trans == TRANSFER_FUNCTION_GAMMA22 ||
+ trans == TRANSFER_FUNCTION_GAMMA24 ||
+ trans == TRANSFER_FUNCTION_GAMMA26) {
+ rgb_degamma = kvcalloc(MAX_HW_POINTS + _EXTRA_POINTS,
+ sizeof(*rgb_degamma),
+ GFP_KERNEL);
+ if (!rgb_degamma)
+ goto rgb_degamma_alloc_fail;
+
+ build_degamma(rgb_degamma,
+ MAX_HW_POINTS,
+ coordinates_x,
+ trans);
+ for (i = 0; i <= MAX_HW_POINTS ; i++) {
+ points->red[i] = rgb_degamma[i].r;
+ points->green[i] = rgb_degamma[i].g;
+ points->blue[i] = rgb_degamma[i].b;
+ }
+ ret = true;
+
+ kvfree(rgb_degamma);
+ } else if (trans == TRANSFER_FUNCTION_HLG) {
+ rgb_degamma = kvcalloc(MAX_HW_POINTS + _EXTRA_POINTS,
+ sizeof(*rgb_degamma),
+ GFP_KERNEL);
+ if (!rgb_degamma)
+ goto rgb_degamma_alloc_fail;
+
+ build_hlg_degamma(rgb_degamma,
+ MAX_HW_POINTS,
+ coordinates_x,
+ 80, 1000);
+ for (i = 0; i <= MAX_HW_POINTS ; i++) {
+ points->red[i] = rgb_degamma[i].r;
+ points->green[i] = rgb_degamma[i].g;
+ points->blue[i] = rgb_degamma[i].b;
+ }
+ ret = true;
+ kvfree(rgb_degamma);
+ }
+ points->end_exponent = 0;
+ points->x_point_at_y1_red = 1;
+ points->x_point_at_y1_green = 1;
+ points->x_point_at_y1_blue = 1;
+
+rgb_degamma_alloc_fail:
+ return ret;
+}