summaryrefslogtreecommitdiffstats
path: root/drivers/gpu/drm/i915/i915_active.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/gpu/drm/i915/i915_active.c')
-rw-r--r--drivers/gpu/drm/i915/i915_active.c1208
1 files changed, 1208 insertions, 0 deletions
diff --git a/drivers/gpu/drm/i915/i915_active.c b/drivers/gpu/drm/i915/i915_active.c
new file mode 100644
index 000000000..5ec293011
--- /dev/null
+++ b/drivers/gpu/drm/i915/i915_active.c
@@ -0,0 +1,1208 @@
+/*
+ * SPDX-License-Identifier: MIT
+ *
+ * Copyright © 2019 Intel Corporation
+ */
+
+#include <linux/debugobjects.h>
+
+#include "gt/intel_context.h"
+#include "gt/intel_engine_heartbeat.h"
+#include "gt/intel_engine_pm.h"
+#include "gt/intel_ring.h"
+
+#include "i915_drv.h"
+#include "i915_active.h"
+
+/*
+ * Active refs memory management
+ *
+ * To be more economical with memory, we reap all the i915_active trees as
+ * they idle (when we know the active requests are inactive) and allocate the
+ * nodes from a local slab cache to hopefully reduce the fragmentation.
+ */
+static struct kmem_cache *slab_cache;
+
+struct active_node {
+ struct rb_node node;
+ struct i915_active_fence base;
+ struct i915_active *ref;
+ u64 timeline;
+};
+
+#define fetch_node(x) rb_entry(READ_ONCE(x), typeof(struct active_node), node)
+
+static inline struct active_node *
+node_from_active(struct i915_active_fence *active)
+{
+ return container_of(active, struct active_node, base);
+}
+
+#define take_preallocated_barriers(x) llist_del_all(&(x)->preallocated_barriers)
+
+static inline bool is_barrier(const struct i915_active_fence *active)
+{
+ return IS_ERR(rcu_access_pointer(active->fence));
+}
+
+static inline struct llist_node *barrier_to_ll(struct active_node *node)
+{
+ GEM_BUG_ON(!is_barrier(&node->base));
+ return (struct llist_node *)&node->base.cb.node;
+}
+
+static inline struct intel_engine_cs *
+__barrier_to_engine(struct active_node *node)
+{
+ return (struct intel_engine_cs *)READ_ONCE(node->base.cb.node.prev);
+}
+
+static inline struct intel_engine_cs *
+barrier_to_engine(struct active_node *node)
+{
+ GEM_BUG_ON(!is_barrier(&node->base));
+ return __barrier_to_engine(node);
+}
+
+static inline struct active_node *barrier_from_ll(struct llist_node *x)
+{
+ return container_of((struct list_head *)x,
+ struct active_node, base.cb.node);
+}
+
+#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) && IS_ENABLED(CONFIG_DEBUG_OBJECTS)
+
+static void *active_debug_hint(void *addr)
+{
+ struct i915_active *ref = addr;
+
+ return (void *)ref->active ?: (void *)ref->retire ?: (void *)ref;
+}
+
+static const struct debug_obj_descr active_debug_desc = {
+ .name = "i915_active",
+ .debug_hint = active_debug_hint,
+};
+
+static void debug_active_init(struct i915_active *ref)
+{
+ debug_object_init(ref, &active_debug_desc);
+}
+
+static void debug_active_activate(struct i915_active *ref)
+{
+ lockdep_assert_held(&ref->tree_lock);
+ debug_object_activate(ref, &active_debug_desc);
+}
+
+static void debug_active_deactivate(struct i915_active *ref)
+{
+ lockdep_assert_held(&ref->tree_lock);
+ if (!atomic_read(&ref->count)) /* after the last dec */
+ debug_object_deactivate(ref, &active_debug_desc);
+}
+
+static void debug_active_fini(struct i915_active *ref)
+{
+ debug_object_free(ref, &active_debug_desc);
+}
+
+static void debug_active_assert(struct i915_active *ref)
+{
+ debug_object_assert_init(ref, &active_debug_desc);
+}
+
+#else
+
+static inline void debug_active_init(struct i915_active *ref) { }
+static inline void debug_active_activate(struct i915_active *ref) { }
+static inline void debug_active_deactivate(struct i915_active *ref) { }
+static inline void debug_active_fini(struct i915_active *ref) { }
+static inline void debug_active_assert(struct i915_active *ref) { }
+
+#endif
+
+static void
+__active_retire(struct i915_active *ref)
+{
+ struct rb_root root = RB_ROOT;
+ struct active_node *it, *n;
+ unsigned long flags;
+
+ GEM_BUG_ON(i915_active_is_idle(ref));
+
+ /* return the unused nodes to our slabcache -- flushing the allocator */
+ if (!atomic_dec_and_lock_irqsave(&ref->count, &ref->tree_lock, flags))
+ return;
+
+ GEM_BUG_ON(rcu_access_pointer(ref->excl.fence));
+ debug_active_deactivate(ref);
+
+ /* Even if we have not used the cache, we may still have a barrier */
+ if (!ref->cache)
+ ref->cache = fetch_node(ref->tree.rb_node);
+
+ /* Keep the MRU cached node for reuse */
+ if (ref->cache) {
+ /* Discard all other nodes in the tree */
+ rb_erase(&ref->cache->node, &ref->tree);
+ root = ref->tree;
+
+ /* Rebuild the tree with only the cached node */
+ rb_link_node(&ref->cache->node, NULL, &ref->tree.rb_node);
+ rb_insert_color(&ref->cache->node, &ref->tree);
+ GEM_BUG_ON(ref->tree.rb_node != &ref->cache->node);
+
+ /* Make the cached node available for reuse with any timeline */
+ ref->cache->timeline = 0; /* needs cmpxchg(u64) */
+ }
+
+ spin_unlock_irqrestore(&ref->tree_lock, flags);
+
+ /* After the final retire, the entire struct may be freed */
+ if (ref->retire)
+ ref->retire(ref);
+
+ /* ... except if you wait on it, you must manage your own references! */
+ wake_up_var(ref);
+
+ /* Finally free the discarded timeline tree */
+ rbtree_postorder_for_each_entry_safe(it, n, &root, node) {
+ GEM_BUG_ON(i915_active_fence_isset(&it->base));
+ kmem_cache_free(slab_cache, it);
+ }
+}
+
+static void
+active_work(struct work_struct *wrk)
+{
+ struct i915_active *ref = container_of(wrk, typeof(*ref), work);
+
+ GEM_BUG_ON(!atomic_read(&ref->count));
+ if (atomic_add_unless(&ref->count, -1, 1))
+ return;
+
+ __active_retire(ref);
+}
+
+static void
+active_retire(struct i915_active *ref)
+{
+ GEM_BUG_ON(!atomic_read(&ref->count));
+ if (atomic_add_unless(&ref->count, -1, 1))
+ return;
+
+ if (ref->flags & I915_ACTIVE_RETIRE_SLEEPS) {
+ queue_work(system_unbound_wq, &ref->work);
+ return;
+ }
+
+ __active_retire(ref);
+}
+
+static inline struct dma_fence **
+__active_fence_slot(struct i915_active_fence *active)
+{
+ return (struct dma_fence ** __force)&active->fence;
+}
+
+static inline bool
+active_fence_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
+{
+ struct i915_active_fence *active =
+ container_of(cb, typeof(*active), cb);
+
+ return cmpxchg(__active_fence_slot(active), fence, NULL) == fence;
+}
+
+static void
+node_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
+{
+ if (active_fence_cb(fence, cb))
+ active_retire(container_of(cb, struct active_node, base.cb)->ref);
+}
+
+static void
+excl_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
+{
+ if (active_fence_cb(fence, cb))
+ active_retire(container_of(cb, struct i915_active, excl.cb));
+}
+
+static struct active_node *__active_lookup(struct i915_active *ref, u64 idx)
+{
+ struct active_node *it;
+
+ GEM_BUG_ON(idx == 0); /* 0 is the unordered timeline, rsvd for cache */
+
+ /*
+ * We track the most recently used timeline to skip a rbtree search
+ * for the common case, under typical loads we never need the rbtree
+ * at all. We can reuse the last slot if it is empty, that is
+ * after the previous activity has been retired, or if it matches the
+ * current timeline.
+ */
+ it = READ_ONCE(ref->cache);
+ if (it) {
+ u64 cached = READ_ONCE(it->timeline);
+
+ /* Once claimed, this slot will only belong to this idx */
+ if (cached == idx)
+ return it;
+
+ /*
+ * An unclaimed cache [.timeline=0] can only be claimed once.
+ *
+ * If the value is already non-zero, some other thread has
+ * claimed the cache and we know that is does not match our
+ * idx. If, and only if, the timeline is currently zero is it
+ * worth competing to claim it atomically for ourselves (for
+ * only the winner of that race will cmpxchg return the old
+ * value of 0).
+ */
+ if (!cached && !cmpxchg64(&it->timeline, 0, idx))
+ return it;
+ }
+
+ BUILD_BUG_ON(offsetof(typeof(*it), node));
+
+ /* While active, the tree can only be built; not destroyed */
+ GEM_BUG_ON(i915_active_is_idle(ref));
+
+ it = fetch_node(ref->tree.rb_node);
+ while (it) {
+ if (it->timeline < idx) {
+ it = fetch_node(it->node.rb_right);
+ } else if (it->timeline > idx) {
+ it = fetch_node(it->node.rb_left);
+ } else {
+ WRITE_ONCE(ref->cache, it);
+ break;
+ }
+ }
+
+ /* NB: If the tree rotated beneath us, we may miss our target. */
+ return it;
+}
+
+static struct i915_active_fence *
+active_instance(struct i915_active *ref, u64 idx)
+{
+ struct active_node *node;
+ struct rb_node **p, *parent;
+
+ node = __active_lookup(ref, idx);
+ if (likely(node))
+ return &node->base;
+
+ spin_lock_irq(&ref->tree_lock);
+ GEM_BUG_ON(i915_active_is_idle(ref));
+
+ parent = NULL;
+ p = &ref->tree.rb_node;
+ while (*p) {
+ parent = *p;
+
+ node = rb_entry(parent, struct active_node, node);
+ if (node->timeline == idx)
+ goto out;
+
+ if (node->timeline < idx)
+ p = &parent->rb_right;
+ else
+ p = &parent->rb_left;
+ }
+
+ /*
+ * XXX: We should preallocate this before i915_active_ref() is ever
+ * called, but we cannot call into fs_reclaim() anyway, so use GFP_ATOMIC.
+ */
+ node = kmem_cache_alloc(slab_cache, GFP_ATOMIC);
+ if (!node)
+ goto out;
+
+ __i915_active_fence_init(&node->base, NULL, node_retire);
+ node->ref = ref;
+ node->timeline = idx;
+
+ rb_link_node(&node->node, parent, p);
+ rb_insert_color(&node->node, &ref->tree);
+
+out:
+ WRITE_ONCE(ref->cache, node);
+ spin_unlock_irq(&ref->tree_lock);
+
+ return &node->base;
+}
+
+void __i915_active_init(struct i915_active *ref,
+ int (*active)(struct i915_active *ref),
+ void (*retire)(struct i915_active *ref),
+ unsigned long flags,
+ struct lock_class_key *mkey,
+ struct lock_class_key *wkey)
+{
+ debug_active_init(ref);
+
+ ref->flags = flags;
+ ref->active = active;
+ ref->retire = retire;
+
+ spin_lock_init(&ref->tree_lock);
+ ref->tree = RB_ROOT;
+ ref->cache = NULL;
+
+ init_llist_head(&ref->preallocated_barriers);
+ atomic_set(&ref->count, 0);
+ __mutex_init(&ref->mutex, "i915_active", mkey);
+ __i915_active_fence_init(&ref->excl, NULL, excl_retire);
+ INIT_WORK(&ref->work, active_work);
+#if IS_ENABLED(CONFIG_LOCKDEP)
+ lockdep_init_map(&ref->work.lockdep_map, "i915_active.work", wkey, 0);
+#endif
+}
+
+static bool ____active_del_barrier(struct i915_active *ref,
+ struct active_node *node,
+ struct intel_engine_cs *engine)
+
+{
+ struct llist_node *head = NULL, *tail = NULL;
+ struct llist_node *pos, *next;
+
+ GEM_BUG_ON(node->timeline != engine->kernel_context->timeline->fence_context);
+
+ /*
+ * Rebuild the llist excluding our node. We may perform this
+ * outside of the kernel_context timeline mutex and so someone
+ * else may be manipulating the engine->barrier_tasks, in
+ * which case either we or they will be upset :)
+ *
+ * A second __active_del_barrier() will report failure to claim
+ * the active_node and the caller will just shrug and know not to
+ * claim ownership of its node.
+ *
+ * A concurrent i915_request_add_active_barriers() will miss adding
+ * any of the tasks, but we will try again on the next -- and since
+ * we are actively using the barrier, we know that there will be
+ * at least another opportunity when we idle.
+ */
+ llist_for_each_safe(pos, next, llist_del_all(&engine->barrier_tasks)) {
+ if (node == barrier_from_ll(pos)) {
+ node = NULL;
+ continue;
+ }
+
+ pos->next = head;
+ head = pos;
+ if (!tail)
+ tail = pos;
+ }
+ if (head)
+ llist_add_batch(head, tail, &engine->barrier_tasks);
+
+ return !node;
+}
+
+static bool
+__active_del_barrier(struct i915_active *ref, struct active_node *node)
+{
+ return ____active_del_barrier(ref, node, barrier_to_engine(node));
+}
+
+static bool
+replace_barrier(struct i915_active *ref, struct i915_active_fence *active)
+{
+ if (!is_barrier(active)) /* proto-node used by our idle barrier? */
+ return false;
+
+ /*
+ * This request is on the kernel_context timeline, and so
+ * we can use it to substitute for the pending idle-barrer
+ * request that we want to emit on the kernel_context.
+ */
+ return __active_del_barrier(ref, node_from_active(active));
+}
+
+int i915_active_add_request(struct i915_active *ref, struct i915_request *rq)
+{
+ u64 idx = i915_request_timeline(rq)->fence_context;
+ struct dma_fence *fence = &rq->fence;
+ struct i915_active_fence *active;
+ int err;
+
+ /* Prevent reaping in case we malloc/wait while building the tree */
+ err = i915_active_acquire(ref);
+ if (err)
+ return err;
+
+ do {
+ active = active_instance(ref, idx);
+ if (!active) {
+ err = -ENOMEM;
+ goto out;
+ }
+
+ if (replace_barrier(ref, active)) {
+ RCU_INIT_POINTER(active->fence, NULL);
+ atomic_dec(&ref->count);
+ }
+ } while (unlikely(is_barrier(active)));
+
+ fence = __i915_active_fence_set(active, fence);
+ if (!fence)
+ __i915_active_acquire(ref);
+ else
+ dma_fence_put(fence);
+
+out:
+ i915_active_release(ref);
+ return err;
+}
+
+static struct dma_fence *
+__i915_active_set_fence(struct i915_active *ref,
+ struct i915_active_fence *active,
+ struct dma_fence *fence)
+{
+ struct dma_fence *prev;
+
+ if (replace_barrier(ref, active)) {
+ RCU_INIT_POINTER(active->fence, fence);
+ return NULL;
+ }
+
+ prev = __i915_active_fence_set(active, fence);
+ if (!prev)
+ __i915_active_acquire(ref);
+
+ return prev;
+}
+
+struct dma_fence *
+i915_active_set_exclusive(struct i915_active *ref, struct dma_fence *f)
+{
+ /* We expect the caller to manage the exclusive timeline ordering */
+ return __i915_active_set_fence(ref, &ref->excl, f);
+}
+
+bool i915_active_acquire_if_busy(struct i915_active *ref)
+{
+ debug_active_assert(ref);
+ return atomic_add_unless(&ref->count, 1, 0);
+}
+
+static void __i915_active_activate(struct i915_active *ref)
+{
+ spin_lock_irq(&ref->tree_lock); /* __active_retire() */
+ if (!atomic_fetch_inc(&ref->count))
+ debug_active_activate(ref);
+ spin_unlock_irq(&ref->tree_lock);
+}
+
+int i915_active_acquire(struct i915_active *ref)
+{
+ int err;
+
+ if (i915_active_acquire_if_busy(ref))
+ return 0;
+
+ if (!ref->active) {
+ __i915_active_activate(ref);
+ return 0;
+ }
+
+ err = mutex_lock_interruptible(&ref->mutex);
+ if (err)
+ return err;
+
+ if (likely(!i915_active_acquire_if_busy(ref))) {
+ err = ref->active(ref);
+ if (!err)
+ __i915_active_activate(ref);
+ }
+
+ mutex_unlock(&ref->mutex);
+
+ return err;
+}
+
+int i915_active_acquire_for_context(struct i915_active *ref, u64 idx)
+{
+ struct i915_active_fence *active;
+ int err;
+
+ err = i915_active_acquire(ref);
+ if (err)
+ return err;
+
+ active = active_instance(ref, idx);
+ if (!active) {
+ i915_active_release(ref);
+ return -ENOMEM;
+ }
+
+ return 0; /* return with active ref */
+}
+
+void i915_active_release(struct i915_active *ref)
+{
+ debug_active_assert(ref);
+ active_retire(ref);
+}
+
+static void enable_signaling(struct i915_active_fence *active)
+{
+ struct dma_fence *fence;
+
+ if (unlikely(is_barrier(active)))
+ return;
+
+ fence = i915_active_fence_get(active);
+ if (!fence)
+ return;
+
+ dma_fence_enable_sw_signaling(fence);
+ dma_fence_put(fence);
+}
+
+static int flush_barrier(struct active_node *it)
+{
+ struct intel_engine_cs *engine;
+
+ if (likely(!is_barrier(&it->base)))
+ return 0;
+
+ engine = __barrier_to_engine(it);
+ smp_rmb(); /* serialise with add_active_barriers */
+ if (!is_barrier(&it->base))
+ return 0;
+
+ return intel_engine_flush_barriers(engine);
+}
+
+static int flush_lazy_signals(struct i915_active *ref)
+{
+ struct active_node *it, *n;
+ int err = 0;
+
+ enable_signaling(&ref->excl);
+ rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) {
+ err = flush_barrier(it); /* unconnected idle barrier? */
+ if (err)
+ break;
+
+ enable_signaling(&it->base);
+ }
+
+ return err;
+}
+
+int __i915_active_wait(struct i915_active *ref, int state)
+{
+ might_sleep();
+
+ /* Any fence added after the wait begins will not be auto-signaled */
+ if (i915_active_acquire_if_busy(ref)) {
+ int err;
+
+ err = flush_lazy_signals(ref);
+ i915_active_release(ref);
+ if (err)
+ return err;
+
+ if (___wait_var_event(ref, i915_active_is_idle(ref),
+ state, 0, 0, schedule()))
+ return -EINTR;
+ }
+
+ /*
+ * After the wait is complete, the caller may free the active.
+ * We have to flush any concurrent retirement before returning.
+ */
+ flush_work(&ref->work);
+ return 0;
+}
+
+static int __await_active(struct i915_active_fence *active,
+ int (*fn)(void *arg, struct dma_fence *fence),
+ void *arg)
+{
+ struct dma_fence *fence;
+
+ if (is_barrier(active)) /* XXX flush the barrier? */
+ return 0;
+
+ fence = i915_active_fence_get(active);
+ if (fence) {
+ int err;
+
+ err = fn(arg, fence);
+ dma_fence_put(fence);
+ if (err < 0)
+ return err;
+ }
+
+ return 0;
+}
+
+struct wait_barrier {
+ struct wait_queue_entry base;
+ struct i915_active *ref;
+};
+
+static int
+barrier_wake(wait_queue_entry_t *wq, unsigned int mode, int flags, void *key)
+{
+ struct wait_barrier *wb = container_of(wq, typeof(*wb), base);
+
+ if (i915_active_is_idle(wb->ref)) {
+ list_del(&wq->entry);
+ i915_sw_fence_complete(wq->private);
+ kfree(wq);
+ }
+
+ return 0;
+}
+
+static int __await_barrier(struct i915_active *ref, struct i915_sw_fence *fence)
+{
+ struct wait_barrier *wb;
+
+ wb = kmalloc(sizeof(*wb), GFP_KERNEL);
+ if (unlikely(!wb))
+ return -ENOMEM;
+
+ GEM_BUG_ON(i915_active_is_idle(ref));
+ if (!i915_sw_fence_await(fence)) {
+ kfree(wb);
+ return -EINVAL;
+ }
+
+ wb->base.flags = 0;
+ wb->base.func = barrier_wake;
+ wb->base.private = fence;
+ wb->ref = ref;
+
+ add_wait_queue(__var_waitqueue(ref), &wb->base);
+ return 0;
+}
+
+static int await_active(struct i915_active *ref,
+ unsigned int flags,
+ int (*fn)(void *arg, struct dma_fence *fence),
+ void *arg, struct i915_sw_fence *barrier)
+{
+ int err = 0;
+
+ if (!i915_active_acquire_if_busy(ref))
+ return 0;
+
+ if (flags & I915_ACTIVE_AWAIT_EXCL &&
+ rcu_access_pointer(ref->excl.fence)) {
+ err = __await_active(&ref->excl, fn, arg);
+ if (err)
+ goto out;
+ }
+
+ if (flags & I915_ACTIVE_AWAIT_ACTIVE) {
+ struct active_node *it, *n;
+
+ rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) {
+ err = __await_active(&it->base, fn, arg);
+ if (err)
+ goto out;
+ }
+ }
+
+ if (flags & I915_ACTIVE_AWAIT_BARRIER) {
+ err = flush_lazy_signals(ref);
+ if (err)
+ goto out;
+
+ err = __await_barrier(ref, barrier);
+ if (err)
+ goto out;
+ }
+
+out:
+ i915_active_release(ref);
+ return err;
+}
+
+static int rq_await_fence(void *arg, struct dma_fence *fence)
+{
+ return i915_request_await_dma_fence(arg, fence);
+}
+
+int i915_request_await_active(struct i915_request *rq,
+ struct i915_active *ref,
+ unsigned int flags)
+{
+ return await_active(ref, flags, rq_await_fence, rq, &rq->submit);
+}
+
+static int sw_await_fence(void *arg, struct dma_fence *fence)
+{
+ return i915_sw_fence_await_dma_fence(arg, fence, 0,
+ GFP_NOWAIT | __GFP_NOWARN);
+}
+
+int i915_sw_fence_await_active(struct i915_sw_fence *fence,
+ struct i915_active *ref,
+ unsigned int flags)
+{
+ return await_active(ref, flags, sw_await_fence, fence, fence);
+}
+
+void i915_active_fini(struct i915_active *ref)
+{
+ debug_active_fini(ref);
+ GEM_BUG_ON(atomic_read(&ref->count));
+ GEM_BUG_ON(work_pending(&ref->work));
+ mutex_destroy(&ref->mutex);
+
+ if (ref->cache)
+ kmem_cache_free(slab_cache, ref->cache);
+}
+
+static inline bool is_idle_barrier(struct active_node *node, u64 idx)
+{
+ return node->timeline == idx && !i915_active_fence_isset(&node->base);
+}
+
+static struct active_node *reuse_idle_barrier(struct i915_active *ref, u64 idx)
+{
+ struct rb_node *prev, *p;
+
+ if (RB_EMPTY_ROOT(&ref->tree))
+ return NULL;
+
+ GEM_BUG_ON(i915_active_is_idle(ref));
+
+ /*
+ * Try to reuse any existing barrier nodes already allocated for this
+ * i915_active, due to overlapping active phases there is likely a
+ * node kept alive (as we reuse before parking). We prefer to reuse
+ * completely idle barriers (less hassle in manipulating the llists),
+ * but otherwise any will do.
+ */
+ if (ref->cache && is_idle_barrier(ref->cache, idx)) {
+ p = &ref->cache->node;
+ goto match;
+ }
+
+ prev = NULL;
+ p = ref->tree.rb_node;
+ while (p) {
+ struct active_node *node =
+ rb_entry(p, struct active_node, node);
+
+ if (is_idle_barrier(node, idx))
+ goto match;
+
+ prev = p;
+ if (node->timeline < idx)
+ p = READ_ONCE(p->rb_right);
+ else
+ p = READ_ONCE(p->rb_left);
+ }
+
+ /*
+ * No quick match, but we did find the leftmost rb_node for the
+ * kernel_context. Walk the rb_tree in-order to see if there were
+ * any idle-barriers on this timeline that we missed, or just use
+ * the first pending barrier.
+ */
+ for (p = prev; p; p = rb_next(p)) {
+ struct active_node *node =
+ rb_entry(p, struct active_node, node);
+ struct intel_engine_cs *engine;
+
+ if (node->timeline > idx)
+ break;
+
+ if (node->timeline < idx)
+ continue;
+
+ if (is_idle_barrier(node, idx))
+ goto match;
+
+ /*
+ * The list of pending barriers is protected by the
+ * kernel_context timeline, which notably we do not hold
+ * here. i915_request_add_active_barriers() may consume
+ * the barrier before we claim it, so we have to check
+ * for success.
+ */
+ engine = __barrier_to_engine(node);
+ smp_rmb(); /* serialise with add_active_barriers */
+ if (is_barrier(&node->base) &&
+ ____active_del_barrier(ref, node, engine))
+ goto match;
+ }
+
+ return NULL;
+
+match:
+ spin_lock_irq(&ref->tree_lock);
+ rb_erase(p, &ref->tree); /* Hide from waits and sibling allocations */
+ if (p == &ref->cache->node)
+ WRITE_ONCE(ref->cache, NULL);
+ spin_unlock_irq(&ref->tree_lock);
+
+ return rb_entry(p, struct active_node, node);
+}
+
+int i915_active_acquire_preallocate_barrier(struct i915_active *ref,
+ struct intel_engine_cs *engine)
+{
+ intel_engine_mask_t tmp, mask = engine->mask;
+ struct llist_node *first = NULL, *last = NULL;
+ struct intel_gt *gt = engine->gt;
+
+ GEM_BUG_ON(i915_active_is_idle(ref));
+
+ /* Wait until the previous preallocation is completed */
+ while (!llist_empty(&ref->preallocated_barriers))
+ cond_resched();
+
+ /*
+ * Preallocate a node for each physical engine supporting the target
+ * engine (remember virtual engines have more than one sibling).
+ * We can then use the preallocated nodes in
+ * i915_active_acquire_barrier()
+ */
+ GEM_BUG_ON(!mask);
+ for_each_engine_masked(engine, gt, mask, tmp) {
+ u64 idx = engine->kernel_context->timeline->fence_context;
+ struct llist_node *prev = first;
+ struct active_node *node;
+
+ rcu_read_lock();
+ node = reuse_idle_barrier(ref, idx);
+ rcu_read_unlock();
+ if (!node) {
+ node = kmem_cache_alloc(slab_cache, GFP_KERNEL);
+ if (!node)
+ goto unwind;
+
+ RCU_INIT_POINTER(node->base.fence, NULL);
+ node->base.cb.func = node_retire;
+ node->timeline = idx;
+ node->ref = ref;
+ }
+
+ if (!i915_active_fence_isset(&node->base)) {
+ /*
+ * Mark this as being *our* unconnected proto-node.
+ *
+ * Since this node is not in any list, and we have
+ * decoupled it from the rbtree, we can reuse the
+ * request to indicate this is an idle-barrier node
+ * and then we can use the rb_node and list pointers
+ * for our tracking of the pending barrier.
+ */
+ RCU_INIT_POINTER(node->base.fence, ERR_PTR(-EAGAIN));
+ node->base.cb.node.prev = (void *)engine;
+ __i915_active_acquire(ref);
+ }
+ GEM_BUG_ON(rcu_access_pointer(node->base.fence) != ERR_PTR(-EAGAIN));
+
+ GEM_BUG_ON(barrier_to_engine(node) != engine);
+ first = barrier_to_ll(node);
+ first->next = prev;
+ if (!last)
+ last = first;
+ intel_engine_pm_get(engine);
+ }
+
+ GEM_BUG_ON(!llist_empty(&ref->preallocated_barriers));
+ llist_add_batch(first, last, &ref->preallocated_barriers);
+
+ return 0;
+
+unwind:
+ while (first) {
+ struct active_node *node = barrier_from_ll(first);
+
+ first = first->next;
+
+ atomic_dec(&ref->count);
+ intel_engine_pm_put(barrier_to_engine(node));
+
+ kmem_cache_free(slab_cache, node);
+ }
+ return -ENOMEM;
+}
+
+void i915_active_acquire_barrier(struct i915_active *ref)
+{
+ struct llist_node *pos, *next;
+ unsigned long flags;
+
+ GEM_BUG_ON(i915_active_is_idle(ref));
+
+ /*
+ * Transfer the list of preallocated barriers into the
+ * i915_active rbtree, but only as proto-nodes. They will be
+ * populated by i915_request_add_active_barriers() to point to the
+ * request that will eventually release them.
+ */
+ llist_for_each_safe(pos, next, take_preallocated_barriers(ref)) {
+ struct active_node *node = barrier_from_ll(pos);
+ struct intel_engine_cs *engine = barrier_to_engine(node);
+ struct rb_node **p, *parent;
+
+ spin_lock_irqsave_nested(&ref->tree_lock, flags,
+ SINGLE_DEPTH_NESTING);
+ parent = NULL;
+ p = &ref->tree.rb_node;
+ while (*p) {
+ struct active_node *it;
+
+ parent = *p;
+
+ it = rb_entry(parent, struct active_node, node);
+ if (it->timeline < node->timeline)
+ p = &parent->rb_right;
+ else
+ p = &parent->rb_left;
+ }
+ rb_link_node(&node->node, parent, p);
+ rb_insert_color(&node->node, &ref->tree);
+ spin_unlock_irqrestore(&ref->tree_lock, flags);
+
+ GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
+ llist_add(barrier_to_ll(node), &engine->barrier_tasks);
+ intel_engine_pm_put_delay(engine, 2);
+ }
+}
+
+static struct dma_fence **ll_to_fence_slot(struct llist_node *node)
+{
+ return __active_fence_slot(&barrier_from_ll(node)->base);
+}
+
+void i915_request_add_active_barriers(struct i915_request *rq)
+{
+ struct intel_engine_cs *engine = rq->engine;
+ struct llist_node *node, *next;
+ unsigned long flags;
+
+ GEM_BUG_ON(!intel_context_is_barrier(rq->context));
+ GEM_BUG_ON(intel_engine_is_virtual(engine));
+ GEM_BUG_ON(i915_request_timeline(rq) != engine->kernel_context->timeline);
+
+ node = llist_del_all(&engine->barrier_tasks);
+ if (!node)
+ return;
+ /*
+ * Attach the list of proto-fences to the in-flight request such
+ * that the parent i915_active will be released when this request
+ * is retired.
+ */
+ spin_lock_irqsave(&rq->lock, flags);
+ llist_for_each_safe(node, next, node) {
+ /* serialise with reuse_idle_barrier */
+ smp_store_mb(*ll_to_fence_slot(node), &rq->fence);
+ list_add_tail((struct list_head *)node, &rq->fence.cb_list);
+ }
+ spin_unlock_irqrestore(&rq->lock, flags);
+}
+
+/*
+ * __i915_active_fence_set: Update the last active fence along its timeline
+ * @active: the active tracker
+ * @fence: the new fence (under construction)
+ *
+ * Records the new @fence as the last active fence along its timeline in
+ * this active tracker, moving the tracking callbacks from the previous
+ * fence onto this one. Gets and returns a reference to the previous fence
+ * (if not already completed), which the caller must put after making sure
+ * that it is executed before the new fence. To ensure that the order of
+ * fences within the timeline of the i915_active_fence is understood, it
+ * should be locked by the caller.
+ */
+struct dma_fence *
+__i915_active_fence_set(struct i915_active_fence *active,
+ struct dma_fence *fence)
+{
+ struct dma_fence *prev;
+ unsigned long flags;
+
+ /*
+ * In case of fences embedded in i915_requests, their memory is
+ * SLAB_FAILSAFE_BY_RCU, then it can be reused right after release
+ * by new requests. Then, there is a risk of passing back a pointer
+ * to a new, completely unrelated fence that reuses the same memory
+ * while tracked under a different active tracker. Combined with i915
+ * perf open/close operations that build await dependencies between
+ * engine kernel context requests and user requests from different
+ * timelines, this can lead to dependency loops and infinite waits.
+ *
+ * As a countermeasure, we try to get a reference to the active->fence
+ * first, so if we succeed and pass it back to our user then it is not
+ * released and potentially reused by an unrelated request before the
+ * user has a chance to set up an await dependency on it.
+ */
+ prev = i915_active_fence_get(active);
+ if (fence == prev)
+ return fence;
+
+ GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags));
+
+ /*
+ * Consider that we have two threads arriving (A and B), with
+ * C already resident as the active->fence.
+ *
+ * Both A and B have got a reference to C or NULL, depending on the
+ * timing of the interrupt handler. Let's assume that if A has got C
+ * then it has locked C first (before B).
+ *
+ * Note the strong ordering of the timeline also provides consistent
+ * nesting rules for the fence->lock; the inner lock is always the
+ * older lock.
+ */
+ spin_lock_irqsave(fence->lock, flags);
+ if (prev)
+ spin_lock_nested(prev->lock, SINGLE_DEPTH_NESTING);
+
+ /*
+ * A does the cmpxchg first, and so it sees C or NULL, as before, or
+ * something else, depending on the timing of other threads and/or
+ * interrupt handler. If not the same as before then A unlocks C if
+ * applicable and retries, starting from an attempt to get a new
+ * active->fence. Meanwhile, B follows the same path as A.
+ * Once A succeeds with cmpxch, B fails again, retires, gets A from
+ * active->fence, locks it as soon as A completes, and possibly
+ * succeeds with cmpxchg.
+ */
+ while (cmpxchg(__active_fence_slot(active), prev, fence) != prev) {
+ if (prev) {
+ spin_unlock(prev->lock);
+ dma_fence_put(prev);
+ }
+ spin_unlock_irqrestore(fence->lock, flags);
+
+ prev = i915_active_fence_get(active);
+ GEM_BUG_ON(prev == fence);
+
+ spin_lock_irqsave(fence->lock, flags);
+ if (prev)
+ spin_lock_nested(prev->lock, SINGLE_DEPTH_NESTING);
+ }
+
+ /*
+ * If prev is NULL then the previous fence must have been signaled
+ * and we know that we are first on the timeline. If it is still
+ * present then, having the lock on that fence already acquired, we
+ * serialise with the interrupt handler, in the process of removing it
+ * from any future interrupt callback. A will then wait on C before
+ * executing (if present).
+ *
+ * As B is second, it sees A as the previous fence and so waits for
+ * it to complete its transition and takes over the occupancy for
+ * itself -- remembering that it needs to wait on A before executing.
+ */
+ if (prev) {
+ __list_del_entry(&active->cb.node);
+ spin_unlock(prev->lock); /* serialise with prev->cb_list */
+ }
+ list_add_tail(&active->cb.node, &fence->cb_list);
+ spin_unlock_irqrestore(fence->lock, flags);
+
+ return prev;
+}
+
+int i915_active_fence_set(struct i915_active_fence *active,
+ struct i915_request *rq)
+{
+ struct dma_fence *fence;
+ int err = 0;
+
+ /* Must maintain timeline ordering wrt previous active requests */
+ fence = __i915_active_fence_set(active, &rq->fence);
+ if (fence) {
+ err = i915_request_await_dma_fence(rq, fence);
+ dma_fence_put(fence);
+ }
+
+ return err;
+}
+
+void i915_active_noop(struct dma_fence *fence, struct dma_fence_cb *cb)
+{
+ active_fence_cb(fence, cb);
+}
+
+struct auto_active {
+ struct i915_active base;
+ struct kref ref;
+};
+
+struct i915_active *i915_active_get(struct i915_active *ref)
+{
+ struct auto_active *aa = container_of(ref, typeof(*aa), base);
+
+ kref_get(&aa->ref);
+ return &aa->base;
+}
+
+static void auto_release(struct kref *ref)
+{
+ struct auto_active *aa = container_of(ref, typeof(*aa), ref);
+
+ i915_active_fini(&aa->base);
+ kfree(aa);
+}
+
+void i915_active_put(struct i915_active *ref)
+{
+ struct auto_active *aa = container_of(ref, typeof(*aa), base);
+
+ kref_put(&aa->ref, auto_release);
+}
+
+static int auto_active(struct i915_active *ref)
+{
+ i915_active_get(ref);
+ return 0;
+}
+
+static void auto_retire(struct i915_active *ref)
+{
+ i915_active_put(ref);
+}
+
+struct i915_active *i915_active_create(void)
+{
+ struct auto_active *aa;
+
+ aa = kmalloc(sizeof(*aa), GFP_KERNEL);
+ if (!aa)
+ return NULL;
+
+ kref_init(&aa->ref);
+ i915_active_init(&aa->base, auto_active, auto_retire, 0);
+
+ return &aa->base;
+}
+
+#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
+#include "selftests/i915_active.c"
+#endif
+
+void i915_active_module_exit(void)
+{
+ kmem_cache_destroy(slab_cache);
+}
+
+int __init i915_active_module_init(void)
+{
+ slab_cache = KMEM_CACHE(active_node, SLAB_HWCACHE_ALIGN);
+ if (!slab_cache)
+ return -ENOMEM;
+
+ return 0;
+}